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This work addresses the problem of signal-dependent noise removal in images. An adaptive nonlinear filtering approach in the
orthogonal transform domain is proposed and analyzed for several typical noise environments in the DCT domain. Being applied
locally, that is, within a window of small support, DCT is expected to approximate the Karhunen-Loeve decorrelating transform,
which enables effective suppression of noise components. The detail preservation ability of the filter allowing not to destroy any
useful content in images is especially emphasized and considered. A local adaptive DCT filtering for the two cases, when signal-
dependent noise can be and cannot be mapped into additive uncorrelated noise with homomorphic transform, is formulated.
Although the main issue is signal-dependent and pure multiplicative noise, the proposed filtering approach is also found to be
competing with the state-of-the-art methods on pure additive noise corrupted images.
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1. INTRODUCTION

Digital images are often degraded by noise, due to the im-
perfection of the acquisition system or the conditions dur-
ing the acquisition. Noise decreases the perceptual quality
by masking significant information, and also degrades per-
formance of any processing applied over the acquired image.
Hence, image prefiltering is a common operation used in or-
der to improve analysis and interpretation of remote sensing,
broadcast transmission, optical scanning, and other vision
data [1, 2].

Till now a great number of different image filtering tech-
niques have been designed including nonlinear nonadaptive
and adaptive filters [3, 4], transform-based methods [5–11],
techniques based on independent component analysis (ICA),
and principal component analysis (PCA) [12, 13], and so
forth. These techniques have different advantages and draw-
backs thoroughly discussed in [3, 4, 14], and other refer-
ences. The application areas and conditions for which the
use of these filters can be the most beneficial and expedient
depend on the filter properties, noise statistical characteris-
tics, and the priority of requirements. For effective filtering,

it is desirable to considerably suppress noise in homogeneous
(smooth) regions and to preserve edges, details, and texture
at the same time. Acceptable computational cost is the most
important requirement that can restrict a practical applica-
bility of some denoising techniques, for example, those based
on ICA and PCA [12–14].

From the viewpoint of noise suppression, preservation of
edges, details and texture, and time efficiency requirements,
quite good effectiveness has been demonstrated by locally
adaptive methods [15–17]. The latest modifications of lo-
cally adaptive filters [16, 17] include both typical nonlin-
ear scanning window filters (employing order statistics) and
transform-based filters, in particular, filters based on discrete
cosine transform (DCT).

For many image denoising applications, it is commonly
assumed that the dominant noise is additive and its proba-
bility density function (pdf ) is Gaussian [3, 4, 18]. For mi-
crowave radar imagery, however, multiplicative noise is typ-
ical. The pdf of the noise can be either considered Gaus-
sian or non-Gaussian (e.g., Rayleigh, negative exponential,
gamma) depending on the radar type and its characteris-
tics [15, 16, 19]. Images scanned from photographic or some
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medical images are other examples [6] where additive Gaus-
sian noise model fails.

Homomorphic transformation can sometimes be a rea-
sonable way of converting signal-dependent or pure multi-
plicative noise to an additive noise, which then can be filtered
appropriately [4, 16, 20–22]. However, quite often achiev-
able benefits are not so obvious [21, 22] and without losing
efficiency, it is possible to perform filtering without apply-
ing a homomorphic transformation to data (e.g., film-grain
noise). Lee or Kuan filters [23, 24] are among those conven-
tional and widely used techniques that aim to suppress mul-
tiplicative noise without the use of the homomorphic trans-
form. The performance of such filters is improved by their
integration into an iterative approach [25, 26]. However, iter-
ative techniques are usually computationally costly, and they
often may introduce oversmoothing.

In this work, we aim to develop a class of transform-
based adaptive filters capable of suppressing signal-
dependent and multiplicative noise, while preserving
texture, edges, and details, which contain significant infor-
mation for further processing and interpreting of images. In
Section 2, we briefly overview a nonlinear transform domain
filtering (how it is derived from a least mean square sense
optimal filtering), for additive Gaussian noise. Note that
any decorrelating orthogonal transform will be a possible
choice for a transform domain filtering approach. Yet, we
concentrate on the DCT in the following sections, discussing
why we expect it to be a good choice for the transform
domain filtering. In Section 3, we propose our local adaptive
DCT (LADCT) filter in the presence of signal-dependent
and multiplicative noise. For signal-dependent and mul-
tiplicative noise, we treat two cases separately: where the
homomorphic transform can be and cannot be applied.

2. A BRIEF OVERVIEW OF TRANSFORM DOMAIN
FILTERS FOR ADDITIVE GAUSSIAN NOISE

A general observation model for noise (we deal within this
paper) can be expressed as

gi j = fi j + f
γ
i j · ni j , (1)

where gi j , fi j , and ni j denote the noisy image sample (pixel)
value, true image value, and signal-independent noise com-
ponent that is characterized by the variance σ2

n , respectively,
for the i jth sample. This model is a quite universal one, cov-
ering pure additive, signal-dependent, and pure multiplica-
tive noise cases. Let

f̂ = H · g (2)

denote a linear filtering operation, where f̂ and g refer to the
vector of estimated signal and the observed (noisy) signal,
respectively, and H refers to the matrix of linear filter coeffi-
cients.

Consider the case where γ = 0, corresponding to corrup-
tion with additive zero mean Gaussian noise (which is a valid
assumption for many practical applications [3, 4, 18]). The
coefficients of the linear optimal filter in the minimum mean

square error sense for this case is the one which minimizes

the mean square error between f̂ and f , and will be denoted
as

H = R f f

(
R f f + σ2

nI
)−1

. (3)

In (3), R f f is the correlation matrix of original data vector,
f . Let U and ∆ be the matrices with eigenvectors and eigen-
values of R f f , respectively, that is, R f f = U∆UT . Then the
filtering matrix (3) becomes

H = U
(

I + σ2
n∆

−1
)

UT = U∆̃U
T

, (4)

where ∆̃ = diag{λ1/(λ1 +σ2
n), λ2/(λ2 +σ2

n), . . . , λM/(λM+σ2
n)},

λi being the eigenvalues of R f f . Equation (4) can be inter-
preted as mapping the signal into the Karhunen-Loeve trans-
form (KLT) domain, processing each coefficient individu-
ally, and then mapping the processed coefficients back to the
time/space domain.

Recall that in practical signal processing applications, due
to the need for a priori knowledge of the original signal statis-
tics, KLT is often replaced by a decorrelating transform with
fixed basis functions such as discrete cosine transform (DCT)
[27] or discrete wavelet transform (DWT) [8–11, 28, 29]. En-
ergy compaction and decorrelation are two important prop-
erties of orthogonal transforms exploited in denoising appli-
cations [5], because energy of white Gaussian noise is uni-
formly diffused over all vectors of any orthogonal transform,
and it is desirable to find a basis, which has appropriately
good energy compaction property for a near-optimum de-
noising.

DWT methods are generally the extensions to the work
of Donoho and Johnstone [30], where U is replaced with

Ua, representing DWT, and ∆̃ is approximated with ∆a =
diag{λa1, λa2, . . . , λaM}, where

λai =

⎧⎨
⎩

1,
∣∣(UT

a g
)
i

∣∣ > thr

0, else,
(5)

or

λai =

⎧⎨
⎩

sgn
[(

UT
a g
)
i

]
·
∣∣(UT

a g
)
i − thr

∣∣,
∣∣(UT

a g
)
i

∣∣ > thr

0, else,

(6)

and (UT
a g)i corresponds to the ith sample of the vector UT

a g.
The expression in (5) is referred to as a hard thresholding
and the one in (6) is a soft thresholding, thr denoting a pre-
set threshold. Donoho and Johnstone have proven that both
schemes are within the logarithmic factor of the mean square
error, and proposed thr = k · σn, where k = 2

√
lnM (M de-

noting the length of the signal).
In DCT-based denoising, block-based processing is of-

ten preferred [27], since this not only enables fast and mem-
ory efficient implementations but also exploits local quasis-
tationary behavior of images. DCT approximates KLT for
highly correlated data in a windowed region of natural im-
ages [31]. Two other clear advantages of DCT are that, being
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involved in standard compression schemes [32], fast imple-
mentation structures have been widely developed and DCT-
based implementations can easily be embedded in those
standard schemes.

3. DCT FILTERING FOR MULTIPLICATIVE AND
SIGNAL-DEPENDENT NOISE CASES

As it was mentioned earlier, multiplicative noise is typical for
radar and ultrasound imaging systems [15, 19, 20]. The noise
characteristics in radar images depend upon several factors
such as a system type—whether one deals with an image ob-
tained by synthetic aperture radar (SAR) or side look aper-
ture radar (SLAR) [15, 19]. Additionally, multiplicative noise
(speckle) characteristics are determined by a radar operation
mode, for example, is a SAR image one look or multilook.
The simplified radar image models commonly take the mul-
tiplicative noise into account only, and can be described by
(1), when γ = 1 [19]. Then, (1) can be updated as follows:

gi j = fi j + fi j · ni j = fi jµi j , (7)

where the multiplicative noise factor can also be expressed as
µi j = 1 +ni j . According to (1), the variance σ2

µ of the variable

µ is similar to σ2
n for γ = 1. Note that σ2

µ is often referred to
as multiplicative noise or speckle (relative) variance.

In SLAR image case, µ is Gaussian with its mean value
equal to unity. For the simplified model (7) of a pure mul-
tiplicative noise, the influence of a radar point spread func-
tion and an additive noise is often neglected. In most of the
real cases σ2

µ is considered to be a constant value for the en-

tire image. Typical values of σ2
µ are commonly of the order

0.004· · ·0.02 for SLAR images and slightly larger for multi-
look SAR images [15, 33].

In SAR images, σ2
µ is determined by a method of forming

a one-look SAR image and a number of looks Nlooks used.
Statistical experiments carried out using the standard χ2 test
show that if a one-look SAR image is formed as an estimate
of the backscattered signal amplitude, then it is enough to
have Nlooks > 8· · ·9 in order to consider multiplicative noise
Gaussian in obtained multilook SAR image. Similarly, if a
one-look SAR image is formed as an estimate of the backscat-
tered signal intensity (and pdf of original speckle in one-look
SAR image is negative exponential), thenNlooks > 30 · · · 35 is
enough to accept hypothesis on Gaussian pdf of multiplica-
tive noise in multilook SAR image with a probability over
0.5. In other words, if in a multilook SAR image one has
σ2
µ < 0.035, an assumption on Gaussianity of multiplicative

noise is valid.
As it is demonstrated in [15], the model (7) is, in gen-

eral, applicable to describe radar images corrupted by non-
symmetric pdf speckle which is typical for images formed
by SAR with a small number of looks [19]. Note that often
the quality of original images and their filtered versions is ex-
pressed in terms of equivalent number of looks [19]. It is also
worth noting that if the corresponding prefiltering of images
with non-Gaussian speckle has been carried out, the resid-
ual noise in homogeneous regions, being still multiplicative,
approximately obeys Gaussian distribution [15, 33].

It directly follows from (1) and (7) that, in the homoge-
neous regions of SLAR and SAR images, local variance σ2

...
g of

fluctuations due to multiplicative noise (speckle) is strictly
connected with the local mean g loc : σ2

g ≈ σ2
µg

2
loc [15, 19].

This property is widely exploited in denoising of images cor-
rupted by multiplicative noise [23–26].

3.1. Local adaptive filtering for pure multiplicative
noise (γ = 1)

In order for us to cope with the multiplicative noise, nonlin-
ear transform domain denoising described in Section 2 can
be combined with the homomorphic transformation [15, 22]
that converts the multiplicative noise into additive noise.
Note that the use of the homomorphic transformations is
a commonly recommended way for processing of data cor-
rupted by a multiplicative noise [4]. Its basic motivation is
that this leads to reduced complexity (simplification) of situ-
ation one has to deal with. This is true in some cases, but not
always.

In this case, we obtain a denoising scheme where the in-
put passes through the homomorphic transformation of the
logarithmic type at first, then a denoising operation is per-
formed, and finally, the obtained image is subject to the in-
verse homomorphic transformation. Such scheme can be de-
noted as Hom → H → Hom−1 where Hom and Hom−1 de-
note a pair of direct and inverse homomorphic transforms,
respectively, and H denotes the applied filter.

Note that after Hom, one can obtain additive noise with
probability density function close to Gaussian if and only if:
originally pure multiplicative noise has been Gaussian and
this noise has been characterized by a rather small relative
variance σ2

µ (the tests have shown that it should be smaller
than 0.02). In all other cases, the obtained additive noise does
not obey Gaussian distribution and this can cause problems
in transform-based denoising. For example, this happens for
images corrupted by nonsymmetric pdf speckle (Rayleigh,
negative exponential, gamma, etc.) that are typical for im-
ages formed by SARs with one or few looks [15, 20, 22]. Af-
ter direct homomorphic transform of logarithmic type such
speckle noise becomes additive but also nonsymmetric (with
respect to its mean) and heavy tailed. Removal of such noise
is not a typical and simple task. In other words, the situation
after transformation does not become simpler than it was be-
fore it.

In [16], it was proposed to convert a multiplicative noise
as expressed by (7) to an additive noise by means of the direct
homomorphic transform ghi j = [a logb(gi j)], where a and b
are constants and [·] denotes rounding-off to the nearest in-
teger. The recommended values of a and b for the traditional
8-bit representation of gray-scale images were equal to 8.39
and 1.2, respectively. If σ2

µ ≤ 0.02, for the images obtained
after aforementioned direct homomorphic transform, noise
could be considered Gaussian, additive with zero mean and
variance equal to σ2

additive = a2 · σ2
µ /(ln b)2.

On one hand, according to our investigations [16],
rounding-off to the nearest integer introduces some distor-
tions (additional errors) due to direct and, then, inverse
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homomorphic transforms, that is, gi j can be only approxi-

mately equal to Hom−1(Hom(gi j)). In general, filtering can
be applied to data represented as floating point values. On
the other hand, the application of DCT and other transform-
based filters to integer-valued data commonly provides con-
siderably better computational efficiency than if these filters
are applied to real valued images [34].

Therefore, the image processing scheme Hom → H →
Hom−1 has some restrictions in terms of its application
in practice. At the same time, in the case of pure multi-
plicative noise there is another possibility to perform a lo-
cal DCT-based filtering. For this purpose, we prefer to ap-
proximate the filtering operation of (4) in the DCT domain
by exploiting the thresholding operation in (5)-(6) with an
adaptive scheme. Note that when the denoised image pix-
els in each block are obtained directly through the inverse
DCT of the thresholded coefficients for that block as in [27],
pseudo-Gibbs phenomena, that is, undershoots and over-
shoots, around the neighborhood of discontinuities occur
[28]. In order to overcome this, we propose to generate mul-
tiple denoised estimates instead of a single one, for each pixel
in the block at first. Then, the filtered intensity value for a
particular pixel can be obtained through averaging (weighted
averaging) over those multiple estimates. Neighboring and
overlapping blocks can provide multiple estimates, when the
block window is sliding in the vertical and horizontal direc-
tions. Averaging over multiple estimates suppresses under-
shoots and overshoots, in a way analogous to the transla-
tion invariant denoising proposed by Coifman and Donoho
in [28]. The main idea is to decrease the effect of misalign-
ment between the signal and the basis function, by shifting
the signal a number of times.

This algorithm of DCT-based denoising can be, in gen-
eral, summarized below.

(1) Divide an image to be processed into overlapping
blocks (scanning windows) of size M × M; let s be a
shift (in one dimension, row, or columnwise) in pixels
between two neighboring overlapping blocks.

(2) For each block, with the left upper corner in the i jth
pixel, assign

x(m, l) = g(i + m, j + l), m, l = 0, . . . ,M − 1. (8)

(i) Calculate the DCT coefficients as follows:

X[p, q] =c[p]c[q]
M−1∑
m=0

M−1∑

l=0

x(m, l)

× cos

[
(2m + 1)pπ

2M

]
cos

[
(2l + 1)qπ

2M

]
,

(9)

where

c[p] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2

M
, 1 ≤ p ≤M − 1,

1√
M

, p = 0,

c[q] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

√
2

M
, 1 ≤ q ≤M − 1,

1√
M

, q = 0.

(10)

(ii) Apply thresholding to the DCT coefficients
X[p, q] according to the selected type of thresh-
olding (either hard (5) or soft (6)) and obtain
Xth[p, q].

(iii) Obtain the estimates within each block by ap-
plying the inverse DCT to the thresholded trans-
form coefficients as

x f (m, l) =c[p]c[q]
M−1∑
p=0

M−1∑
q=0

Xth[p, q]

× cos

[
(2m + 1)pπ

2M

]
cos

[
(2l + 1)qπ

2M

]
.

(11)

(iv) Get the filtered values for the block as

f̂ (i + m, j + l) = x f (m, l), m, l = 0, . . . ,M − 1. (12)

(3) Obtain the final estimate f̂
f
i j for a pixel at i jth loca-

tion by averaging the multiple estimates of it, these
come from neighboring overlapping blocks including
that pixel.

If the homomorphic transform is not applied, there is the fol-
lowing distinction. For the thresholding step, (2)(ii), we pro-
pose to adjust the threshold value for each image block sepa-
rately (individually). Specifically, a rough supposition can be
made that a noise within a small image block is close to ad-
ditive. In this case, the noise variance within the block can be
calculated as σ2

g ≈ g2 · σ2
µ where (g) is the local mean of the

pixels in this block. Thus, the threshold value for each block
should be chosen as k·σµ·g where k is a constant (more thor-
ough background is given in the next subsection). We refer
to this algorithm for denoising of multiplicative noise as local
adaptive DCT denoising with s number of overlaps (LADCT-
s). The same algorithm when fixed threshold is used is re-
ferred to as LDCT throughout the paper.

If one uses a scheme Hom → H → Hom−1 where H
is the DCT-based filtering algorithm described above, Hom
should be applied to the whole image before step 1, with ob-
taining ghi j = [a logb(gi j)] and applying all steps 1–3 to gh.

As the result, after executing step 3, one obtains f̂
f
h and then

for an entire image, the inverse homomorphic transform will

be performed to obtain the filtered image f̂ f . In that case, a
threshold value used at the step (2)(ii) will be fixed for all
blocks used, thr = k · σadditive with σadditive = a · σµ/(ln b).
Similarly, one has to set thr = k · σn if a noise is pure additive
(γ = 0 in the model (1)).

Although we study a multiplicative noise model in this
work, we compared the performance of the above proposed
algorithm in presence of additive Gaussian noise with that of
the state-of-the-art wavelet denoising methods [8, 9, 11, 29].
Our simulations showed that the proposed algorithm com-
petes with GSMWD, which is reportedly one of the best de-
noising methods in the literature. Gaussian scale mixtures
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Table 1: PSNR results of processing the test image including texture regions, corrupted by multiplicative noise, σ2
µ = 0.012.

Denoising techniques Thresholding type and threshold value Local PSNR, dB

Original image — 23.62

Haar wavelet Soft: 1.2σn 26.39

Haar wavelet Hard: 2.8σn 27.63

Symmlet wavelet Soft: 1.2σn 27.37

Symmlet wavelet Hard: 2.6σn 27.96

Extended symmlet wavelet Soft, auto-adjusting of threshold 28.26

LDCT-1 Hard: 2.6σn 28.76

LADCT-1 Hard with adaptation: k = 2.6 28.91

in the wavelet domain (GSMWD) [29] is a wavelet denois-
ing technique based on a local Gaussian scale mixture model
in an overcomplete oriented pyramid representation. The
performance of DCT-based denoising for additive Gaussian
noise can be increased with weighted processing of estimates
obtained from different overlapping blocks like in [35, 36]
or by the use several transforms in a switch [36], of nonequal
shape and size of blocks (http://www.cs.tut.fi/∼foi/SA-DCT),
and so forth.

3.2. Experimental results with pure
multiplicative noise (γ = 1)

Let us now analyze and compare the performance of the
scheme Hom → H → Hom−1, the proposed LADCT-s, and
some other filters. First, we consider a particular task of tex-
ture preservation. In [16], we have thoroughly discussed tex-
ture preserving properties of a wide set of different filters.
It has been demonstrated that the procedure Hom → H →
Hom−1 where H was DCT-based filtering for additive noise
outperformed such good detail preserving filters like stan-
dard and modified sigma filters [33], local statistic Lee [23],
FIR median hybrid and center weighted median filters [3],
and so forth. However, the comparison to wavelet-based de-
noising methods has not been carried out.

The studies in [16] have been accomplished for the cases
of prevailing Gaussian multiplicative noise with relative vari-
ance values σ2

µ = 0.005 and σ2
µ = 0.012 typical for SLAR

images. These values satisfy aforementioned condition σ2
µ ≤

0.02. Below we consider a particular case of σ2
µ = 0.012.

Taking into account the fact that wavelet-based denois-
ing is commonly applied to images corrupted by additive
noise, let us perform a performance comparison between
wavelet and DCT-based denoising methods under an as-
sumption of transform-based filter to be used within the
scheme Hom → H → Hom−1, that is, in fact, for additive
noise. For this purpose, let us consider the same test image
as that one used in [16] (see Figure 1). Among the wavelet
denoising techniques the following have been examined: the
Haar wavelet, the Daubechies, and Symmlet wavelets, all with
hard (HT) and soft (ST) thresholding. The obtained data
are presented in Table 1. Note that DCT-based filtering with
hard thresholding (thr = 2.6σn) and s = 1 has been used.
We have also tested the proposed LADCT-s (the last row

Figure 1: The noise-free test image with four texture regions (two
of rectangular and two of circular shape).

in Table 1) directly on noisy image (without homomorphic
transforms). The listed threshold values in Table 1 are the
ones for which corresponding wavelet denoising techniques
provide the best local PSNR for texture regions and near best
PSNR for the entire image. Local PSNR has been computed
as PSNRloc = 10 · log(2552/MSEloc) where MSEloc has been
calculated for all pixels belonging to all four texture regions
in the test image (see Figure 1). All wavelet denosing tech-
niques have been implemented by the software tool obtained
from WaveLab for MATLAB (www-stat.Stanford.edu).

As seen, for textural regions both DCT-based filtering
techniques produce the best (largest) local PSNRs. They
are by 0.5 · · · 2.5 dB better than for the considered wavelet
denosing schemes. The scheme Hom → LDCT-1 → Hom−1

and LADCT-1 produce practically equal PSNRloc although
for the latter technique PSNRloc is slightly larger. Since
LADCT-1 does not require performing homomorphic trans-
formations and the only additional operations are calcula-
tion of local means in all blocks and their multiplying by
kσµ (both are very simple), practical application of LADCT-
1 seems preferable in comparison to Hom → LDCT-1 →
Hom−1.

This conclusion has also been confirmed by simulation
data presented in our earlier paper [22]. It is shown there for
the test image “Montage” corrupted by pure multiplicative
noise with σ2

µ = 0.035 that PSNR values for LADCT-1 are

http://www.cs.tut.fi/~foi/SA-DCT
file:www-stat.Stanford.edu
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(a)

(b)

Figure 2: Original SLAR image (a) and the output image after ap-
plying LADCT-1 (b).

Table 2: PSNR results for Boat, degraded with multiplicative noise,
γ = 1.

σµ Kuan1 [25] Kuan3 [25] LADCT-1

0.1 29.72 30.88 32.24

0.2 25.74 26.81 28.88

0.3 22.85 23.65 26.84

about 0.6 dB better than for the scheme Hom → LDCT-1 →
Hom−1.

An example of applying LADCT-1 with hard threshold-
ing (k = 2.6) to a real SLAR image with σ2

µ = 0.012 is pre-
sented in Figure 2(a). Noise is well seen, especially in image
regions with rather large local mean. The obtained output
image is shown in Figure 2(b). Noise is considerably sup-
pressed in image homogeneous regions while useful infor-
mation like edges, fine details, and texture is preserved well.

Table 3: SNR results for Lenna, degraded with 16-looks speckle
noise.

Noisy image Kuan FMP [37] LADCT-1

7.8 dB 16.1 19.1 dB 19.8 dB

We also have compared our method LADCT-1 (hard
thresholding, k = 2.6) with the one of the most recent and
competitive method called fuzzy matching pursuit (FMP)
[37]. Recursive Kuan filters [25] and conventional Kuan fil-
ters [24] have been also considered. The results are pre-
sented in Tables 2, 3. They show the superiority of local adap-
tive DCT filtering (LADCT) for removing pure multiplica-
tive noise. LADCT-1 outperforms Kuan filter-based iterative
technique by approximately 2 dB (see data in Table 2) and
the FMP based technique by 0.7 dB (see data in Table 3).
Note that advantages of LADCT (larger PSNR or SNR values)
become especially obvious for more intensive multiplicative
noise (large values of σµ).

One more example of using LADCT-1 with hard thresh-
olding (k = 2.6) is given in Figure 3. An original image
was formed by a two-look SLAR image where each look im-
age represent a spatial estimate of reflected signal amplitude.
Thus, σ2

µ is about 0.14. As expected, speckle is well seen visu-
ally and it is rather intensive. The output image is demon-
strated in Figure 3(b). Fine details and edges are perfectly
retained while in image homogeneous regions noise is sup-
pressed well.

Above we prefer to use SNR or PSNR as the quantita-
tive measures of filtering performance. Sometimes, equiva-
lent number of looks is employed to characterize and com-
pare the performance of different filters. But this criterion ba-
sically relates to noise suppression in image homogeneous re-
gions while integral and local PSNR values are able to quanti-
tatively describe filter effectiveness for entire images and their
fragments, respectively.

3.3. Local adaptive filtering for film-grain
noise (0 < γ < 1)

The type of noise described by (1) when 0 < γ < 1 is generally
referred as film-grain noise, and occurs when photographic
films are scanned, due to the granularity of photo-sensitive
crystals on the film [24, 26]. It is a special case where it is
not possible to reform (1) into (7) by homomorphic trans-
forms. Most of the existing methods for removing such type
of noise rely on recursive filtering [25, 26]. In [6], an approx-
imation of mean square error filtering in the transform do-
main is formulated, and a wavelet domain denoising method
is proposed as a faster and edge preserving filtering alter-
native to recursive type of filters. Here, we revisit the mean
square error filtering approach, and propose a DCT domain
filter, which exploits local stationary characteristics of natu-
ral images.
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(a)

(b)

Figure 3: Original SAR image (a) and the output image after apply-
ing LADCT-1 (b).

Let us get back to the filtering operation expressed by (2),
where the noisy image is expressed as in (1). Then the opti-
mum filter Hγ, in the least mean square error sense will be

Hγ = R f f

(
R f f + σ2

nRγ

)−1
, (13)

where Rγ stands for the autocorrelation matrix fγ =
[ f

γ
1 , f

γ
2 , . . . , f

γ
M]T , fi representing the original data samples.

Equation (13) can be reformulated as

Hγ = U
(

I + σ2
nUTRγU∆

−1)−1
UT = U

(
I + σ2

n R̃γ∆
−1
)−1

UT ,
(14)

where R f f = U∆UT and R̃γ = UTRγU. Consider the case of
slowly varying data, such as fi varies in close vicinity of its

mean f . That is, the data vector can be expressed as

f =
[
f + δ1, f + δ2, . . . , f + δM

]T
, (15)

where δi are zero mean iid random variables with variance
σ2
δ . When σ2

δ is small enough, then, the γth root of fi can be

approximated as fγ = [ f
γ

+ δ′1, f
γ

+ δ′2, . . . , f
γ

+ δ′M]T , where
δ′i are zero mean iid random variables with variance σ2

δ′ ≤ σ2
δ .

In that case, the autocorrelation matrices R f f and Rγ can be

expressed as R f f = f
2 · P + σ2

δ · I, Rγ = f
2γ · P + σ2

δ′ · I

Table 4: SNR results for Lenna, degraded with film-grain type of
noise at 2.9 dB.

γ LLMMSE M-LLMMSE AWD [6] LADCT-8 LADCT-1

0.2 12.0 14.7 14.3 14.3 16.1

0.4 12.1 14.8 14.9 15.2 16.8

0.6 12.3 15.0 14.9 15.3 17.1

where P refers to the matrix of ones. Then, the matrix which
diagonalizes R f f also diagonalizes Rγ, and (14) reduces to the
same form as (4),

Hγ = U∆̃γUT , (16)

where ∆̃ = diag{λ1/(λ1 + σ2
n · f

2γ
), λ2/(λ2 + σ2

n · f
2γ

), . . . ,

λM/(λM + σ2
n · f

2γ
)}, when σ2

δ′ , σ
2
δ terms are ignored. Our

simulations show that the above statements related to R f f

and Rγ are accurate as long as (15) holds for 3·σδ < f , which
is a safe assumption within a small support of image data.
Hence, the proposed algorithm in Section 3.1 can be used as
an approximation to the filtering expressed by (16), when

thr = k · σn · f
γ
. (17)

f denotes an approximation to the true data at the corre-
sponding pixel, and we use the DC coefficient of the corre-
sponding DCT block for it. Since the DC coefficient corre-
sponds to sum of the pixel values in that block, scaled by c[0]
(see (9)), we further multiply it by c[0] to obtain the sample
mean of the block.

It follows from (17) that for a pure multiplicative noise
(γ = 1) the threshold in each block is to be set as k · σµ · g,
that is, our earlier intuitive assumption has been confirmed.

3.4. Experimental results with film-grain
noise (0 < γ < 1)

We tested our formulation on Lenna, Barbara, and Boat im-
ages, for which either PSNR or SNR results with recent fil-
tering techniques are available in the literature. Although k
is recommended to be 2

√
lnM (= 2.9 for M = 8 × 8 win-

dow size) in [30], we performed and reported our simula-
tions for k = 2.6 (which achieved better performance in our
simulations), and used soft thresholding. The corrupted im-
ages are generated by using the film-grain noise model with
γ = {0.2, 0.4, 0.6}. We have compared our results with AWD
[6] and multiscale local linear minimum mean square error
filter (LLMMSE) [38]—an improvement of the Kuan filter.
AWD is a wavelet denoising technique developed for data-
dependent noise removal, which uses adaptive thresholding.
The threshold is calculated by using previously filtered low
resolution subband samples in a wavelet decomposition hi-
erarchy.

The results for LADCT-1 are considerably better than
those for LADCT-8 (compare data in two rightmost
columns in Tables 4–6). LADCT-1 performs 1.4 dB to 2.1 dB
better than multiscale LLMMSE filter for Lenna image
(see Table 4). The results of multiscale LLMMSE filter do
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Table 5: SNR results for Boat, degraded with film-grain type of noise at 2.9 dB SNR.

γ LLMMSE AWD [6] LADCT-8 LADCT-1

Overall Detail Overall Detail Overall Detail Overall Detail

0.2 10.27 7.44 10.72 7.36 11.05 7.71 12.94 10.30

0.4 10.31 7.57 10.81 7.61 11.08 7.33 12.98 10.45

0.6 10.46 7.84 10.86 7.85 11.69 8.05 13.12 10.31

(a) (b) (c)

(d) (e) (f)

Figure 4: Portion of the Boat image: (a) original, (b) film-grain noised at 2.9 dB (γ = 0.4), (c) LLMMSE filtered, (d) adaptive wavelet
denoised, (e) LADCT-8, (f) LADCT-1 filtered.

Table 6: SNR results for Barbara, degraded with film-grain type of
noise at 2.9 dB SNR.

γ LLMMSE AWD [6] LADCT-8 LADCT-1

0.2 9.66 9.89 10.49 12.60

0.4 9.67 9.83 10.46 12.90

0.6 9.67 9.78 10.51 12.62

not exist for Boat and Barbara test images in the litera-
ture. Compared to LLMMSE filter, LADCT-1 outperforms it
by ∼4.5 dB, ∼2.6 dB, ∼3 dB for Lenna, Boat, and Barbara,
respectively. Even when there is no overlapping of blocks
(denoted as LADCT-8), LADCT slightly outperforms M-
LLMMSE, and outperforms LLMMSE by from 0.8 to 3.1 dB.
The SNR values obtained for LADCT-1 are also considerably

better than for the AWD filter [6]. Note that in Table 5 we
give not only SNR values calculated for entire (overall) test
image, but also the values of local SNR determined for het-
erogeneous (detail) regions of the test image Boat. Both over-
all and local SNRs for LADCT-1 are considerably better com-
pared to the corresponding data for LLMMSE and AWD (see
Table 5).

Subjective evaluations also favor LADCT. Figure 4 dis-
plays portions of the original, noisy (at 2.9 dB, γ = 0.4), and
filtered Boat images. Figures 4(e)-4(f) present more pleas-
ant display than the other two methods (wavelet denoising
with adaptive thresholding [6] in Figure 4(d), and LLMMSE
in Figure 4(c)). Figure 4(c) shows that LLMMSE especially
fails in removing noise at and around the edges. It shows that
LADCT-1 not only suppresses noise, but also preserves the
details better than the competing techniques.
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4. CONCLUSIONS

This work considers and introduces a class of transform do-
main filters for enhancing signal-dependent and multiplica-
tive noise corrupted images. We address the case both when
multiplicative noise can be and cannot be turned into addi-
tive noise with homomorphic transform. We show that op-
timal linear filtering in the least mean square error sense for
both cases can be approximated by an adaptive threshold-
ing scheme in the orthogonal transform domain, and dis-
cuss that block-based DCT is a preferable choice as the trans-
form. We exploit the local sliding window (block) approach,
which improves the performance by decreasing overshoot-
ing and undershooting artifacts of thresholding. The test re-
sults prove that our local adaptive DCT (LADCT) filters not
only outperform existing filters attacking signal-dependent
and multiplicative noise, but also compete with the state-of-
the-art additive Gaussian noise filtering techniques. It is also
illustrated by Figures and Tables that LADCT filters preserve
details and texture better while removing noise at those re-
gions.
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