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Locally Adaptive Wavelet-Based Image Interpolation
S. Grace Chang, Zoran Cvetković, Senior Member, IEEE, and Martin Vetterli, Fellow, IEEE

Abstract—We describe a spatially adaptive algorithm for image
interpolation. The algorithm uses a wavelet transform to extract
information about sharp variations in the low-resolution image
and then implicitly applies interpolation which adapts to the
image local smoothness/singularity characteristics. The proposed
algorithm yields images that are sharper compared to several
other methods that we have considered in this paper. Better
performance comes at the expense of higher complexity.

Index Terms—Image interpolation, locally adaptive, nonlinear
interpolation, wavelet.

I. INTRODUCTION

THE CLASSIC problem of image interpolation refers to ex-
tracting information from the given image to fill in the un-

known pixels values. It is used for magnification and zooming
purposes, which are the applications we have in mind. The chal-
lenge is to process the image in such a way as to keep the mag-
nified image sharp. Traditional methods, such as bilinear inter-
polation or spline approximation, inherently assume smooth-
ness constraints on the signal and, as a result, they typically
generate blurred images. The subjective quality of the interpo-
lated images can be improved by employing more sophisticated
image models as has been explored in many different directions
in the signal processing literature, including edge-directed in-
terpolation, various methods that use projections onto convex
constraints, morphological filtering, etc [1]–[14]. The problem
of image interpolation has been also studied within the com-
puter vision framework where it is normally approached using
probabilistic modeling that relies on extensive training [15],
[16]. In this paper, we study a wavelet-based method which at-
tempts to extract information about local regularity and sharp
variations in a low-resolution image and use that information
to apply different interpolation functions that adapt locally to
image smoothness/singularity characteristics.

Points of sharp variations, or singularities, are among the
most meaningful features of a signal. For images, these points
typically correspond to edges, or boundaries between regions.
Information about singularities can be obtained by multiscale
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edge detection methods developed in the computer vision
community [17]–[20]. The multiscale edge detection can be
formulated in the wavelet framework (e.g., as the Canny edge
detector [20] is equivalent to finding the local maxima in
the wavelet transform). This multiscale edge characterization
framework will be used here, as it allows both a convenient
analysis of edges and a model for the interpolation algorithm
introduced in this paper.

For a family of wavelets, the wavelet-transform modulus
maxima capture the sharp variation points of a signal, and
their evolution across scales characterizes the local Lipschitz
regularity of the signal [21]–[23]. For example, Fig. 1 shows
a one-dimensional (1-D) signal and its wavelet transform at
several scales. This signal includes singularities, such as a step
and an impulse, and other sharply varying regions. Each of
these sharp variations induces peaks in the wavelet transform
across scales, and the values of the peaks corresponding to
the same singularity change across the scales according to an
exponential function, the exponent of which depends on the
singularity.

The proposed interpolation algorithm will first capture and
characterize sharp variation points based on the multiscale
wavelet analysis. This characterization is then used to estimate
the high-frequency information necessary to preserve sharpness
of the edges. From the model of the problem, one can iden-
tify constraints on the estimate and, thus, refine the estimate
iteratively. The major difference between the proposed method
and other nonlinear or locally adaptive schemes is that by
means of wavelet analysis, it adapts to singularities of different
kinds (e.g., step-like edges, relatively smooth edges, Dirac-like
behavior, variations which are continuous but not continuously
differentiable, etc.).

The outline of the proposed method has been previously de-
scribed in a conference paper [24] where many important prac-
tical issues and investigations could not be addressed either be-
cause of the required brevity or the lack of their complete under-
standing at that time. However, the ideas presented in [24] have
led several interesting developments on the topic of wavelet-
based image enhancement and interpolation [25]–[30]; hence,
we felt that this more in-depth treatment of the proposed algo-
rithm would be in place.

The paper is organized as follows. Section II introduces the
wavelet-transform framework, and relates the multiscale edge
detection to the wavelet analysis. The discussion starts in con-
tinuous time, followed by issues due to discretization. In Sec-
tion III-A, details of the interpolation problem model and algo-
rithm are discussed in the 1-D case for clarity. This algorithm is
extended to reconstruct two-dimensional (2-D) images in Sec-
tion III-C. Results and comparisons with traditional interpola-
tion methods are presented in Section IV.
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Fig. 1. A 1-D waveform and its wavelet transform for three scales, showing the propagation of extrema points across the scales.

II. MULTISCALE EDGES AND THE WAVELET TRANSFORM

In this section, we review work by Mallat [22], [23] and

Meyer [21] which relates edge detection algorithms to the

wavelet transform.

Most traditional edge detectors extract sharp variation points

by examining the first derivatives of the signal or its smoothed

version. This is because an inflection point indicates a neigh-

borhood of signal variation, and an inflection point in the signal

domain corresponds to the local extremum of its first deriva-

tive. Furthermore, a local extremum of the first derivative with

large magnitude corresponds to a region of sharp variation in the

signal domain, while one with small magnitude corresponds to

a region of slow transition. This edge detection strategy can be

formulated in the wavelet framework as follows.

Let be a smoothing function which satisfies

and . Assume that is

differentiable and define a function : . A

wavelet is defined to be any function which integrates to zero.

Hence, can be considered as a wavelet. Now let

denote the dilated version of the wavelet function

where is the scale. The wavelet transform of at scale and

position , denoted by , is given by the convolution

. From the linearity of convolution and

differentiation, it is easy to verify that

(1)

where

Hence, the wavelet transform of the signal at scale is equiva-

lent (up to a constant) to taking the first derivative of , the

signal smoothed at scale .

As elucidated in [31], the notion of viewing an image at dif-

ferent scales is very natural for its understanding and analysis.

The role of the scale determines how global or local the signal

features are that we want to capture. At a given scale, an ex-

tremum point in of large magnitude has the physical

meaning of locating a sharp transition region in , while

an extremum of small magnitude indicates a region of relatively

slow variation. In the case that is Gaussian, the detection

of extrema points corresponds to the Canny edge detector [20].

Note that a Gaussian is the unique function with the prop-

erty of not creating additional spurious extrema points at larger

scales [31]. Therefore, for edge characterization, it is important

to choose a filter which is Gaussian or approximately Gaussian.

The extension of the multiscale edge detection to two dimen-

sions is straightforward. Let be a smoothing function

which integrates to 1 and converges to zero at infinity, and let

denote the dilation of

The image is smoothed by , and its gradient

is computed. The direction of the gradient vector

at is the direction at which has the sharpest vari-

ation. An edge point is defined to be a point at which

is the maximum along the direction of the gra-

dient vector, and it is an inflection point of .

To relate multiscale edges to the two-dimensional (2-D)

wavelet transform, first define and

, respectively. The wavelet trans-

form of consists of two components
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and , and it is related

to the gradient vector by

The singularities in images occur at points where the modulus

is maximum in the direction of the gradient vector. Modulus

maxima form contours in the two-dimensional wavelet trans-

form domain and an extension of the 1-D edge detector would

require tracking the propagation of those contours across the

scales. That process would add considerable complexity to the

proposed interpolation algorithm; hence, we will consider a sep-

arable 2-D algorithm. That is, and will

be treated separately, row by row and column by column, as in

the 1-D case.

From the previous discussion, it is clear that the value of the

wavelet transform at scale measures the smoothness of the

signal smoothed at scale . Furthermore, a sharp variation in-

duces a local extremum in the wavelet transform which prop-

agates across scales. To illustrate, we return to Fig. 1 which

shows a waveform and its wavelet transform at the dyadic scales

, for . Each isolated singularity produces ex-

trema points which propagate across scales, and the power law

according to which the values these extrema evolve across the

scales characterizes the local Lipschitz regularity of the func-

tion. In particular, a function is uniformly Lipschitz over

an interval if and only if there exists a constant

such that for all , the wavelet transform of satis-

fies [21]

(2)

If is differentiable but not continuously differentiable at

, then it is Lipschitz 1 at and the corresponding wavelet

transform maxima behave as around . The larger the ,

the more regular or smooth the function is. If is discon-

tinuous but bounded in the neighborhood of , then

at , and the corresponding maxima remain constant across

the scales. On the other hand, the Dirac function has a negative

Lipschitz exponent , and it produces wavelet transform

modulus maxima which evolve as .

A. Discretization Issues

For discrete processing, any continuous-time signal must also

be sampled before being processed. Thus, a signal is measured

at a finite resolution. Its wavelet transform can only be computed

over a countable and finite range of scales. In many applica-

tions, it suffices to compute the wavelet transform at the dyadic

scale with , which also allows a fast dis-

crete computation. The fast computation algorithm, the design

of the discrete filters, and their relations with underlying contin-

uous filters are well explained in [23], to which the readers are

referred for more details. Here, only the necessary results and

notations will be introduced.

Let the finest scale be , and the coarsest scale computed

to be . Define a smoothing operator at scale to be

, , where

and is a function which satisfies certain properties such that

the difference, or details, between and is ,

as defined in (1). Now let be a discrete se-

quence such that there exists a (non-unique) continuous function

satisfying for all . Hence,

we assume that the underlying signal is the continuous func-

tion , but only the discretized version is available

for processing. For a particular class of wavelets, one can com-

pute from the discrete sequence the uni-

form sampling of the wavelet transform of at dyadic scales

. Let the following notations denote these discrete samples

and

where is the shift due to convolution with and . The

set of signals forms the discrete dyadic

wavelet transform of . Henceforth, the dis-

cussion will concern discrete sequences; thus, to simplify nota-

tion, the discrete sequence will denote the samples ,

and will denote the discrete dyadic transform of

(note the omittance of the superscript ).

The forward discrete dyadic wavelet transform is character-

ized by two filters: a lowpass filter and a highpass filter

. Let and be the filters obtained by upsam-

pling and , respectively, by a factor of (i.e., in-

serting zeros between the coefficients). The wavelet trans-

form of a signal can be computed through the con-

volution with and in a recursive manner

(3)

where , , and . Let the wavelet

transform operator denote the linear operator mapping to

. The operator can be imple-

mented by the octave-band nonsubsampled filter bank, provided

the multiplication with coefficients is incorporated appropri-

ately. The multiplicative coefficients are needed to compen-

sate for the deviation in the estimation of the Lipschitz regularity

introduced by discretization. More specifically, the constants

are found empirically so as to make the discrete time step func-

tion have Lipschitz regularity . Obviously, the values of

are dependent on the chosen wavelet. The quadratic spline

filters are used for our work because they approximate coarsely

the Gaussian function and its first derivative and they also can

be used in fast implementation of the discrete dyadic wavelet

transform [23]. These filters are shown in Fig. 2. Their coeffi-

cients and the associated constants are in Table I. For perfect

reconstruction to be possible, it is necessary and sufficient that

there exist a synthesis pair and which satisfy the

perfect reconstruction condition

(4)

where , , , and are the -transform of

the filters , , , and , respectively. The in-
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Fig. 2. Quadratic spline wavelet and smoothing function used in this work.
The continuous-time smoothing function �(x) in (a), and wavelet  (x) in (b).
The corresponding FIR coefficients of the smoothing function (lowpass filter
h [n]) in (c), and of the wavelet (highpass filter h [n]) in (d).

TABLE I
FILTER COEFFICIENTS OF THE QUADRATIC SPLINE WAVELETS

AND ASSOCIATED � FACTORS

verse wavelet transform reconstructs the original signal by pro-

gressively adding finer and finer details onto the coarse residual

signal . It can be calculated recursively as

(5)

where and . The inverse wavelet transform

operator can be implemented as a nonsubsampled syn-

thesis octave band filter bank. Note again that the constants

are needed to offset the scaling in the wavelet transform (3).

The discrete dyadic wavelet transform is a redundant

representation of a function. An arbitrary set of sequences

is not necessarily the wavelet transform of

some function in . It is the wavelet transform of some

function if and only if

(6)

If the set of sequences satisfies (6), then we say

that it belongs to the range of the wavelet transform operator

. The operator is thus the projection operator onto

the range of the wavelet transform.

In practice, there are only finitely many, , available sam-

ples of , which creates a problem at the boundary in the

computation of the wavelet transform. To mitigate this problem,

the signal is extended with mirror symmetry. This periodiza-

tion avoids creating a spurious first-order discontinuity at the

boundaries.

The 2-D forward and inverse wavelet transforms can be com-

puted in a recursive manner similar to the 1-D case, imple-

mented with the nonsubsampled filter banks shown in Fig. 3.

For the 2-D wavelet transform, we choose separable filters, as

shown in Fig. 3, where the 1-D filters , , , and are

the same as in the 1-D wavelet transform. For perfect recon-

struction in the 2-D case, an additional filter is needed, which

satisfies . Readers interested in

more detail about this synthesis 2-D filter bank are referred to

[23] and [32].

III. INTERPOLATION ALGORITHM

The interpolation algorithm is first explained in one dimen-

sion for clarity. The discussion concentrates on magnification

by a factor of two. Magnifications for other factors which are

powers of two can be achieved by iteratively performing this

algorithm. First, the main concepts will be introduced in Sec-

tion III-A, and the details will be given in Section III-B. The

2-D algorithm will be developed in Section III-C.

A. Main Concepts of the Algorithm

The model of the interpolation problem is shown in

Fig. 4. The available signal

is modeled to be obtained from the high resolution signal

, which we wish to recover, by

lowpass filtering using the filter of our wavelet filter

bank followed by downsampling by a factor of two. Naturally,

one does not assume the exact knowledge of the lowpass filter

used in the sampling process. We conjecture that as long as

it is reasonable, the result of our algorithm will not depend

strongly on the choice of filters, and that has been confirmed

by the experimental results reported in Section IV. Further, we

have at our disposal the highpass filter such that

and together with a synthesis pair and ,

constitute a perfect reconstruction nonsubsampled filter bank.

With this model, the goal of the interpolation algorithm is to

estimate the signals and at the output of and

, and then reconstruct an estimate of via the synthesis

filters. The algorithm consists of two stages: initial estimation

and refinement.

1) Initial Estimation: An initial estimate of the low-fre-

quency component can be obtained by simply interpolating

using, for instance, linear or spline interpolation. To find an

initial estimate of the high-frequency component , first notice

that it contains information that would add sharpness to . That

is, if there were a sharp edge in the length signal , then the

length component would contain a smoothed edge in this

region. The reconstruction based solely on would not be as

sharp as the original edge in . The information about the ad-

ditional sharpness resides in , whose essence is well captured

by local extrema points, assuming that the filters used are ap-

propriate for multiscale edge characterization. Thus, the central

part of the initial estimation is to find the values and positions of

the local extrema in . The detailed procedures are illustrated

in Fig. 5.

The first step in estimating is to identify the edge regions

via analysis of the available signal . This identification is based

on extracting local extrema of the wavelet transform of which

propagate across scales, and estimating the parameters in (2)

which characterize this propagation. The knowledge of an edge

location in conveys knowledge about the edge location in

as well, up to a possible ambiguity of in location, since the

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on July 09,2010 at 13:49:44 UTC from IEEE Xplore.  Restrictions apply. 



CHANG et al.: LOCALLY ADAPTIVE WAVELET-BASED IMAGE INTERPOLATION 1475

Fig. 3. The 2-D discrete dyadic wavelet transform. (a) Forward transform. (b) Inverse transform.

Fig. 4. Interpolation problem model for 1-D. The available signal f is modeled
as the subsampled lowpass component of a higher resolution signal f , which
is the desired signal.

wavelet transform of is the decimated version, by a factor

of two, of the wavelet transform of starting from the scale

(Fig. 6)

(7)

An edge information at extracted from the analysis of

and characterized in the parameters and

of (2) translates to an edge at . That is, an extremum in

can be estimated to be .

Naturally, the downsampling operation in (7) introduces

some ambiguity which needs to be addressed in the esti-

mation process. More specifically, the true extrema points

of may not have been sampled in the

downsampling process. Thus, the edge identified at may

actually be at one of . In

Section III-B, we will discuss constraints which allow possible

corrections of this ambiguity.

The edge characterization allows the estimation of significant

extrema points of . To obtain an initial estimate of that may

be closer to the real , the points in between are then filled in

by linearly interpolating between the extrema points.

2) Refinement by Alternating Projection: The initial es-

timates of and can be further refined by identifying

constraints which they should obey. These constraints define

convex sets and one can use the projection onto convex sets

(POCS) method to find a solution existing in the intersection

of these sets, called the reconstruction set. The POCS method

alternately projects the signal onto the various convex sets until

it converges to a solution in the reconstruction set (provided that

it is nonempty). We identify three convex sets of constraints ,

, and , with the following meaning.

1) : The waveforms must belong to the range of

the wavelet transform; we denote this subspace by .

2) : must belong to a set , which comprises of length

signals whose downsampled version is consistent

with , the available signal.

3) : The edge points of (estimated from the analysis of )

should be reflected in local extrema of . is comprised

of signals whose structure is consistent with the edge in-

formation, and should reside in .

The first two items are hard constraints in that they follow from

the consistency of the problem model in Fig. 4. The third con-

straint is based on the estimation of how the signal should be

at finer scales, and its purpose is to enhance the resolution of

the reconstructed signal beyond that achieved by the first two

constraints.

The projection operator onto the subspace is the oper-

ator in (6) and is pictorially illustrated in Fig. 7: it puts the pair
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Fig. 5. Estimation of g based on f .

Fig. 6. Illustrating the equivalence between the wavelet transform of f and the
decimated version of the wavelet transform of f starting from scale s = 2 .

Fig. 7. Projection operator P onto the subspace V , the range of the wavelet
transform.

through the synthesis filter bank, followed by the anal-

ysis filter bank, where the filters obey the perfect reconstruction

property in (4).

The projection operator for the convex set needs to en-

sure that is consistent with the available signal . At the very

least, must hold. In practice, better performance

could be achieved by placing restrictions, such as smoothness

constraints, on the odd samples as well, especially

in regions of sharp variation. The details of this operator will be

discussed in the implementation section.

The high-frequency component must reside in the set ,

which consists of signals that are consistent with the estimated

edge information. However, only the estimated edge informa-

tion is available and, thus, one must allow some error tolerances.

In Section III-B, we discuss the structure of the set which al-

lows varying degrees of leniency on the values and locations of

the wavelet transform extrema, and finding a corresponding op-

erator which projects onto .

The enhancement algorithm iteratively improves the esti-

mates with the three projection operators , , and .

Let denote the initial estimates of and . At

the end of the th iteration, the estimates of and are

.

B. Implementation Details

The association of extrema points across scales and the char-

acterization of Lipschitz regularities are not so simple when we

deal with real data. Wavelet transform extrema points due to

closely spaced sharp variations may interfere with each other

and make association difficult. This interference also compli-

cates the estimation of the parameters in (2), and these compli-

cations will be discussed below. The estimation of will be

elaborated, as well as the the exact structure of the sets and

and their respective projection operators.

1) Associating Extrema Across Scales: To extrapolate the

extrema points, we need to first select important singularities

and associate the corresponding extrema points across scales.

Since contains an abundance of extrema which are not

necessarily due to global structures, the extrema selection is, in-

stead, done at a coarser scale . For each extremum at

scale , the algorithm searches in the other scales for ex-

trema associated with it.

Due to various reasons, not all extrema are observed to prop-

agate from scale to . Extrema points at fine scales in-

duced by closely spaced singularities may merge into one ex-

tremum point at coarse scales. Also, because the wavelet trans-

form is discretized in both scale and space, one may not always

observe the extrema points evolving across scales. For these rea-

sons, it is sometimes difficult to associate the extrema points

and, thus, some empirical rules are used. Suppose we are an-

alyzing the th singularity which induces extrema points at

a location in scale . The values of are un-

known except for , since the association starts from

in scale . We search in other scales in a small neigh-

borhood around to find extrema points which obey the

following rules. These extrema must be of the same sign and

must all be maxima (or minima). Furthermore, it is reasonable

to assume that the extrema values should not differ too much

from scale to scale and that not all types of singularities are

important for image quality; thus, we restrict the ratio between

two extrema points of consecutive scales to be within a range

. In this way

we focus on singularities which correspond to Lipschitz regu-

larity [as defined in (2)]) in the range

and allow some margin to account for possible merging of local

extrema as well as for possibly missing an actual extremum due

to downsampling. The choice of the range of is not critical

as long as it is not too large. In [25], the authors report results

obtained by focusing only on step edges, that is, singularities

which correspond to , which simplifies the described al-

gorithm and still exhibits good performance.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on July 09,2010 at 13:49:44 UTC from IEEE Xplore.  Restrictions apply. 



CHANG et al.: LOCALLY ADAPTIVE WAVELET-BASED IMAGE INTERPOLATION 1477

2) Estimating High-Frequency Component : Let us first

rewrite the relationship in (2) in discrete-time and explicitly

show the dependence of the local Lipschitz parameters on the

different singularities. This results in

(8)

where is the location of the local extremum at scale cor-

responding to the th singularity, is the Lipschitz regularity

of at the singular point, and is a nonzero constant. The

objective is to estimate and , and then extrapolate to

an extremum point at scale through estimating its lo-

cation and value . Recall that the relation be-

tween , , and is and

. Thus, this extrapolation pro-

vides the first step in obtaining an estimate of the high-frequency

component (or ) by first estimating .

For those singularities whose sequence of extrema,

is available, the parameters

and in (8) can be estimated via linear regression on

An initial estimate of the extremum point of the wavelet trans-

form of at scale is then given by

. The extrema location in scales and is

assumed to be the same, that is, we let .

The extrema extrapolation yields an estimate of the extrema

positions and values in . An initial estimate of the re-

maining points are obtained by linearly interpolating between

consecutive extrema points.

3) Projection Operator for : From the problem model

in Fig. 4, it follows that must, at the very least, assign

. In practice, this constraint alone does not

prevent the spurious oscillations which often occur in sharp

variation regions. To avoid this artifact, each odd sample

is bounded within an interval determined by the

smoothness of in that vicinity.

Let be a length bicubic spline interpolated version

of . Also, let the discrete Laplacian gradient of be de-

fined as . The upper

bound on the odd samples of is made to be

. The value of

was used. Similarly, the lower bound is calculated

as .

To summarize, the operator modifies by assigning

to the even samples and bounding the odd samples to within the

interval .

4) Projection Operator for : Being the highpass com-

ponent, the waveform should reflect sharp variations in .

From the analysis of the wavelet transform of , we have some

knowledge of the extrema values and positions in . Hence,

the set can be thought of as the set of waveforms minimizing a

specified cost function which penalizes when the extrema values

do not conform to this knowledge. The operator modifies

in a way such that the result has a lower cost.

This edge information, however, is estimated and, thus, prone

to inaccuracy especially when using data containing more than

just isolated singularities. The downsampling process intro-

duces errors as well. Knowing that a certain set of points are

edge points implies that the other points are not. Thus, one

needs to prevent additional spurious edges being created during

the reconstruction. With this in mind, there are various degrees

of leniency that can be employed when constructing the cost

function. We can either 1) constrain to retain the initial

estimates throughout the reconstruction; 2) allow the values

to be within an allowable range; or 3) have no constraints at

all on the values. Approaches 1) and 3) are extreme cases,

assigning either infinite cost for wrong values or no cost at all.

The allowed interval of approach 2) serves as a moderation,

and yields better results. In the following, we will not construct

explicitly an analytical cost function, but rather describe how

modifies the input to conform to the edge information.

Extrema Location: Because the initial estimate of is

obtained by interpolating from the estimate of the subsampled

waveform , the sampling may be such that we miss the true ex-

trema and obtain instead the adjacent points. Thus, for each ex-

tremum of , the points immediately next to it are also allowed

to be extrema points to account for this ambiguity. More specif-

ically, if we initially determine to be an extremum point

in the length- signal (which translates to location in

), then after the projection , may not be an ex-

tremum point of any longer. If the point of interest is a max-

imum (minimum) point, then the abscissa corresponding to the

greatest (smallest) of

is assigned as the new local maximum (minimum).

Between Extrema Points: The points between adjacent

extrema need also to be constrained to prevent spurious “edges.”
For example, by definition, the points between a pair of adjacent

maximum and minimum points should have values bounded

by these extrema values and, furthermore, the slopes of these

in-between points should be monotonic so that there is no

other extrema among them. Such a consistent reconstruction

can be achieved by a simple algorithm proposed in [32] which

reconstructs a signal from only its wavelet extrema points. For

the interpolation problem, it has been found experimentally that

these constraints are too restrictive for reconstructing , since

the extrema information is estimated and more leniency should

be allowed. Therefore, “softer” constraints will be described.

In predicting the extrema points of , only a subset of

them could be extrapolated from the coarser scales due to the

fact that coarser scales typically have fewer extrema than finer

scales. Thus, for each extremum predicted in , we only

assume that it is valid locally. For each maximum (minimum)

examined, the points in a small neighborhood around it (a

seven-point-centered window is used) are clipped to be less

(greater) than or equal to this maximum (minimum) point. Since

we are working with gray-scale images, another optimization

is to clip all of the pixel values to be within [0,255]. These

constraints are very lenient, and we prefer them over the

more restrictive ones when analyzing real data, where it is

difficult to ensure the robustness of capturing all of the extrema

points. In our previous work in [24], we used strict constraints,

such as bounding extrema values, to be within an estimated

range, and enforcing monotonicity between consecutive extrema
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Fig. 8. Interpolation problem model for 2-D.

points. This sometimes resulted in images with some unpleasant

artifacts, such as overly pronounced edges or small streaks.

Here, we find that the softer constraints yield much more

pleasant-looking results.

C. Enhancement Algorithm for 2-D Images

In general, analyzing a 2-D problem by treating the two coor-

dinates independently is not an optimal approach. However, for

computational reasons, we propose here to treat the two coordi-

nates separately. The problem model for the 2-D case is analo-

gous to the 1-D case, and is illustrated in Fig. 8 for clarity. To

reiterate, the goal is to extrapolate from information about ,

, and , which are the necessary

components of .

1) Initial Estimates: In the wavelet transform, the data

are filtered by the separable 2-D filter bank as discussed ear-

lier. The wavelet transform generates the row components

, the column components ,

and the low resolution component , all of which are .

Bicubic spline interpolation is used to obtain the initial estimate

of the size signal . We observed that a better per-

formance is achieved if bicubic spline interpolation is used for

the initial estimate of compared to pixel replication, bilinear

interpolation, or interpolation by zeros. That is because the

intersection of the convex constraints imposed by our algorithm

consists of more than one image, so the alternating projections

converge to different images depending on the starting point.

Therefore, the initial estimate should be a more natural image.

The th row of is used to estimate the 2 th

row of the scale row component as in the 1-D case.

After interpolating this row to length , we have an initial

estimate of the th row of . Having only extrema

constraints on the even lines may result in jagged edges during

the reconstruction process. To mitigate this artifact, we estimate

the extrema of an odd row based on its two neighboring even

rows. Typical images have smooth contours which traverse

numerous rows or columns. Thus, for a given extremum on the

th row, if there is an extremum on the th row which

is of the same type (i.e., both maxima or both minima) and

same sign, and is in a close proximity (within ), then

we assume there is an extremum of the same type and sign on

the th row. The location and value are taken to be the

average of the corresponding extrema on the neighboring rows.

For simplicity, averaging is used rather than fitting a smoothed

curve across these lines since the considered neighborhood is

small, and the difference in location is not significant. A similar

analysis is also done on the columns of to

obtain an estimate of .

2) Alternating Projections: The estimates , , and

are iteratively refined using constraints analogous to those pro-

posed in the 1-D case. The 2-D version of , , and will

be described.

The projection operator is simply a one-level 2-D in-

verse wavelet transform followed by a one-level 2-D forward

wavelet transform. The operator first makes the assignment

for the even samples. To constrain

the odd samples, we define to be a bicubic

spline interpolated version of , and the discrete Lapla-

cian gradient of to be

(9)

The upperbound on the samples of is taken to be

Upsample (10)

where the second term is the convolution between a weighting

function depicted by the matrix

and the upsampled version of (upsampled by a

factor of 2 in each direction). The lower bound

is defined similarly, but with a subtraction substituting the ad-

dition in (10). The operator then bounds to be

within .

Each of the available rows of and the available

columns of are treated as a separate 1-D problem, and are

projected onto using the 1-D operator described in Sec-

tion III-A.

IV. EXPERIMENTAL RESULTS

The performance of the algorithm will be compared with sev-

eral standard methods, such as bilinear interpolation, bicubic-

spline interpolation, and bicubic-spline interpolation followed

by unsharp masking and also with the edge-directed interpola-
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Fig. 9. Interpolation of the Barbara image, with the even-length low-pass filter ' [n]. (a) Original 256� 256 image. (b) Lowpass, available image 128� 128. (c)
Wavelet-based interpolation. (d) Bicubic spline interpolation with unsharp masking and prefiltering. (e) Edge-directed interpolation. (f) Bicubic spline interpolation.
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Fig. 10. Interpolation of the Lena image with the odd-length low-pass filter ' [n]. (a) Original 256� 256 image. (b) Lowpass, available image 128� 128. (c)
Wavelet-based interpolation. (d) Bicubic spline interpolation with unsharp masking and prefiltering. (e) Edge-directed interpolation. (f) Bicubic spline interpolation.
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Fig. 11. Interpolation of the Baboon-A image, with the odd-length lowpass filter' [n]. (a) Original 256� 256 image. (b) Lowpass, available image 128� 128. (c)
Wavelet-based interpolation. (d) Bicubic spline interpolation with unsharp masking and prefiltering. (e) Edge-directed interpolation. (f) Bicubic spline interpolation.
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Fig. 12. Interpolation of the Baboon-B image, with the lowpass filter ' [n] = h [n]. (a) Original 256� 256 image. (b) Lowpass, available image 128� 128. (c)
Wavelet-based interpolation. (d) Bicubic spline interpolation with unsharp masking and prefiltering. (e) Edge-directed interpolation. (f) Bicubic spline interpolation.
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Fig. 13. PSNR as a function of iterations. The curves are for images with ' (+���+), ' (� � � � �), and ' (� � � � �). (a) Barbara. (b) Lena. (c) Baboon-A.
(d) Baboon-B.

tion proposed in [14]. Unsharp masking is a commonly used

method for boosting the high-frequency portion of a signal.

The general operation is to take the input and yield

where , and

is a defined gradient at location . A commonly used gra-

dient is the discrete Laplacian defined in (9), and a commonly

used value for is 1. We consider two types of bicubic-spline

interpolation: the method which involves a prefiltering step,

as described in [33], so that the known pixels are reproduced

exactly, and the traditional spline “interpolation” which consists

of applying just the bicubic-spline filter. The filters used in the

wavelet decomposition are given in Table I, and three levels of

decomposition are computed.

In order to obtain peak signal-to-noise ratio (PSNR) mea-

surements in addition to the visual judgement, we take a

image, , filter it with some lowpass filter

, and downsample it to obtain the available

image . The choice of the filter is a param-

eter which we wish to test to see how sensitive the algorithm

is with this choice. Each 2-D lowpass filter is a

separable filter . The three choices of

are – 12-tap symmetric lowpass filter generated by

the MATLAB fir1(11, 0.5) function, – 11-tap symmetric

lowpass filter generated by the MATLAB fir1(10, 0.5) function,

and – the same filter used in the wavelet analysis.

The even-length filter has a delay of 1/2, while the odd-length

filter has a delay of zero. The reason for choosing is to

obtain a benchmark to see how well the algorithm can perform

when we “cheat” by knowing the nature of degradation from

to .

The reconstructed images generally attain most of their

quality in few iterations and practically do not change after 7–8

iterations, both in visual quality and in PSNR measurements.

The measurements listed and images displayed are obtained

after 15 iterations. The results obtained using only the initial

estimate of the proposed algorithm and focusing only on

step-edge singularities, as reported in [25], also demonstrate

good performance compared to bilinear interpolation and

bicubic spline interpolation without prefiltering and unsharp

masking.
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TABLE II
COMPARING PSNR OF DIFFERENT METHODS WHEN THE GIVEN IMAGE IS

DOWNSAMPLED AFTER LOW-PASS FILTERING USING: (a) THE

EVEN-LENGTH FILTER ' [n], (b) THE ODD-LENGTH FILTER ' [n],
(c) THE FILTER ' [n] = h [n]

Each set of experiments consists of taking one of the four

test images and one of the three lowpass filters, and inter-

polating the images using four different interpolation methods.

Here, only one set of experiments for each test image will be

shown for wavelet interpolation, edge-directed interpolation,

traditional bicubic-spline interpolation, and bicubic-spline

interpolation preceded by the prefiltering step and followed

by unsharp masking. The Barbara experiment with filter

is shown in Fig. 9, Lena with in Fig. 10, Baboon-A

with in Fig. 11, and Baboon-B with in Fig. 12.

The images are also posted at www.kcl.ac.uk/cdspr/zc/im-

ages/name.tiff, where name is Barbara, Lena, BaboonA, or

BaboonB. Note that in the Barbara experiments, the interpolated

images show aliasing on the scarfs. This is through no fault of

the interpolation algorithms, but rather that the downsampling

operation, used to obtain the test image , already introduced

aliasing. In all of the experiments, the wavelet interpolation

approach yields images considerably sharper than those from

linear, bicubic spline, or edge-directed interpolation, and also

improves, but less markedly, over the bicubic-spline method

used in combination with unsharp masking. We observed a

barely noticeable effect of the prefiltering step on the visual

quality of the interpolated images in the case of bicubic-spline

interpolation. Unsharp masking, on the other hand, did make a

difference.

Visually, experiments from the three different filters

yield very similar results and conclusions, but the PSNR tells

quite a different story. Although the PSNR is not a good indi-

cation of image quality, it is nevertheless frequently used, and

the results are tabulated in Table II for the wavelet method,

bilinear interpolation, bicubic spline interpolation, and bicubic

spline interpolation with unsharp masking. The best numbers

are highlighted in bold. The PSNR results depend on the choice

of lowpass filter . For the even-length filter ,the

methods with the highest PSNR are either the wavelet or the

linear method. When the odd-length filter is used, bicubic

spline interpolation with unsharp masking yields the highest

PSNR. With , not surprisingly, the wavelet

approach yields the highest PSNR.

Fig. 13 shows the PSNR as a function of the iteration number

for the images Barbara, Lena, Baboon-A, and Baboon-B. Each

plot shows three curves, for the three choices of lowpass filter

. As mentioned previously, the reconstructed image re-

mains visually indistinguishable after 7–8 iterations. The PSNR

also shows quick convergence, though it is not always mono-

tonically increasing. For filters and , the PSNR ac-

tually decreases after the third or fourth iteration, but for ,

it is monotonically increasing. The reason for the monotonic in-

crease of PSNR when is because, in that case,

our model for the process in which the low-resolution image

is obtained is correct, so the iterative procedure in every step

decreases the distance between the interpolated image and the

original, or an image which is very close to the original. On the

other hand, when filters other than are used to generate

the low-resolution image, there is a discrepancy between the

assumed model and the actual process, so the alternating pro-

jections may converge to images which are not as close to the

original as they would have been had the model been accurate.

Nevertheless, our experimental results demonstrate that the vi-

sual quality of the images which the algorithm converges to is

not sensitive to the accuracy of the model and, therefore, the per-

ceptual quality of interpolated images steadily improves toward

a saturation level, despite the fact that the PSNR may decrease.

V. SUMMARY

We have proposed a wavelet-based method for image inter-

polation which attempts to capture and preserve sharp varia-

tions of different kinds. By characterizing edge points via the

wavelet transform, we extrapolate the extrema needed at a finer

scale for reconstruction of a higher-resolution image. The re-

sults show that the enhanced image is significantly sharper than

simple schemes, such as linear and bicubic-spline interpolation,

or edge-directed interpolation, and sharper, but less markedly,

than bicubic-spline interpolation used in conjunction with un-

sharp masking. The better performance comes at the expense of

significantly higher complexity. We believe, however, that the

method leaves space for many modifications that can further

improve its performance and reduce computational complexity,

and that the ideas and concepts presented in this paper indicate

a promising path for further research of image interpolation in

the direction of wavelet-based locally adaptive schemes.
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[32] Z. Cvetković and M. Vetterli, “Discrete-time wavelet extrema repre-

sentation. Design and consistent reconstruction,” IEEE Trans. Signal

Process., vol. 43, no. 3, pp. 681–693, Mar. 1995.
[33] P. Thévenaz, T. Blu, and M. Unser, “Interpolation revisited,” IEEE Trans.

Med. Imag., vol. 19, no. 7, pp. 739–758, Jul. 2000.

S. Grace Chang received the B.S. degree from the
Massachusetts Institute of Technology (MIT), Cam-
bridge, in 1993, and the M.S. and Ph.D. degrees in
electrical engineering and computer science from the
University of California, Berkeley, in 1995 and 1998,
respectively,

She has been with Hewlett-Packard Co. since 1998,
first at Hewlett-Packard Laboratories, Palo Alto, CA,
and now as a Business Program Manager in telecom-
munication software in Asia Pacific, Hewlett-Packard
Taiwan Ltd., Taipei, Taiwan, R.O.C.
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