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direct product of primitive abundant 0-J �-simple semigroup algebras. We also deduce a direct sum decomposition

of this semigroup algebra in terms of the R�-classes of the semigroup obtained from the above multiplicative basis.
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1 Introduction

Munn [1, 2] gave a direct product decomposition of finite inverse semigroup algebras into matrix algebras over group

algebras using principal ideal series. In [3], this result was independently obtained by Rukolaı̆ne. His approach was

to construct a multiplicative basis by defining the so-called Rukolaı̆ne idempotents. Munn later showed that the

technique developed by Rukolaı̆ne worked for inverse semigroups with idempotents sets locally finite, see [4].

Recent interest in Möbius functions arose due to the work of Solomon on decomposing the semigroup algebra

of a finite semilattice into a direct product of fields [5], and the work of Brown on studying random walks on bands

by using representation theory of their semigroup algebras [6]. By using the Möbius functions on the natural partial

orders on inverse semigroups, Steinberg extended the results of Solomon and Munn on direct product decomposition

of finite inverse semigroups to inverse semigroups with idempotents sets finite, and he explicitly computed the

corresponding orthogonal central idempotents [7]. Guo generalized the results described above to finite locally

inverse semigroups and finite ample semigroups, again using Möbius functions, see [8, 9].

Decomposing an algebra with an identity into direct sum of projective indecomposable modules is an important

problem in representation theory because it provides a complete set of primitive orthogonal idempotents. It also

allows for an explicit computation of the Gabriel quiver, the Auslander-Reiten quiver and the representation type of

an algebra. It has shown that the semigroup algebras of finite R-trivial monoids are basic; furthermore the projective

indecomposable modules have been described, see [10–12]. However, there is no much description of the projective

indecomposable modules of the semigroup algebras which are not basic.

The first part of this paper is primarily concerned with carrying over certain results of inverse semigroup

algebras to locally adequate concordant semigroup algebras. In general, the contracted semigroup algebras of locally

adequate concordant semigroups are not basic. The remainder of the paper is devoted to exploring a description of the
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projective indecomposable modules and to determining whether or not these semigroup algebras are representation-

finite.

The paper is organized as follows. In Section 2, we provide some background on semigroups and algebras.

If R0ŒS� is the contracted semigroup algebra of a locally adequate concordant semigroup S with idempotents

set E.S/ pseudofinite, in Section 3, we generalize the concepts and results of Rukolaı̆ne idempotents of inverse

semigroup algebras to R0ŒS�. Section 4 involves constructing a multiplicative basis B of R0ŒS�, see Theorem 4.8,

and developing basic properties of the semigroup S D B [ f0g. In Section 5, R0ŒS� is decomposed into a direct

product of primitive abundant 0-J �-simple semigroup algebras, see Theorem 5.1. In Section 6, if R0ŒS� contains

an identity, the multiplicative basis B also allows for a direct sum decomposition of R0ŒS�. Theorem 6.5 translates

the problem involving the projective indecomposable modules of R0ŒS� into cancellative monoids theory terms.

Furthermore, we determine the representation type of these semigroup algebras.

2 Preliminaries

In this section, we recall some basic definitions and results on semigroups and representation theory of algebras.

Throughout this paper, let R denote a commutative ring with identity, and denote the zero element of a R-algebra by

the symbol 0.

We first recall some definitions and results on semigroups which can be found in [13, 14].

Without loss of generality, we always assume a semigroup S is with a zero element (denoted by � ). Denote the

set of all nonzero elements of S and E.S/ (the idempotents set of S ) by S� and E.S/�, respectively.

Let S be a semigroup and K be an equivalence relation on S . The K-class containing an element a of the

semigroup S will be denoted by Ka or Ka.S/ in case of ambiguity. We denote the set of nonzero K-classes of S by

.S=K/�.

Denote by S1 the semigroup obtained from a semigroup S by adding an identity if S has no identity, otherwise,

let S1 D S . It is well known that Green’s relations play an important role in the theory of semigroups. They were

introduced by Green in 1951: for a; b 2 S ,

a L b , S1a D S1b;

a R b , aS1 D bS1;

a J b , S1aS1 D S1bS1;

H D L \ R;

D D L _ R:

It is clear that L (resp., R) is a right (resp., left) congruence on S and D � J . A semigroup S is called regular if

every L-class and every R-class contain idempotents. The regularity of a semigroup S can be characterized by the

property that the set V.a/ D fa0 2 S j aa0a D a; a0aa0 D a0g is nonempty for each a 2 S .

Pastijn first extended the Green’s relations to the so called “Green’s �-relations" on a semigroup S [15]: for

a; b 2 S ,

a L� b , .8x; y 2 S1/.ax D ay $ bx D by/;

a R� b , .8x; y 2 S1/.xa D ya $ xb D yb/;

a J � b , J�.a/ D J�.b/;

H� D L� ^ R� and D� D L� _ R�;

where J�.a/ is the smallest ideal containing a which is saturated by L� and R�.

Clearly, L� (resp., R�) is a right (resp., left) congruence on S . It is easy to see that L � L� (resp., R � R�),

and for a; b 2 Reg.S/, a L b (resp., aR b) if and only if a L� b (resp., aR� b). So L D L�, R D R� and J D J �

on regular semigroups.

We say a semigroup is abundant if each L�-class and each R�-class of it contains an idempotent. It is clear that

regular semigroups are abundant semigroups.

Let S be an abundant semigroup and a 2 S�. We use a� (resp., a�) to denote a typical idempotent related to a

by R� (resp., L�).
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Define two partial orders �r and �l on S [16] by

a �r b ” R�
a � R�

b
and a D a�b for some a�;

a �l b ” L�
a � L�

b
and a D ba� for some a�:

The natural partial order � on S is defined to be �D�r \ �l . We have an alternative characterisation of �:

for x, y 2 S , x � y if and only if there exist e, f 2 E.S/ such that x D ey D yf .

Let S be an abundant semigroup and e 2 E.S/�. Define !.e/ D ff 2 E.S/ j f � eg. Clearly, !.e/ D

E.eSe/. For convenience, denote the subsemigroup of S generated by !.e/ by hei.

An abundant semigroup S is called idempotent connected (IC) [17], if for all a 2 S�, a� 2 R�
a.S/\E.S/ and

a� 2 L�
a.S/ \E.S/, there is an isomorphism

˛a W ha�i ! ha�i; with xa D a˛a.x/;

for each x 2 ha�i. It is known that an abundant semigroup S is IC if and only if �rD�l on S [16, Theorem 2.6].

A semigroup S is said to satisfy the regularity condition [16] if for all idempotents e and f of S the element ef

is regular. If this is the case, the sandwich set S.e; f / D fg 2 V.ef /\E.S/ j ge D fg D gg of idempotents e and

f is non-empty, and takes the form

S.e; f / D fg 2 E.S/ j ge D fg D g; egf D ef g:

A semigroup S is said to be concordant if S is IC abundant and satisfies the regularity condition, see [18]. It is

known that regular semigroup is concordant, and in this case � coincide with the natural partial order defined by

Nambooripad [19].

An abundant semigroup with commutative idempotents is called an adequate semigroup. If each local

submonoid eSe (e 2 E.S/�) of a semigroup S is adequate (resp., inverse), then the semigroup S is said to be

locally adequate (resp., locally inverse). We say a semigroup locally adequate concordant if it is both concordant

and locally adequate.

By [20, Corollary 5.6], an IC abundant semigroup is locally adequate if and only if � is compatible with

multiplication. It is well known that inverse (resp., locally inverse) semigroups are regular adequate (resp., locally

adequate) semigroups and conversely, so that locally adequate concordant semigroups generalize locally inverse

semigroups, and hence generalize inverse semigroups.

Refer to [13, Chapter 8] for the definitions of a left (resp., right) S -system and an .S; T /-bisystem for monoids

S; T . Let M be a .S; T /-bisystem. Then the mapping s ˝m 7! sm (resp., m˝ t 7! mt ) is an .S; T /-isomorphism

from S ˝S M (resp., M ˝T T ) onto M , and we call it a canonical isomorphism.

We recall the definition of blocked Rees matrix semigroups [14]. Let J and ƒ be non-empty sets and � be a

non-empty set indexing partitions P.J / D fJ� W � 2 �g, P.ƒ/ D fƒ� W � 2 �g of J and ƒ, respectively. We

make a convention that i; j; k; l will denote members of J ; s; t; m; n will denote members of ƒ, and �;�; �; � will

denote members of � .

By the .�; �/-block of a J � ƒ matrix we mean those .j; s/-positions with j 2 J� and s 2 ƒ�. The .�; �/-

blocks are called the diagonal blocks of the matrix.

For each pair .�; �/ 2 ��� , letM�� be a set such that for each �,M�� D T� is a monoid and for � ¤ �, either

M�� D ; or M�� is a .T�; T�/-bisystem. Moreover, we impose the following condition on fM�� W �;� 2 �g.

(M) For all �;�; � 2 � , if M��, M�� are both non-empty, then M�� is non-empty and there is a .T�; T�/-

homomorphism '��� W M��˝M�� ! M�� such that if � D � or� D �, then '��� is the canonical isomorphism

and such that the square

M�� ˝M�� ˝M��

'���˝I��

��

I��˝'���
// M�� ˝M��

'���

��

M�� ˝M�� '���

// M��

is commutative.
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Here, for a 2 M��, b 2 M�� , we denote .a ˝ b/'��� by ab. On the other hand, let 0 (zero) be a symbol not

in any M�� with the convention that 0x D x0 D 0 for every element x of f0g [
S

fM�� W �;� 2 �g.

Denote by .a/js the J � ƒ-matrix with entry a in the .j; s/-position and zeros elsewhere. Let M be the set

consisting all J �ƒ-matrix .a/js , where .j; s/ is in some .�; �/-block and a 2 M��, and the zero matrix (denoted

by � ). Define a ƒ � J sandwich matrix P D .psi / where a nonzero entry in the .�; �/-block of P is a member of

M��.

Let A D .a/is , B D .b/jt 2 M , by condition (M), the product A ı B D APB D .apsj b/it makes M be a

semigroup, which we denote by M0.M��IJ;ƒ; �IP / and call a blocked Rees matrix semigroup.

In addition, we call M a PA blocked Rees matrix semigroup if it satisfies the following conditions (C), (U) and

(R):

(C) If a, a1, a2 2 M��, b, b1, b2 2 M�� , then ab1 D ab2 implies b1 D b2; a1b D a2b implies a1 D a2;

(U) For each � 2 � and each s 2 ƒ� (resp., j 2 J�/, there is a member j of J� (resp., s 2 ƒ�) such that psj

is a unit in M��;

(R) If M��, M�� are both non-empty where � ¤ �, then aba ¤ a for all a 2 M��. b 2 M��.

We record some elementary properties of PA blocked Rees matrix semigroups in the following lemma.

Lemma 2.1 ([14, Proposition 2.4]). LetM D M0.M��IJ;ƒ; �IP / be a PA blocked Rees matrix semigroup. Then

(i) a non-zero element .a/is ofM is an idempotent if and only if there is an element � 2 � such that .i; s/ 2 J��ƒ�

and a is a unit in T� with inverse psi I

(ii) all nonzero idempotents of M are primitiveI

(iii) the non-zero elements .a/is and .b/jt of M are R�-related if and only if i D j I

(iv) the non-zero elements .a/is and .b/jt of M are L�-related if and only if s D t I

(v) M is abundantI

(vi) the non-zero idempotents e D .a/is and f D .b/jt of M with .i; s/ 2 J� �ƒ� and .j; t/ 2 .i; s/ 2 J� �ƒ�

are D-related if and only if � D �I

(vii) the non-zero element .a/is of M is regular if and only if there is an element � 2 � such that .i; s/ 2 J� �ƒ�

and a is a unit in T�:

Let M D M0.M��IJ;ƒ; �IP / be a PA blocked Rees matrix semigroup. Then we can always assume that there

exists 1� 2 J� \ƒ� such that H�
1�1�

D T� is a cancellative monoid with an identity e� (� 2 �).

Recall that a Munn algebra is an algebra M .AI I;ƒIP / of matrix type over an algebra A [21] such that each

row and each column of the sandwich matrix P contains a unit of A. Let M D M0.GIJ;ƒIP / be a completely

0-simple semigroup. It is known that R0ŒM � Š M .RŒG�IJ;ƒIP /, see [22, Lemma 5.17].

LetM D M0.M��IJ;ƒ; �IP / be a PA blocked Rees matrix semigroup. Define the generalized Munn algebra

M .RŒM���IJ;ƒ; �IP / of M to be the vector space consisting of all the J � ƒ-matrices .ais/ with only finitely

many nonzero entries, where ais 2 RŒM��� if .i; s/ 2 J� � ƒ�, with multiplication defined by the formula

.ais/ ı .bjt / D .ais/P.bjt /.

In particular, if j�j D 1, the generalized Munn algebra is a Munn algebra.

The proof of the following result is similar to that of [22, Lemma 5.17].

Lemma 2.2. R0ŒM � Š M .RŒM���IJ;ƒ; �IP /.

If .ais/ 2 M .RŒM���IJ;ƒ; �IP / has only one nonzero entry ajt , we will write .j; a; t/ or .a/jt instead of .ais/.

Now we recall the definition of primitive abundant semigroups. Let S be an abundant semigroup. If e 2 E.S/�

is minimal under the natural order � defined on S , e is said to be primitive. It is known that an idempotent e 2 S is

primitive if and only if e has the property that for each idempotent f 2 E.S/, fe D ef D f ¤ � H) f D e. The

semigroup S is said to be primitive abundant if all its nonzero idempotents are primitive.

By Lemma 2.1(ii) and (v), PA blocked Rees matrix semigroups are primitive abundant. Conversely, if S

is a primitive abundant, then S is isomorphic to a PA blocked Rees matrix semigroup M0.M��IJ;ƒ; �IP /;

furthermore, there is variability in the sandwich matrix P on the choice of data in constructing the isomorphism.
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We can simply take r1� D q1� D e�, and thus for all � 2 � , p1�1� D q1�r1� D e�, see [14, Theorem 3.8]. The

sandwich matrix attaching to a PA blocked Rees matrix will be always assumed to be of such form.

A semigroup S is called 0-J �-simple if S2 ¤ f�g and S , f�g are the only J �-classes of S . It is known that

a primitive abundant semigroup is a 0-direct union of primitive abundant 0-J �-simple semigroups. Recall that a

semigroup S is said to be primitive adequate if S is adequate and all its nonzero idempotents are primitive.

We say that a semigroup S is a weak Brandt semigroup if the following conditions are satisfied:

(B1) if a, b, c are elements of S such that ac D bc ¤ 0 or ca D cb ¤ 0, then a D b;

(B2) if a, b, c are elements of S such that ab ¤ 0 and bc ¤ 0, then abc ¤ 0;

(B3) for each element a of S there is an element e of S such that ea D a and an element f of S such that af D a;

(B4) if e and f are nonzero idempotents of S , then there are nonzero idempotents e1, : : : , en of S with e1 D e,

en D f such that for each i D 1; : : : ; n � 1, one of eiSeiC1, eiC1Sei is nonzero.

Obviously, a Brandt semigroup is a weak Brandt semigroup.

By [14, Corollary 5.6], a weak Brandt semigroup is just a 0-J �-simple primitive adequate semigroup, or just

a 0-J �-simple PA blocked Rees matrix semigroup M0.M��IJ; J; �IP / with the properties that the sandwich

matrix P is diagonal and pjj is equal to the identity e� of the monoid M�� for each � 2 � and each j 2 J�.

Finally we list some basic definitions concerning semigroup algebras and the module theory of algebras which

can be found in [21, 23].

Let S be a semigroup and let RŒS� denote the semigroup algebra of S over R. If T is a subset of the semigroup

S , then denote the set of all finite R-linear combinations of elements of T by RŒT �.

By the contracted semigroup algebra of S over R, denoted by R0ŒS�, we mean the factor algebra RŒS�=RŒ��.

If a D
P
ri si 2 R0ŒS�, then the set supp a D fsi 2 Snf�g j ri ¤ 0g is called the support of a.

Obviously, Snf�g is a multiplicative basis of the contracted semigroup algebra R0ŒS�, because it is a R-basis of

R0ŒS� and 0-closed (S2 � S [ f0g).

Let A be a R-algebra. A right A-module M is said to be indecomposable if M ¤ 0 and M has no direct sum

decomposition M D N ˚ L, where N and L are nonzero right A-modules.

An idempotent e 2 A is called primitive if eA is an indecomposable A-module. By [24, Corollary 6.4a], e is

primitive in the algebra A if and only if e is primitive in the multiplicative semigroup Mult.A/.

Suppose that A is a R-algebra with an identity. If the right A-module AA is a direct sum I1 ˚ � � � ˚ In of

indecomposable right A-modules, then we call such a decomposition an indecomposable decomposition of A. It is

known that this is the case if and only if there exists a complete set fe1; : : : ; eng of primitive orthogonal idempotents

of A such that Ii D eiA .i D 1; : : : ; n/.

Assume that A is a R-algebra with an identity and fe1; : : : ; eng is a complete set of primitive orthogonal

idempotents of A. The algebra A is called basic if eiA © ejA, for all i ¤ j .

The basic algebra associated to A is the algebra Ab D eAAeA, where eA D ej1 C � � � C ejm , and ej1 ; : : : ; ejm
are chosen such that ejtA, 1 � t � m, are all the non-isomorphic projective indecomposable right A-modules.

It is known that Ab is basic and modAb Š modA as categories (see, for example [23, Corollary 6.10]).

A right artinian algebra A is defined to be representation-finite if there are finitely many isomorphism classes of

finitely generated, indecomposable right A-modules.

3 Rukolaı̆ne idempotents

In this section, we first recall the concept of Rukolaı̆ne idempotents of inverse semigroup algebras which was first

introduced by Rukolaı̆ne [3]. Then we extend the Rukolaı̆ne idempotents to certain locally adequate concordant

semigroup algebras.

Let E be a semilattice and e; f 2 E. Then f is said to be maximal under e [25] or e covers f [4] if e > f and

there is no g 2 E such that e > g > f . Denote by Oe the set ff 2 E W e covers f g. E is said to be pseudofinite if
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(i) for e; f 2 E with e > f , there exists an element g such that e covers g and e > g � f ;

(ii) Oe is a finite set for each e 2 E.

It is clear that finite semilattices are pseudofinite.

Let S be a finite inverse semigroup and e 2 E.S/�. Rukolaı̆ne [3] defined an element �.e/ 2 R0ŒS� by

�.e/ D e C
X

fei1 ;:::;eij g� Oe

.�1/j ei1 � � � eij ; (1)

where fei1 ; : : : ; eij g takes over all non-empty subset of Oe. He proved that the set f�.e/ j e 2 E.S/�g collects a

family of orthogonal idempotents of R0ŒS�.

Let S be an inverse semigroup with E.S/ pseudofinite. Then Oe is a finite set whose elements are commutative,

and hence �.e/ 2 R0ŒS� is well defined for each e 2 E.S/�. In this case, Munn [4] gave an obvious alternative

definition of �.e/ as

�.e/ D
Y

g2 Oe

.e � g/:

It is shown that f�.e/ j e 2 E.S/�g is a set of orthogonal idempotents of R0ŒS�, and �.e/, e 2 E.S/�, are called

the Rukolaı̆ne idempotents of R0ŒS�.

Remark 3.1. Let S be an inverse semigroup with E.S/ pseudofinite. If e 2 S is a minimal nonzero idempotent, that

is e covers � , then Oe D ;. In this case, we make the convention that �.e/ D e.

The idempotents set E.S/ of a semigroup S is said to be locally pseudofinite (resp., locally finite) if E.eSe/ is a

pseudofinite (resp., a finite) semilattice for each e 2 E.S/.

Let S be a locally adequate IC abundant semigroup with E.S/ locally pseudofinite. Then E.eSe/ is a

pseudofinite semilattice for each e 2 E.S/� and so Oe is a finite set with elements commutative since Oe � E.eSe/.

As in [4], for each e 2 E.S/�, let

�.e/ D
Y

g2 Oe

.e � g/ 2 R0ŒS�:

We shall show that �.e/ is an idempotent of R0ŒS� for each e 2 E.S/�. To this aim, we need the following results.

Lemma 3.2. Let S be a locally adequate IC abundant semigroup with E.S/ locally pseudofinite. Then for each

a 2 S� we have

(i) ˛a.a
�/ D a�, where ˛a is the isomorphism from !.a�/ to !.a�/;

(ii) if we still denote by ˛a the extension of ˛a to R0Œ!.a
�/� by R-linearly, then ˛a.�.a

�// D �.a�/.

Proof. (i) By the hypothesis that S is IC abundant, there exists a semigroup isomorphism ˛a W ha�i ! ha�i. Since

S is locally adequate, ha�i D !.a�/ is a subsemilattice with identity a� and ha�i D !.a�/ is a subsemilattice with

identity a�. It follows that ˛a.a
�/ D a� and (i) holds.

(ii) Note that ˛a is a semilattice isomorphism. It follows from the definition of Oa� and Oa� that ˛aj Oa�
is a bijection

from Oa� onto Oa�. Which together with the fact that ˛a.a
�/ D a� implies that

˛a.�.a
�// D

Y

g2 Oa�

�
˛a.a

�/ � ˛a.g/
�

D
Y

f2 Oa�

.a� � f / D �.a�/:

Proposition 3.3. Let S be a locally adequate IC abundant semigroup with E.S/ locally pseudofinite. Then

(i) for each e 2 E.S/�, �.e/ is an idempotent and e�.e/ D �.e/e D �.e/I

(ii) �.a�/a D a�.a�/ for each a 2 S�I

(iii) for a 2 S�, h 2 R�
a \E.S/, f 2 L�

a \E.S/, �.h/a D a�.f /.
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Proof. (i) Let g; h 2 Oe. Note that Oe � E.eSe/. Since S is locally adequate,E.eSe/ is a semilattice, hence .e�g/2 D

e � g and .e � g/ commutes with .e � h/. It follows that

�.e/2 D
Y

g2 Oe

.e � g/2 D
Y

g2 Oe

.e � g/ D �.e/:

This shows that �.e/ is an idempotent. The rest is obvious.

(ii) By Lemma 3.2(ii), we have ˛a.�.a
�// D �.a�/. It follows that

a�.a�/ D a˛a.�.a
�// D a˛a

� Y

g2 Oa�

.a� � g/
�

D a
Y

g2 Oa�

�
˛a.a

�/ � ˛a.g/
�

D
�
a˛a.a

�/ � a˛a.t/
�

�
Y

g2 Oa�nftg

�
˛a.a

�/ � ˛a.g/
�

.choose t 2 Oa�/

D
�
a�a � ta

�
�

Y

g2 Oa�nftg

�
˛a.a

�/ � ˛a.g/
�

(since S is IC)

D .a� � t / � a
Y

g2 Oa�nftg

�
˛a.a

�/ � ˛a.g/
�

D � � � D
Y

g2 Oa�

.a� � g/ � a

D �.a�/a;

as required.

(iii) It follows directly from (ii).

Remark 3.4. .i/ If S is an adequate semigroup, then f�.e/ j e 2 E.S/�g � R0ŒS� is a set of pairwise orthogonal

idempotents. Indeed, let e; f 2 E.S/�, and there is no loss of generality in assuming e Š f . By Proposition 3.3(i),

�.e/�.f / D �.e/ef �.f /, thus it suffices to show �.e/ef D 0. By hypothesis, e > ef 2 E.S/. If ef D � .in S/,

this is trivial. If ef ¤ � , there exists an idempotent g 2 Oe such that g > ef . Then

�.e/ef D
� Y

h2 Oenfgg

.e � h/
�
.e � g/ef D 0:

In either case, �.e/ef D 0. Therefore �.e/�.f / D 0.

(ii) There exists a locally adequate IC abundant semigroup S with the property that the idempotents �.e/

.e 2 E.S/�/ are not pairwise orthogonal. To see this, let S D M0.GI I; I IP / be a completely 0-simple semigroup,

where G is a group with identity e, I D f1; 2g and P is a I � I -matrix with p21 D 0 and pij D e otherwise.

Obviously, S is a locally adequate IC abundant semigroup. Since g D .1; e; 1/ and f D .2; e; 1/ are primitive

idempotents of S , we have �.g/ D g and �.f / D f . Then

�.g/�.f / D gf D .1; e; 1/.2; e; 1/ D .1; e; 1/ ¤ 0:

Consequently, f�.e/ j e 2 E.S/�g is not a set containing pairwise orthogonal idempotents.

4 Multiplicative basis B and semigroup S

Let S be a locally adequate concordant semigroup with E.S/ locally finite. In this section, first we construct a

multiplicative basis B of R0ŒS� by means of the Rukolaı̆ne idempotents defined in Section 3. Then we provide some

properties of the semigroup B [ f0g.

For each a 2 S�, in view of Lemma 3.3 (ii) and (iii),

�.a�/a�.a�/ D
�
a�.a�/

�
�.a�/ D a�.a�/ D �.a�/a
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36 Y. Ji, Y. Luo

and �.a�/a�.a�/ does not depend on the choice of the elements a� and a�. Denote

Na D �.a�/a�.a�/:

Then by (1) we have

Na D a�.a�/ D aC
X

fei1 ;:::; eij g� ba�

.�1/jaei1 � � � eij : (2)

Note that ei1 � � � eij � eit < a� for t D 1; : : : ; j . Then aei1 � � � eij � aa� D a since � is compatible with the

multiplication of S . Moreover, aei1 � � � eij < a. Otherwise, suppose that aei1 � � � eij D a. Since the elements of ca�

commute, f D ei1 � � � eij is an idempotent and f < a�. Now aL�a� implies a�f D a�, hence f D a�f D a�.

This is a contradiction. Therefore

Na 2 aC
X

b<a

Rb; a 2 S�: (3)

In particular, we have Na ¤ 0 for each a 2 S�. Now let

B D fNa j a 2 S�g:

We will show that B is a multiplicative basis of R0ŒS�.

Lemma 4.1. Let S be a locally adequate concordant semigroup with E.S/ locally pseudofinite. Then for a; b 2 S�

Na Nb D

(
ab; if E.S/ \ L�

a \R�
b

¤ ;;

0; otherwise:

In particular, B is 0-closed.

Proof. Suppose that E.S/ \ L�
a \ R�

b
¤ ;. Let g 2 E.S/ \ L�

a \ R�
b

. Then a L� g R� b. Since L� (resp., R�)

is a right (resp., left) congruence on S , we have ab L� gb D b and ab R� ag D a. Hence ab 2 L�
b

\ R�
a and so

ab ¤ 0. On the other hand, Na D a�.g/ and Nb D �.g/b. It follows from Proposition 3.3 that

Na Nb D a�.g/�.g/b

D a�.g/b .since �.g/ is an idempotent/

D ab�.b�/ .by Proposition 3.3 (ii)/

D ab�
�
.ab/�

�
.since abL�b/

D ab:

Suppose that E.S/\L�
a \R�

b
D ;. Take e 2 E.S/\L�

a and f 2 E.S/\R�
b

. Then Na D a�.e/ and Nb D �.f /b.

Note that �.e/e D �.e/ and f�.f / D �.f /.

If ef D � , then ef D 0 in R0ŒS�, and hence

Na Nb D .a�.e// .�.f /b/ D .a�.e/e/ .f �.f /b/ D a�.e/.ef /�.f /b D 0:

If ef ¤ � , then � … S.e; f / D fg 2 E.S/ j ge D fg D g; egf D ef g. Since S satisfies the regularity condition,

S.e; f / ¤ ;. Thus there exists a nonzero idempotent g 2 S.e; f / and eg; gf 2 E.S/. Moreover, eg � e and

gf � f . We claim that either gf < f or eg < e. Otherwise, suppose that gf D f and eg D e. Then g R� f and

g L� e. So g 2 L�
e \ R�

f
\ E.S/ D ;, which is a contradiction. Without loss of generality, assume that eg < e.

Then there exists hg 2 Oe such that eg � hg since E.S/ is pseudofinite. It follows that

�.e/ef D �.e/egf

D
� Y

h2 Oe
.e � h/

�
egf

D
� Y

h2 Oenfhgg
.e � h/

��
.e � hg/eg

�
f
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D
� Y

h2 Oenfhgg
.e � h/

��
eeg � hgeg

�
f

D
� Y

h2 Oenfhgg
.e � h/

��
eg � eg

�
f

D 0:

Therefore

Na Nb D .a�.e/e/ .f �.f /b/ D a .�.e/ef / �.f /b D 0:

Remark 4.2. For e; f 2 E.S�/, either E.S/ \ L�
e \R�

f
D ; or E.S/ \ L�

e \R�
f

D S.e; f /.

In fact, if E.S/ \ L�
e \ R�

f
¤ ;, then there is a unique idempotent g 2 E.S/ \ L�

e \ R�
f

such that ge D g,

fg D g and egf D ef . Hence g 2 S.e; f / and so E.S/ \ L�
e \R�

f
� S.e; f /.

To prove the reverse inclusion, suppose that h 2 S.e; f /, we shall show that h H� g. Note that h 2 V.ef /.

Then

e1 D ef h 2 R�
ef \ L�

h \E.S/; e2 D g1ef 2 R�
g1

\ L�
ef \E.S/:

It follows from he D h that ee1 D e1 D e1e. Since g 2 L�
e \ R�

f
, we have ef 2 R�

e \ L�
f

. Thus e1 R�ef R�e

and e1 D e1e D e. Hence h L� e1 D e L� g. Similarly, we may show that hR� g. Therefore hH� g and h D g 2

E.S/ \ L�
e \R�

f
. We have shown that S.e; f / � E.S/ \ L�

e \R�
f

. Consequently, E.S/ \ L�
e \R�

f
D S.e; f /.

Lemma 4.3. Let S be a locally adequate concordant semigroup with E.S/ locally pseudofinite. Then B is linearly

independent in R0ŒS�.

Proof. Suppose to the contrary that B is linearly dependent in R0ŒS�. Then there exist an nonzero integer n, distinct

Nx1; : : : ; Nxn 2 B, and r1; : : : ; rn 2 Rnf0g such that

r1 Nx1 C � � � C rn Nxn D 0:

Let xl be a maximal element of fx1; x2; : : : ; xng under the natural partial order � on S . By (3) suppose that Nxl D

xl C
Pkl
iD1

rilbil with ril ¤ 0 and bil < xl for i D 1; : : : ; kl , l D 1; 2; : : : ; n. Then

r1.x1 C

k1X

iD1

ri1bi1/C � � � C rn.xn C

knX

iD1

rinbin/ D 0:

Since S n f�g is a basis of R0ŒS� and rl ¤ 0, there exists at least an element bij for some j ¤ l and some i such

that bij D xl . Thus xl D bij � xj , which is a contradiction. Therefore B is linearly independent.

The next result, which is due to Lawson [16], gives a characterization of the natural partial order on an abundant

semigroup.

Lemma 4.4 ([16, Proposition 2.5]). Let S be an abundant semigroup and a; c 2 S�. Then c � a if and only if there

exists an idempotent f 2 !.a�/ such that f 2 L�
c , af D c.

Let S be an abundant semigroup. By Lemma 4.4, if b � g 2 E.S/, then b 2 E.S/. For each e 2 E.S/�, if

!.e/ D E.eSe/ is finite, then the element
P
�¤f�e

Nf 2 R0ŒS� is well defined. Whenever this can be done without

ambiguity we shall use the notation
P
f�e

Nf instead of
P
�¤f�e

Nf .

Lemma 4.5. Let S be a locally adequate concordant semigroup with E.S/ locally finite and e 2 E.S/�. Then

e D
X

f�e

Nf :

Proof. Since S is a locally adequate semigroup with E.S/ locally finite, we have E.eSe/ is a finite semilattice. It

is clear that an idempotent f � e if and only if f 2 E.eSe/. We prove the lemma by induction. If e is a minimal

idempotent of S under the natural partial order, the lemma is obvious by Remark 3.1. Suppose the lemma is true for
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all idempotent g < e. Let Oe D fe1; e2; : : : ; eng with n � 1. Then f < e if and only if f � es for some 1 � s � n.

By (1) we have X

f�e

Nf D Ne C
X

f<e

Nf D e C
X

f<e

Nf C
X

fei1 ;:::;eij g� Oe

.�1/j ei1 � � � eij ;

where fei1 ; : : : ; eij g takes over all the non-empty subset of Oe. It follows from the hypothesis that

X

f�e

Nf D e C
X

f<e

Nf C
X

fei1 ;:::;eij g� Oe

.�1/j
X

f�ei1 ���eij

Nf :

Fix some f < e. Let et1 � � � etm be a smallest (under the natural partial order) product of e1; e2; : : : ; en such that

f � et1 � � � etm . Then Nf appears in the sum

X

fei1 ;:::;eij g� Oe

.�1/j
X

f�ei1 ���eij

Nf

with coefficient .�1/m C C 1m.�1/
m�1 C C 2m.�1/

m�2 C � � � C Cm�1
m .�1/ D �1. Thus

X

fei1 ;:::;eij g� Oe

.�1/j
X

f�ei1 ���eij

Nf D �
X

f<e

Nf

and e D
P
f�e

Nf .

Let S be a locally adequate IC abundant semigroup and a; c 2 S� with c � a. Then by Lemma 4.4 there exists an

idempotent f 2 !.a�/ such that f 2 L�
c and af D c. We claim that such an idempotent f is unique. Suppose

that g is another such an idempotent. Then g L� f , and hence fg D f; gf D g. Since f; g � a�, we have

f; g 2 a�Sa�. It follows that gf D fg, and so that g D f . Denote by ec such unique idempotent.

Lemma 4.6. Let S be a locally adequate IC abundant semigroup and a 2 S�. Denote e D a�. Then

(i) the mapping defined by

' W fb 2 S� j b � ag ! feaf j � ¤ f � eg

b 7! eb

is a bijection;

(ii) fb 2 S� j b � ag D faeaf j � ¤ f � eg.

Proof. (i) To show (i) holds, define a mapping by

 W feaf j � ¤ f � eg ! fb 2 S� j b � ag;

eaf 7! aeaf :

We shall show that ' and  are mutually inverse. Let b � a. Then b D aeb and so eb D eaeb 2 feaf j f � eg.

Thus  '.b/ D  .eb/ D aeb D b. On the other hand, let f � e. Since aeaf D af , we have ' .eaf / D

'.aeaf / D eaeaf D eaf . Consequently ' is a bijection.

(ii) It is obvious.

Let S be a locally adequate IC abundant semigroup with E.S/ locally finite. Then the set fb 2 S� j b � ag is finite.

Hence the element
P
�¤b�a

Nb 2 R0ŒS� is well defined. In what follows, we write
P
b�a

Nb instead of
P
�¤b�a

Nb.

Lemma 4.7. Let S be a locally adequate concordant semigroup with E.S/ locally finite and a 2 S�. Then

a D
X

b�a

Nb:

Proof. Let e D a�. By Lemma 4.5, we have

a D ae D a
X

f�e

Nf D
X

f�e;f2L�
af

a Nf C
X

f�e;f…L�
af

a Nf :
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Locally adequate semigroup algebras 39

Now

X

f�e;f…L�
af

a Nf D
X

f�e;f…L�
af

.af /�.f / D
X

f�e;f…L�
af

aeaf �.f /:

Let f 2 E.S/� with f � e and f … L�
af

. Since eaf L� af and af � 1 D af � f , we have eaf � 1 D eaf � f , that

is, eaf D eaf f . Note that E.eSe/ is a semilattice. Then eaf f D feaf since eaf , f 2 E.eSe/. Thus eaf � f .

But eaf ¤ f because f … L�
af

, hence eaf < f . By the fact E.eSe/ is finite that there exists h 2 Of such that

eaf � h. Hence

eaf �.f / D eaf

� Y
t2 Of

.f � t /
�

D
�
eaf .f � h/

�� Y
t2 Of nfhg

.f � t /
�

D
�
eaf f � eaf h

�� Y
t2 Of nfhg

.f � t /
�

D .eaf � eaf /
� Y

t2 Of nfhg
.e � t /

�

D 0:

Therefore
P

f�e;f…L�
af

a Nf D 0. It follows that

a D
X

f�e;f2L�
af

a Nf D
X

f�e;f2L�
af

af Nf .since Nf D f�.f //

D
X

f�e;f2L�
af

af .af /� .since f L
� .af /�, by Proposition 3.3 (iii)/

D
X

f�e;f2L�
af

af

D
X

f�e

aeaf .since af D aeaf /

D
X

b�a

Nb: .by Lemma 4.6 (ii)/

Summing up, we have

Theorem 4.8. Let S be a locally adequate concordant semigroup withE.S/ locally finite. Then B is a multiplicative

basis of R0ŒS� with multiplication given by

Na Nb D

(
ab; if E.S/ \ L�

a \R�
b

¤ ;;

0; otherwise:

Proof. It follows from Lemmas 4.1, 4.3 and 4.7 directly.

Let

S D B [ f0g:

Then, by Theorem 4.8, S is a subsemigroup of the multiplicative semigroup of R0ŒS� such that R0ŒS� D R0ŒS�.

In order to study R0ŒS� better via S , we need to give more properties of S . In the remainder of this section, we

always assume that S is a locally adequate concordant semigroup with E.S/ locally pseudofinite.

Lemma 4.9. The map � W S ! S given by a 7! Na and � 7! 0, where a 2 S�, is a bijection.

Proof. Obviously, � is surjective. It suffices to show that � is injective. Suppose to the contrary that there exist

a; c 2 S such that a ¤ c and Na D Nc. By (3), there exist a1; : : : ; as ; c1; : : : ; ct 2 S� with a1; : : : ; as < a,
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c1; : : : ; ct < c such that Na D aC
Ps
iD1 riai and Nc D c C

Pt
iD1 r

0
i
ci for some r1; : : : ; rs ; r

0
1
; : : : ; r 0

t 2 R�. Thus

aC

sX

iD1

riai D c C

tX

iD1

r 0
ici :

Because S� is a basis of R0ŒS� and a ¤ c, a must cancel with some ci , hence a D ci < c. Similarly, c D aj < a

for some aj . Now a < c < a, a contradiction. Therefore � is injective.

Lemma 4.10. E.S/nf0g D fNe j e 2 E.S/�g.

Proof. Let e 2 E.S/�. Note e 2 L�
e \ R�

e . Then by Theorem 4.1, Ne Ne D Ne ¤ 0 and hence f Ne j e 2 E.S/�g �

E.S/nf0g. To prove the reverse inclusion, assume that Na 2 E.S/�. Then Na Na D Na ¤ 0 and so

a2 D Na Na D Na

by Theorem 4.1. By Lemma 4.9 we have a2 D a, that is a 2 E.S/�. Hence E.S/ n f0g � fNe j e 2 E.S/�g, as

required.

Lemma 4.11. Let a 2 S�. Then Na� L�.S/ Na and Na� R�.S/ Na.

Proof. Note that L�
a \R�

z \E.S/ D L�
a� \R�

z \E.S/ for any z 2 S . Then by Theorem 4.1 Na Nz D 0 if and only if

Na� Nz D 0. Suppose that Na Nx D Na Ny for some Nx; Ny 2 S
1

. If Na Nx D Na Ny D 0, then Na� Nx D 0 D Na� Ny. On the other hand, if

Na Nx D Na Ny ¤ 0, then ax D Na Nx D Na Ny D ay. Hence ax D ay. Which together with a�L�a implies that a�x D a�y.

Therefore Na� Nx D a�x D a�y D Na� Ny. Dually, if Na� Nx D Na� Ny for some Nx; Ny 2 S
1

, we may show that Na Nx D Na Ny.

Consequently Na� L� Na. The case for R� is a dual.

The following result describes the relationship between the Green �-relations of S and the Green �-relations of S .

Lemma 4.12. Let a; b 2 S . Then

(i) a L�.S/ b ” Na L�.S/ Nb;

(ii) a R�.S/ b ” Na R�.S/ Nb;

(iii) a D�.S/ b ” Na D�.S/ Nb.

Proof. Note that R� is the dual of L� and D� D L� _ R�. It suffices to prove (i) is true.

Assume that a L�.S/ b. Then a� L�.S/ b� and so a�b� D a�, b�a� D b�. Clearly, a� 2 L�
b� \ R�

a�

and b� 2 L�
a� \ R�

b� . It follows from Theorem 4.1 that Na� Nb� D a�b� D Na� and Nb� Na� D b�a� D Nb�, that is,

Na� L�.S/ Nb�. It follows from Lemma 4.11 that Na L�.S/ Na� L�.S/ Nb� L�.S/ Nb. Conversely, suppose that Na L�.S/ Nb.

Then by Lemma 4.11 Na� L�.S/ Nb�, that is, Na� Nb� D Na� and Nb� Na� D Nb�. Hence a�b� D Na� and b�a� D Nb�. By

Lemma 4.9 we have a�b� D a� and b�a� D b�. Thus a� L�.S/ b�, hence a L�.S/ b.

Let K D fL�;R�;D�g. From Lemmas 4.9 and 4.12, for each K 2 K, the mapping

�K W .S=K/� ! .S=K/�

K�
a 7! K�

Na ;

where a 2 S�, is a bijection. Throughout this paper, we identify the set .S=D�/� (resp., .S=R�/�, .S=L�/�) with

the set .S=D�/� (resp., .S=R�/�, .S=L�/�), and denote it by Y (resp., I , L). For each ˛ 2 .S=K/�, if K�
˛ D K�

a

for some a 2 S�, then we denote by K�
˛ or K�

Na the nonzero K-class �K.K
�
˛/ of S , and let K�

˛

0
D K�

˛ [ f0g and

K�
Na
0 D K�

Na [ f0g.

As a direct consequence of Lemma 4.12, we have

Corollary 4.13. For each a 2 S , we have

(i) R�
Na
0 .resp., L�

Na
0/ is a right .resp., left/ ideal of S ;

(ii) D�
Na
0 is an ideal of S .
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Proof. It follows from Lemma 4.12 and the proof of Lemma 4.1.

Lemma 4.14. Let e 2 E.S/�. Then H�
e .S/ Š H�

Ne .S/.

Proof. By Lemma 4.12, it is easy to see that the map � defined in Lemma 4.9 sends H�
e onto H�

Ne . Let �e W H�
e !

H�
Ne be the restriction of � to H�

e . Clearly �e is a bijection. Let a; b 2 H�
e . Then e 2 H�

e D L�
a \ R�

b
. It follows

from Theorem 4.1 that

�e.ab/ D ab D Na Nb D �e.a/�e.b/:

Hence �e is an isomorphism, as required.

Theorem 4.15. S is primitive abundant.

Proof. That S is abundant follows directly from Lemmas 4.10 and 4.11. To show S is primitive, let Ne; Nf 2 E.S/nf0g

with Ne � Nf . Thus Ne Nf D Nf Ne D Ne ¤ 0. By Theorem 4.1 there exists Ng 2 L�
Ne \ R�

Nf
\ E.S/. Hence Ne D Ne Nf 2

L�
Nf

\ R�
Ne . Similarly, we have Ne D Nf Ne 2 R�

Nf
\ L�

Ne . Therefore Ne H�.S/ Nf and Ne D Nf . Consequently S is

primitive.

Recall a semigroup T with zero � is called a 0-direct union of semigroups T˛ (˛ 2 X ) if T D
S
˛2X T˛ and

T˛Tˇ D T˛ \ Tˇ D f�g for all ˛ ¤ ˇ.

Theorem 4.16. (i) For each ˛ 2 Y , D�
˛

0
is 0-J �-simple primitive abundant;

(ii) S is a 0-direct union of D�
˛

0
.˛ 2 Y /.

(iii) On S , D� D J �.

Proof. (i) Let Na; Nb 2 D�
˛ . If E.S/ \ L�

a \ R�
b

D ;, then Na Nb D 0 2 D�
˛

0
. If E.S/ \ L�

a \ R�
b

¤ ;, then by the

proof of Lemma 4.1 we have

Na Nb D ab 2 R�
Na \ L�

Nb
� D�

˛:

It follows that D�
˛

0
is a subsemigroup of S . It follows from the fact S is primitive abundant that D�

˛

0
is primitive

abundant. In particular,
�
D�
˛

0
�2

¤ 0. That D�
˛

0
is 0-J �-simple is obvious.

(ii) Note that fD�
˛ j ˛ 2 Y g collects all the nonzero D�-classes of S . Thus S is a 0-disjoint union of the

subsemigroups D�
˛

0
(˛ 2 Y ). That D�

˛

0
D�
ˇ

0
D f0g whenever ˛ ¤ ˇ follows from Theorem 4.1. Therefore S is a

0-direct union of D�
˛

0
.˛ 2 Y /.

(iii) Let ˛ 2 S=D� and Na 2 D�
˛ . Notice that D�

˛ is a D�-class of S . Since J�. Na/ is an ideal of S containing

Na which is saturated by L� and R�, we have D�
˛

0
� J�. Na/. On the other hand, by (ii), D�

˛

0
is an ideal of S , and

hence it is an ideal saturated by L� and R�. Then the fact J�. Na/ is the smallest ideal containing Na which is saturated

by L� and R� implies thatD�
˛

0
D J�. Na/. Note that for all Nb; Nc 2 S , NbJ � Nc if and only if J�. Nb/ D J�. Nc/. It follows

that NbJ � Nc if and only if Nb; Nc 2 D�
ˇ

for some ˇ 2 S=D�. This shows that for each ˛ 2 S=D�, D�
˛ is a J �-class of

S . (iii) follows.

Let T be an abundant semigroup. In [18], S. Armstrong defined the �-trace of T to be the partial groupoid t r�.T / D

.T; �/ with partial binary operation “�” defined by

a � b D

(
ab; if E.S/ \ L�

a \R�
b

¤ ;;

undefined; otherwise:

It is clear that t r�.T / is a disjoint union of D�-classes of T , which is closed under �. The multiplication “�” on t r�.T /

can be extended to t r�.T /0 D t r�.T / [ f0g by setting undefined products equal to 0, where 0 is a symbol not in

T and acts as zero element. Then t r�.T /0 is a semigroup under this multiplication. Armstrong [18] studied and

characterized the �-trace of a concordant semigroup, in particular, he proved that t r�.T /0 is a primitive abundant

semigroup.
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Remark 4.17. Let S be a locally adequate concordant semigroup with E.S/ locally pseudofinite. Then S is a

multiplicative subsemigroup of R0ŒS� and a good homomorphism image of t r�.S/0. Indeed, from Lemmas 4.9, 4.10

and 4.12, one can deduce that S is isomorphic to the semigroup obtained from t r�.S/0 by equating � (the zero

element of S ) with 0. And Lemma 4.14, Theorems 4.15 and 4.16 can also be obtained from the results of [18].

5 Direct product decomposition

Let S be a locally adequate concordant semigroup with E.S/ locally finite. We have constructed a new basis for

R0ŒS� in last section. As an application, we provide a direct product decomposition for R0ŒS� in this section.

Theorem 5.1. Let S be a locally adequate concordant semigroup with E.S/ locally finite and S D fa�.a�/ j a 2

S�g [ f0g. Then

R0ŒS� Š
Y

˛2Y

RŒD�
˛�

is a direct product decomposition of R0ŒS�, where Y D .S=D�/� and D�
˛ , ˛ 2 Y , are all non-zero D�-classes of

S .

Proof. Since S n f0g is a basis of R0ŒS�, we have R0ŒS� D R0ŒS�. It follows from Theorem 4.16 (ii) that R0ŒS� DQ
˛2Y R0ŒD

�
˛

0
�. Note that RŒD�

˛� D R0ŒD�
˛

0
�. Then we have R0ŒS� Š

Q
˛2Y RŒD

�
˛�, as required.

Next we consider the case R0ŒS� containning an identity. The following result is essential for us.

Lemma 5.2 ([26, Theorem 1.4]). Let S be a semigroup. If the semigroup ring R0ŒS� contains an identity, then there

exists a finite subset U of E.S/ and for all s 2 S , there exist e; f 2 U such that s D es D sf .

Lemma 5.3. Let S be a locally adequate concordant semigroup with E.S/ locally finite. If R0ŒS� contains an

identity, then S as well as S has finitely many R�-classes (resp., L�-classes, D�-classes). In particular, S as well

as S has finitely many idempotents.

Proof. By Lemma 4.12, we only need to consider the case of S . Suppose that R0ŒS� contains an identity. Then by

Lemma 5.2 there exists a finite subset U of E.S/ such that for all Ns 2 S , Ns D Ne Ns D Ns Nf for some Ne; Nf 2 U . Thus,

in order to show that S=R� is finite, it suffices to show that U \ R�
Ns ¤ ; for each s 2 S . Suppose to the contrary

that U \R�
Na D ; for some Na 2 S . Then there exists an idempotent Ne 2 U such that Ne Na D Na, but Ne … R�

Na . Since S is

abundant, there exists Nf 2 E.S/ \R�
Na . Thus Ne Nf D Nf , and hence

. Nf Ne/. Nf Ne/ D Nf . Ne Nf / Ne D Nf Ne:

This shows that Nf Ne 2 E.S/. We claim that Nf Ne ¤ 0. Otherwise, suppose Nf Ne D 0. Then

Na D Nf Na D Nf . Ne Na/ D . Nf Ne/ Na D 0;

which is a contradiction. It follows from Lemma 3.3 [14] that Nf Ne 2 R�
Nf
\L�

Ne . Thus Nf Ne D Ne Nf Ne D Ne, which together

with Ne Nf D Nf implies that Ne R� Nf . Hence Ne R� Nf R� Na, a contradiction. Therefore S has finite many R�-classes.

Dually, S has finite many L�-classes and so finite many D�-classes.

Since H� D R� \L�, S has finite many H�-classes. Hence S has finite many idempotents since each H�-class

contains at most one idempotent.

Corollary 5.4. Let S be a locally adequate concordant semigroup with E.S/ locally finite. If R0ŒS� contains an

identity, then

R0ŒS� D ˚˛2YRŒD�
˛�;

where Y D S=D� and D�
˛ , ˛ 2 Y , are all non-zero D�-classes of S .
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Proof. If R0ŒS� contains an identity, then S as well as S has finitely many D�-classes. Now it follows from the

proof of Theorem 5.1.

To end this section, we consider two special cases: adequate and regular. As applications of Theorem 5.1, we give a

direct product decomposition of IC adequate semigroup algebras and locally inverse semigroup algebras.

Recall that an IC adequate semigroup (sometimes called ample semigroup) is an adequate semigroup which is

IC. Note that the set of idempotents of an adequate semigroup is a semilattice and adequate semigroups are locally

adequate. Hence a locally adequate concordant semigroup is adequate if and only if it is IC adequate.

Corollary 5.5. Let S be an IC adequate semigroup with E.S/ locally finite. Then R0ŒS� is a direct product of

contracted weak Brandt semigroup algebras. Moreover, R0ŒS� contains an identity if and only if S=R� and S=L�

are finite.

Proof. Let S be an IC adequate semigroup with E.S/ locally finite and let S D fNa j a 2 Sg [ f0g. Then

R0ŒS� Š
Y

˛2Y

RŒD�
˛�;

where Y D .S=D�/� andD�
˛ , ˛ 2 Y , are all non-zero D�-classes of S . Since S is adequate, it follows from Lemma

4.12 that S is also adequate. Then by Theorem 4.16, for each ˛ 2 Y D S=D�, D�
˛

0
is a 0-J �-simple primitive

adequate semigroup. So it is a weak Brandt semigroup. Note that RŒD�
˛� D R0ŒD�

˛

0
�. Therefore R0ŒS� is a direct

product of contracted weak Brandt semigroup algebras.

Suppose that R0ŒS� contains an identity. Then by Lemma 5.3 S=R� and S=L� are finite. Conversely, Suppose

that S=R� and S=L� are finite. Then Y D S=D� is finite. It follows from the proof of Theorem 5.1 that

R0ŒS� D ˚˛2YRŒD�
˛�

where Y D S=D� and D�
˛ , ˛ 2 Y , are all non-zero D�-classes of S . Similar argument as above, D�

˛

0
is a weak

Brandt semigroup for each ˛ 2 Y . Let

D�
˛

0
D M

0.M˛
��I I˛; I˛; �˛IP˛/

for each ˛ 2 Y , where P˛ is a diagonal matrix with p˛
ii

D e˛
�

for each i 2 I˛
�

, and where e˛
�

is the identity of the

monoid M˛
��

for each � 2 �˛ . Then the element

e D
X

˛2Y

X

�2�˛;i2I˛
�

.e˛� /ii 2 R0ŒS�

is well defined, where .e˛
�
/ii is the jI˛j � jI˛j matrix with entry e˛

�
in the .i; i/ position and zeros elsewhere.

Clearly, e is the identity of R0ŒS�.

It is clear that a locally adequate concordant semigroup is regular if and only if it is locally inverse.

Corollary 5.6. Let S be a locally inverse semigroup with E.S/ locally finite. Then

R0ŒS� Š
Y

˛2.S=D/�

M .RŒG˛�I I˛; ƒ˛IP˛/; (4)

where G˛ is the maximal subgroup in D˛ , I˛ .resp., ƒ˛/ is the set of the R-classes .resp., L-classes/ contained in

D˛ , and P is a regular ƒ˛ � I˛-matrix with entries in G0˛ for each ˛ 2 S=D.

Proof. It is clear that a regular 0-J �-simple primitive abundant is completely 0-simple. Note that Green’s �-relations

coincide with Green’s relations in regular semigroups. Then D�
˛

0
is a completely 0-simple semigroup, say, D�

˛

0
D

M0.G˛I I˛; ƒ˛IP˛/, for each ˛ 2 .S=D�/� D .S=D/�. Thus R0ŒD�
˛

0
� D M .RŒG˛�I I˛; ƒ˛IP˛/. It follows

from Theorem 5.1 that R0ŒS� Š
Q
˛2.S=D/� M .RŒG˛�I I˛; ƒ˛IP˛/.

Corollaries 5.5 and 5.6 generalize the results on finite ample semigroups [9] and on finite locally inverse semigroups

[8].
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Corollary 5.7 ([4, Theorem 6.5]). Let S be an inverse semigroup with E.S/ locally finite. Then

R0ŒS� Š
Y

˛2.S=D/�

MjI˛ j .RŒG˛�/ ;

where G˛ is the maximal subgroup in D˛ and jI˛j denotes the number of the R-classes of D˛ for each ˛ 2 S=D.

Proof. By hypothesis, Lemmas 4.10 and 4.12, we deduce that S is an inverse semigroup. Then the fact S is a 0-

direct union of D˛
0
(˛ 2 S=D) implies that each D˛

0
is a Brandt semigroup. Say, D˛

0
D M0.G˛I I˛; I˛IP˛/,

where G˛ is a maximal subgroup of S which is contained in D˛ , I˛ is the set of R-classes of D˛ , P˛ is a diagonal

I˛ � I˛-matrix with .p˛/ii is equal to the identity e˛ of G˛ for each i 2 I˛ . Furhtermore, by Lemma 4.14, G˛

is isomorphic to any maximal subgroup of S contained in D˛; by Lemma 4.12, I˛ is the set of R-classes of D˛ .

Now it is easily verified that RŒD˛� Š MjI˛ j .RŒG˛�/. Consequently, by Theorem 5.1, we obatin the desired direct

product decomposition.

6 Projective indecomposable modules

Throughout this section, let S denote a locally adequate concordant semigroup with E.S/ locally finite. Since

projective indecomposable modules are discussed on algebras with identities, we always assume that the contracted

semigroup algebra R0ŒS� contains an identity.

By Corollary 4.13, for i 2 I D S=R�, R�
i

0
is a right ideal of S . Note that R0ŒS� D R0ŒS�. Then RŒR�

i
� is a

right ideal of R0ŒS� and can be considered as a right R0ŒS�-module for each i 2 I .

We first give out a direct sum decomposition of R0ŒS�.

Theorem 6.1. If R0ŒS� has an identity, then

R0ŒS�R0ŒS� D
M

i2I

RŒR�
i
� (5)

is a finite direct sum decomposition of R0ŒS�.

Proof. If R0ŒS� contains an identity, then S as well as S has finitely many R�-classes and so I is finite. Since S
�

is a disjoint union of R�
i

(i 2 I ), the right R0ŒS�-module R0ŒS�R0ŒS� is a direct sum of RŒR�
i
� (i 2 I ). Therefore

(5) gives a finite direct sum decomposition of R0ŒS�.

By Lemma 4.16, D�
˛

0
(˛ 2 Y ) is a 0-J �-simple PA blocked Rees matrix semigroup, say, D�

˛

0
D

M0.M˛
��

IJ˛; ƒ˛; �˛IP˛/.

Next we investigate conditions under which the projective R0ŒS�-modues RŒR�
i
� are isomorphic.

Lemma 6.2. Let ˛; ˇ 2 Y , i 2 J˛; j 2 Jˇ . If RŒR�
i
� Š RŒR�

j
�, then ˛ D ˇ.

Proof. Let  W RŒR�
i
� ! RŒR�

j
� be a right R0ŒS�-module isomorphism. Suppose to the contrary that ˛ ¤ ˇ. Let

Nx 2 R�
i

. Since NS is abundant, there exists an idempotent Ne 2 L�
Nx � D�

˛ . Then Nx Ne D Nx and  . Nx Ne/ D  . Nx/ ¤ 0.

On the other hand, . . Nx/; Ne/ … D�, thus  . Nx/ Ne D 0 by Lemma 4.16 (ii). Whence  . Nx Ne/ ¤  . Nx/ Ne, a contradiction.

Therefore ˛ D ˇ, as required.

Let ˇ 2 Y and RŒR�
i
� � RŒD�

ˇ
�. Then RŒR�

i
� is a right R0ŒS�-module. By Theorem 5.1, R0ŒS� D

Q
˛2Y RŒD

�
˛�.

Thus we only need to consider RŒR�
i
� as a right RŒD�

ˇ
�-module; M � RŒR�

i
� is an indecomposable right R0ŒS�-

module if and only if M is an indecomposable right RŒD�
ˇ
�-module. Therefore, it suffices to find all the non-

isomorphic projective indecomposable right RŒD�
˛�-modules (˛ 2 Y ).

Let M D M0.M��IJ;ƒ; �IP / be a PA blocked Rees matrix semigroup and � 2 � , i; j 2 J�. For each

� 2 � , define

R�
i�

D
[
s2ƒ�

H�
is
; ni� D jM��j:
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Here ni� D nj�. Since jH�
ks

j D jM��j D jH�
lt

j for all .k; s/; .l; t/ in the .�; �/-block, we have jR�
i�

j D

ni�jƒ�j. We say the semigroup M satisfies the row-block condition if for all � ¤ � 2 � , i 2 J� and j 2 J� , there

exists � 2 � such that ni� ¤ nj�.

Lemma 6.3. Let D� be a D�-class of S and D�0 D M0.M��IJ;ƒ; �IP /, i; j 2 J .

(i) If i; j 2 J� for some � 2 � , then RŒR�
i
� Š RŒR�

j
�I

(ii) If RŒR�
i
� Š RŒR�

j
�, then ni� D nj� for each � 2 �I

(iii) If D�0 satisfies the row-block condition, then fRŒR�
1�
� j � 2 �g collects pairwise non-isomorphic projective

right RŒD��-modules.

Proof. (i) Let i; j 2 J� for some � 2 � . Then for any � 2 � , ni� D nj�, and hence we can define a map

 W RŒR�
i
� ! RŒR�

j
� by .i; Na; s/ 7! .j; Na; s/, where s 2 ƒ� and Na 2 M��, and extend R-linearly. By definition,  

restricts to a bijection R�
i

! R�
j

. Hence  is a R-module isomorphism from RŒR�
i
� to RŒR�

j
�. We claim that  is a

right RŒD��-module homomorphism. For this, let Nx D .i; Na; s/ 2 R�
i

and Ny D .k; Nb; t/ 2 D�0 , then

 . Nx/ Ny D .j; Napsk Nb; t/ D  .i; Napsk Nb; t/ D  . Nx Ny/:

Therefore  is a right R0ŒS�-module isomorphism, and (i) is proved.

(ii) Without loss of generality, suppose that  W RŒR�
i
� ! RŒR�

j
� is a RŒD��-module isomorphism with

 .R�
i
/ D R�

j
. Let � 2 � and Nx 2 R�

i�
. Since D�0 is abundant and all its idempotents are in the diagonal blocks,

there exist an element l 2 J� and an idempotent Ne 2 D� such that Ne 2 L�
Nx \ R�

l
. But by the fact  . Nx Ne/ D  . Nx/ Ne

and (4.8), we deduce that

E.S/ \ L�
Nx \R�

l
¤ ; , E.S/ \ L�

 . Nx/ \R�
l

¤ ;:

It follows from the fact 0 ¤  . Nx/ D  . Nx Ne/ thatL�
 . Nx/

\R�
l

contains an idempotent, hence  . Nx/ 2 R�
j�

. Therefore

 .R�
i�
/ � R�

j�
. Notice that R�

k
D [�2�R

�
k�

for each k 2 J . Because  is a bijection from R�
i

to R�
j

, we have

ni�jƒ�j D j R�
i�

j D j R�
j�

j D nj�jƒ�j. This implies that ni� D nj�.

(iii) This follows from (i) and (ii).

Let D� be a D�-class of S and let D�0 D M0.M��IJ;ƒ; �IP / satisfy the row-block condition. By (5), RŒD��

is a direct sum of RŒR�
j
�(j 2 J ). For each pair i; j 2 J , according to Lemma 6.3, RŒR�

i
� Š RŒR�

j
� if and only if

there exists � 2 � such that i; j 2 J�. Thus it suffices to find the non-isomorphic indecomposable direct summands

of RŒR�
1�
� for each � 2 � .

Let � 2 � and let f�;1, � � � , f�;n� , � � � , f�;n�Cm� be a complete set of primitive orthogonal idempotents of

RŒT�� such that f�;1RŒT��; � � � ; f�;n� RŒT�� are all the non-isomorphic projective indecomposable right RŒT��-

modules. Notice that

RŒR�
1�
� D .1�; e�; 1�/RŒD�� D

M

1�p�n�Cm�

.1�; f�;p; 1�/RŒD��:

Lemma 6.4. Let D� be a D�-class of S and D�0 D M0.M��IJ;ƒ; �IP /, � 2 � .

(i) For each pair u; v 2 RŒT��, the right RŒT��-modules uRŒT�� Š vRŒT�� if and only if the right RŒD��-modules

.1�; u; 1�/RŒD�� Š .1�; v; 1�/RŒD��I

(ii) Let f 2 RŒT�� be an idempotent. Then fRŒT�� is an indecomposable right RŒT��-module if and only if

.1�; f; 1�/RŒD�� is an indecomposable right RŒD��-module.

Proof. (i) Suppose that ' W uRŒT�� ! vRŒT�� is a right RŒT��-module isomorphism. Let w 2 RŒT�� and .i; y; s/ 2

D�. Then .1�; w; 1�/.i; y; s/ D .1�; w.p1�;iy/; s/. If i D 1�, then p1�;iy D e�y D y by our assumption on P .

Therefore

.1�; w; 1�/RŒD�� D
X

�2�;s2ƒ�;x2M��

R.1�; wx; s/:
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By condition (C) in the definition of PA blocked Rees matrix semigroups, for all � 2 � and x; y 2 M��, if

wx D wy, then x D y in M��. Thus the R-linear map

e' W .1�; u; 1�/RŒD�� ! .1�; v; 1�/RŒD��

.1�; ux; s/ 7! .1�; '.u/x; s/

is well defined and is injective. We claim that e' is a right RŒD��-module isomorphism. Indeed, since ' is surjective,

e' is also surjective, hence e' is a bijection. Let .l; y; s/ 2 D�. Then e'..1�; ux; s/.l; y; t// D e'.1�; uxpsly; t/ D

e'..1�; ux; s//.l; y; t/ and consequently, e' is a RŒD��-homomorphism.

Conversely, suppose that e' W .1�; u; 1�/RŒD�� ! .1�; v; 1�/RŒD�� is a right RŒD��-module isomorphism.

For each w 2 uRŒT��,

e'.1�; w; 1�/ D e'..1�; w; 1�//.1�; e�; 1�/ 2 .1�; vRŒT��; 1�/:

Thus we can define a map ' W uRŒT�� ! vRŒT�� by .1�; '.w/; 1�/ D e'.1�; w; 1�/. Obviously, ' is a bijection. It

thus suffices to show '.wx/ D '.w/x for all x 2 RŒT��. Indeed,

.1�; '.wx/; 1�/ D e'..1�; wx; 1�// D e'..1�; w; 1�//.1�; x; 1�/ D .1�; '.w/x; 1�/;

which implies '.wx/ D '.w/x, and (i) follows.

(ii) Clearly, f 0 D .1�; f; 1�/ is an idempotent of R0ŒM �. We only need to show that f 0 2 MultRŒD�� is

primitive if and only if f 2 MultRŒT�� is primitive. Indeed, let e0 2 MultRŒD�� be an idempotent. Then e0 < f 0

if and only if there exists an idempotent e 2 RŒT�� such that e0 D .1�; e; 1�/ and e < f , and hence (ii) follows.

Notice that the results of Lemma 6.4 can be applied to general PA blocked Rees matrix semigroups.

Theorem 6.5. Let S be a locally adequate concordant semigroup with E.S/ locally finite and Y D S=D�. If

(i) for each ˛ 2 Y , D�
˛

0
D M0.M˛

��
IJ˛; ƒ˛; �˛IP˛/ satisfies the row-block condition,

(ii) for each � 2 �˛ , f ˛
�;1

, � � � , f ˛
�;n˛

�

, � � � , f ˛
�;n˛

�
Cm˛

�

is a complete set of primitive orthogonal idempotents of

RŒT ˛
�
� such that f ˛

�;1
RŒT ˛

�
�; � � � ; f ˛

�;n˛
�

RŒT ˛
�
� are all the non-isomorphic projective indecomposable right

RŒT ˛
�
�-modules,

then the set
S
˛2Y;�2�˛ f.1˛

�
; f ˛
�;q

; 1˛
�
/R0ŒS� j 1 � q � n˛

�
g collects all the non-isomorphic projective

indecomposable right R0ŒS�-modules.

Proof. Let ˛ 2 Y and � 2 �˛ . By Lemma 6.4 and the hypotheses, the right RŒD�
˛�-modules .1˛

�
; f ˛
�;q

; 1˛
�
/RŒD�

˛�

are indecomposable; furthermore, .1˛
�
; f ˛
�;q

; 1˛
�
/RŒD�

˛� Š .1˛
�
; f ˛
�;p

; 1˛
�
/RŒD�

˛� if and only if f ˛
�;q

RŒT ˛
�
� Š

f ˛
�;p

RŒT ˛
�
� as right RŒT ˛

�
�-modules , where 1 � q; p � n˛

�
Cm˛

�
. Therefore, .1˛

�
; f ˛
�;q

; 1˛
�
/RŒD�

˛� (1 � q � n˛
�

)

are all the non-isomorphic projective indecomposable right RŒD�
˛�-modules.

As mentioned before, M is an indecomposable right RŒD�
˛�-module if and only if M is an indecomposable

right R0ŒS�-module. Consequently,
S
.1˛
�
; f ˛
�;q

; 1˛
�
/R0ŒS� are all the non-isomorphic projective indecomposable

right R0ŒS�-modules, where the union takes over all ˛ 2 Y , � 2 �˛ and 1 � q � n˛
�

,

For each D�
˛

0
D M0.M˛

��
IJ˛; ƒ˛; �˛IP˛/, if j�˛j D 1, then the semigroup D�

˛

0
is isomorphic to a Rees

matrix semigroup [27], say, D�
˛

0
D M0.T˛IJ˛; ƒ˛IP˛/. In the following proposition we specialize to this case.

Proposition 6.6. Let S be a locally adequate concordant semigroup with E.S/ locally finite and for each ˛ 2 Y D

S=D�, D�
˛

0
D M0.T˛IJ˛; ƒ˛IP˛/ be a Rees matrix semigroup over a cancellative monoid T˛ .

(i) R0ŒS�
b Š

Q
˛2Y

RŒT˛�
b I

(ii) R0ŒS� is representation-finite if and only if for each ˛ 2 Y , RŒT˛� is representation-finite.

Proof. (i) It is clear thatR0ŒS� satisfies the row-block condition. Let ˛ 2 Y D S=D�. Suppose that f ˛
1

, � � � , f ˛n˛ ,� � � ,

f ˛
n˛Cm˛

is a complete set of primitive orthogonal idempotents of RŒT˛� such that f ˛
1
RŒT˛�; � � � ; f

˛
n˛
RŒT˛� are all

the non-isomorphic projective indecomposable right RŒT˛�-modules. Then eRŒT˛� D f ˛
1

C � � � C f ˛n˛ , and thus
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RŒT˛�
b D eRŒT˛�RŒT˛�eRŒT˛�. By Theorem 6.5, we have eR0ŒS� D

P
˛2Y .1˛; eRŒT˛�; 1˛/, where 1˛ 2 J˛

denote the element 1˛
�

for each ˛ 2 Y . This, together with the fact R0ŒS� D
Q
˛2Y RŒD

�
˛�, implies that

R0ŒS�
b D eR0ŒS�R0ŒS�eR0ŒS�

D
M

˛2Y

.1˛; eRŒT˛�; 1˛/R0ŒS�.1˛; eRŒT˛�; 1˛/

D
M

˛2Y

.1˛; eRŒT˛�; 1˛/.1˛; RŒT˛�; 1˛/.1˛; eRŒT˛�; 1˛/

D
M

˛2Y

.1˛; eRŒT˛�RŒT˛�eRŒT˛�; 1˛/

Š
Y

˛2Y

RŒT˛�
b :

(ii) This follows from (i) immediately.

To end our paper, for regular case, we have the following results.

Corollary 6.7. Let S be a locally inverse semigroup with idempotents set E.S/ locally finite. Suppose that R0ŒS�

contains an identity. Then R0ŒS� is representation-finite if and only if RŒG˛� is representation-finite for each ˛ 2

S=D.

Proof. let ˛ 2 Y . Then

D�
˛

0
D D˛

0
D M

0.G˛IJ˛; ƒ˛IP˛/

is a completely 0-simple semigroup. The result follows from Proposition 6.6 immediately.

Let G be a finite group and K be a field with characteristic p. If p − jGj, then KŒG� is semisimple and conversely

(Maschke’s Theorem). If this is the case, KŒG� is representation-finite since semisimple algebra is representation-

finite. If p
ˇ̌
jGj, KŒG� is representation-finite if and only if the Sylow p-subgroups Gp of G are cyclic (Higman’s

Theorem [28]). Therefore, KŒG� is representation-finite if and only if either p − jGj, or all the Sylow p-subgroups

Gp of G are cyclic.

Now the next result follows from Corollary 6.7 directly.

Corollary 6.8. Let S be a locally inverse semigroup with E.S/ locally finite and all its maximal subgroups of finite

order. Suppose that K0ŒS� contains an identity. Then K0ŒS� is representation-finite if and only if for each ˛ 2 S=D

with p
ˇ̌
jG˛j, the Sylow p-subgroups .G˛/p of G˛ are all cyclic.
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