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The chaos synchronization and riddled basins phenomena are discussed for a family of two-dimensional

piecewise linear endomorphisms that consist of two linearly coupled one-dimensional maps. Rigorous condi-

tions for the occurrence of both phenomena are given. Different scenarios for the transition from locally to

globally riddled basins and blowout bifurcation have been identified and described. @S1063-651X~97!09511-1#

PACS number~s!: 05.45.1b

I. INTRODUCTION

Two identical chaotic systems xn115 f (xn) and yn11

5 f (yn), x ,yPR, evolving on an asymptotically stable cha-
otic attractor A , when one-to-one coupling

xn115 f ~xn!1d1~yn2xn!,

yn115 f ~yn!1d2~xn2yn! ~1!

is introduced, can be synchronized for some ranges of d1,2

PR, i.e., uxn2ynu→0 as n→` @1–13#.
In the synchronized regime the dynamics of the coupled

system ~1! is restricted to one-dimensional invariant sub-
space xn5yn , so the problem of synchronization of chaotic
systems can be understood as a problem of stability of the
one-dimensional chaotic attractor A in two-dimensional
phase space @14,15#.

The basin of attraction b(A) is the set of points whose
v-limit set is contained in A . In Milnor’s definition @16# of
an attractor the basin of attraction need not include the whole
neighborhood of the attractor, i.e., we say that A is a weak
Milnor attractor if b(A) has a positive Lebesgue measure.
For example, a riddled basin @14,15,17–20#, which has re-
cently been found to be typical for a certain class of dynami-
cal systems with one-dimensional invariant subspace @such
as xn5yn in the example ~1!#, has positive Lebesgue mea-
sure but does not contain any neighborhood of the attractor.
In this case the basin of attraction b(A) may be a fat fractal,

so that any neighborhood of the attractor intersects the basin

with positive measure, but may also intersect the basin of

another attractor with positive measure.

The dynamics of the system ~1! is described by two

Lyapunov exponents. One of them describes the evolution on

the invariant manifold x5y and is always positive. The sec-

ond exponent characterizes the evolution transverse to this

manifold and is called transversal. If the transversal

Lyapunov exponent is negative, the set A is an attractor, at

least in the weak Milnor sense.

When the transversal Lyapunov exponent is negative and

there exist trajectories in the attractor A , which are transver-
sally repelling, A is a weak Milnor attractor with a locally
riddled basin, i.e., there is a neighborhood U of A such that
in any neighborhood V of any point in A , there is a set of
points in VùU of positive measure that leave U in a finite
time. The trajectories that leave neighborhood U can either
go to the other attractor ~attractors! or after a finite number of
iterations be diverted back to A . If there is a neighborhood U

of A such that in any neighborhood V of any point in U there
is a set of points of positive measure that leave U and go to
the other attractor ~attractors!, then the basin of A is globally
riddled.

In this paper we identify and describe different ways of
transition from locally to globally riddled basins and discuss
the conditions for the basin of attraction to be one or the
other. We consider the dynamics of a four-parameter family
of a two-dimensional piecewise linear noninvertible map

F5H f l ,p~xn!1d~yn2xn!: xn115pxn1

l

2
S 12

p

l
D S Uxn1

1

l
U2Uxn2

1

l
U D1d1~yn2xn!

f l ,p~yn!1d~xn2yn!: yn115pyn1

l

2
S 12

p

l
D S Uyn1

1

l
U2Uyn2

1

l
U D1d2~xn2yn!,

~2!

where l ,p ,d1,2PR, which consists of two identical linearly

coupled one-dimensional maps being the generalization of

the skew tent map. Chaotic attractors of the skew tent map

have been considered in @21–27#. In comparison with the

maps studied in @14,15,17,18#, our map ~2! has the advantage

that, as we show below, conditions for the occurrence of

riddled basins can be given analytically. We use the map ~2!
as a test model of coupled chaotic systems.

The outline of this paper is as follows. In Sec. II we recall

the definitions of different types of attractor stability and
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give rigorous conditions for asymptotic and weak Milnor
stability of the synchronized chaotic attractor of map ~2!.
These analytical conditions allow us to obtain a two-
dimensional bifurcation diagram of coupled maps ~2!. Two
different types of transitions from locally to globally riddling
basins and their connection with global bifurcations of the
basins of attraction that we identify are studied in Sec. III.
Section IV describes recently identified features of blowout

bifurcation from locally riddled and globally riddled basins.
Finally, we summarize our results in Sec. V.

II. BIFURCATION DIAGRAM FOR STABILITY OF

ATTRACTORS OF CHAOTIC SYNCHRONIZATION

Consider the two-dimensional map of the plane (x ,y) into
itself ~2!. When

~ l ,p !PP5H l.1,2
l

l21
,p<21J ,

the one-dimensional map f l ,p has two symmetrical attractors

G (2)
,@21,0# and G (1)

,@0,1# , which are cycles of 2m cha-
otic intervals ~so-called 2m-piece chaotic attractors!. De-
pending on parameters l and p , m can be any positive inte-

ger. Denote Pm as a subregion of P, where Gm
(6) is a period-

2m cycle of chaotic intervals. Bifurcation curves for the tran-

sition Gm
(6)

→Gm11
(6) can be found in @28#.

For the map F l ,p , each set

A5Am
~6 !

5$x5yPGm
~6 !%

is a one-dimensional chaotic invariant set that may or may
not be an attractor in the plane (x ,y). We distinguish three
types of attraction. The various notions of attractors involve
two properties: ~i! that it attracts nearby trajectories and ~ii!
that it cannot be decomposed into smaller attractors. We
shall concentrate on the first property since A has every-
where dense trajectories. Thus the definitions given here
should be completed by some minimality condition in order
to be generally valid.

Definition 1. The set A is an asymptotically stable attrac-

tor if for any sufficiently small its neighborhood U(A)
there exists its neighborhood V(A) such that if (x ,y)
PV(A) then Fn(x ,y)PU(A) for any nPZ

1 and distance
r„Fn(x ,y);A…→0, n→` .

Definition 2. The set A is a weak Milnor attractor if its
basin of attraction b(A) has a positive Lebeague measure in
R

2.
Note that in @28#, an asymptotically stable attractor is re-

ferred to as an attractor with the property of strong stability
and a weak Milnor attractor is referred to as an attractor with
the property of weak stability. Among weak Milnor attrac-
tors ~which are not asymptotically stable! we can distinguish
two classes depending on whether or not the basin b(A) has
a full measure in a neighborhood U(A). In the first case, i.e.,
when measure @b(A)ùU#5measure U , the attractor A can
be referred to as a Milnor attractor.

A. Asymptotic stability of the attractor

In our previous study @28# of map ~2! some preliminary

analytical conditions for the d5

def

d11d2 parameter regions in

which Am5Am
(6) , mPZ

1, is ~i! an asymptotically stable at-

tractor and ~ii! a weak Milnor attractor were obtained. In the
following we generalize these conditions, being both neces-
sary and sufficient.

Theorem. The attractor Am is asymptotically stable if and

only if (l ,p)PPm
(k)

,P ~m50,1, . . . ; k52,3, . . . ! and the

conditions

ul2puamup2duam11,1,

ul2dukam1~21 !m~k21 !up2dukam111~21 !m11~k21 !
,0 ~3!

are fulfilled, where am is a sequence of integer numbers de-
fined as a050, a151, and

am5am2112am22 ~m52,3, . . . !

and subregions Pm
(k) are given as

Pm
~2 !

5H ~ l ,p !PP: 2

lm11

lm

,pm,2

11A114lm
2

2lm
J ,

Pm
~k !

5H ~ l ,p !PP: 2

lm
k

21

~ lm21 !lm
k21,pm,2

lm
k21

21

~ lm21 !lm
k22J ,

k53,4, . . . , ~4!

where

lm5lam1~21 !m

pam111~21 !m11
,

pm5lampam11. ~5!

In Fig. 1 regions A1 of asymptotic stability of attractor A

are indicated in black; the boundaries of A1 are obtained
from relations ~3!, in which inequality signs were replaced
by equality. Numerical calculations have been done for p

52l , i.e., for the tent map f l ,2l , when formulas ~4! and ~5!
are transformed to

FIG. 1. Regions of asymptotic A1 and weak Milnor A2 stability

for map ~2!; p52l . Regions A1 and A2 are shown in black and

gray, respectively.
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Pm
~2 !

5H 1,l52p<2: &,lm,

lm11

lm
J ,

Pm
~k !

5H 1,l52p<2:
lm

k21
21

~ lm21 !lm
k22,lm,

lm
k

21

~ lm21 !lm
k21J

~k53,4, . . . !, ~48!

where

lm52pm5l2m

. ~58!

B. Weak Milnor stability of the attractor

Conditions for the chaotic invariant set Am5Am
(6) to be a

weak Milnor attractor were obtained using an invariant mea-
sure m5m l ,p of the map f l ,p and can be given in the form

l'5@am1~21 !mm#lnul2du

1@am111~21 !m11m !]lnup2du,0, ~6!

where

m5m lm ,pm
H uxu,

1

l
J .

Regions A2 of the weak Milnor stability of the attractor A

5Am
(6) are shown in Fig. 1 in gray; boundaries of A2 are

obtained from condition ~6! by replacing the inequality by an
equality.

Unfortunately, generally we do not have analytical ex-
pression for the density r of the measure m as it can be
explicitly found only in exceptional cases. For example, in
the moment of the first homoclinic bifurcation of the fixed
point of f l ,p @i.e., when l5p/(12p2)# the density function
r5r(x) is piecewise constant with two break points x5

61/l such that m$uxu,1/l%51/p2.
Conditions ~6! shows the negativeness of the transversal

Lyapunov exponent l' of the typical trajectory in the attrac-
tor A . In numerical calculations shown in Fig. 1, we used the
expression for l' from Birkhoff’s ergodic theorem

l'5 lim
N→`

1

N (
n50

`

lnu f 8~xn!2du,

where $xn5 f n(x0)% is a typical trajectory of the map f l ,p in
the attractor A .

C. Locally and globally riddled basins

Suppose that the transversal Lyapunov exponent l' of a

typical trajectory on the attractor A5Am
(6) is negative, but

still there exist trajectories on A , which are transversally
repelling, i.e., we are in the gray region A2 in Fig. 1. Then
one can simply check that the attractor A is not stable in a
Lyapunov sense as there exists a neighborhood U such that
any neighborhood V contains a positive Lebesgue measure
set of points that leave U under the iterations of F l ,p . In this
case the basin of attraction of A is locally riddled @2#.

Definition 3. A set A is an attractor with a locally

riddled basin of attraction if there is a neighborhood U of A

such that in any neighborhood V of any points in A there is

a set of points in VùU of positive Lebesgue measure that

leaves U in a finite time.

This riddling property has apparently a local character. It

takes place in a sufficiently small neighborhood U5U(A)

and gives no information about the further behavior of the

trajectories after their leave from U . In the model under

consideration, different situations related to this global dy-

namics property take place. Two of the most spread of them

are the following ~note that the map F l ,p is noninvertible!.
(i) Locally riddled basin. After leaving neighborhood

U(A), almost all ~in a measure sense! points return to U .

Then some of them, after a finite number of iterations, leave

U again and so on. The dynamics of such trajectories pre-

sents nonregular temporal ‘‘bursting’’: The trajectory spends

some time ~usually long enough! near attractor A until it

goes away; then, after some other time ~usually short
enough! it returns to the neighborhood. This behavior de-
scribes a sort of on-off intermitency wide spread in practice.
If l' is negative but not too close to zero, the bursts will
usually stop: Finally, the trajectory will be attracted by the
attractor A . If l' is negative and sufficiently close to zero
the bursts can never stop.

(ii) Globally riddled basin. After leaving U(A), a positive
measure set of points goes to another attractor~s! or to infin-
ity. This another attractor may be, for instance, an attracting
point cycle or attracting cycle of chaotic two-dimensional
~2D! sets.

Only in the globally riddled case can the basin of attrac-
tion b(A) have a riddled structure of a fat fractal as a subset
of R2, which means the following: The neighborhood of any
point ( x̄ , ȳ)Pb(A) is filled by a positive Lebesgue measure
set of points (x ,y) that are attracted by another attractor ~or
other attractors!.

In Figs. 2~a! and 2~b! we show the examples of locally
riddled basins for l51.3, p522, and d15d250.6 @Fig.
2~a!# and globally riddled basins for l51.3, p522, and d1

5d250.725 @Fig. 2~b!#. The attractor A (1) of Fig. 2~a! at-
tracts almost all points from its neighborhood, but it is not

Lyapunov stable. In Fig. 2~b! the attractor A (1) is not asymp-
totically stable as in any its neighborhood there exists a posi-

tive measure set of points that goes to another attractor A (2)

or to infinity. These properties are clearly visible at the en-
largements shown in Figs. 2~c!–2~e!. In Fig. 2~c! we notice
that all points from the neighborhood (0.5,1)3(0.5,1) go to
the attractor A1. However, some of these points temporally
leave this neighborhood. In Fig. 2~d! we presented the points

in the neighborhood of A (1) that under iterations of map ~2!
leave the neighborhood U5(0.4,1.1)3(0.4,1.1) ~white area!
and points ~gray area! that do not leave this neighborhood.

Finally, almost all points from both areas converge to A (1),
but those from the white region have to follow a longer path.
Note that the locally riddled basin contains also a zero-
measure set of points ~including unstable periodic ones! that

are not attracted by A (1) ~see @29–31#!. But when a com-

puter simulation is processed, points not attracted by A (1)

cannot usually be seen on the screen and one can arrive at the
wrong conclusion that a locally ~but not globally! riddled
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basin can represent a set open in R
2 that includes a neigh-

borhood of the attractor A (1). Finally, in Fig. 2~e! we can
observe a typical case of global riddling. The basin of attrac-

tor A (1) ~darker gray! is riddled by the basin of attractor A2

~lighter gray!.

III. TRANSITION FROM LOCALLY

TO GLOBALLY RIDDLED BASINS

For map ~2! we observed two types of bifurcation leading
to the transition from locally to globally riddled basins ~l-g

bifurcation!. The examples of these bifurcations are shown in
Figs. 3~a!–3~f!. The first type of l-g bifurcation is shown in
Figs. 3~a!–3~c! for l51.95 and p521.95. Before the bifur-
cation for d15d2521 @Fig. 3~a!# the basins of both attrac-

tors A (1) and A (2) contain a neighborhood of attractors ex-
cept of a zero measure set. After the bifurcation for d15d2

520.9 basins of attractors A (1) and A (2) are riddled by the

basin of the attractor at infinity as shown in Figs. 3~b! and

3~c! @particularly in the closeup in Fig. 3~c!#. The similar

type of l-g bifurcation occurs in the case shown in Figs. 2~a!

and 2~b!, where basins of both attractors A (1) and A (2) are

riddled by each other.

A different type of l-g bifurcation is shown in Figs. 3~d!–

3~f! for l52p5& . As in the first type before bifurcation

@Fig. 3~d!, d15d2520.94#, the basins of both attractors

A (1) and A (2) are locally but not globally riddled ~only at-

tractor A (1) is shown!. After the bifurcation, new attractors

A1 and A2 form @Fig. 3~e! and the closeup in Fig. 3~f!, d1

5d250.935# in the neighborhood of A (1) and the basin of

A (1) becomes globally riddled by the basins of these new

attractors.

These types of l-g bifurcations were observed to be typi-

FIG. 2. Attractors A1 and A2 of map ~2!; l51.3 and p522. ~a! d15d250.6, ~b! d15d250.725, and ~c! and ~d! enlargements of ~a!

and ~b!, respectively. Points that under iterations of map ~2!, temporally leave the neighborhood (0.4,1.1)3(0.4,1.1) are indicated in white

in ~c!. Basins of attraction of attractors A1 and A2 are shown, respectively, in darker and lighter gray and the basin of attraction at infinity

is indicated in white.
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cal for map ~2!. We can summarize their properties in the
following definitions.

Definition 4. The l-g bifurcation is of the first ~or inner!
type if in the local and global riddling the basins of the same
attractors are involved.

Definition 5. The l-g bifurcation is of the second ~or
outer! type if in the local and global riddling the basins of
different attractors are involved.

IV. BLOWOUT BIFURCATION

The bifurcation of losing the weak Milnor stability has
been called a blowout bifurcation @15,17#. Recently, Ashwin,
Buescu, and Stewart @32# suggested to use the notion of criti-
cality for the classification of blowout bifurcations, analo-
gous to that for the bifurcation of fixed points in invariant
subspaces. In @32# the blowout bifurcation at n5n0 was
called subcritical if there exists an unstable invariant set Bn ,

namely, the boundary dividing the basins of attractor A and

the attractor at infinity for n,n0 , which is destroyed on

passing through n5n0 . If for n.n0 there exists a family of

attractors An that correspond to the on-off intermittent attrac-

tors, then the blowout bifurcation is called supercritical; see

@32# for examples and further discussion.
From our model, roughly speaking, we can conclude that

the blowout bifurcation is subcritical if in the bifurcation
moment the basin of attractor A is globally riddled by the
basin of the attractor at infinity. The blowout bifurcation is
supercritical if in the bifurcation moment the basin of A is
locally riddled or it is globally riddled by the basins of some
attractors among which there are no attractors at infinity.

Note that in the subcritical case the blowout bifurcation is
really like an explosion giving rise to the immediate disap-
pearance of attractor A: It cannot be seen in computer simu-
lations, so its basin becomes a zero-measure set. Cardinally
different is the scenario of the bifurcation in the supercritical

FIG. 3. l-g bifurcations of map ~2!: ~a!–~c! bifurcations of the first type and ~d!–~f! bifurcations of the second type. ~a!–~c! l51.95 and

p521.95: ~a! d15d2521, ~b! d15d2520.9, and ~c! enlargement of ~b!. ~d!–~f! l5& and p52&: ~d! d15d2520.94, ~e! d1

5d2520.935, and ~f! enlargement of ~e!. Basins of attraction of attractors A1 and A2 are shown, respectively, in darker and lighter gray

and the basin of attraction at infinity is indicated in white.
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case. In this case the bifurcation consists in the transition
from the 1D to 2D attractor~s! and it does not resemble an
explosion, as the density of the new 2D attractor~s! changes
‘‘slowly’’ when the parameter is in a neighborhood of a tran-
sition point.

The examples of blowout bifurcations for map ~2! at l

51.3 and p522 are shown in Figs. 4~a! and 4~b!. Our
numerical calculations allow identification of the two types
of blowout bifurcation. Figure 4~a! shows the blowout bifur-
cation in the case where before the bifurcation attractors

A (1) and A (2) were locally riddled @d15d250.6, Fig. 2~a!#.
After the blowout bifurcation the synchronized state x5y is
no longer stable and we observe two hyperchaotic two-

dimensional attractors A (1)
8 and A (2)

8 @d15d250.5, Fig.
4~a!#. An unstable invariant set, the boundary between basins

of attraction of the attractors A (1) and A (2) is not destroyed.
Shortly after the bifurcation, we observed the intermittence

between the unstable synchronized attractors A (1) and A (2)

and hyperchaotic attractors A (1)
8 and A (2)

8, respectively, in
the form of a ‘‘burst.’’

In Fig. 4~b! we observe the blowout bifurcation of attrac-

tors A (1) and A (2), the basins of which are mutually glo-
bally riddled by each other ~i.e., they are intermingled ac-
cording to the definition in @18#! @d15d250.725, Fig. 2~b!#.
After the bifurcation @d15d250.8, Fig. 4~b!# we observed a
unique two-dimensional hyperchaotic attractor A . In this
case the boundary between basins of attraction of the attrac-

tors A (1) and A (2) has been destroyed before bifurcation
~transition from the locally to the globally riddled basin!, but

the boundary between the sum of basins b(A (1))ùb(A (2))
and the basin of the attractor at infinity is not destroyed yet.

V. CONCLUSION

Depending on the coupling parameters, the synchronized
state of map ~2! is characterized by different types of stabil-
ity. In the case of weak synchronization, the attractor of the
synchronized state is not asymptotically stable and two dif-
ferent states of riddling are possible. Conditions for weak
Milnor and asymptotic stability of the synchronized chaotic
attractor of map ~2! are given analytically in a rigorous form.

We showed that the l-g bifurcation, i.e., the transition
from locally to globally riddled basins, can occur in two
recently identified different way. In the first ~inner! type of
bifurcation in local and global riddling the same attractors
are involved. When at the transition of the bifurcation point a
new attractor~s! is ~are! formed and the basins of this ~these!
new attractor~s! riddle the basins of the initial attractor~s! we
have the second type of l-g bifurcation.

The blowout bifurcation, i.e., the transition from weak
stability to weak instability, can be sub- or supercritical. If
before bifurcation attractors are globally riddled by the at-
tractor at infinity the bifurcation is subcritical; otherwise it is
supercritical. The observed properties of l-g and blowout
bifurcations seem to be typical for a class of system with a
lower-dimensional invariant manifold and important for
studies of chaos synchronization problems.
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