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LOCALLY CONFORMALLY KAHLER METRICS

ON HOPF SURFACES

by P. GAUDUCHON &; L. ORNEA

To the memory of Franco Tricerri

1. Introduction.

Let M be an even-dimensional, oriented, smooth manifold. A Her-

mitian structure on M is a pair ( J ^ g ) consisting of an integrable almost-

complex structure J, and a Riemannian metric g such that g(JX^ JY) =

g(X^Y) for any vector fields X,V. The Hermitian structure is Kdhler if

J is parallel with respect to the Levi-Civita connection D
9 of g\ equiv-

alently, as J is integrable, ( J , g ) is Kahler if the Kdhler form uj, defined

by (^(X,Y) = g(JX,Y), is closed. More generally, (J,^) is called locally

con formally Kahler^ l.c.K for short, if for each point x of M there exist an

open neighbourhood U of x and a positive function / on U so that the pair

(J, f~2
g) is Kahler, see [7] for a general overview.

When J is understood, we say that g is Kahler, l.c.K. etc. whenever

the corresponding Hermitian structure (J, g) is Kahler, l.c.K. etc.

When M is four-dimensional, the only case considered in this paper,

the defect for a Hermitian structure (J, g) to be Kahler is measured by the
Lee form, the real 1-form 0 determined by

(1) duj =-20 A a;,

Key words : Hopf surface - Locally conformal Kahler metric - Sasakian structure -
Contact form — Killing vector field — Deformation.
Math. classification : 53C55 - 53C25.
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see [18], [23], [8]. (Warning': The definition of the Lee form in the literature

may differ from the above definition by a factor ±-.)
n

Then, { J , g ) is l.c.K if and only if the Lee form 0 is closed, i.e. the
defect for (J, g) to be l.c.K. is measured by the 2-form dO.

A special occurence of l.c.K. metrics is when the Lee form 0 is parallel

with respect to the Levi-Civita connection of g. This case reduces to the

Kahler case (6 identically zero) if M is compact, with even first Betti
number b^ [25]; if b\ is odd, 0 is (everywhere) non-zero and (M,J,^) is

usually called a generalized Hopf manifold. The reason for this name is a

God-given series of examples on a sub-class of Hopf surfaces (see below);

however, in the present context, when the complex surfaces of interest are

Hopf surfaces and not all are generalized Hopf manifolds (see Remark 1),

we may prefer to call them Vaisman surfaces, as e.g. in [7].

Notice that not all complex surfaces admitting l.c.K. metrics admit

l.c.K. metric with parallel Lee form, see [22], [3]. However, if the surface is

compact, the Lee form of any l.c.K. structure can always be made harmonic

by a conformal change of the metric, see [8].

The l.c.K. condition is conformally invariant i.e. concerns the confor-

mal Hermitian structure (J, [g]), where [g] denotes the conformal class of

g. In particular, d0 is conformally invariant, but 0 and u are not: the Lee

form 0 and the Kahler form uj of the Hermitian structure {g = f~
2
g, J )

are given by 0 = 0 4- —r and uj = f~^uj. These rules of transformation can

be interpreted as follows. On any n-dimensional smooth manifold M, let L

be the bundle of real scalars of weight 1, the oriented real line determined

(via the G£(n, ]R)-principal bundle of (all) frames on M) by the represen-

tation A C G^(n,M) i—> |detA|^. Then, each Riemannian metric g in the

conformal class [g} determines a positive section, hence a trivialization, ^,

of L and the Kahler form uj appears as the expression of a conformally

invariant Z^-valued 2-form, say c^conf; with respect to £. In the same way,
the Lee form 6 can be viewed as the connection 1-form with respect to £

of a conformally invariant linear connection V1' on L, the so-called Weyl

derivative determined by the conformal Hermitian structure (J, [g}). Fi-

nally, the identity (1) means that the conformal Kahler form c^conf is closed

as a I^-valued 2-form, when L
2 comes equipped with the linear connection

V1' induced by V1'. Then, the 2-form d0 is equal (up to the sign) to the

curvature 2-form of V1', so that the l.c.K. condition just means that the

connection V1' is flat.
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In the case when M is compact and b\ is even it is well-known
that any l.c.K. Hermitian structure is actually globally conformal to a
Kahler Hermitian structure [25]. Conversely, it is also well-known (but much
more difficult to prove, see for example [20], [10], [2]) that any compact
complex surface (M, J ) with even first Betti number admits a Kahler
metric; moreover, many explicit examples of Kahler Hermitian structures

are known, many of them provided by the complex algebraic geometry.

The situation when M is compact with odd first Betti number is

quite different: it is still unknown whether there exist compact complex
surfaces with 61 odd not admitting a l.c.K. metric, but, on the other hand,

only few examples have been constructed by now in an explicit way: apart

from the case of Hopf surfaces considered in the present paper, these are

essentially the l.c.K. metrics constructed by F. Tricerri on some classes of
Inoue surfaces [22] and examples appearing in [5], [6], [26].

A Hopf surface is a compact complex surface whose universal covering
is W = C2 — {(0,0)}. More precisely, primary Hopf surfaces have their
fundamental group isomorphic to Z, generated by the transformation 7

defined by

(2) x = {u, v) ̂  (an + Az/71, /^),

for any x = {u^v) € C2 — {(0,0)}; here, m is some integer and a,/3,A are

complex numbers such that

(3) |a| > |/?| > 1,

and

(4) (a - /T^A = 0.

All primary Hopf surfaces are diffeomorphic to the product 6'3 x S
1

and any Hopf surface is finitely covered by a primary one, [13], [14].

Following [II], the primary Hopf surfaces fall into two disjoint classes,

according to their Kahler rank:

- The Hopf surfaces of class 1, whose fundamental group is generated by a
transformation 7 as above for which A = 0 and a, f3 are any two complex
numbers satisfying (3); the corresponding Hopf surface will be denoted by

A^a,/3-

- The Hopf surfaces of class 0, corresponding to A -^ 0 and a = /3771 for

some positive integer m; the corresponding Hopf surface will be denoted by

M/3^rn,\'i as observed in [II], for any /?, m and any two A,/^ in C*, M^^rn.x

and M^^rn^ ^'re isomorphic as complex surfaces [11, Proposition 60].
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For all Hopf surfaces, the complex structure induced by the natural
complex structure of C2 — {(0,0)} is denoted by J; a l.c.K. metric is always
understood with respect to J .

The class 1 contains the subclass of Ma^p 's such that [a| = \f3\. For
these special Hopf manifolds, a l.c.K. metric is easily constructed as follows.
Let p be the distance function to the origin, i.e. the (smooth) positive

real function on W defined by p(x) = ^/\u\
2 + H2 for any x = (n, v) in

W = C2 - {(0,0)}. Then, .dd
0
?

2 is the Kahler form of the natural flat

Hermitian metric (here and henceforth, the operator c^, acting on functions,

is defined by d
c
f(X) = -df(JX) so that dd°f = 2i99f). The 2-form

—-dd
0
?

2 clearly descends as the Kahler form of a well-defined, obviously

l.c.K., Hermitian metric g^^ on the Hopf surface M^^. It is then easy to
check that the Lee form is parallel.

The main goal of this paper is to prove

THEOREM 1. — Each primary Hopf surface admits a l.c.K. metric.

Moreover, each primary Hopf surface of class 1 admits a l.c.K. metric with

parallel (non-zero) Lee form.

An explicit construction of a l.c.K. metric with parallel Lee form on

each (primary) Hopf surfaces of class 1, as well as an explicit description
of the corresponding Sasakian geometry, are given in Sections 2 and 3 (see,

in particular, Proposition 1, Corollary 1, Proposition 3 and Remark 6).

Previous attempts to write (non globally defined) l.c.K. metrics on
Hopf surfaces appear in [19].

The existence of l.c.K. Hermitian metrics on Ma^ for |a| and \f3\

different, but close to each other, has been proved by C. LeBrun [17]. The
argument goes as follows. First, notice that the line bundle L of any Hopf
surface Ma^p is naturally identified to the real line bundle (WxR)/Z, where
the action of Z on VFxR is described by l.((n,i»), a) = ((cm,/3i;), |o;|^|/?|^a)

(observe that [a|^|/3[^ is equal to [det7*|i, where 7^ is the differential
of 7). The line bundle so defined admits a natural flat connection which

coincides with the Weyl derivative V1'; in particular the pullback of (L, V1')

on W coincides with the trivial line bundle W x R equipped with the

trivial connection. Finally, the 2-form —dd
0
?

2 on W descends on M as a

L
2
-valued 2-form on M^,/?, which is obviously closed with respect to V1'.

Then, a deformation argument using the identification L = (W x R)/Z
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(see Section 4) shows that Ma^p still admits a l.c.K. Hermitian metric for

H 7^ 1/3|? provided that |a| and \/3\ are close enough) to each other [17].

In Section 2, following a suggestion in [17], we give an explicit

formulation for these l.c.K. metrics and show that the same formulation
actually provides a l.c.K. Hermitian metric on any (primary) Hopf surface
of class 1, see Proposition 1 and Corollary 1.

It then appears that all the l.c.K. Hermitian metrics obtained in this

way have a parallel, non-zero, Lee form, and are related to a very simple
class of Sasakian structures on the sphere 53, of which a precise description
is given in Section 3 (Proposition 3 and Remark 6).

Finally, LeBrun's argument still applies to prove the second statement
of Theorem 1, see Section 4.

Remark 1. — Theorem 1 gives no information as to the existence or
the non-existence of (l.c.K.) Hermitian metric with parallel Lee form on
Hopf surfaces of class 0. However, this question has been solved recently

by F. Belgun [3], so that Theorem 1 can actually be completed by the

following statement: Hopf surfaces of class 0 admit no (l.c.K.) Hermitian

metrics with parallel Lee form.

2. Construction of l.c.K. metrics on M .̂

Fix any two complex numbers a,/? satisfying (3) and let (j)a^ the
(smooth) function determined on W by

(5) H2^!-200-^ + H2!/?!-2^'^) = i,

for any x = (n, v) in W. Notice that (j)a^ is well-defined since, for x fixed,

the function t ̂  M2!^ + H2!/?^ is strictly increasing from 0 to 4-00.

Then, (f>a^ satisfies the following equivariance property:

(6) ^a,/3(7 • X) = <^a,/3(a0 + 1

for any x in M.

Indeed, we have

i = icmpH-2^-^7'30 + l/^l2!/?]-2^^
= \u\2\a\2~2<f>a'f^^'x) + Id2!/?]2"200'^7'30

= \u\2\a\~2<f>cl^w + \v\2\f3\~2<f>Q^X)
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for any x in W.

We then get a diffeomorphism from the corresponding Hopf surface
(of class 1) Ma^p onto the product 53 x 5'1 as follows (here S'3 denotes

the 3-dimensional sphere, viewed as the unit sphere in C2, and S'1 denotes
the circle, identified with the quotient R/Z). Let ^ be the map from W to
S

3
 x S

1 defined by

(7) x = {u,v) ̂  ({ua-^^^v^^^^x) modZ).

Then, due to (6), ^ is 7 -invariant hence determines a map, ^, from
MQ^ to 5'3 x S

1
, which is clearly a diffeomorphism; the inverse ̂ -1 is given

by

(8) {z^t modZ) h-̂  [u = o^i.v == ̂ ^i

where z = (^1,^2), |^i|2 + \z^\
2 = 1, is a point of S'3 C C2 and t modZ is

an element of 5'1 = R/Z; here, [u,v\ denotes the class of (u,v) mod. I\/3.

Observe that the diffeomorphism -0 depends on the choice of an argument
for a and for /3, say Sir^ a and Sirg (3.

Remark 2. — For any choice of Sirga and 2lrsA the above action of
Z on M is the restriction of an action of the (additive) group R defined by

(9) ^(^)=(a^/^),

for any t in R. Then, 0^^ can be described as follows: for any x = (zt, v)

in M, (j)o,^{x) is the unique element of R such that (-^^(x)) ' x belongs
to the unit sphere of C2.

We denote by <I>o^ the real positive function on W defined by

^a,/3 = e^^2)^^; alternatively, ^>^ is determined by
2fci 2fc2

(10) P^y+^^y2-1'
where k\, A;2 are the (positive) real numbers given by

(11) h -InH, k2 =ln|/?|,

and pi, p2 are the functions on M defined by

(12) pi(.r) = |u|, p^x) = \v\.

In this notations (3) translates to

(13) A;i > k2 > 0.

Then, by (6), ^>a^ satisfies the following equivariance property with
respect to the action of 7:

(i4) W7^)= Hl^l '^,/3(.r).
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In other words, ^a,/? descends on Ma^ as a (positive) section of L
2
.

PROPOSITION 1. — For any pair of complex numbers a, (3 satisfying

(3), the real 2-form -dd
0
^^^ is the Kahler form of a Hermitian metric on

M.

Proof. — For simplicity, ^a,/3 wm be denoted by <^. Then, it follows
readily from (10) that the differential of <I> is given by

(15) d^ = — (̂ '̂̂ 1- (u(fa + udu) + ̂ ^"^ {vdv + vdv)),

where A is the positive function denned by
-2fci -2fc2

2fcl^$tl+t2 +2fc2^$^T^

(16) A=——————k^——————•

From (15), we infer:
fc2-fc l

9^ fcl+ / c2 -4k-, -4fc2

(17) 9^ = ^3 (fci(fci + A^^i^ + 2A;J^$^T7^

+A;2(fci+3fc2)p^|^-2);
ki-ky

(18) <^ = ^"^^2 (^(A;l + A-2)/9^^^ + 2^^$^%

+A;i(fc2+3A;i)p^|$-2);

OTy-ncb"! -2fei -2fco

(19) 9^<S> = ̂ ^^^(fci - ̂ )(fclP?$t^ - A^J$™).

The claim is that the Hermitian matrix
/<92-^ 9l2-^\

A — I u.u^ -u.v" \

\92-^ o2-^)\ v,u v,v /

is positive-, this in turn is equivalent to the fact that the trace and the

determinant are positive.

By (17) and (18), 9^^ and 92
^ are both positive; it then remains

to check that the determinant of A is positive. By a straightforward
calculation, this determinant is equal to

g -8fei -8fc2

detA = A^i+A^)3^^"2 + fc^<l>™

+ Skik^h + k2)pipi<S>~4

(21) + A;̂ i 4- Sk^p6^'6^2^
-2fei-6fc2

+A;j(fc2+3A;i)plp2$ fcl+fc2 )

_ 1

~A3 '
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which is obviously positive for any k\, A;2 positive.

COROLLARY 1. — For any pair of complex numbers a, /3 satisfying

(3), the 2-form uj^ = ——dd
0
^^ is well-defined on M^ Q and is the

4^a,/3 "

Kahler form of a locally conformally Kahler structure, (^/?, J ) '

Proof. — The fact that ujo,^ is well-defined on Mo,^ follows readily

from (14). By the above proposition, uj^ is the Kahler form of a, clearly
l.c.K., Hermitian structure, n

Remark 3. — The 2-form .dd
0
^^^ descends on M^ as a Z^-valued

2-form, equal to the conformal Kahler form of the l.c.K. Hermitian structure

(^a,/3, J ) ' In the special case that |a| = |/3| or, equivalently, k^ = k-2, we
recover ^a,/3 = p

2
.

In the general situation, we actually get a 1-parameter family of

l.c.K. Hermitian structures obtained by choosing any positive real number

£ and by considering, instead of _—dd
0
^^, the new Kahler form

4^0:,^

—_,—dd
0
^^. This amounts to replacing A;i, k^ by ^i, ^2 in the above

Q,/3
formulae.

This can be done in particular in the case \a\ = |/?|; then, the Kahler

form on W is equal to -.dd
0
?

2
^ and the corresponding Riemannian metric

g^ can be described as follows:

(22) g^X) == Ip^-^WX^2 + |X^|2),

with the following notation: For any vector X at the point x of W, Xrad

denotes the radial component of X, i.e. the orthogonal projection of X on

the complex line C • x (viewed as a real 2-plane), and X^ denotes the

transversal component of X, i.e. the orthogonal projection of X on the

orthogonal complex line (C - x)
1
- (here, orthogonal means orthogonal with

respect to the natural flat metric of C2).

The Lee form 0^^ of the Hermitian structure (^a,/3, <7) is clearly equal

to ^o^^,/?.

Let Va^ denote the dual vector field of 0^^ with respect to ^,/3, the
so-called Lee vector field.
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A direct computation using (17), (18), (19) shows that the pull-back

vector field of Va^ on W, still denoted by Va,/^ is expressed by

^ ,. . . ( 2fci 2^ \
(23) ^w = i—rr^ T~^~T~V •

\ k\ + A;2 /Ci + A;2 /

Again, a direct, but lengthy, computation shows that Voc^ is of norm

1 with respect to g^^p and is parallel with respect to the Levi-Civita

connection of <^,/3- These facts will however become more easily apparent

in the framework of the next section.

3. Associated Sasakian structures.

3.1. Three-dimensional Sasakian structures.

We begin this section with some general considerations concerning

three-dimensional Sasakian structures (see e.g. [4]) for more information).

A Sasakian structure on some oriented, three-dimensional smooth

manifold N is a pair (^,^), where g is a Riemannian metric and Z a

unit Killing vector field with respect to g , such that

(24) D^ == *Z ;

here, D
9 is the Levi-Civita connection of g , * is the Hodge operator

determined by the metric and the chosen orientation and *Z is viewed

as a skew-symmetric operator, also denoted by J; we thus have I ( Z ) = 0

and the restriction of I to Q := Z
1
- coincides with the uniquely defined

complex structure compatible with the metric and the induced orientation.

The distribution Q constitutes a contact structure and the Rieman-

nian dual 1-form of Z with respect to g , 77, is a contact 1-form for Q.

Notice that (3) implies

(25) ^(x,y)=j^(x,jy),

for any sections X, Y of Q.

In general, for any contact structure Q and any choice of a contact 1-

form 77, the corresponding -Reeb vector field is the vector field V determined

by the two conditions: rj(y) = 1, iydr] = 0. In the case of a Sasakian

structure as above, the Reeb vector field of the contact structure Q with

respect to the contact 1-form 77 is clearly equal to Z.
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We denote by R
9 the curvature tensor of D

9
. Since Z is a Killing

vector field, it satisfies the Kostant identity: D^D^Z) = R
9
^ z [16]- We

thus get

(26) R9^^z^Y,

for any vector field Y. In particular, the sectional curvature of g is equal
to 1 for any 2-plane containing Z.

Since N is three-dimensional, R
9 is entirely determined by the Ricci

tensor Ric5 and it is easy to deduce from (26) that Z is an eigenvector field

for Ric5 (viewed as a symmetric operator) with respect to the constant

eigenvalue 2, whereas Q is an eigen-subbundle of Ric5 with respect to the
/. , , Seal5
(in general non-constant) eigenvalue ——— - 1, where Seal5 denotes the

scalar curvature of g', Ric5 can thus be written as follows:

(^\ D- q /Seal5 \ / Scal^(27) Ric
9
 = (-^--l^+^3--^-^(g)^

The Levi-Civita connection D
9 can be computed by using the well-

known 6-terms formula, see e.g. [12]; it is given by the following table,
where X denotes any unit section of Q, and Y any vector field on N:

(28) D^Z = JV,

(29)
D^X = ((^([Z, X], IX) - 1) rj(Y) - g([X^ 7X], Y)) IX

+ g ( Y ^ I X ) Z .

It follows that the sectional curvature restricted to Q, K9
(Q), is given

by

(30) Kg{Q) == 1 ~ w'
XL I x )

 ~
 g([x

-
JXL [x

-
Ix})

+ X .^([X, JX], IX) - I X ^([X, JX], X),

for any unit section, X, of Q. Then, Seal5 = 2(2 + K
9
^)) is immediately

deduced from (30).

Remark 4. — The Levi-Civita connection D
9 does not preserve the

sub-bundle Q, but induces a linear connection V on Q by orthogonal
projection

(31) VyX = ((^([Z, X], IX) - 1) rj{Y) - g([X^ JX], Y)) JX,

for any unit section X of Q and for any vector field Y on N. This connection

is clearly J-linear and preserves the metric g , i.e. is a Hermitian connection
when Q is viewed as a Hermitian complex line bundle over N. The (real)
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connection 1-form of V with respect to X, viewed as a (unit) gauge of the
Hermitian line bundle Q, is then the real 1-form C denned by

(32) C =
 W. X}^ IX) - 1) r] - [X, IX}\

where [X,IX]^ denotes the dual 1-form of the vector field [X,IX\. Then,
(30) can be written as follows:

^(Q)=-dC(X,JX)-l
(33)

^(X.JX)-!,

where ̂ v = -dC, is the (real) curvature form of V.

3.2. Sasakian versus Hermitian geometry.

We here describe the well-known correspondence between three-

dimensional Sasakian manifolds and l.c.K. Hermitian complex surfaces with
parallel unit Lee form, [25].

First, start from a three-dimensional Sasakian manifold ( N , g , Z ) as
above and consider the product manifold M = N x R; let M be equipped

with the product Riemannian metric, still denoted by g , of g and the
standard metric of the factor R, and with the almost complex structure
J defined as follows:

(34) J|Q=J|Q,JZ=r,

where T := 9/Qt is the vector field determined by the natural parameter,

t, of the factor R. Let again D
9 denote the Levi-Civita connection of g on

M. Then, it follows from (24) that

(35) D
9
uJ=dt^JU-rf/\U,

for any vector field U on M. This implies that J is integrable and that the

Lee form 0 of the Hermitian structure (J,^) is the 1-form dt, see e.g. [23]
or [1]. In particular, 0 is ^-parallel, of norm 1.

This construction can be compactified in the following manner. Let
a be any Sasakian transformation of ( N , g , Z ) , i.e. any (direct) diffeomor-

phism of N preserving g and Z, and choose a positive real number i\ then

the (Riemannian) suspension M^ of a over the circle of length £ is ob-

tained by identifying N x {0} and TV x {1} via a in the product N x [0,^]
of N by the closed segment [0,^].

The natural projection TT from Ma^ to the circle S\ = M/Z • i is thus
a Riemannian submersion and the natural vector field d / d t on 5'J admits
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a natural unit lift, T on Mo-^, orthogonal to the fibers of TT, whose flow
at time 1 coincides with a. Applying this construction to the Sasakian

three-manifold (TV, ̂ , Z) for any a and any £ we eventually get a Hermitian
structure with parallel (unit) Lee form on My^ by putting J Z = T.

Conversely, let (M, J, g ) be a Hermitian complex surface. Let 6 and

V denote the Lee form and the Lee vector field. Since J is integrable, we
have

(36) D^J = 6 A JU + J6 A £/,

for any vector field ?7 on M (as usual, the RHS of (36) has to be considered
as a skew-symmetric operator). If, moreover, 0, hence also V, are D

9
-

parallel, then the metric g splits locally as a Riemannian product N x R,

where ( N ^ g ^ ) is a three-dimensional Riemannian manifold and V = d / d t .

By rescaling g if necessary, we can assume that V is of norm 1, as well as
the vector field Z := JV\ now, Z can be viewed as a vector field on N and
(36) directly implies (24), showing that (gpf, Z) is a Sasakian structure on
N.

3.3. Deformation of Sasakian structures.

Start from any Sasakian structure {g, Z) on N, fix any real positive

function / on N and consider the new contact 1-form r]f = —77. Denote

by Zf the Reeb vector field corresponding to the same contact structure Q

and the contact 1-form r]f\ then,

(37) Zf=fZ+Z^

where ZJ? is a section of Q, uniquely determined by the identity

(38) d/+^Q^=0.

It follows that

(39) Z^ = JJ(d/|^,

where df\Q denotes the restriction of df to Q and df^ the section of Q dual

to df\Q with respect to the the restriction of g to Q.

Let g/ be the Riemannian metric on N defined as follows:

1. Zf is of norm 1 w.r.t ^;
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2. Q and Zf are orthogonal with respect to gf\

3. gf{X, Y) = Jd7^(X, JV) = 1 p(X, V), for any sections X, V ofQ.

We shall refer to the metric gf as the metric obtained by deforming

the Sasakian structure (^, Z) by the function /, see [21].

Notice that rjf is the dual 1-form of Zf with respect to gf.

Now we have

PROPOSITION 2. — The pair ( g / , Zf) is a Sasakian structure on N

if and only if the following condition is satisfied:

(40) Hess^X, Y) = Hess^JX, JV),

for any sections X, Y of Q, where Hessg / = D
g
df denotes the Hessian off

with respect to g ; equivalently, the restriction ofHessg
 f to Q is a multiple

of the restriction of g .

Proof. — Let Dgf be the Levi-Civita connection of gf. We first show
that D

9
^ Zf = 0. Indeed, gf(D

9
^ Zf, Zf) = 0, since Zf is of norm 1 with

respect to gf, and, for any section X of Q, we have gf(D
9
/ Zf,X) ==

gf([X,Zf},Zf) = r]f([X,Zf\) = -drjf(X,Zf) == 0. Then, for any sections
X, Y of Q, we have

gf(D^Zf,Y)=-^f{[X,Y})

+ ̂ Zf-gf(X,Y)-gf([Zf,X},Y)-gf([Zf,Y},X)).

This shows that the pair (gf, Zf) is Sasakian if and only if Zf is Killing

with respect to the induced metric gf, moreover, in the present case that

Z is already a Killing vector field with respect to g, Zf is a Killing vector

field with respect to gf if and only if

(41) gWzf, Y) + g(X, D^Zf) = df(Z) g(X, Y),

holds for any sections X, Y of Q. We then have

g(D'^Z(f, Y) = JX . g(I(df\Q)«, Y) - \gWf^, D^Y)

= -^X.df(IY)+^df(ID^Y)

= -JHessV(X,/y) - ̂ df({D^I)Y)

= -^HessSf(X,IY)+^df(Z)g(X,Y),
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which shows that (41) is true if and only (40) is satisfied. The last statement

comes from Q being of rank 2 (notice that, except for this last statement,
the argument holds in any dimension). D

By using (30), we get the following formulation for the scalar curva-
ture of gf.

Scal^ =2(3+4( / -1)

(42) + 4Hess./(X, X) - 3 ((^W)2 ̂ CT)2)) ^

for any unit section X of Q.

3.4. Sasakian structures attached to M<^.

Recall that the Hopf surface M^ as a manifold has been identified

to the product S
3
 x S

1 by -0 : M^ ^ S
3
 x 51, defined by (7) and its

inverse ̂ -1
 : S

3
 x S

1
 ̂  M^ described by (8).

We adopt the following notations. The sphere S
3 is realized as the

set of elements of C2 of norm 1: a generic element of S'3 is denoted by

z = (^1,^2), where z\,z^ are complex numbers such that |^i|2 + \z^\
2
 = 1.

Accordingly, a generic vector X of S3 at z is identified to a pair of complex

numbers (Xi = z^X^ = z-z) satisfying 9^e(Xi^T + X^) = 0 ( 9le and 3m

denote respectively the real and imaginary part of a complex number). We

denote by Z the vector field on S
3 generated by the natural action of 5'1,

so that

Z = (^1,^2).

We denote by Q := Z
1
- the rank 2 vector sub-bundle of TS

3 orthogonal

to Z with respect to the standard metric, g , of S
3 (of constant sectional

curvature +1). The natural complex structure of Q = Z
1
- is denoted by i.

We denote by E, iE the generators of Q defined by

E = (^2, -zT), iE = (^ -^T).

For any complex number /^, f^E stands for the real vector field y\€p.E +

3mp,iE. The three (real) vector fields Z.E^iE are (unit) Killing vector

fields with respect to g and generate the (real) Lie algebra of left-invariant

vector fields of S'3, when S
3 is identified to the Lie group Sp(l) of unit

quaternions, via the usual identification El = C (B j C. Their brackets are
given by

(43) [Z, E] = -2iE, [E, iE} = -2Z, [iE, Z] = -2E.
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Also recall that, if D
9 denotes the Levi-Civita connection of g , we have

(44) D^Z = 0, D^Z = zX,

for any X in Q, i.e. the pair (^ Z) is a Sasakian structure, called the

canonical Sasakian structure of S'3. The corresponding contact 1-form is
denoted by rj: rj(X) = g{Z, X), for any vector field X on S'3.

The vector fields Z, E, iE will be also considered as vector fields on
S

3
 x S

1 (with the same notation). As for the factor S'1 = R/Z, we denote by

t the natural parameter of R and by T the vector field 9/9t, also considered
as a vector field on S

3
 x S

1
.

For later convenience, we consider the complex function, F, on S
3
 x S

1

defined by

F^hml^+ln/^l2

= k^\
2 + k^

2 +z (Sirga |^i|2 +9k0/^2|2).

Viewed as functions on Ma,/?, |^i|2, \Z2\
2 and ^HeF are respectively

equal to p^
k
l+

k
2 , p^

k
l+

k
2 and —-1——^A.

^

The image of any vector field U = (U\,U^) of M^ by the differential
^ of '0 is of the form (X.aT), where X = (Xi.Xs) is tangent to 5'3 and
a is a real function on S'3 x 5'1. It is easily checked that

(46) ^ ̂  ̂ (l/i^H-^+^^l/Jl-2*)
'SHel7'

(47) Xi == a-^/i - a Ino^i, ^2 = ^""^2 - a ln/3^.

Finally, the vector field X can be written uniquely as bZ^-^E^ where
b is a real function and ^ a complex function on 53 x 5'1, given by

(48) b = -i (Xi^T 4- X^), IJL = Xi ^2 - ̂ 2 ^i.

We conclude that the complex structure J of M^^, transported on

6'3 x 5'1 by '0, is described by the following table:

JT = —— (-JmFT + |F|2 Z 4- iF(\na - In/?) ̂ 2 ̂ ),

(49) JZ = —— (-T + 3mF Z 4- (In a - In /?) ^1^2 E),

J£; = .̂

The Kahler form uJa,/3^ transported on S
3
 x S

1 by ^, is given by

^ = ̂ e-^^t^c^k^t
' 4

(50) ,(^ja)^^(*.+^)2,,^,



1122 p. GAUDUCHON & L. ORNEA

where d° refers to the operator J defined by (49).

From (49), we obtain

(51) dt{T) = 1, dt{Z) = dt(E) == dt(iE) == 0,

(52) dct(T
) = J^' dct

^
 =
 ̂

 dct
^ = ̂ W = ̂

hence also, the following table for u>a,ij

, , ^ 7. (fcl + fc2)2

^(T,Z)= ^ ,

^(T, \E) == (J——^ W€(\z^) (k^tQ(3 - k^Qa),
(53) ^^)

^(Z,\E) = ̂ J^ (fci - k,)^(\z^),

^(\E,izE)= -^^^^(A/Z),

for any complex numbers A, fz. We finally derive the following table for the

metric ga,p = ̂ a ^(•i J-)'-
(54)

_ (fci + k^\F\2 (fci + fc2)(fci2ttg/3 - fcaSttga)2 , 3 a
9aAT,T) - -^^— +——————^^——————1^| |̂ | ,

_ (fci + k^mH (k^ - A;j)(A;i2ltg/3 - k^tQa). ,2, .^
( 7 Q• / 5 ( i ' / )- 4(SHeF)2 +—————2(^F)2—————I21! I22! '

, /^ ,.F^ (fcl+fc2)(fclatg/?-fc2(atfla)^ -
g»,i3{T,\E) = —————2(WeF)2—————3m(A^Z2),

<, ,̂  ^ _ (fc! + ̂ )2 (fcl + fc2)(A-l - fc2)2 ,, p., ,2
.̂M )̂ - 4(<^^)2 + ———2(^^)3——— l̂ i I N ,

(55) 9.AE,E)=^iE,iE)=^^

g^(Z,\E) = ̂ ^ 3m(A^^),

ffa,/3(^,^)=0.

From (23), we infer that the Lee vector field Va,fs, viewed as a vector
field on S

3
 x S

1 via ^, is written as:

(56) Va,/3 = (T - 3mF Z - (%r0 a - 2lrg /3) i z^ E).
(KI -\- K'i)
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The vector field JVa,p is thus equal to

(57) JV^ = ————^^
F z + (^1 - k2)zziZ2 E).

^1 + AC2;

In particular, JVa,/3 is independent of t and is tangent to the factor 5'3,
hence can ve viewed as a vector field on 5'3; as such, it will be denoted by

ZA.

We then have

, 2fci . 2fc2 . .
ZA = (7—iT"^ 1—.""T"^)fci + A;2 k^ + A;2

(58) = 2 (9UF Z + (A;i - ̂ 2) ^1^2 E)
{K\ -T K2)

_ 2(^__fc2)

-z+ (A^^'

where Zj^ is the vector field on S
3 defined by ZR = (z^i, —z^)- It can be

seen that ZR is a right-invariant (unit) Killing vector field for the standard

metric g of 53. In particular, ZA is itself a Killing vector field with respect
to g.

We observe that the restriction of g^^ on each fiber of the natural

fibration TT : S'3 x S
1

 —> S
1 is independent of t, hence can be considered as

a Riemannian metric on the sphere 53; this metric is denoted by g^.

PROPOSITION 3. — The pair {g^,Z^) is a Sasakian structure on

S
3
, actually coincides with the Sasakian structure obtained by deforming

the canonical Sasakian structure (^, Z) of S
3
 by the function A defined by

(59) A(.) = ————-^F = W^W\
v /

 (h + A;2) h + k2

Proof. — By using (55) we check that ZA is of norm 1 and is

orthogonal to Q with respect to the metric g / ^ . Then, with respect to the

triple Z ^ ^ E ^ i E ^ g^ is described by the following table:

g^(Z^,Z^) = 1,

(60) g^{Z^E) = g^Z^F) = g ^ ( E ^ F ) = 0,

g^E,E)=g^(iE,iE)=-^.

Now, the vector field Z^ can be written

(61) ZA = A z - %T '̂"( '̂E +1^3"^2'F-
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On the other hand, we clearly have

(62) d^(E) = y1",^^), riA(F) = ̂ ——^^{z^).
^/Ci -+- AC2; ^i -+- AC2;

These prove that ZA is the Reeb vector field of the contact structure Q
f\

with respect to the contact 1-form —. By (60), the metric g^ coincides

with the Riemannian metric determined by the Reeb vector field ZA. It
remains to check that A satisfies the condition of Proposition 2, which is
clear. D

COROLLARY 2. — For any complex numbers a, (3 satisfying (3), the

Lee form of the l.c.K. Hermitian structure (pa,/3? J ) Is parallel with respect

to D
9
^^.

Proof. — As already observed in Section 3.2, (24) together with (36)

imply that the Lee vector field Va,/3, hence also the Lee form ^a,/3, is parallel

with respect to g^^.
 D

Remark 5. — By (42) and the above proposition, we infer that the
scalar curvature Scal9"'^, which is also equal to the scalar curvature Scal^

of PA ? is given by

f63) Scal^-6fl l^-^ (fciN2-^2)^(63) Seal -6^1-4^^ (k^+kW))-

In particular, Scal90^ is not constant, except in the case that A;i = k^^

i.e. \a\ = \f3\.

Remark 6. — It follows readily from (23) that the flow ^/
vot

^ of Va^

on S
3
 x S

1 is given by

<^((^))= ((e-^T.I^^a.^,e-^T^fe72lr0/?^2),

(64) 2. ^
t^ . , modZ .

(A:i + A;2) 1

This flow preserves the fibration TT and induces an isometry with re-

spect to g^ from each fiber to the corresponding target fiber. In particular,
after one rotation over 6'1, this isometry is the isometry Oa^ from S

3 to

itself defined by

(65) ^((^)) = ((e-^0 .^e-^ -^),t).

Finally, the l.c.K. metric ga,p on the Hopf surface M^^ is obtained

by the following procedure (see [9] for the case k\ = ^2):
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1. Equip the sphere S
3 with the Riemannian metric g^ obtained

by deforming the canonical Sasakian structure (p, Z) by the function A

defined by (59) (see Section 3.3).

2. Realize (M^/?, 9a,(3) as the suspension of the isometry Oa^ defined

by (65) over the circle of length ^—L——21 (see Section 3.2).

Proof of Theorem 1.

The first statement has been proved in the preceding sections, see in

particular Proposition 1 and Proposition 3.

In order to prove the second statement, i.e. the existence of l.c.K.

metrics on all Hopf surfaces of class 0, we use a specific deformation

argument due to C. LeBrun [17]. Here are details. Fix any complex

number f3 such that \(3\ > 1 and any positive integer m. Consider the

three-dimensional complex manifold M. defined as the quotient of C x

(C2 — {(0,0)}) by the group r^yn, = ^ generated by the transformation

7/3,m '' (A, (u,v)) i—^ (A, {^u 4- A'y771,/?^)). Let p be the natural projection

from M. onto C which assigns A to the class of (A,(zA,z?)) . Then, p is a

holomorphic fibration whose fiber at A = 0 is the Hopf surface of class 1

Mftm^ whereas fibers at A -^ 0 are Hopf surfaces of class 0, all isomorphic

to each other as recalled in the first section.

The bundle of scalars of weight 1 on M. (see Section 1) is naturally

identified to the quotient of the product bundle C x (C2 — {(0,0)}) x R by

7^ ^Zactingbyl.(A,(zA, 'y),a) = (A, (/^n+A-^,/^), l^l^a). (Notice

that l/^l'"12"" is equal to |det(7^^) * |1.) Let C denote this bundle.

As already observed, the function ^prn^p introduced in Section 2 can

be considered as a section of C
2 over p~

l
(0) = M/^rn^. It extends to a

smooth section, <!> of C
2 on U for some neighbourhood U of 0 in C. For any

A in U^ let <
^\ be the restriction of <!> to the fiber p'^A), also viewed as a

function on W = C
2

 — {(0,0)}. Then, <!>o is equal to ^pm^. By Proposition

1, -dd^^m^ is a Kahler form on M; by continuity, the same is true for

-d^^A? so that ——dd
c
^\ is the Kahler form of a l.c.K. metric on p~^{\).

4 4$A
We thus get a l.c.K. metric on Mp^rn,\ for any A in U^ hence for for any A in

C. By varying f3 and m, we eventually get a l.c.K. metric for each primary

Hopf surface of class 0.
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Remark 7. — Note that the above deformation argument is specific
to the Hopf surface. A general stability theorem for l.c.K. structures, as in
the Kahler case, [15], is still lacking in the literature.
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