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LOCALLY CONNECTED GRAPHS 

GARY CHARTRAND, Kalamazoo and RAYMOND E. PIPPERT, Fort Wayne 

(Received December 4, 1972) 

INTRODUCTION 

One of the most elementary yet most important properties that a graph can possess 
is that of being connected. This is a global property in the sense that it is defined 
in terms of all pairs of vertices in the graph. It is the object of this paper to present 
results dealing with graphs which are connected in a localized sense. 

PRELIMINARY DEFINITIONS 

In this section we define several terms which will occur throughout the paper. 

If Wis a nonempty subset of the vertex set of a graph G, then the subgraph induced 
by Wis that graph with vertex set Wand whose edges are those edges in G joining 
two vertices of W. 

The neighboring vertices of a vertex v in a graph G are those vertices in G adjacent 
with v. The neighborhood N(v) of v is the subgraph induced by the neighboring 
vertices of v. The graph G is locally connected if the neighborhood of every vertex 
of G is connected. 

The complete graph Kp is that graph with p vertices every two of which are adjacent. 
The complete n-partite graph K(pl9 p29..., /?„), n ^ 2, is the graph whose vertex 
set can be partitioned as Vt u V2 u ... u Vn9 where |Vf| = pi9 i = 1, 2,..., n, such 
that uw is an edge if and only if u e Vt and w e Vj9 i + j . 

ELEMENTARY PROPERTIES OF LOCALLY CONNECTED GRAPHS 

First, it should be noted that neither the property of being connected nor the 
property of being locally connected implies the other. For example, every cycle 
of length n <z 4 is connected, but the neighborhood of every vertex in this graph 
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consists of two isolated vertices. Thus the graph is not locally connected. Conversely, 
let G be the disconnected graph with two components, each of which is a triangle. 
The neighboorhood of every vertex of G is the connected graph K2\ therefore, 
G is locally connected. 

Since every connected graph H contains a spanning tree (a tree containing every 
vertex of H) and every tree contains one less edge than vertex, we obtain the fol
lowing. (The degree of a vertex v in a graph is denoted by deg v.) 

Proposition 1. If v is a vertex in a locally connected graph G, then v belongs 
to at least deg v — 1 triangles. 

The preceding proposition implies that every locally connected graph of suf
ficiently large order contains a relatively large number of triangles. Indeed, if a graph 
G contains no triangles, then the neighborhood of each vertex of G contains no edges. 

The simplest neighborhood in any locally connected graph is a tree. Another 
observation can now be made. A wheel is a cycle together with an aditional vertex 
adjacent with every vertex of the cycle. 

Proposition 2. Every neighborhood in a graph G is a forest if and only if G has 
no wheels. 

Corollary. Every neighborhood in a graph G is a tree if and only if G has na 
wheels and is locally connected. 

While the minimum number of edges in a connected graph G occurs when G 
is a tree, the maximum number of edges occurs when G is complete. In this connection,, 
we make the following observation. 

Proposition 3. Every neighborhood in a graph G is complete if and only if every 
component of G is complete. 

Proof. If every component of G is complete, then it is clear that every neigh
borhood in G is complete. Conversely, suppose H is a graph in which every neigh
borhood is complete. Assume H contains a component Hx which is not complete. 
Then in Hi9 there are two vertices u and w which are not adjacent. Since u and w 
belong to the same component, there exists a u — w path, say u = t>0, vi9..., vn -= w. 
Let k be the least i such that vtvn is an edge of Ht. Thus, vk is adjacent to vk„ t a n d vn9t 

but vk-.t and vn are not adjacent to each other. However, then, the neighborhood 
of vk is not complete, which is a contradiction. 

Corollary. Every neighborhood in a connected graph G is complete if and only 
if G is complete. 
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LOCALLY я-CONNECTED GRAPHS 

A graph G is n-connected if the removal of fewer than n vertices results in neither 
a disconnected graph nor the trivial graph consisting of a single vertex. A graph G 
is locally n-connected if the neighborhood of every vertex of G is n-connected. 
We now investigate the relationship between connectedness and local connectedness. 

Proposition 4. If a graph G is locally n-connected, n ^ 1, then every component 
юf G is (n + \)-connected. 

Proof. Suppose there exists a component Gx of G which is not (n + l)-connected. 
Then there exists a set Tof fc(^n) vertices of Ĝ  such that Gx — Tis disconnected 
or consists ofa single vertex. If Gx — Гconsists of a single vertex, then Gt has fc -f- 1 
үertices, implying that the neighborhood of a vertex of Ĝ  has at most n vertices 
and that, consequently, no neighborhood is n-connected. Thus, Ĝ  — T is discon-
nected. Let vє T, and suppose u and w are neighboring vertices of v in different 
components of GІ — T. Therefore, the minimum number of vertices separating u 
and w in Gt — v is at most fc — 1 (gn — 1). This implies that the minimum number 
of vertices separating u and w in N(v) does not exceed n — 1. However, N(v) is 
л-connected, and this is a contradiction, which completes the proof. 

It is well-known that every 6-connected graph is nonplanar, while there are 5-con-
nected graphs which are planar (such as the graph of the icosahedron). For local 
connectedness, however, the situation is quite different. 

Proposition 5. Every locally Ъ-connected graph is nonplanar. 

Proof. Let G be a locally 3-connected graph, and let v be a vertex of G. If N(v) 
is complete, then since N(v) is 3-connected, N(v) contains the complete graph K4 

as a subgraph. In G, the vertex v is adjacent to all vertices of K4 so that G contains K5 

ąs a subgraph, and by Кuratowskľs theorem, G is nonplanar. 
If N(v) is not complete, then there exist two nonadjacent vertices u and w. By 

Whitney's theorem, there exist three disjoint u — w paths, each of which has length 
at least two. In G, the vertex v is adjacent to the interior vertices of these three paths; 
thus, G contains a subgraph homeomorphic with K(3, 3). Again, by Кuratowski's 
theorem, G is nonplanar. 

We note that the graph K4 is planar and locally 2-connected so that, in a certain 
sense, the preceding proposition is best possible; however, from the proof of this 
proposition, a somewhat stronger version holds. 

CoгoHary 5a. If a graph G contains a verteҳ whosé neighborhood is 3-connected, 
then G is nonplanar. 

Examples can be given to şhow that among the conneeted, locally connected 
graphs, there are many hamiltonian graphs (graphs with a cycle çontaining every 
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vertex). Along this line, we present the next result. (The maximum degree among 
the vertices of a graph G is denoted A(G).) 

Proposition 6. Let G be a connected, locally connected graph with at least three 
vertices. If A(G) ̂  4, then either G is hamiltonian or G = K(l, 1, 3). 

Proof. Since G is connected and locally connected, it follows by Proposition 4 
that G is 2-connected. Assume that G is not hamiltonian. Then a cycle C of maximum 
length in G does not contain all vertices of G. Since G is connected, there exists 
a vertex w not on C adjacent to a vertex u on C. Let ux and u2 be the vertices con
secutive to u on C. The vertex w is adjacent to neither ux nor u2; for otherwise 
a cycle exists having length exceeding that of C. 

Since the neighborhood of u is connected, there exists a vertex v (different from 
w, ul5 u2) which is adjacent to u such that v is adjacent to at least one of ut and u2> 
say ut. Necessarily, v lies on C; for otherwise there exists a cycle whose length exceeds 
that of C. Now, v is adjacent to w, since the neighborhood of u is connected and the 
neighborhood of u cannot contain more than four vertices. The vertices ut and i; 
are consecutive on C, for otherwise v has degree at least 5. If ut and u2 are adjacent, 
then G contains a cycle whose length exceeds that of C. Therefore, v is adjacent 
to u2, implying that u2 and v are consecutive on C. Hence, G contains K(l, 1, 3) 
as an induced subgraph. 

We claim that G -= K(l, 1,3); for otherwise, there exists another vertex x adjacent 
with one of ux, u2, w, say ux. Hence u, v, and x are vertices in N(ux), but w and u2 

do not belong to N(ut). Since N(uj) is connected, there exists an x — u path in N(ux). 
This implies that at least one of u and'v has degree exceeding four, which is a contra
diction. 

SUFFICIENT CONDITIONS FOR LOCALLY CONNECTED GRAPHS 

We now turn our attention from properties of locally connected graphs to con
ditions which are sufficient for a graph to be locally connected. We present one 
dealing with the degrees of the vertices. 

Proposition 7. Let G be a graph of order p such that for every pair x, y of vertices* 
deg x •+• deg y > %(p — 1). Then G is locally connected. 

Proof. Suppose G satisfies the hypothesis of the proposition but is not locally 
connected. Thus, there exists a vertex v of G such that N(v) is not connected. Let u 
be a vertex in a smallest component of N(v), and assume this component has order mu 

Let w be a vertex in one of the other components of N(v), where the union of the 
components of N(v) not containing u has order m2. Let k denote the number of 
vertices different from v which are not in N(v). 
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By assumption, deg v = mt + m2. Since u is adjacent to no vertex of N(v) in 
a component not containing u, it follows that deg u ^ p — m2 — 1. By hypothesis, 

deg M > t(p ~ 1) - deg i? = f(p - 1) - mt - m2 . 
Thus, 

p - m2 - 1 > t(p - 1) - mt - m2 , 
so that 

™i > t(P ~ 1) • 
However, m2 ^ ml9 so that 

m2 > i(p - 1). 
Therefore, 

k<i(P-i). 
Now, 

deg u + deg w ^ (mi + fe) + (m2 + fc) = (p - 1) + k < t(p - 1), 

but this is a contradiction. 
We obtain an immediate corollary. (The minimum degree among the vertices 

of a graph G is denoted by 5(G).) 

Corollary 7a. If G is a graph of order p for which 5(G) > %(p — 1), then G is 
locally connected. 

The previous proposition can be extended to locally n-connected graphs. 

Proposition 8. Let G be a graph of order p such that for every pair x, y of vertices 

degx + degy > t[p + i(w - 3)] > 

where 1 <£ n ^ p — 2. Then G is locally n-connected. 

Proof. Assume that there exists a graph G such that for 1 g n ^ p — 2, 

degx + degy > t[p + i(w - 3)] 

for every pair x, y of vertices of G but such that G is not locally n-connected. Hence 
there exists a vertex v such that N(v) is not n-connected. We consider two cases. 

Case 1. Assume N(v) = KJ$ for some j ^ n. Suppose that there exists a vertex 
u 4= v, such that u is not adjacent with v. Then deg v = j and deg w ^ p — 2 so 
that deg u + deg v <; p - 2 + j <£ p - 2 + n. By- hypothesis, 

p - 2 + n > t[p + i(" <" 3)] > 

which implies that n > p. However, this is impossible. If there is no such vertex u, 
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then N(v) = Kp-t and G = Kp. Here G is locally n-connected for every n, 1 g n ^ 
^ p — 2, and this is a contradiction. 

Case 2. Assume N(v) contains a set S of s(<n) vertices whose removal from N(v) 
disconnects N(v). Let u be a vertex in a component of N(v) — S of minimum order mu 

and let w be a vertex in one of the other components of N(v) — S, where the union 
of the other components of N(v) — S has order m2. Now deg v = mt + m2 + s 
and deg w ^ p — m2 — 1. By hypothesis, deg u + deg t> > a, where 

« = *!> + « « - 3 ) ] . 

Thus, deg u > a — deg t; so that p — m2 — 1 > a — mx — m2 — s. Hence mx > 
> a — p — s + 1, and since m2 ^ m1? it follows also that m2 > a — p — s + 1 . 
Let fc = p — mt — m2 — s — 1. Then fc<p — 2a + 2p + 2s — 2 — s — 1 = 
= 3p — 2a + s — 3. Now deg u + deg w ^ (mx + s + fc) + (m2 + s + fc) = 
= p + s + fc-l<p + s - l + ( 3 p - 2 a + s - 3 ) = 4p + 2 s - 2 a - 4 ^ 4 p + 
+ 2n — 2a — 6 = a. This is a contradiction, and the desired result follows. 

We have a corollary in this case also. 

Corollary 8a. If G is a graph of order p for which S(G) > | [p + £(n — 3)], 
where 1 ^ n ^ p — 2, then G is locally n-connected. 

Both of the preceding results are best possible as we shall now illustrate. Let n 
and p be positive integers, where p ^ n + 2 and p ^ n (mod 3). Let G' be a complete 
graph of order p. Denote a vertex of G' by v and some other set of n — 1 vertices 
of G' by S. The remaining p — n vertices can be divided into 3 sets of J(p — n) 
vertices each. Denote these sets by Sl5 S2, and S3. Delete all edges joining v with 
elements of S3 as well as all edges joining elements of Sx and elements of S2, calling 
the resulting graph G. For all vertices x and y of G, we have deg x + deg y ^ 
^ t[P + i ( n - 3)]> a n d S(G) = £LP + i(n - 3)1- However, the neighborhood 
of i; is not n-connected; therefore G is not locally n-connected. 
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