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In this paper we will determine all locally finite subgroups of a

sfield and give a criterion for determining when the group algebra of

an ascending solvable torsion free group has a quotient sfield.

Notation and Definitions. A group G has property E if it can

be embedded in a sfield D and property EE if every automorphism of

the group G can be extended to be an automorphsim of D. For a more

complete discussion see [5].

The result on locally finite groups depends mainly on a result of

Amitsur (see [l]). A complete discussion of the following notation

can be found in his paper.

■k will denote the set of all primes and 7Ti the set of all odd primes

p such that 2 has odd order mod p. Let m and r be relatively prime

integers. Put s= (r — 1, m), t = m/s and « = minimal integer satisfying

rn=l mod m. Denote by Gm,r a group generated by two elements A

and B satisfying Am = \, Bn = Al and BAB~l = Ar. Denote by G", a

group G which has a countable ascending tower of subgroups

{Hí:0^í< oo j such that G = U°Li Hi and each Hi is isomorphic to

Gmi,Ti. T*, 0*, I* will denote the binary tetrahedral, octahedral and

icosahedral groups.

Let p be a fixed prime dividing m.

a = ap is the highest power of p dividing m.

i]p is the minimal integer satisfying r^=\ mod (mp~a).

pp is the minimal integer satisfying r"» = £" mod (mp~a) for some

integer p'.

Sj, is the minimal integer such that ps"=l mod (mp~a).

o'P=pp8p/r¡p.

Condition C. Integers m and r satisfy Condition C if either

(I) (re, t) = (s, 0 = 1, or

(II) re = 2re', m = 2am', s = 2s' where a^2, m', s' and re' are odd

integers; (re, t) = (s, t)=2 and r= — 1 mod 2". And either

(III) n = 5 = 2 and r= —1 (mod m), or

(IV) for every q/n there exists a prime p\m such that q\-qp and

that either
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(1) p*2 and (q, (ps'"-l)/s) = l, or

(2) p = q = 2, (II) holds and w/4 = 52=l (mod 2).
Amitsur proved the following (see [l]):

Theorem 1. A finite group has property E if and only if G is iso-

morphic to one of the following groups:

(i) cyclic group,

(ii) Gm.r where m and r satisfy Condition C,

(iii) 7*Xc7m,r where Gm,r is either cyclic of order m or of type (2),

(G, | Gm,r\ ) = 1 and p\ m implies p in tti,

(iv) 0* and I*.

We will prove the following generalization of Amitsur's Theorem.

Theorem 2. Let G be a locally finite group. The following are

equivalent:

(1) G has property E,

(2) G has property EE,

(3) G is isomorphic to

(i) a subgroup of T[pez Zip°°),

(ii) GZ,t where mi and r, satisfy Condition C,

(iii)  T*XH where either (a) 77 is a subgroup of   upe*! Zip"),

(b) H = Gm,r where (|Gm,-,ri|, 6) = 1, p\m{ implies p is in xi and m¡

and ri satisfy Condition C,

(iv) 0* and I*.

Theorem 2 for countable locally finite groups was proved in [6].

Thus to prove Theorem 2 it is sufficient to show that any locally

finite subgroup of a sfield is countable.

Let G be a locally finite group which can be embedded in a division

ring. If 5 is a subset of G then (S) will denote the subgroup of G

generated by S.

Lemma I. If G has a subgroup isomorphic to 0* or I* then G is

isomorphic to 0* or I*.

Proof. 0* and 7* are the only groups satisfying Theorem 1 which

are not solvable of length 3 or less.

In the remaining lemmas it will be assumed that G has no sub-

groups isomorphic to 0* or 7*.

Lemma 2. If G has T* as a subgroup then there is a subgroup 77 of

G such that G=T*XH and every finite subgroup of 77 satisfies (I)

of Condition C.

Proof. Let R = C0(T*). Let 77= {xGCo(7*)| |x|   is odd}. If

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



i969] LOCALLY FINITE AND SOLVABLE SUBGROUPS OF SFIELDS 409

x, yG77and gEG, then (x, y, g, T*) = T*XS where S is a subgroup

of odd order satisfying (I) of Condition C by Theorem 1. | Z(T*) | = 2,

thus x, y ES. Therefore 77 is a subgroup. Also g = t-s with tET*,

sESQH. Hence G = T*XH.
A factor of a group G is a quotient group of a subgroup of G. The

rank of an abelian group G will be ¿ if it has an elementary abelian

factor of order pk for some prime p but no elementary abelian factor

of order pk+1 for some prime p. The derived factors of a group G are

the quotient groups G,/G¿+i where G¿ is the ith derived group.

Lemma 4. If G is a locally finite group embeddable in a sfield then

G=KXH where K is a finite group and 77 is solvable of length ^2

and each derived factor of K is of rank ^2.

Proof. By Lemmas 1, 2 and Theorem 1, G = AX77 with K^O*,

I* or 7* and every finite subgroup of H is metacyclic. Since a

metacyclic group is solvable of length ^ 2 and each derived factor is

of rank _?2, the same is true of 77.

Lemma 5. Let G be a solvable group of derived length n. If for some

k each of the derived factors has rank at most k, then G is countable.

Proof. If A is an uncountable abelian group then it does not have

finite rank. Thus Gi/d+i is countable for each i and hence G is

countable.

Theorem 2 is a consequence of Lemmas 4 and 5.

It follows that in a sfield there is a maximal locally finite subgroup

and it is countable.

If G is a finite subgroup of a sfield D and generates D then the

automorphism group of D is determined by the automorphism group

of G modulo the inner automorphism group of D (see [7]). It would

be interesting to know if this is also true for a locally finite group.

Before proving the next theorem we will give some more definitions

and notation.

A group G is ascending solvable if G has an ascending normal series

such that each factor is abelian [9, p. 163]. If A is a sfield and G a

group, then RIG] will denote the group algebra of G over K. If 0 is

an automorphism of K and x an indeterminate over K, K[x, 6] will

denote the Ore polynomial ring in x over K determined by 6 (see

[ll]). A ring R is regular if it has no divisors of zero and if for ele-

ments a and & in A there are nonzero elements ai, bu a2 and b2 in R

such that aai = bbi and a2a = b2b. F is a quotient sfield of A if A is a

subring of the sfield F and for any / in F, f = nr%~1 = r^n for r¿ in

R (lgi'^4).
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The above are connected by the following proposition proved by

Asano [2].

Proposition 1. A ring R has a quotient sfield if and only if R is a

regular ring. The quotient sfield is unique up to isomorphism. Any

automorphism 6 of R can be extended uniquely to F.

The following result was proved by Ore [ll]:

Proposition 2. K[x; d] is a regular ring.

The quotient sfield of K[x; 8] will be denoted by K(x; 6). If the

group algebra K[G] is a regular ring, its quotient sfield will be de-

noted by K(G).
The following is a special case of a theorem of Bovdi [3] :

Proposition 3. 1/ G is an ascending solvable group and K a sfield,

then the group algebra K[G] has a quotient sfield if and only if K[G]

has no divisors of zero.

We will give a criterion to determine when the group algebra has

no divisors of zero. The following definition and proposition is due

to Ore [10 ].
Let R be a regular ring and A — (an) be an re X re matrix with co-

efficients in R. We now give a determinant function | || for A.

If re = l, define [j4.|| = <zh. If « = 2, define |A\\ —auA22 — a2iAi2

where ^422 and Ai2 have the property that ai2A22 = a22Ai2. For re define

MU = auA¿1)+a2iAi(2) + • • • +a„i/l1<n' where the A¿» are a set of

solutions to the homogeneous equations

tti2^i   + a22^i   + • ■ ■ + an2Ai    = 0

ainAi   + a2nAi   + • • • + an»Ai = 0.

The function | || has the following important property:

Proposition 4. The linear system

n

£ Xian = 0       (1 S 3 =? n)    an £ R
•=i

has a nontrivial solution if and only if | a¿,j| =0.

Theorem 3. Let G be an ascending solvable group with an ascending

normal series (ií¿}f_0 with Hi+i/Hi = (xi+i-Hi). Let w.+i be the order

of Xj+i mod Hi and let 0¿+i be the automorphism of K[Hi\ induced by

x,+i. K [G ] has a quotient sfield if and only if for each i that re<+i is
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finite and for all w,+i tuples (do, • • • , d„i+i) of elements of A[77],

| akj\\ =í0 where

ak¡ = 0,+i(4-y)    if k ^ /,

= 6>+i(dniu+k-j)xi+i     if k < j.

Proof. By Proposition 3 it is sufficient to show that A[G] has no

divisors of zero. Assume that A[i7j] has no divisors of zero for all

i<j^a. Ii j is a limit ordinal then A [77,] has no divisors of zero. If

j is not a limit ordinal then there are two possibilities, either xj has

infinite order mod 77,_i or finite order mod H,-i. In the first case it

is obvious that A [77,] has no divisors of zero.

Therefore we are left with considering the case of G and 77 groups

with 77 normal in G, G/H=(x-H) where x has order n mod 77 and

A[i7] has no divisors of zero. Let 6 be the automorphism of A [77]

induced by x. Every element of A[G] can be written uniquely in the

form ^"r,,1 dixi for di in A [Tí]. Let w — 2Z"=o d*30' be a fixed element

of A[G]. If w is a divisor of zero, then there is a y = ^"rj Jixi with

y i in A [77] such that yw = 0. Thus

n—1 n—1 /     n \

£ y,(xhu) = Z 3<; f £ e>(di)xi+n = 0.
j=o y=o      V <=o /

This breaks down into the following system of «-equations in the

unknowns y¿.

yodo + yid(dn-i)xn + • • • + yn-ien-1(di)xn = 0

yodi + yidido) + + yn-idn-lid2)xn = 0

vodn-i + yiOidn-i) +    • • •   + yn-id^ido) = 0.

Application of Proposition 4 completes the proof.

The determinant given in Theorem 3 is very complicated. For

« = 2 or 3 we will give a simpler form of the same expression. This

will be done in the next two lemmas.

Lemma 6. Let K be a sfield O^bEK and d an automorphism of K

such that 6(b) =b and 9n is the same automorphism of K as the auto-

morphism induced by b in K. Consider the ring K\x; 6]. The following

are equivalent.

(1) xn — b is irreducible.

(2) (xn — b) is a prime ideal.
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(3) K[x; e]/(x»-b) is a sfield.
Conditions (1),  (2) and (3) imply that (xn — b) is maximal but the

converse is not true.

Proof. K[x; 6]/(xn—b) is a sfield if and only if it has no divisors

of zero [8, p. 158]. x" — b reducible implies that (xn — b) is not prime

so (2) implies (1). If K[x; 6]/(xn —b) has no divisors of zero then

xn — b is prime so (3) implies (2). If x" — b is irreducible and f(x) is

not in (xn — b), then there are elements /i(x) and gi(x) in K[x; 0]

such that/(x)/i(x) + (xn-è)g1(x) = 1 (see [ll]). Thus/(x) has a right

inverse (mod (xn — b)) so (1) implies (3).

Since K[x; 6] is a principal ideal ring (see [ll]), certainly (xn— b)

prime implies that (xn — b) is maximal.

Let « be a primitive 4th root of unity and x a transcendental over Q,

the rational numbers. Let F = Q(e, x), the field obtained by adjoining

e and x, and let 6 be the automorphism of F determined by e—>e

and x—»ex. Consider the ring F[y; 6] and the ideal (y4—x4). Direct

calculation verifies that (y4 —x4) is maximal but not prime.

Lemma 7. With the same hypothesis as in Lemma 6, b ¿¿6n~l(a)dn~2(a)

• • • 6 (a) a for all a in K is a necessary condition for xn — b to be ir-

reducible polynomial in K[x;d]. For w = 2 or 3 it is also sufficient.

Proof. Let N(a)=en~l(a) ■ ■ -6(a)-a. If b = N(a), then

x" — b — (x"-1 + e"-1(ö)xn-2 + • • •

+ N(a)e(a)-1ar1x + N(a)ar1)-(x - a).

Thus the condition is necessary. If w = 2 and x2 — b = (x — c)(x — a) for

a and c in K, then ca= —b and —c—6(a) =0. Thus b=6(a)a. If re = 3

and x3 — b = (x2+dx+c)(x — a) for a, b and c in K, then just in the

case re = 2 one can verify that b=62(a)6(a)a.

With these lemmas it is easily seen that Theorem 3 can be modi-

fied to give

Theorem 4. Let G be an ascending solvable group with an ascending

normal series {ä"<}"_0 with Hí+i/Hí = (x,+i • Hi). Let re<+i be the order

of x,+i mod Hi and let 0,- be the automorphism of K[Hi\ induced by

x,-+i. If «m_i = 2,3 or » for each i, then K[G] has a quotient sfield if and

only if for each i that re,+i is finite, x^l19é6^ifi~1(d) • • • 9(d)-d for all

d in K(Hi).

The theory developed in Theorem 4 would be included in the re-

sults of [S] if the group algebra of an ascending solvable group G

having no divisors of zero implies that G has a normal series such
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that every factor is infinite cyclic. This is not true. Consider the

groupG = (¿i, b2,c\c-1bic = bri il^i^2),br1b2-1bib2=ci).G does not

have a normal series such that each factor is infinite cyclic (see [4])

but direct calculation verifies that it satisfies Theorem 4.
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