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A B S T R A C T

For a  topological semigroup 5 , Lawson constructed a semigroup T(5) with the 

property that any local homomorphism defined in a  neighborhood of the identity of 

S  to a  topological semigroup T  extends uniquely to a  global homomorphism defined 

on r (S ) .  In this work we obtain conditions on S  to topologize the semigroup r (S )  

via an uniformity such tha t the extended homomorphism is continuous and such 

th a t r ( £ )  is a  topological semigroup. We also investigate a  different approach of the 

problem via the relatively free semigroup RF(U)  where U  is a  suitable neighborhood 

of the identity of S  and show th a t RF(U)  is isomorphic to r (S ) .



C H A P T E R  1

1.1 Introduction .

A very interesting property of the universal covering Lie group 6  is that any 

continuous local homomorphism defined in a  neighborhood of the identity of the 

group G into a  topological group H  extends uniquely to  a  continuous global homo­

morphism from G into H . One way of constructing the universal covering group G  

is by forming the homotopy classes of paths originating from the identity. In [9] this 

construction is modified for a topological semigroup S.  A certain subclass of paths 

originating from the identity, called causal paths, arc considered and the notion 

of causal homotopy is defined. The semigroup F{5) of causal homotopic classes 

of pathB is considered and it is showed that this semigroup satisfies a  universal 

property.

In this work we obtain conditions on S  to topologize the semigroup T (5) via 

a  uniformity. W ith this topology any continuous local homomorphism defined in a  

neighborhood of the semigroup S  into a  topological semigroup T  extends uniquely 

to a  continuous homomorphism from T(5) into T.  We also establish a  functorial 

property of T{5) and show that it preserves the Bcmidircct product of semigroups.

We investigate a  different approach to the problem of topologizing T(5) by 

constructing the relatively free semigroup HF{U),  where U is a  suitable neighbor­

hood of the identity of S. The relatively free semigroup is obtained from the free 

semigroup Fr(U)  by dividing out a  closed congruence relation. We prove that 

r ( S )  is isomorphic to RF{U)  and show some techniques to  construct T(5) for some 

semigroups.

This is an introductory chapter. Here, we present a recapitulation of the fun­

dam ental results that arc necessary to develop the main part of this work, which is

1
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given in the next two chapters. In chapter 2, we deal with the problem of topol- 

ogizing r (S ) ,  and in chapter 3, we construct the relatively free semigroup RF(U)  

and show th a t it is actually isomorpluc to T(5).

1.2 R e la tio n s

A relation on a set X  is a  subset of the cartesian product X  x X ,  If U is a 

relation the inverse relation U ~ l is the set of all pairs (x, y) such th a t (y, x)  e  U. 

It is easy to see that ( t / ~ 1) —1 =  U . If U — U ~ l then U is called symmetric. If 

U and V  are relations, then the composition U o V  is the set formed by all the 

pairs (x ,z) such that for some y it is true that {x,y) € U and (y, z)  6  V.  The 

composition is an associative operation on the set of all the relations on X* in other 

words, U o { V o W )  = ( U oV )o  W,  and it is always true th a t (U o V ) ~ l = V ^ o U ' 1. 

The set of all pairs (x, x) for x €  X  is called the diagonal, or the identity relation 

and it is denoted by A. If x € X  we define U[x\ as the set of all y  G X  such th a t 

(x, y) € U. The relation U is called transitive if (x,y) 6  U and (y , z )  € U implies 

th a t (x, z)  €  U< i.e., U is transitive if and only if U o U C U. If A C V  then U 

is called reflexive. A relation U is called an equivalence relation if it is symmetric, 

reflexive, and transitive. The subset x  — {y € X  : (x, y) e  U) is called the class of 

x modulo U. The set X  is a  disjoint union of all the classes modulo U,  and the set 

of all classes, denoted by X f U ,  is called the quotient set o f X  modulo U.

1.3 S em ig ro u p s a n d  co n g ru en ce  re la tio n s

1.3.1 D efin itio n . A semigroup is a  non empty set S  together with an asso­

ciative multiplication (x, y) -> xy  from S  x S  into S. If S  has a  Hausdorff topology 

such th a t multiplication iB continuous, with the product topology on 5 x 5 ,  then S  

is called a topological semigroup.

1.3.2 D efin itio n . If S  and T  are semigroups, a  function h : S  T  is called a 

homomorphism  if fi{xy) =  h(x)h(y)  for each x. y  € S.  If h is one to one and onto,
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h  is called an isomorphism. If S  and T  are topological semigroups and h is both an 

isomorphism and a  homeomorphism, then h is called a  topological isomorphism.

1.3.3 D efin ition . A relation R  on a  semigroup 5  is said to be left [ruj/d] 

compatible if (a. b) 6  R  and x € 5  implies th a t (xa, xb) 6  R  [(ax, bx) €  /?], and 

compatible if it is both left and right compatible. A compatible equivalence relation 

on a  semigroup is called a  congruence relation.

1.3.4 P rop osition . Let 5  be a semigroup and let A be a congruence on 5. 

Then S /R  is a  semigroup under multiplication defined by (fr(x), ir(y)) —► ir(xj/), 

and ir : S  S /R  is onto.

The following result is known as the Lawson-Madison theorem. For a  proof 

see [2 ],

1 .3 .5  T h e o re m . Let S  be a locally compact a  compact topological semi* 

group and let R  be a closed congruence relation on S. Then 5/71 is a  topological 

semigroup.

If 5  and T  are semigroups and <f>: S  T  is a homomorphism, we denote by 

K{<p) the relation {(x,j/) 6  5 x 5 :  ^(x) =

The following theorem is known as the first isomorphism theorem. The proof 

is straightforward and is left to the reader.

1.3 .6  T h e o re m . Let 5  and T  be semigroups and let <p: 5  —► T  be a  surjective 

homomorphism. Then K{4>) is a  congruence on 5  and there exist a  unique algebraic 

isomorphism ip : S/K(<p) —> T  such that ip o ir — <p where ir : 5  -► S / K { 4>) is the 

canonical map.

1.4 U n iform ities and th e  uniform  topology

In this section we recall standard facts about uniform spaces (see [7]).

1.4.1 D efin ition . A unifonnity  for a  sot X  is a non empty family U  of subsets 

of X  x X  such that:
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a) each m ember of U  contains the diagonal,

b) if U G 14, then U ~l €  U,

c) if U 6  U, then V o V  C for some V  in U,

d) if U  and V  are members of U , then U H V  € 14,

e) if V  e  U  and V  C V  C X  x X , then K e W .

The pair (AT,W) is called a uniform space.

1.4.2 D efin ition . A subfamily B  of a  uniformity U  is a  base for U  if each 

member of 14 contains a member of B.

If B  is a  base for 14, then B  determines U  entirely, for a  subset U of X  x X  

belongs to  14 iff V  contains a member of B.

1.4.3 D efin itio n . A subfamily S  is a  subbase for U  if the finite intersections 

of members of S  form a base for 14.

1.4.4 T heorem . A family B  of sultsets of X  x X  is a  base for some uniformity 

for X  if and only if:

a) each member of B  contains the diagonal A ,

b) if V  €  B, then U ~l contains a  member of B ,

c) if U € B, then V  o V  C U for some V e f l ,

d) the intersection of two members of B contains a  member of B.

Proof. The proof of this theorem is straightforward and is left to the reader. 

For the if part, consider the set U  formed by all subsets of X  x X  that contains a 

member of B. show now that U  is a  uniformity having B  as a  basis. |

1.4.5 T h e o re m . A family S  of subsets of X  x X  is a  subbase for some 

uniformity for X  if:

a) each m ember of 5  contains the diagonal A,

b) for each V  € S  the set U ~l contains a  member of S ,

c) for each U €  S  there is V  G S  such that V o  V  C U.



5

In particular, the union of any collection of uniformities for X  is the subbase 

for a  uniformity for X .

P ro o f . Let B  be the set of all finite intersections of members of S .  Since each 

member of S  contains the diagonal A, the same is true for any finite intersection of 

members of S.

Thke U = U\ n  U% f l . . .  fl Un with Ui € S  for all t, then there existB Vi € S  with 

Vi C I f -1, if V  = n Vi then V c  u ~ l .

Tkke again U =  U\ fl U% 0  . . .  fl Un with Ux € S ,  there exists V* G S  such tha t 

Vi o V% C U. K V  = OVi then V o  V c U .

Finally the intersection of any two members of B  is again a member of B.

We have proved that all the conditions of last theorem arc satisfied. Therefore 

the family B  is a  base for some uniformity for U . I

If (X ,U )  is a  uniform space, the topology T  of the uniformity U % or the uniform  

topology, is the family of all subsets T  of X  such that for each x  6  T  there is a  U €  U  

such tha t U[t\  C T.

1.4.6  P ro p o s itio n . The family T  defined above is indeed a topology for X .

P ro o f . Consider the family {Ta : a  6  11} where T(t E T  for each a  € fl, if 

x €  UagnT0  then x € Ta for some a  €  fl, hence there exists U  €  U  such that 

U[x) C Ta and therefore U[x\ C If T\ and Tj are members of 7 \  and if

x e  T, D T2 there exists U  and V  elements o lU  such th a t U[x] 6  T\ and V[x] € Tjj. 

Therefore, f7[x] n  V[x] = (U fl VJfx] C T\ fl Ta. Wliich proves th a t T  is a topology 

for X .  ■

1.4.7  T h e o re m . The interior of a  subset A  of X  relative to the uniform 

topology is the set of all points x  such that U[x] C A  for some U €  W.



P ro o f. We tiave to show th a t the set
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B  =  {x G A  : U[x] C A , for some U in if}

is open relative to the uniform topology. It is clear th a t th a t set B  surely contains 

any open subset of >1, if we show th a t B  is open, then it must necessarily be the 

interior of A.  If x G B,  then there is a  member U of i f  such that U[x\ C A  and there

is V  in i f  such tha t V o  V e t / .  If y €  V[x], then V[y] C (V  o V)[x] C U[x] C A,

and hence y € B.  Therefore V[x\ C B  and B  is open.

It follows immediately th a t U[x\ is a  neighborhood of x  for each U in the 

uniformity if , and consequently the family of all sets U\x\ for U G if  is a  base for 

the neighborhood system of x. Therefore we have the following result.

1.4 .8  T heorem . If B is a  base (or suhbasc) for a  uniformity if, then for 

each x  the family of sets t/[ar] for U G B is a base (sobbasc respectively) for the 

neighborhood system of x.

1 .4 .9  L em m a. If V  is symmetric, then V o U o V  = U{V]x] x V[y] : (x ,y) G U}.

P roof. By definition

V  o U o V  =  {(u, v) : (u,x)  G V, (x, y) G Uy (y, t») G V; for some x ,y  € X}

=  {(u, v) : m G K[x],u G V[jty], (x, y) G U}.

But u G V[x\  and v  G V[y] if and only if (u,u) €  V[x) x V[y], hence 

V  o U o V  =  {(u, o) : (u ,o) G V[x] x V[y\ for some (x, y) G U }

=  U{V[x]x V[y] : ( * ,» ) €  If).

m

1.4.10 T heorem . If U is a  member of the uniformity if, then the interior of 

U is also a  member of if; consequently the family of all open symmetric members 

of i f  is a  base for if.
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P ro o f. If M  C X  x X \  then the interior of M  is the set of all pairs (x, y) such 

th a t U[x\ x V\y) C Af for some V, U G U. Since U fl V  G U  it is easy to see that

int(Af) =  {(ar.y) : V[x] x V[y] C Af for some V  G if}.

If U 6  14 there exists a  symmetric member V  of U  such tha t V  o V  o V  C U 

and according to the previous lemma V  o V  o V  — U{ V[x] x V[x] : (x, y) 6  V}. 

Therefore V  C int(£/). Which implies that in t((/) € U.  I

1.4.11 T h e o re m . The closure relative to the uniform topology of a  subset A  of 

X i s  n{C7[yl] : U € U ) .  The closure of a subset Af of X  x X  is n { U o M o U  : U € U } .

P ro o f, x  G A if and only if U[x\DA  ^  0 Vf/ G U.  But U[x\ n  A  # 0  iff i G  

and since each member of U  contains a  symmetric member, x  G A  iff x  G 

U[A\ for eacli U G U.  The first statem ent is then proved. Similarly, if U is a 

symmetric member of then U[x\ x U[y] fl M  ^  0, M  C X  x X , iff (x, y) G 

f/[u] x U[v\ for some (ti,n) G Af, th a t is, iff (z ,y ) G U{I/[«] x f/[n] : (u, v) G M }. By 

the lemma, this last set is equal to U o M  oU . So (x, y) G A7 iff (a:, y) 6  U o M  o U 

for each i.e.,

M  = n { U o M o U  : u € U ) .

■

1.4.12 T h e o re m . The family of closed symmetric members of a uniformity U 

is a  base for U.

P ro o f. If U G U.  and V  is a  member of U  such tha t V  o V  o V  c  (7, then 

V  C V  o V o V  in view of the preceding theorem; hence U contains a  closed member 

W y take for example W  =  V,  and W  Ci W ~ l is a  closed symmetric member of U  

contained in U. a

1.4.13 T h e o re m . A uniform space is a  regular topological space.



Proof. By the preceding theorem, the family
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{V[x] : V  is a  closed symmetric member o ff/} ,

is a  basis for the neighborhood system of x. g

It follows immediately for tliis last theorem that a uniform space is a  Hausdorff 

topological space if and only if each set consisting of a  single point is closed.

1.5 U niform  structure on groups

In a  topological group G  we can define a  couple of uniformities, called the left 

and right uniformities respectively, bucIi tha t the uniform topologies induced by 

them  are compatible with the original topology of the group. L et’s define the right 

uniformity. The left uniformity can be defined similarly.

Let’s denote by U  the neighborhood system of the identity of the group G. For

V  € U  we write Vj = {(xt y) € G  x G  : x y ~ 1 € V}. Consider the set A  — {Vj :

V  6  14}. It is clear tha t the diagonal A is contained in Vj for each V  € 14. Since the 

relations y x ~ 1 6  V  and x y ~ l € V ~ l arc equivalent, we have tha t =  (V _ 1)d, 

and hence VJ ' 1 € A . It is also clear that ( f /f l  V )j C U j fl Vj. Finally, given U 6 14, 

pick V  €  14 such that V 2 C U then it is easy to show that Vj o Vj  C U4 . Therefore 

the set A  satisfies the conditions of definition 1.3.1, and hence it is an  uniformity 

for the group G.  Since V,i\x\ — V x  we have that the topology induced by the 

right uniformity coincides with the original topology of the group G. In general the 

right and the left uniformities of a  group G arc different, but they define the same 

topology on the group G.

The following is a  very useful result about topological groups.

1.5.1 P rop osition . Let G be a topological group. The uniformity defined by 

({(x,I/) : V x  fl V y  ^  0}) {(x,w) : x.V D y V  ^ 0 }  is the left uniformity (is the right 

uniformity) respectively.
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P ro o f. For F  G U, set Fj =  {(x, y) : y “ lx G F}; Fj. =  {(x,y) : x F  fl yV  #  0}; 

,4 — {Vi : v € U); and B = {Vi> : v G U}. We prove th a t A  — B  by showing th a t 

any element of A  contains an element of B  and th a t any element of B  contains an 

element of A . Indeed, pick V G £/, if (x, y) G Vj, then y ~ l x  G F , this implies th a t 

x V  H yV  ^  0. Therefore, Vj C Fj<. Hcncc B C A.  On the other hand, if V  g W, pick 

W  G U  such th a t W W ~ l C F . If {x,y)  G Wv then x W  n  y W  ^  0. This implies 

th a t y ~ l x  G VFW ~ 1 C F . Therefore W/< c  Vi. Hcncc 4  C 5 . |

1 .5 .2  P ro p o s itio n . Let G  be a topological group and let 5  C G  be a  sub­

semigroup such tha t the identity of G  is in int(S). Then the uniformities defined 

by the following bases arc equal:

1) [Va : V  G W}, where Va = {(x,y) G S  x S  : x ~ ly  G F } ,

2) {Ft : F  G }, where Ft, =  {(x,«) G S  x 5  : x F  fl y F  #  0),

3) {Fc : F g W } ,  where Fc =  {(x,j/) G S  x 5  : x (F  n  5 ) n  y{V  n  S)  /  0}.

Proof. T hat the uniformities defined by the bases 1) and 2) are equal follows 

immediately from 1.5.1. Let's prove tha t that the uniformities defined by the bases 

2) and 3) are equal. Indeed, pick F  G U\  if x (F  n  5) 0  y (V  fl 5 ) ^  0, then 

x F  fl yV  ^  0. Therefore Vc C Vb this implies that Ft is in the uniformity generated 

by {Ve : V  G U).  Hence, the uniformity generated by the base defined by 2) is 

contained in the uniformity generated by the base 3). To show the other inclusion, 

pick F  G U.  Set Q =  F  PI in t(5 ) ^  0, since Iq  G in t(5). Take a G Q  and set 

W  =  Qa~K then W  G U.  We show that W b C Fc. If (x ,y ) G Wb then x W H y W  /  0, 

i.e., there exist 41 ,93  G Q such that x q \s~ l =  yq2 s~ l ■ This implies th a t X41 =  yqt, 

hence x Q H y Q  ^  0. But Q =  F f lin t(S )  C F f lS ,  therefore x ( F n £ ) n j j ( F n i ? )  0, 

and therefore W b C Fc. This proves that {Fc : F  G U)  C {Ffc : F  G £/} and therefore 

the uniformity generated by the trnsc defined by 3) is contained in the uniformity 

generated by the base defined by 2 ). §
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1.6 W allace 's  lem m a

The following theorem is one of the most useful tools in the area of topological 

semigroups.

1.6.1 T h e o re m . Let X ,  Y  and Z  be topological spaces, A  a  compact subset 

of X ,  B  a  compact subset of Y ,  f  : X  x Y  -+ Z a continuous function, and W  an 

open subset of Z containing f [ A  x D). Then there exists an open set U in X  and 

an open set V  in Y  such that A  C U, B  C V,  and f { U  x V)  C W .

P ro o f. Since /  is continuous, is an open set in X  x Y  containing A x  B.

For each (x, y) e  A x B,  there exist open Bets M  and N  in X  and Y , respectively, 

such tha t x  €  Af, y  €  W, and M  x N  C Since B  is compact, for fixed

x €  A, there are open sets Afi, . . . ,  Afn in X  containing x  and corresponding open

sets N i  N n in Y  such that B  C Q = Ni  U . . .  U Nn . Let P = M\  f l . . .  fl Af„.

Then P  is open in X , Q is open in Y,  x  G P, B  C Q,  and P x Q  C Since

A  is compact, there exist open sets P \ , . . . ,  Pm in X  and corresponding Q i , . . .  , Qm 

open in Y  such that B  C V  — Q \ H .. . 0  Qm and A  C U =  P\ U . . .  U Pm. It follows 

th a t U and V  arc the required open sets. g



C H A P T E R  2

2.1 C ausal paths

We begin this section with the following definition:

2 .1 . 1  D e fin itio n . Let S  be a topological semigroup with identity I 5 . Let 

a  : [0, lj -+ S  be a path  on S  such tha t a(0) =  1 5 . The path  a  is called a  causal 

path if the following property is satisfied: Given V  a neighborhood of I 5 , there exists 

e > 0 such that whenever s ,t  G [0,1] with s < t < s +  e, then a ( t ) 6 a (s )  • U,  i.e., 

a(t)  — a (s )u  for some u 6  U. Given causal patlis u  : [0 , 1] —► S  and (3 : [0,1] - 1  5, 

we define the concatenation a  * fi  : [0 , 1] —> 5  by

f a ( 2 t) for 0  <  £ <  1/ 2 ,
a * P "  \ a ( l ) 0 (2 t -  1) for 1 / 2  <  t <  1.

2.1 .2  D efin ition . A subset W  of a  real topological vector space L  is called a 

cone if it satifics the following conditions:

(i) W  + W  C W,

(ii) R+ * W  C W,

(in) W  = W,  th a t is, W  is closed in L.

2.1 .3  E xam ple. I11 the additive semigroup C = { (x ,y) 6 Ra : x  > 0 , y  > 0} 

consider the path  a(£) =  t X  where X  is a  unit vector in C. Given a neighborhood 

U of the identity of C  pick a  positive real number t such tha t the intersection of 

C  and the ball Z7(0, e) is contained in U. If s, t € [0 , 1] with s < £ <  s +  e, then 

a ( t )  =  a (s )  +  (t — s )X .  Clearly the vector (t — s ) X  is in U. Observe tha t a similar 

argument shows tha t rays through the origin are causal paths in an arbitrary  cone 

in Rn .

The next example generalizes the preceding one.

2.1.4  E xam ple. Let S  be a topological semigroup, and a  : [0,0 0 ] —► S  a 

one param eter subsemigroup. Then f* | [0 .1 j is a  causal path of S.  Indeed, given a

11
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neighborhood U of the identity, pick * >  0 such th a t if 0 <  x  <  £, then a (x ) € U. 

T hat can be done by the continuity at zero of the path  a . If a, t €  [0,1] with 

a < t < a +  e, then a ( t)  =  a (s )a ( t  — s). Since t — a <  e, then a ( t  — s) € U.

2.1.5 E x am p le . Let a  : /  G be any path  in a group G  such tha t o(0) =  1, 

where /  is the closed unit interval. Given a neighborhood of the identity U  of G  

we can choose a  positive number e such th a t if «, t €  /  with a <  t < s + e, then 

a ( s ) _ 1a(£) €  U. Therefore in a  group any path  is a  causal path.

2 .1.6 P ro p o s itio n . Let h  : S  —► T  be a continuous homomorphism from the 

topological semigroup S  to the topological semigroup T.  If o? is a  causal path  in 5 , 

then /t(a) is a  causal path  in T.

P ro o f. Let U be a neighborhood of 1? . Then h ~ 1(U) is a neighborhood of I 5 . 

Let e > 0 b e  such tha t if a,t € [0,1] with a <  t < a +  c, then a( t )  =  a (s )u  for some 

u €  t/. Since h  is a  homomorphism we have that (h  o «)(() = (h o  a )(s)h (u ) with 

M u) 6  U. I

2 .1 .7  P ro p o s itio n . The concatenation of two causal pathB in a  topological 

semigroup is again a causal path.

P ro o f . Let a  and /? be causal patlis in the topological semigroup 5 , and let 

U be a  neighborhood of the identity of S.  Pick a neighborhood W  of the iden­

tity  of S  such th a t W 3 c  U. Let f 1 >  0  and (2 >  0 be chosen corresponding 

to W ,  in the definition of causal paths for a  and fi respectively. Take 0 <  e < 

inin(ei/2. £2 / 2 ), Suppose that 0 < s < t < s  +  f, then we have the following three 

cases:

1) 0 <  a < t < 1/2, 2) 1/2 < a < t, and 3) a < 1/2 <  t.

In case 1) ( a */?)(*) =  a(2s) and (a  */?)(£) =  a(2t).  Since 2s <  2t <  2s +  ei, we 

have that a(2t) — a ( 2 s)w for some w € W  and therefore (a  * P)(t)  € (a  * p)(a)U.
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In case 2) ( a*0 ) ( t )  — a( l )0(2 t  — 1) and =  a ( l )0 (2 s — 1), again since

2 s <  2t < 2 s +  f j , subtracting 1 from tliis inequality we get tha t 2 s — 1 <  2 t — 1 <  

2s — 1 +  t j ,  hence (3(21 — 1) =  0(2s  — l)u; for some w G W.  Multiplying this last 

identity by a ( l )  we get (a  *0)( t )  =  (a * 0 )(s )u ;, i.e., ( a * 0 ) ( t )  G ( a * 0 ) ( s ) l / .

In case 3) we have that 2s <  1 <  2t < 2s +  2e <  1 +  2f, which implies th a t 2s <

1 <  2s +  «i. Hence, a ( l )  =  a(2s)w i for some uq € W.  Also, since 1 <  2t <  1 +  2e

which is equivalent to 0 <  2t — 1 <  ej we have tha t 0 ( 2 1 — 1) =  0 (O)w2 =  w2 for 

some w3 G W.  Now: ( a*0 )( t )  =  a(l)/?(2 t —1) =  a(2s)wiw2 G a (2 s)W 2 C a(2s)U, 

which completes the proof of the proposition. I

We introduce now the notion of causal homotopy.

2 .1 . 8  D e fin itio n . Let a , 0  : [0,1] -► S  be causal paths in S with the same 

end point i.e., a ( l )  =  0( \ ) .  A causal homotopy between a  and 0  is a  continuous 

function H  : [0,1] x [0 ,1] —► S' satisfying:

a) H(t ,  0) =  «(t )  for all I G [0,1],

b) H ( t y 1) =  0(t )  for all t G [0,1],

c) Zf(0, s) =  I 5 , and # (1 , s) — a ( l )  =  0(1)  for all s G [0,1],

d) the pa th  7 «(t) =  H(t,  s) is a  causal path  for all s G [0,1],

Two paths are said to  be causally homotopic if there exists a  causal homotopy 

between them. If H  is a  causal homotopy between the causal paths a  and 0 , we 

write H : a  ~  0.

2.1 .9  P ro p o s it io n . The relation of causal homotopy is an equivalence relation 

on the set of causal paths, and the concatenation operation induces a  well defined 

associative operation on the set T(5) of causal homotopy classes of causal paths.

P ro o f . Let S  be a  semigroup and let a  be a causal path in S; then the map

H  : [0,1] x [0,1] —► S  defined by H( t , s )  =  a( t )  satisfies H  : a  ~  a . In other

words, the relation of causal homotopy is reflexive. Suppose now that i t  is a  causal
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homotopy m ap between a  and 0.  Then the map F ( t , s) =  H(t ,  1 — «) is a  causal 

homotopy map between 0  and a ,  which means tha t the relation of causal homotopy 

is symmetric. Suppose now that F  : a  ~  0  and G  : 0  <■* 7 , then the m ap defined by

define a  product in T(5) by [«][/?] =  [a * 0], If F  : a  ~  a ' and G  : 0  ~  0* then the 

m ap defined by

is a causal homotopy map between a  * 0  and a ' * 0 \  i.e., [a][/i] =  [a '][/?'], and 

therefore the concatenation induces a well defined product in r(S’).

For the last part of the proposition, consider the causal paths a,  r ,  and w. 

Define

2.2 U niversal properties o f  F(5)

Let r(S) denote the semigroup of causal homotopy classes of causal paths in 

the semigroup S, with the semigroup operation of concatenation.

2.2.1 D efin itio n . A local homomorphism 011 S  is a  function a  from a neighbor­

hood of the identity U of S  into a semigroup T  endowed with a  Hausdorff topology 

for which left translations arc continuous satisfying:

is a  causal homotopy map between a  and 7 . So the relation of causal homotopy is 

transitive. We have proved tha t the relation of causal homotopy is an equivalence 

relation. We denote by [a] the causal homotopy class of the causal path  a . We

F{2t, s) for 0 <  t < 1/2,
a( l )G(2t  — 1,s) for 1/2 < t < 1,

ff for 0 < s < l /4( t  +  1),
ff(l)r(4s — t — 1) for l /4( t  +  1) <  a <  l /4((  +2) ,
g( 1 ) t (1 )a; ^ 4a-J.jr3)  for l / 4 (t +  2 ) <  s < 1 ,

to  establish (<r * r )  * w ~  o  * ( r  * w) in T(5).

So r(S) has the structure of a  semigroup with an identity. I
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i) If a,b,ob € U then <r(ab) =  <r(a)c7(b),

ii) a  is continuous on U.

The next theorem is a  m ajor one. For a proof see [9]

2.2.2 T heorem . Let S  be a  subsemigroup of a topological group G  which 

contains the identity e in the closure of its interior, and let U be an open set of 

G  containing e. Let a  : S  C\U —> T  be a  local homomorphism. Then there exists 

a  unique homomorphism b  : T(5) -* T , such that d([a]) — cr(a(l)) whenever 

a  : [0,1] -► G  is a causal path  such that a ([0 ,1]) C U n  S.

2.3 T h e uniform  top o logy  o f  T(S)

Our goal now is to define a  suitable topology on r ( 5 )  th a t makes it a  topological 

semigroup. To do this, we define a  uniformity on r(S) and then we will consider 

the topology induced by th a t uniformity which we will call the uniform topology of

T(S).

2.3.1 D efin ition . A topological semigroup is called locally causally simply 

connected if there exists a  neighborhood U of the identity such th a t any two causal 

paths with the same end point and completely contained in U are causally homo­

topic.

2.3.2 E xam ple. Let a  be an arbitrary causal path  in the semigroup C  defined 

in the example 2.1.2. Consider the causal path defined by fi(t) =  ta ( l ) .  Then a  

and p  are two causal paths in C  with the same cud point. We show tha t a  and P 

are causally homotopic. Indeed, we define the map H  : /  x /  —► C  where I  is the 

closed unit interval by:

Clearly H  is a causal homotopy map between a  and ft- So the semigroup C  is 

causally simply connected.
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2.3.3 D efin ition . A topological semigroup is called locally causally path con­

nected if there exist a  basis of neighborhoods {Ua : a  €  ft} of the  identity such that 

any point in Ua can be connected with the identity by a causal pa th  completely 

contained in Ua for any o  € fl.

2.3.4 D efin ition . A topological semigroup is said to  be locally right divisible if 

given a neighborhood U of the identity, there exist a  neighborhood V  of the identity 

such that Va, 6 € V there exist x ,y  € U  sudi th a t ax  =  by.

2.3.5 E xam ple. Consider again the semigroup C  given in the example 2.1.2. 

Clearly the family {0(0, f.) fl C  : e > 0} is a  basis of neighborhoods of the identity 

of C  that satisfies the condition of the definition 2.3.3, therefore C  is a  locally 

causally path  connected semigroup. Let U be a  neighborhood of the identity of 

C. Set V  = U. If X , Y  € V  take A = Y  and D = X ,  clearly X  +  A  = Y  +  B , 

and A, B  G U. So C  is a  locally right divisible topological semigroup. The same 

argum ent shows that any commutative semigroup is locally right divisible.

2.3.6 N ota tion . For a neighborhood U  of the identity of a  topological semi­

group S  we denote by U and [(/] the following sets:

0 = { [ o ] € r ( S ) : a ( [ 0 , 1]) C U ) ,

and

:[«][#] n [ /S lit 'l l-

2 .3 .7  T heorem . Let S  be a  locally causally simply connected, locally causally 

path  connected, and locally right divisible topological semigroup. Then the family

A  — {[0] : U C S  with U open and 15  6  U}

is a  basis for a  uniformity of T(5).
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P roof. We will show th a t the family A  satisfies the conditions of Theo­

rem 1.4.5. For [7 ] 6  T (5), we have that [7 \U n  [7 ]U =  \~l\U 0 since [7 ] 6  {i\Uy

hence ([7 ], [7 ]) €  [U], i.e., the diagonal A is contained in [U] for each open subset 

of S  th a t contains the identity. Clearly [t/ ] —1 =  [{/]. If U and V  are neighborhoods 

of the identity of 5, then [U fl V] C [17] fl [V’’], b o  the intersection of two members 

of A  contains a  member of A.  So conditions a), b), and d) of theorem 1.4.5 are 

satisfied. L et’s prove now tha t condition c) is also satisfied. Let U be a neighbor­

hood of the identity of 5 . Since S  is locally causally simply connected, we can pick 

a  neighborhood of the identity W  C V  such th a t any two causal paths in W  with 

the same end point are causally homotopic. Pick a neighborhood V  of the identity 

such tha t V2 C W  and sucli tha t any point 111 V  can be joined with the identity 

by means of a  causal path  completely contained in V. This is possible since S  is 

locally causally path  connected, and by the continuity of multiplication. Finally, 

since S  is locally right divisible, we can pick V7 C V  such th a t for all a, 6  € V7 

there exist x , y  € V  such tha t ax = In/. We claim th a t [V7] o [V7] C [f/]. To prove 

the claim, pick ([<*],[/?]) G [V') o [V']. Let [7 ] G T (5) such th a t ([a], [7 ]) G [V'} 

and ([7 M/*]) € [V7]. Therefore, there exist rrt> p, with i =  1,2, and o*([0,1]) C V7, 

P i([0 ,1]) C V'  such that

H H  =  b t o l  ( i)

and

=  [0 M -  (2 )

Now take x , y  G V  such that o j(l)a : — o j( l  )y. By the way V  was chosen, 

there exist , t j  causal paths in V  such that T; (1) =  y  and Ta(l) =  x. Hence, 

(<7 1 * t3 )(1) =  (o2+Ti)(1). Therefore, (o i* r3)([0 ,1]) C V2 C W  and (o3*Ti)([0,1]) C 

V 2 C W .  Since any two causal patlis in W  with the same end point are causally
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homotopic, we conclude tha t

[o\ * t 3] =  \o2 * Ti]. (3)

Multiplying equations ( 1 ) and (2) on the right by [ri] and [ t 3 ] respectively, we get

M lP a lM  =  [«J[Pi][ri] (4)

and

H M f c i ]  =  (5)

Now combining equations (4) and (5) we get that [/?]{(73 * r3] =  [ot][pi * 77], but 

(o2 * t 3 )([0, 1]) C V 2 C W  C U and (p\ * Ti)((0,1]) C V 2 C W  C U , which means 

tha t [{3]U fl [a)U (9, thus ([«],[/*]) € [£/], and therefore [V"'] o [V"'] C [t/]- |

2.3 .8  T heorem . Let 5  be a locally causally simply connected, locally causally 

path  connected, and locally right divisible topological semigroup. W ith the uniform 

topology, multiplication is continuous at the identity of T(5).

P roof. Let [t/]([e]) be a  neighborhood of [c], the identity of the semigroup 

r (S ) .  We may assume that U is a  neighborhood of the identity of S  with the 

property that any two causal paths in V  with the same end point are causally 

homotopic. Let V  be a  neighborhood of the identity of S  with V 2 C U and such 

th a t for any x  € V  there exists a  causal path 7  : [0 , 1] —► V with 7 (1 ) =  x. Let 

W  be a  neighborhood of the identity of S  such that W  C V  and such tha t for all 

a, ft €  W  there exist x , y  € V  with ax = by. Finally, pick W '  with W 2 C W.  

Consider [VV']{[e]); if [<r],[t] 6  [W']([c]) then there exits 0 1 , 0 2 , 7 7 ,7 2  : [0,1] —► W* 

such that

[a * ffi] =  [a2], (1 )

and

[t  * 1 7 ] = [r2]. (2 )
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Now, observe tha t (crt * t  * T i)(l) =  O i(1)(t * ti)(1 ) =  <Ti( 1 )'Ta( 1), but <Ti(1)t3(1) e  

W n  C W.  Also, ( r + 7-0(1) =  r2( l)  G W* C W 12 C W .  So there exist x , y  E V  such 

th a t (<7j * r  * ri ) ( l ) i  =  ( r  * r O ( l )y- There exist a, ft : [0,1] -> V  causal paths such 

th a t q(1) — x  and /?(1) =  y. Therefore {ax * t  * t x * a ) ( l )  =  ( r  + r x * /?)(!), i.e., 

(a t * T2 * o r ) (  1) — ( t 2 * /?)(1) and ( t 2 * /?)([0,1]) C W V  C V3 C U, Also, we have 

th a t (a x * r2 * a)([0,1]) C W ' W ' V  C W V  C V 2 C U.

Since any two causal paths in U with the same end point are causally homo­

topic, we have that

[t2 + ft] =  [oi * r2 * a], (3)

Multiplying equations (1 ) and (2) we get: [<r * a x * r  * ti]  =  [a2 * Tj]; therefore

we conclude that

[a * trx * r  * tx + a] =  \a2 * t2 * a], (4)

Combining equations (2), (3), and (4) we obtain [a * r  * r t ♦ ft] =  [a2 * t2 * a].

Now, (n * 0 ) ( [0 ,1]) C W* V  C V 2 C U and ((72 *r2 *a)([0 , 1]) C W n V  c V  c  If, 

i.e., \a * r] € [f/]([e]). This means that multiplication is continuous a t the identity 

o fT (S ). I

2.3 .9  T heorem . Let S  a  be a  locally causally simply connected, locally 

causally path  connected, and locally right divisible topological semigroup. Then 

multiplication is continuous in the second variable.

P ro o f . Let [a], \ft] € T(S), consider [(/]([<* * /?]), a  neighborhood of [a + ft] in 

rfS*). Consider now [{/]([/3]), a  neighborhood of \ft\ in T(5). If [7 ] G [(/]([/?]), there 

exist 7 i , 7 a : [0 , 1] —► {/ such th a t [7 *7 1 ] =  [^* 7 2 ), therefore [0 *7 *7 1 ] =  [<**ft + Ji], 

i.e., [a * 7 ] G [//]([o */?]). |
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2.4 U niform ity  structure on sem igroups

We saw in 1.5 th a t the topology of a  topological group can be described in 

term s of the right and left uniformities. The same technique does not work for 

topological semigroups due to the absence of inverses for the elements of the semi­

group. However, it is possible for some semigroups to define a  uniformity closely 

related to the right and left uniformities of a  group. We investigate in this section 

the kind of semigroups for which this is possible and study the relationship between 

the original topology of the semigroup and the topology induced by the uniformity.

Let S  be a  locally right divisible semigroup. For a neighborhood V  of the 

identity of S  we define Vj as the set of all pairs (x, y) € 5 x 5  such tha t x V D y V  ^  0. 

Consider now A  =  {Vj : V  is a  neighborhood of I 5 }.

2.4.1 T h e o re m . Let S  bo a  locally right divisible topological semigroup. The

family A  of subsets of 5 x 5  defined above is a  uniformity for S.

P roof. It ib straightforward to sec tha t Vj- 1  — Vj and th a t A C Vj for any

neighborhood of the identity of the semigroup S.  It is also clear that (U C\V)d C 

Ud n  Vj for U and V  neighborhoods of the identity of S.  Let U be an arbitrary 

neighborhood of the identity of the semigroup S.  By the continuity of multiplication, 

we can choose a  neighborhood W  of the identity of S  such that IV2 c  U. Now, since 

S  is a  locally right divisible semigroup, we can pick a  neighborhood V  C W  of the 

identity such that Va, b 6  V  there exist x, y  €  W  such th a t ax = by. Finally pick a  

neighborhood V ' of the identity of S  such that V '2 C V . Take (x, y) € Vjo Vj, there 

exists z £ 5  such that {x ,z)  and (z .y )  arc elements of Vj. Therefore, there exist 

x ', z ', z", y ' elements of V * such that xx' =  z z ' and z z >l =  yy*. By the way V * and V  

were chosen, there exists x i, y\ € W  such th a t z 'x \  — z"y\.  Combining this relation 

with the previous two relations, we get th a t xx 'x j — zz 'x \  — zz"y \  =  yy'y\.  Now, 

x 'x j € V ' W  C W 1 C U and jftq  e  V ' W  C W 2 C U and, therefore (x ,y) 6  Ud.
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We have proved tha t V* o V'  C U. We have shown th a t the family A  satisfies the

The uniform topology of the semigroup S  could be different from the original 

topology of S.  In the rest of this chapter we are assuming that they are equal.

2 .4 .2  D efin itio n . A topological semigroup S  is called nice if its topology is 

compatible with the uniform topology and it satisfies definitions 2.3.1, 2.3.3, and

2.4 .3  E xam ple. For a sul>scmigroup S  of a  group G  such th a t 1<3 €  int(S) 

we saw in the proposition 1.5.2 that the uniform topology of S  is compatible with 

the relative topology of S. Therefore the class of these semigroups tha t satisfies 

the conditions given in the definitions 2.3.1, 2.3.3, and 2.3.4 are examples of nice 

semigroups. Particularly, cones in Rn are nice semigroups.

2.4.4 P rop osition . If 5  is a  nice topological semigroup, the m ap [a] H a ( l )  : 

r ( S )  -> S  is continuous.

P roof. Let V be a neighborhood of a{ 1 ). Pick a  neighborhood U of the identity 

such that Ud(<x( 1 )) C V.  Consider [£/](«], which is a  neighborhood of a  in P(5). 

If \f3\ 6  [(/]([«]), then there exist (Tj, : [0,1] —► U such that [/? * <J\\ =  [a * <r3].

Therefore, /?{l)<7 i ( l)  =  a( 1 ( 1 ). Since both ffi(l) and ffa(l) are elements of t/,

we have th a t /? ( 1 ) € I

2.5 Functorial properties o f  F(S)

2.5.1 T heorem . Let S  and T  be nice topological semigroups and let h : S  - t T  

be a  continuous homomorphism. Then the map h : T(5) —> T(T) defined by 

h([a]) =  [h(«)] is a  continuous homomorphism.

Proof. We have tha t £([«][/*]) =  h([o ♦ 0]) =  [h(« * /?)], but

conditions of the definition 1.4.1, and therefore it is a  uniformity for S. ■

2.3.4.

a  * a(2 t) for 0 < t <  1/2,
o(l)/?(2t — 1) for 1/2 <  t <  1.



22

Then

for 0  <  t <  1 ,
P[t)) ~  \  h(a( l))h(0(2t  -  1 )) for 1 /2  < t <  1 .

Therefore, /i({ac][/9]) -  [ ( / io a ) * ( / io / i ) ]  =  [ho a][h o ft) =  H([a} )h ([/?]). This 

proves that h  is a  homomorphism.

Let’s see now th a t K is continuous. Ifeke [a] £ r(S'), and consider [C/]([h o a]) 

which iB a  neighborhood of 7I( [a]) in T(T), where U is a  neighborhood of the identity 

of T.  By continuity of ft, there exists a neighborhood V  of the identity of S  such 

th a t h(V)  C U. Now, if [/?] € [V]([a]), then there exist a \ , a 2 : [0,1] -¥ V  such tha t 

[/£J][cti] =  [«][o2]. Therefore, h(^])7»([ai]) =  7I([a])7t([er2]), but M ^ ] )  and h([a2]) 

maps the interval [0,1] into U. In other words, 7t( [/̂ ]) €  [t/]([7i([a])).

Clearly if * : S  - f  S  is the identity homomorphism, then »: T (5) —► T(5) is the 

identity homomorphism of the semigroup T(5).

Also, if h : S  -¥ T  and g : T  -*■ V  are continuous homomorphisms, then 

(/»o 3 )([a]) =  [(ho #)(«)] =  [h(fl(«))] =  £([<?(«)]) =  (hofl)([a]), therefore ( h o g )  = 

h o g .

If h : S  —► S  is an invertible homomorphism, then by the preceding results, we 

have that T =  (h o h - 1 ) = h a (h- 1 ). In other words, (77) 1 =  (h- 1 ). |

2.6 D irect and sem id irect products

Let 5 i and Sj  be topological semigi'oups. Suppose we have a  homomorphism 

h from Si  to  the semigroup A ut(S2) of automorphisms of S 2 such th a t the maps 

(« i,s2) t-4 h (« |)(s2) : Si  x S2 -► S 2 and (« i ,s2) *-+ (/i(s j))- 1(s2) : Si  x S 2 -► S 2 are 

continuous. Then in the cartesian product 5 | x 5 2 we define a new operation given 

by ( x i , y t ) ( x 2,y i)  = (ziM shH ^hw iIte)- T hc 801 Si  x ^2  this new product is 

called the semidirect product between Si  and S 2 and it is denoted by S\  x S 2, Then 

we can define a structure of a  semidirect product between the semigroups F(S i)
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and r ( 5 j )  via the composition r(5 a )-^ 4 5 a -^ 4  A u t(5 i)-^+  A u t( r (5 |) ) , where ir is 

the endpoint homomorphism and <f> is defined by (^(/))([*y]) =  [ /  o 7 ], If we set 

ip = <po h o ir then it is clear tha t r ( 5 j ) — > A u t( r (5 |) )  is a  homomorphism. This 

homomorphism is given by the formula (V>([/?]))([7 ]) =  [h(/3(l)) 0 7 ], So therefore, 

we can define r ( 5 j )  x r (S j)  as it was done above.

In what follows we prove tha t the semigroups F(5i x 5a) and T (5 i) x r(5 a )  

are actually isomorpliic. But first, let's prove the following:

2 .6 . 1  T h e o re m  Let Si  and Sa be topological semigroups. Suppose we have 

defined a  semidirect product S\  K 5 j via the homomorphism 5a—4 A u t(5 i). Then 

a  x fi is a  causal path  in S\  x 5a if and only if a  is a  causal path  in Si  and p  is a 

causal path in 5a.

P roof. Suppose th a t a  x (i is a  causal path  in S\ x S? Since the projection 

m ap on the second coordinate *3 : Si  x 5a -4  5a is a  continuous homomorphism, 

by proposition 2.1.5 we have th a t ft  is a causal path in 5 a . Let's sec tha t a  is also 

a  causa) path  in S \. Let U he a  neighborhood of e \ , the identity of S \ . The map 

P  : [0,1] x { e j } —i Si  defined by F(s,  e j)  =  /i(/?(a))(ei) =  ei € U is continuous. 

Therefore, by Wallace's lenuna, there exists V  open in 5 i with ei €  V  such tha t 

P ( [0 ,1] x V )  C U. In other words, h(f3(s))(v) € U for all v € V.  Consider now 

the set V x 5a, which is a  neighborhood of (ci,ea). Then there exist e >  0 such 

that i f s < t < s  +  e then (o(t), (3(t)) =  (a(s),/3(s))(v i, 0 3 ) with (i»i, V3 ) 6 V x S3. 

Therefore, a ( t)  =  «(s)h(jfl(s))(oi) € «(«)(/.

Suppose now th a t a  and ft are causal paths in S\  and S 2 respectively. Let's 

prove th a t a  x (3 is a  causal path  in 5j x 5a. Let U\ x t /3 be a  neighborhood of 

(e j ,e 3) the identity clement of S\ x 5a. Consider the m ap G : [0,1] x {*7 } —> 5j 

defined by G (a ,e j) =  ft(/?(s))- 1(ei) =  ei 6  U\. Since G  is continuous, by Wallace’s 

lemma, there exists a neighborhood V  of ei in S\  such that G ([0 ,1] x V)  C U\. In
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other words, /i(/?(s))_ l (u) £  U\ for all a £  (0,1] and for all v £ V.  Now, pick € >  0 

such tha t if s < t < s  +  e then a ( t)  — a (s)v  and 0(t)  =  0(«)u for some v  £  V  and 

some u € U. Then (a ( s ) , /? (« ) '‘ ))- 1(v ),u) =  (a(s)v ,/?(s)u) — (a ( f ),/?(()) and 

(fcOJWrHwJ.ujetfi x£fa. I

2.6 .2  T h e o re m . Let S2— ► A ut(5 i) be a  homomorphism, where Si  and S3 are 

topological semigroups; and suppose that the maps (si,*a) —► /i(* i)(* a): Si  x S 3 —► 

S2 and (s i,sa )  -¥ (ft(s i))- 1(s3) : Si  x S 2 -¥ S 3 are continuous. Then the  m ap 

♦  : T(5i k 5 j)  —> T (5 i) k r(5 a )  defined by ♦  ([«,/?]) — ([a],[/3]) ib a semigroup 

isomorphism.

P ro o f . Thke ([a], [/?]) £  T (5 i) k T(£2 ). Then by the previous theorem, [a x 0\

is an element of T(5i K 6 3 ). Therefore ® is clearly onto. L et’s see now tha t $  is one-

to-one. Suppose th a t ([a], [/?]) =  ([a], [/>]). Then there exists a continuous function 

F  : [0,1] x [0,1] -¥ S i  Bitch tha t F (t,0 )  =  « (t)  for all t £ [0,1], F ( t , 1) =  *x(t) for all 

t € [0,1], F ( 0 , s) =  ei for all a £ [0,1], F(1,ji) =  a ( l )  =  o ( l)  for all a €  [0,1] and

the path  F*(t) =  F(t,  a) is a  causal path  for all fixed a G [0,1].

Also, there exists a  continuous function G  : [0,1] x [0,1] —► S 3 such that

G (t,0) =  /?(«) for all t 6  [0,1], G(t, 1) =  p(t) for all ( £ [0,1], G (0,s) =  e3 for all

a € [0,1], G ( l ,s )  — 0(1) =  ^(1) for all a G [0,1], and the path  G*(t) =  G(t,a) is a  

causal path  for all a fixed in [0 , 1],

Define now the m ap F  x G : [0,1] x [0,1] -► Si  x S3 by F  x G(t, s) =  

(F ( t ,s ) ,G ( t ,s ) )  then clearly,

F  x G (t,0) =  (F (t,0 ) ,G (t,0 ))  =  (a ( t ) , /*(*)>.

F  x G (M ) -  (F (t, 1 ) ,G(t, 1 )) =  (o (f),p(f)),

F  x G(0, a) ~  (F(0, s),G (0 ,s) =  (e^ea),

F  x G <l,s) =  (F { 1 ,s ) ,G (l,s ))  =  ( a ( l ) , /?(!)) =  ( f f ( lM l) J .

^7A



Also, according with the above theorem, (F  x G),{t) — (F,(£), )) is a  causal

path  in S\  x  Sa. So we have proved that (a , /3) is causally homotopic to (er, p). In 

other words [(a,/?)] =  [(<7,/?)], which proves that $  is one to one.

Let’8 see now that ♦  is a  semigroup hoinomorpliism. By the definition of the 

product of causal paths we have th a t [(a,/?)][(ff,p)] =  [(a ,/?) * (er, /?)], but

( a ,0 ) ( l)(a ,p )(2 t - l )  1 / 2  < t <  1/ 2 .
0  <  t < 1 / 2 ,

f ( a ,0 )(2 t) 0  <  t < 1/ 2 .
\  (a(l)/i(/3 (l)) o a,f t(l)p)(2t -  1) 1/2 <  t <  1.

(a,/?) * (rr,p)(t) =  (a  * h (0 (l)  o a , (3 * p)(t),

so therefore,

* ( [ (« ,0)][(a,/>)]> =  ( [ (a * M W ))o < r)] .(U W )])

= (M['‘W i))°<OM /% ]) = (N.[/3])(W.(p|)

=  *([(,., 0 )])*<[(a./>)]).

This proves tha t #  is a homomorphisiu. I



C H A P T E R  3

3.1 T h e free and relatively  free sem igroups

3.1.1  D efin ition . Let X  be a  Hausdorff topological space. The free topological 

semigroup F r ( X )  on X  is defined as the set

F r(X ) =  X U X * U X 3 U . . . ,

where the union is a disjoint union, the topology on X n is the product topology, 

and each X n is open in F r(X ) .  So a set A  C F r ( X )  is open iff A  fl X n is open for 

all n. Members of X n arc viewed as words of length n, and the semigroup operation 

on F r ( X ), denoted by o, is the juxtaposition of wordB,

( f l l , . . . , &m  ) 0  ( 6 | , , , , , b n )  — ( d i e  • ■ , ®mi  ^ l i  • • ■ i ^ n ) ‘

3.1.2  P rop osition . The set F r ( X )  with the topology and multiplication of 

words defiued above is indeed a topological semigroup.

P ro o f. We need to  prove that multiplication iB continuous. Let ( a j , . . . , a m) 

and (bj, . . . ,  bm) be elements of F r(X ) ,  and let U be open in F r ( X )  such that 

o6  =  ( a j , . . . ,  . . .  , fcn ) € U. By the definition of the topology of F r ( X )  the

set U n X n+m is an open subset of X n+m. Therefore, there exists U i , f /a, . . . ,  Um+n 

open subsets of X  such that a £ W  =  t/j x I/j x . . .  x Um, b G V  = f/m+i x f/m+a x 

. . .  x Um+n and W V  = U n  X m+" C U. I

3.1 .3  P rop osition . If X  is locally compact, a  compact, and Hausdorff, so is 

the  space F r(X ) .

P ro o f. If X  is locally compact then by the Tychonoff Theorem we have tha t 

X n is locally compact for all n. Since the disjoint union of a  countable family of 

locally compact Bpaccs is locally compact, we have tha t F r ( X )  is locally compact. 

Similarly, if X  is a  compact so is X n for all n. Since the disjoint union of a

26
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countable family of a  compact spaces is again o  compact, we have tha t F r ( X )  is 

a-com pact.

Let a, 6  €  F r(X )  with a ^  b. Then o G X n and 6  G X m for some integers n, m. 

If n /  in then X n and X m arc disjoint neighborhoods of a and 6 respectively. If 

n  =  m, then since X n is Hausdorff there exists U and V  disjoint open subsets of 

X n with a G U and b G V. By the definition of the topology of F r ( X )  it is clear 

th a t U and V  are also open in F r(X ) .  g

3 .1 .4  P ro p o s itio n . The topological semigroup F t(X )  is the free topological 

semigroup on X  in the sense tha t any function into a  topological semigroup S  ex­

tends uniquely to a  homomorphism from F r ( X )  into S.  The extension is continuous 

if and only if the original function on X  is continuous.

P ro o f . Given a  function /  : X  —► S,  then the function /  : F r ( X )  —* S

define by f ( x   xn ) =  / ( x i ) / ( x 3) . . .  f ( x n ) is a  homomorphism tha t extends

/ .  Clearly /  is the unique extension of /  to a  homomorphism define on F r{X ). 

Suppose th a t /  is continuous. Let (J be an open subset of S  containing the product 

f i x i ) f ( x 2) • • • Since multiplication is continuous, there exists open subsets

. . . ,  Un in 5  such that f {x i )  G Ui for each i, and U\ x t /2 x . . .  x Un C U. 

Since /  is continuous, there exists for each i a  set Vi open in X  with x, G V,

and such that /(V .) C Ut for each i. Now (x i  xn ) e  V\ x V? x . . .  x Vn and
*   *

/(Vj  x V3 x . . .  x Vn) c  U. Thus /  is continuous.
A

Since /  is the restriction of /  to  the open set X , it turns out th a t /  is continuous 

provided tha t /  is continuous. g

3.1.5 D e fin itio n . Let S  be a  semigroup, U a  subset of S  containing e, the 

identity of 5 , and A  a  subset of S  such th a t U n  A jL 0 and (U fl A )2 C A.  

We define the relatively free {A,U)  semigroup, denoted by R F (A ,  U), to  be the 

one obtained by forming the free semigroup F r ( A n U )  and then dividing out the
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smallest congruence relation a on Fr(ACiU) which identifies words (aj,  0 3 ) of length 

two with the corresponding word aiOa of length one in the case « i , «a, Oiaa €  AHU.

In this section we arc mainly interested in the case when A = S  and U is 

an open neighborhood of the identity of S.  In this case we denote R F ( A  n  U) by 

RF(U).  Since a  is a  congruence relation we have th a t RF{U)  is indeed a  semigroup. 

If U is a  locally compact and a  -compact neighborhood of the identity of S  and a 

is a  closed congruence, then by Proposition 3.1.4 and Theorem 1.3.5 we have tha t 

R(U)  is actually a topological semigroup. Therefore wc want to find conditions tha t 

make a  a  closed congruence.

3 .1 .6  D efin itio n . Let U be a neighborhood of the identity of the topological 

semigroup S.  A word tit €  Fr(U)  is derivable by a conti'nction from the word 

w’ = ai * ii2 * . . .  * an if iu — «i * <i2 * - -. (it_3  * * a*+i * . . .  * an for some

1 < i <  n, where G U. We say that the word w is derivable by an expansion

from the word w* = a\ * ai  * . . .  * o„ if w =  oj * 02  * . . .  * Oi-i * o * a ' * a*+i * . . .  * an , 

where at = aa1 with 0 , a' € U. Wc say th a t the word w is directly derivable from 

the word w' if w is derivable from w' by a contraction or an expansion.

Note tha t if tu is derivable by a  contraction from the word w* then lcngth(w) =  

length(« /) — 1. If w is derivable from the word w' by an expansion then length(w) =  

length(w ') +  1 .

3 .1 .7  D efin ition . The word w is derivable, from the word w' if there exists a 

finite sequence t«o, * - • < w» witli w = wo, ru' = wn and tu; is directly derivable 

from

We define now the following relation p on Fr(U)  where U is a  neighborhood 

of the identity of tin; topological semigroup S.  The words w and w1 are p related 

(we write wpw1) if w is derivable from »/. It is easy to sec that p is an equivalence 

relation.
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3.1 .8  T h e o re m . Let U be an arbitrary neighborhood of the identity of a 

topological semigroup S.  The relation p defined above is a  congruence relation.

P ro o f . Suppose th a t tcprv' and z  is an arbitrary word of Fr(U).  There exist

a  finite sequence wq, wx> • • • , u>n with to =  too, u/' =  ur„ and to, is directly derivable

from Consider the sequence z * wq, z * ........z * wn. Then z + w = z * wQy

z * w'  = z * wn and z + to* is directly derivable from z * wt- i .  So z * wpz  * w '. 

Similarly we can prove th a t w * zpw' * z. I

Note th a t if 0 1 , 0 3 ,0 1 0 3  E U then oj * 0 3 /10103.

3 .1 .0  T h e o re m . The relation p defined above is the smallest congruence rela­

tion that identifies oi * 0 3  with the product 0103  on the condition tha t 0 1 , 0 3 ,0 1 0 3  E 

U. In other words p  =  a.

P ro o f. Let a  be a congruence relation on Fr(U)  such that ai * 0 3 0 0 1 0 3  on the 

condition th a t 0 1 , 0 3 ,0 1 0 3  € U. We have to show tha t if wpw ' then w a w ' . Indeed, 

if wpw* then there exist a  sequence w o , w i , . . . , w n such that w =  wo, w' =  wn, 

and Wi is directly derivable from iot_i for all i. So by the transitivity of a  it 

is enough to  show th a t W iaiiq-i. Suppose that 10, is derivable from uv,_i by a 

contraction, i.e., suppose that u/»_i =  »i + 03  * . . .  * a*_i * * . . .  * op and uq =

0 1 *0 3 * . . .  *Ojt_ 2  * (ojt_iOfc) * . . .  * ap. Since a*_i * a*aa*_ia*  and a  is a  congruence 

relation, we have th a t a i * 03 * . . .  * a *_ 3  * Ofc-t * 0 * 0 0 1 0 3  « . . .  * a * _ 3  * (a*^ia*). 

Multiplying this relation in the right hy o*+J * . . .  * op wc get tha t w ,_iaw ;. |

Now we want to find conditions for p to be a  closed congruence.

3 .1 .10  T h e o re m . Let U be a  compact neighborhood of the identity of a 

topological semigroup S.  Let a  be the smallest congruence relation that identifies 

words of length two with their product in Fr(U).  Suppose tha t for every pair of 

words (to, u/') such that waw'  there exists a  sequence w q , W \ ,  . . . ,  to„, with w =  u /q ,  

w* — wn such that to, is directly derivable from ic,_ 1 for 1 < t <  n  and n  < M ,
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where A/ is an integer th a t depends only on the length of the words w and w'. Then 

a  is a  closed congruence relation and RF{U)  is a  topological semigroup.

P ro o f . Let (wa , w^) be a  net in a  th a t converges to (w ,w ' ). We have to  show 

th a t (w, w f) €  o. Since waow'a , there exists a  sequence wq , tn“ , . . , ,  such tha t

u/f is directly derivable from j , wa =  Wq and w'a =

Since w €  //■®nsth(,t,)T which is an open subset of F r ( l / ) ,  and w a converges to 

w , we have tha t wQ is eventually in Therefore, there exists fi such tha t

Ufa e Va > (3.

Similarly, w'a €  V« > fV. Taking fi" > innx(fi,fi'), we have that

u/a £ t / lcn*th(u,) and w‘a €  Uu'"*th{w') Va >  fi". Since n (a )  <  M  Va, the net 

n (a )  converges to some integer ft < M ,  passing to a  subnet if necessary, and 

since the set of positive integers is discrete wc have that n (a )  =  n eventually. 

Therefore we can assume that n (a )  — n  Va > f i" . Since w f  is directly deriv­

able from w a, we have tha t Va >  fi" w f  6  u  £/iength(u>)+1 Sjnce

the set u  [/ieugtli(u/)+i j8 compact, we can assume that tuf* converges

to a  point wj €  t / leu*tbt - 1 u  , passing to  a  subnet if necessary. If

w\  G then by continuity of multiplication we have th a t u>i is directed

derivable from w by a  contraction, since w f  e  j/i«»gth(w)-i eventually. Similarly, if 

ufi 6  then «fi is directly derivable from w by an expansion. A similar

argument shows that tv f  converges to w, for i < n  and that wt is directly deriv­

able from u»,_i. Since wq = w and wn — w1 wc have th a t (w,w')  G a. Since U  

is compact by proposition 3.1.3, F r(U ) is locally compact and a -compact, topo­

logical semigroup. By the Lawson Madison theorem, theorem 1.3.5, RF(U )  is a  

topological semigroup. g
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3.1.11 D efin ition . Let S  be a  topological semigroup, T  an algebraic aemigrop, 

and U C 5  a  neighborhood of the identity of S.  A function /  : U -+ T  is called a  lo­

cal homomorphism if whenever 0 1 , 0 3 ,0 1 0 3  € U we have th a t / ( o j aa )  =  / ( a i ) / ( a 3 ).

3.1 .12  P rop osition . Let S  be a  topological semigroup, T  an algebraic semi­

group, and f  : U T  a  local homomorphism, where U is a neighborhood of the 

identity of S.  Then /  extends uniquely to a  homomorphism on RF(U).

P ro o f . If f  : Fr(U) -* T  is the unique extension of /  to a  homomorphism 

defined in F r ( t / ) ,  define /  : JIF{U) - » T  by /(ir(w )) =  /(to ) where ir : Fr(U) -*■ 

RF{U)  iB the canonical map. Suppose th a t ir(w) =  7r(t//), then there exists a 

sequence u>o, tu i , . • •, wn of elements of Fr(U)  such tha t w =  u?0, w'  =  wn, and toi 

is directly derivable from for all 1 < t <  n. To show that /  is well defined is 

enough to prove that }{wx) =  ) for all 1 <  t < n. Indeed, if 10, is derivable

from tOj_j from an elementary contraction, then there exist 0 1 , 0 3 , . . .  , a p such that 

Wi-i = a\ + a? * . . .  + aii-i * a* + . . .  * ap and tô  =  ai * 03 * . . .  * ajt-a * (ofc^iOfc) * 

afc+i ♦..  .*op. Now, /(«%) =  / { a i ) / ( a 2) . . .  / ( a t _ 3 ) / ( a fc_ 1Ofc)/(afc+i ) . . . / ( o p), and 

since /  is a  local homomorphism, wc have tha t /(ofc_ia*) =  / ( o j t - i ) / ( a fc)* hence 

/(to ,)  =  / ( t o , _ i ). Clearly /  is the unique homomorphism tha t extends / .  g

It is easy to  see th a t the composition map U —► F r(U ) —► RF(U )  is a  local 

homomorphism.

3.1 .13  T heorem . Let G be a  topological group, S  C G  a locally causal simply 

connected, locally causal path  connected, and locally right divisible topological 

subsemigroup, and U C S  a  compact neighborhood of the identity of S  such th a t any 

two causal paths on U with the same end point are causally homotopic and such that 

any point in U can be joined with the identity with a causal path  totally contained 

in U. If RF(U)  is obtained from Fr{U)  by dividing out a  closed congruence relation, 

then R F ( l f )  is isomorphic to T(5).
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P ro o f . The map i : U  —► F(5) defined by t(x) =  [a], where a  : [0 ,1] -¥ U  is a 

causal path  such that a ( l )  — z , is a  local homomorphism. By proposition 3.1.12, 

there exist a  unique homomorphism h : RF{U)  -* T(5) such th a t h o j  =  t, where 

j  : U  —► R F (U )  is the canonical map. By Lawson's theorem RF(U )  is a  topological 

semigroup. Since the canonical map j  : U -¥ RF(U )  is a  local homomorphism, by 

theorem [2.2.2 ] there exist a unique homomorphism V : T(5) —> RF(U)  such tha t 

V ot =  j .  Again by the universal property of T (5) the map h o h f — identity of I'(S') 

and by the universal property of RF{U)  the map h* o h — the identity of RF(U).  

Therefore F (5 ) and R F(U)  arc isomorphic semigroups. I

3.2 S em lg ro u p a  w ith  c o m p a tib le  h o m o to p y  s t ru c tu re .

3.2.1 D efin ition . Let G be a topological group and let S  be a  subsemigroup. 

We say that S  has a compatible homotopy structure if

(i) S  is pathwisc connected, jmthwisc locally connected, and semilocally simply 

connected;

(ii) the identity e is in S  and in the closure of the interior of 5;

(iii) two causal patlis arc causally hoinotopic if and only if they are homotopic.

It is shown in [9] that for semigroups with compatible homotopic structure, 

we can identify T(5) with a  certain subscmigroup of the simply connected covering 

semigroup. It is also shown in [9] that the Orshankii semigroups have a  compatible 

homotopic structure. Here wc present another example.

3.2.2 D efin ition . A Lie algebra L is called almost abelian if there is a  hyper­

plane ideal N  such that:

(i) [JV,iV] =  (0},

(ii) there is a  functional € L such that [x,n] — u>(x)n for all x  G L  and n  €  N.  

The almost abelian Lie algebras arc characterized by the following theorem.

For a  proof see [5].
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3.2 .3  T heorem . For a finite dimensional Lie algebra L  the following sta te­

ments are equivalent:

(1) L  is almost abelian.

(2) Every hyperplane in L  is a  Bubalgcbra.

(3) Every vector space in L  is a  subalgcbra.

(4) Every cone W  in L  is a  Lie semialgebra.

(5) Every half space is a  Lie sciuialgcbra.

For an almost abelian Lie algebra L, pick a Lie group G  such th a t the expo­

nential m ap exp: L —► G is onto. It is a well known fact tha t the exponential map 

is a diffeomorphisin from a neighborhood of zero in L  into a  neighborhood of the 

identity of the group G. The Cainpbcll-Hausdorff multiplication formula extends 

to  L  and (L, *), where the symbol * represents C H multiplication, is a  group. Thke 

a  cone C  in L, then (C, +) is a  subscmigroup of (L. *). Furthermore, each ray in C  

is a  one param eter semigroup with respect to  the Cainpbcll-Hausdorff multiplica­

tion. therefore, arguments similar to those given in examples 2.1.3 and 2.3.2 show 

th a t tha t the semigroup (C, *) satisfies the conditions of the definition 3.2.1 and 

therefore it has the compatible homotopic structure. Therefore according with the 

above remark we can identify T(C) with a subscmigroup of the simply connected 

covering semigroup of C.

3.3 E xam ples.

Let G  be a  topological group, S c G a  subscmigroup, and U a  neighborhood of 

the identity of G  such tha t UCiS generates S.  Then the injection m ap i : UClS -* S  

is a  local homomorphism and the extension m ap 4>: Fr(U  O S)  -► S  is a  surjective 

homomorphism. Consider the canonical map w : Fr(U  0  S) —► R F (U  0  S ) and the 

m ap <j>: R F (U H S)  —> S  defined by ^(ir(tu)) =  Clearly, the map 0  is also onto,

and it is always true th a t the kernel relation of the map x, K(ir), is contained in the
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kernel relation of the m ap 4>, K{4>). It is easy to  see th a t if K (n )  =  K{4)  then 4> is 

an  isomorphism. In other words, to show th a t 4> is an isomorphism, we need to  show 

th a t if x i, X3 , . . .  , z n, y \ w , . . . ,  ym arc elements of S  with x j x j  . . .  xn = yxy% . . . y m 

then ir(xi * x? * . . .  * xn )=x(yi  * 1/3 * . . .  * ym). To illustrate the above technique, 

consider the following examples:

3.3.1 E x am p le . Let G  =  R", S  =  C = a  cone in Rn , and U =  f l(0 , c) 

the unit ball centered a t the origin of R". If x i , x a , . . .  , x„,  y i . ya , . . . ,  ym € U H C  

and *• =  H iL i  y*’ tf1011 wc sliOW *i * xa * . . .  • xn =  y\ * y j * . . .  * ym in 

R F (U  fl C).  In this case wc can suppose th a t n =  m  filling up with zeros if 

necessary. Observe th a t for each t, *r(x») =  ir ((£x») * “ ,̂™e, *(£ ir»))' ^  is

easy to see tha t the number of operations needed to pass from the word Xi to the 

word (£ x f) * {^z, )* “ *( £ z , ) is bounded by the integer n. In this particular

case we have th a t for all i, j ,  ( £x, )  * ( £xj )  =  (£x j )  * ( £x,).  Observe tha t to pass 

from the word ( £ x , ) * ( £z_,) to the word ( £x_,) * ( £ x t ) two operations are necessary 

, first an elementary contraction and then an elementary expansion. Observe also 

th a t

jr(xi * X2 * . ■ - * X„) — jrf {— Xi ) * ( — X2 ) * . . .  * ( — Xn)* 11 M.'V®*\  n n n

. . .  * ( - x j )  * ( ~ x 3) * . . .  * ( - x „ )  y
n n  n  /

and th a t is possible to pass from one word to the other by a  number of elementary 

operations bounded by 3n3.

Observe now that,

7f(x 1 * Xj *

=  * i v i  * m  * -•* * Wn).
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A simple computation shows th a t the number of elementary operations needed to 

pass from the word * x j * . . .  * x n to the word y\ * y? * . . .  * yn is bounded by the 

integer 8 n 2.

In this example we liavc shown that K(-n) =  K(4>) and therefore C  is isomorphic 

to R F (U  n  C). We can also choose U to be a  compact neighborhood of zero, for 

example take U to be the closure of B (0,1). Wc also showed in this example th a t

the conditions of theorem 3.1.13 are satisfied and therefore RF(U )  is isomorphic to

r (C).
3.3.2 E x am p le . For another example, consider S  = [1, +oo) with the ordinary 

multiplication, as a  subscmigroup of the positive real numbers, U =  [1 ,1  +  c] where 

€ is a  positive real number. If t i ,  f a , . . . ,  tnt . . . ,  sm €  [1,1 +  e] and t f a  . . .  t n =

*1*3 ■■■*«» then in 7?F([1,1 +  c]) we have th a t ti  * fa * . . .  * t„ =  «i * «a * • ■ ■ * sm .

Indeed, let’s prove the affirmation for the cases m  =  1 and m =  2 and for an 

arbitrary u. If t ita . . .  t„ — then

t l  * f3 ♦ . . - * *« =  (*1*3 ) ♦ *3 * • - • * tn — ((*1*3 ) <3 ) * . . . * t n =  . . . =

so the case m  =  1 has been proved. Let's consider now the case m  =  2.

Suppose th a t =  »i«2 - Let k  be such that 11^3 . . .  £ jt— 1 < <

11*2 - - ■ let f) be such tha t t f a  ■ ■ ■ tk - i f t  =  *1 * It is clear tha t 1 <  fi < 1 +  e. Pick 

7  € (1,1+f] such that S17  =  t\t<x . . .  tfc. Therefore wc have that Si7 t*+i . . .  t n = Si«a 

and dividing both sides of this equation by *1 we get tha t 7 t*.+i. . .  t n =  *2 which 

implies by the previous case that 7  *f*+i * . . .  * t„ — s3 in 7?F([1,1 +  e]. Multiplying 

both sides of this relation in the left by sj wc get that

* 7 * tfc+l * ■ ■ • * tn -  *1 * *2 . (1)

but by the previous case;, we have that

ti * f2 + . . .  * tfc-i *(i -  s i. (2 )
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Combining equations (1) and (2) we get

ti  + t3 * • - + U - i  * P * K  + U +i * • ■ • * tn =  *i * *2 - (3)

But since t* =  P * 7  we finally have tha t

t\ * t j  * > • < * tn = 8 \ * &2 -

From equation (3) it is clear that the number of steps necessary to pass from 

ti * t3 * . . .  *tn to q  * by a  finite number of elementary contractions and expansions 

is equal to n.

For the general case, suppose by induction that the claim is true for all integers 

k  such th a t k < n  and k < m.  Suppose that t i t 3 . . . t n =  s i s 3 . . . s m. Let k  

be an integer such that M 3 . . . tfc_i <  *\ <  t i t 3 ...t*.. Pick p  and 7  such that 

t \ t i  • ■ > fjt-i/? =  si and

s i7  =  M a • ■ • *k- (4)

Hence 0 7  — t*., and therefore t i f 3 . . .  t fc_i07f t+i .. - t n =  s i «3 . . .  sm or equiv­

alently, s i 7 tjt+ i •..  t n =  s i »2 ■ • ■ s m. Dividing this last relation by we get that 

7 tfc+i . . .  t„ = 82 . . .  s m and therefore by inductive hypotheses we have tha t 7 H +1 *

. . .  * t n = 82 * . . .  * sm - Multiplying this last relation by on the left of both sides

of the equation we get

«i * 7 * *fc+i * • • ■ * t n — si * 82 * . . .  * «m. (5)

Combining cquatious (4) and (5) we finally have that

t\ * t 3 + . . . * tfc + ffc+l * . • . * t n =  *1 * *2 * • - • *

It is easy to see that the number of steps required to pass from the word

ti * t2 * . . .  * tn to the word jq + s3 * . . .  * sm by a finite number of elementary
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contractions and expansions is equal to nm  — n  — k (m  — 1) <  rim. Hence the

both [l,oo) and r([l,oo)).

3 .3 .3  E x am p le . Let’s see now an example in a  non commutative semigroup. 

Consider the group

and S 2 ~  {(x,x — 1 ) : 1 < x}, then ait easy computation shows th a t S  — S i£ 3  — 

S jS j. For notational convenience, we write (x ,0 ) € S i, as [x] and (y , y  — 1) € S3 

as (y), then we have th a t (y)(x] =  [xi](l/t) where x x =  x y  — y +  1 and y x — xy**+ t -

Consider now Se =  {[x](y) : xy <  1 +  «}, then in R F ( S t )s the element 

fciKvOfcsKva)-•■[*«](Vn) reduces to [xi ] . . .  [xm](yi ) . . .  (j/*) and one always ob­

tains the same numbers for i j . . . . ,  x„, and 1/ 1, . . . ,  yt..

3 .4  C o n c lu sio n s

For a locally causally simply connected, locally causally path  connected, and 

locally right divisible topological semigroup 5, wc define a  uniformity for T(S) and 

hence a  topology. W ith the uniform topology, multiplication is continuous a t the 

identity of T(S) and in the second variable. Furthermore, if S is a  nice semigroup 

then the map [a] t-t a ( l ) : T (S )  —► S is continuous. Therefore T(S) satisfies a 

universal property. If U is a  com [met neighborhood of the identity of the topological 

semigroup S, then under suitable hypothesis the relatively free semigroup RF(U )  

is a  topological semigroup which is algebraically isomorphic to T(S). We conjecture

hypotheses of theorem 3.1.13 are satisfied and therefore /2F([0 ,1]) is isomorphic to

and the semigroup

Wc identify the m atrix
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th a t if S  is a  nice semigroup then th a t isomorphism is also a  homeomorphism, i.e., 

is a  topological isomorphism, and T(5) is actually a  topological semigroup. We 

also conjecture tha t if C  is a  cone in an almost abelian Lie algebra then T(C) is 

isomorphic to  C.
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