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ABSTRACT

For a topological semigroup §, Lawson constructed a semigroup I'(S) with the
property that any local homomorphism defined in a neighborhood of the identity of
S to a topological semigroup T extends uniquely to a global homomorphism defined
on I'(S). In this work we obtain conditions on S to topologize the semigroup I'(S)
via an uniformity such that the extended homomorphism is continuous and such
that I'(S) is a topological semigroup. We also investigate a different approach of the
problem via the relatively free semigroup RF(U) where U is a suitable neighborhood
of the identity of § and show that RF(U) is isomorphic to ['(S).



CHAPTER 1

1.1 Introduction.

A very interesting property of the universal covering Lie group G is that any
continuous local homomorphisin defined in a necighborhood of the identity of the
group G into a topological group H extends uniquely to a continuous global homo-
morphism from G into H. One way of constructing the universal covering group G
is by forming the homotopy classes of paths originating from the identity. In [9] this
construction is modified for a topological semigroup §. A certain subclass of paths
originating from the identity, called causal paths, are considered and the notion
of causal homotopy is defined. The semigroup I'(S) of causal homotopic classes
of paths is considered and it is showed that this semigroup satisfies a universal
property.

In this work we obtain conditions on S to topologize the semigroup I'(S) via
a uniformity. With this topology any continuous local homomorphism defined in a
neighborhood of the semigroup § into a topological semigroup T extends uniquely
to a continuous homomorphism from I'(S) into T. We also establish a functorial
property of I'(S) and show that it preserves the semidirect product of semigroups.

We investigate a different approach to the problem of topologizing I'(S) by
constructing the relatively free semigroup RF(U), where U is a suitable neighbor-
hood of the identity of §. The relatively free semigroup is obtained from the free
semigroup Fr(U) by dividing out a closed congruence relation. We prove that
I'(S) is isomorphic to RF(U) and show some techniques to construct I'(S) for some
semigroups.

This is an introductory chapter. Here, we present a recapitulation of the fun-

damental results that are nccessary to develop the main part of this work, which is
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given in the next two chapters. In chapter 2, we deal with the problem of topol-
ogizing I'(S), and in chapter 3, we construct the relatively free semigroup RF(U)
and show that it is actually isomorphic to I'(§).

1.2 Relations

A relation on a set X is a subsct of the cartesian product X x X. f U is a
relation the inverse relation U=! is the set of all pairs (z,y) such that (y,z) € U.
It is easy to see that (U~!)"! = U. If U = U~! then U is called symmetric. If
U and V are relations, then the composition U o V is the set formed by all the
pairs (z, z) such that for somne y it is true that (z,y) € U and (y,2) € V. The
composition is an associative operation on the sct of all the relations on X, in other
words, Uo(VoW) = (UoV)oW, and it is always truc that (UoV)~! = V-1oU-1,
The set of all pairs {z,z) for = € X is called the diagonal or the identity relation
and it is denoted by A. If £ € X we define U[z] as the set of all y € X such that
(z,y) € U. The relation U is called transitive if (z,y) € U and (y, z) € U implies
that (r,z) € U. i.c., U is transitive if and only if UocU C U. If A C U then U
is called reflezive. A relation U is called an equsvalence relation if it is symmetric,
reflexive, and transitive. The subset T = {y € X : (z,y) € U} is called the class of
z modulo U. The sct X is a disjoint union of all the classes modulo U, and the set
of all classes, denoted by X /U, is called the quotient set of X modulo U.

1.3 Semigroups and congruence relations

1.3.1 Definition. A semigroup is a non- cuupty set S together with an asso-
ciative multiplication {z,y) = xy from § % § into §. If § has a Hausdorff topology
such that multiplication is continuous, with the product topology on § x §, then §
is called a topological semigroup.

1.3.2 Definition. If S and T are semigroups, a function h: § = T is called a

homomorphism if h(zy) = hiz)h{y) for each z.y € S. If h is8 one to-one and onto,
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h is called an isomorphism. If § and T are topological semigroups and h is both an
isomorphism and a homeomorphism, then A is called a topological isomorphism.

1.3.3 Definition. A relation R on a semigroup S is said to be left [right]
compatible if (a,b) € R and z € § implies that (za,zb) € R [(az,bz) € R)], and
compatible if it is both left and right compatible. A compatible equivalence relation
on a semigroup is called a congruence relation.

1.3.4 Proposition. Let S be a semigroup and let R be a congruence on §S.
Then S/R is a semigroup under multiplication defined by (7(z),7(y)) = w(zy),
and x : § — S/R is onto.

The following result is known as the Lawson-Madison theorem. For a proof
see [2].

1.3.5 Theorem. Let § be a locally compact o -compact topological semi-
group and let R be a closed congruence relation on §. Then §/R is a topological
semigroup.

If S and T are semigroups and ¢ : § = T is a homomeorphisin, we denote by
K(¢) the relation {(z,y) € S x §: $(z) = ¢(y)}.

The following theorem is known as the first isomorphisin theorem. The proof
is straightforward and is left to the reader.

1.3.8 Theorem. Let S and T be semigroups and let ¢ : § = T be a surjective
homomorphisim. Then K{¢) is a congruence on § and there exist a unique algebraic
isomorphism v : S/K(¢) = T such that Y on = ¢ where 7 : § 5 S/K(¢) is the
canonical map.

1.4 Uniformities and the uniform topology

In this section we recall standard facts about uniform spaces (see (7).

1.4.1 Definition. A uniformity for a set X is a non--empty family U of subsets
of X x X such that:



a) each member of U contains the diagonal,
b)ifUelU,then U™ €U,
c)ifUeld,then VoV C U for some V in U,
d) if U and V are members of 4, then UNV € U,
e)ifUeUandUCV CXx X, thenV e€ld.
The pair (X,U) is called a uniform space.
1.4.2 Definition. A subfamily B of a uniformity I/ is a base for U if each
member of U containg a mcmber of B,
If B is a base for U, then B determines U cntirely, for a subset IV of X x X
belongs to U iff U contains a member of 8.
1.4.3 Definition. A subfamily S is a subbase for U if the finite intersections
of members of S form a base for U.
1.4.4 Theorem. A family B of subsets of X x X is a base for some uniformity
for X if and only if:
a) each member of B contains the diagonal A,
b) if U € B, then U~! contains a member of B,
c)if U€ B,thenVoV C U for some V € B,
d) the intersection of two members of B contains a member of B.
Proof. The proof of this theorem is straightforward and is left to the reader.
For the if part, consider the set U forined by all subscts of X x X that contains a
member of B, show now that I is a uniformity having B as a basis. [
1.4.5 Theorem. A family S of subscts of X x X is a subbase for some
uniformity for X if:
a) each member of 8§ coutaing the diagonal A,
b) for each U € S the set U~! contaius a member of S,

c)foreach U € S thereis Ve Ssuch that VoV C U.
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In particular, the union of any collection of uniformities for X is the subbase

for a uniformity for X.

Proof. Let B be the sct of all finite intersections of members of S. Since each
member of S contains the diagonal A, the same is true for any finite intersection of

members of S.

Take U = UyNnUzN...NU, with U; € S for all 1, then there exists V; € S with
V.-CU,-_', if V=NV, then V C U™},

Take again U = Uy nUsN...NU, with U, € S, there exists V; € S such that
VioV,CcU. fIV=nV;thenVoV CU.

Finally the intersection of any two members of 8 is again a member of B.

We have proved that all the conditions of last theorem are satisfied. Therefore

the family B is a base for some uniformity for Y. 2

If (X,U) is a uniform space, the topology T of the uniformity U/, or the uniform
topology, is the family of all subsets T of X such that for each =z € T thereisa U € U
such that Ulz] C T

1.4.6 Proposition. The family 7 defined above is indeed a topology for X.

Proof. Consider the family {Tq : @ € 2} where T, € T for each a € Q, if
z € UgaenTa then z € T, for some a € 2, hence there exists U € U such that
Ulz) € T, and therefore Ulzr] C UaenT,. If T1 and T are members of T, and if
z € T) NT; there exists U and V clemients of U such that Ufz) € T} and V|[z] € T3.
Therefore, Ulz] N V([z] = (U 0 V)[z]) C Ts N T3. Which proves that 7 is a topology
for X. .

1.4.7 Theorem. The interior of & subset A of X relative to the uniform

topology is the sct of all points x such that Ulz] C A for some U € U.



Proof. We have to show that the set
B = {ze€ A:Ulz] C A, for some U in U}

is open relative to the uniform topology. It is clear that that set B surely contains
any open subset of A, if we show that I is open, then it must necessarily be the
interior of A. If z € B, then there is a member U of U such that U[z] C A and there
is Vinl suchthat VoV C U. If y € V[z], then V[y] C (V o V)[z] C U[] C 4,
and hence y € B. Thercfore V[z] C B and B is open.

It follows immediately that U[z] is a neighborhood of z for each U in the
uniformity U, and consequently the family of all sets Ulz] for U € U is a base for
the neighborhood systemn of z. Therefore we have the following result.

1.4.8 Theorem. If B is a base (or subbase) for a uniformity U, then for
each = the fanily of sets Ulz] for U € B is a basc (subbase respectively) for the
neighborhood system of z.

1.4.9 Lemma. If V is symmetric, then VoUoV = u{V[z]x V[y] : (z,y) € U}.

Proof. By definition

VolUoV = {(u,v): (u,r) e V.(z,y) e U,(y,v) €V, forsome z,y€ X}
= {(u.v) : u € V[z},v € V[y].(z.y) € U}.
But u € V[z] and v € V[y] if and only if (u,v) € V|[z] x V[y], hence
VoUoV ={(uv): (4,v) € V[z] x V[y] for some (z,y) € U}
= U{V[e} x V]) : (z.9) € U},
.

1.4.10 Theorem. If U is a member of the uniformity U, then the interior of

U is also a member of U; consequently the family of all open symmetric members

of U is a base for Y.
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Proof. If M C X x X, then the interior of M is the sct of all pairs (z,y) such
that U[z] x V[y] C M for some VU € U. Since UNV € U it is easy to see that

int(M) = {(z,y): V[z] x Vly] C M for some V €U}.

If U € U there exists a symimetric member V of W such that VoV oV C U
and according to the previous letnma Vo VoV = U{V[z] x V[z} : (z,y) € V}.
Therefore V C int(U). Which implies that int(U) € Y. ]

1.4.11 Theorem. The closure relative to the uniform topology of a subset A of
X is N{U[A] : U € U}. The closure of asubset M of X x X is N{UoMolU : U € U}.

Proof. z€ Aifandonly if U[z]NA # 0 YU eU.ButUlzjnA £ 8 if ze€
U ~}[A), and since each member of U contains a synunetricmember,z € A iff z €
U[A] for each U € U. The first statement is then proved. Similarly, if U is a
symmetric member of U, then Ulzg] x Ulyj N M # 08, M Cc X x X, iff (z,y) €
Ulu) x U[v] for some (u,v) € M, that is, iff (z,y) € U{U[u] x U[v] : (u,v) € M}. By
the lemma, this last set is cqual to Uo Mo U. So (z,y) e Miff (z,y) e Uo MoU
foreachU € U, ic,

M=n{UoMoU:ucl).

.
1.4.12 Theorem. The faniily of closed symmetric niembers of a uniformity U

is a base for Y.
Proof. If U € U, and V is a member of U such that VoV oV C U, then
V € VoV oV in view of the preceding theorem; hence U contains a closed member
W, take for exmnple W = ¥V, and W n W~} is a closed symmetric member of U
contained in U. .

1.4.13 Theorem. A uniform spacc is a regular topological space.



Proof. By the preceding theorein, the family
{V]z]: V is a closed symnmetric member of U},

is a basis for the neighborhood system of z. 8

It follows immediately for this last theorem that a uniform space is a Hausdorff
topological space if and only if each sct consisting of a single point is closed.

1.5 Uniform structure on groups

In a topological group G we can define a couple of uniformities, called the left
and right uniformities respectively, such that the uniform topologies induced by
them are compatible with the original topology of the group. Let’s define the right
uniformity. The left uniformity can be defined similarly.

Let’s denote by U the neighborhood system of the identity of the group G. For
V € U we write Vy = {(z.y) € G x G : zy~! € V}. Consider the set A = {V;:
V € U}. It is clear that the diagonal A is contained in Vy for each V € U. Since the
relations yz~! € V and zy~! € V-! are cquivalent, we have that V! = (V1),,
and hence Vd-l € A. It is also clear that (UNV)y C UsNVy. Finally, given U € U,
pick V € U such that V2 C U then it is easy to show that Vo0 V; C Uy, Therefore
the set A satisfies the conditions of definition 1.3.1, and hence it is an uniformity
for the group G. Since Vy[z] = Vz we have that the topology induced by the
right uniforinity coincides with the original topology of the group G. In general the
right and the left uniformitics of a group G are different, but they define the same
topology on the group G.

The following is a very useful result about topological groups.

1.5.1 Proposition. Let G be a topological group. The uniformity defined by
({(z,y) : VN Vy #£ 0}) {(x.y) : zV NnyV # 8} is the left uniformity (is the right

uniformity) respectively.
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Proof. For V € U, set Vi = {(z,y) : y~'z € V}; Vi = {{(z,y) : zV N yV # B);
A={Vi:velU}); and B={Vi:ve€ld}. We prove that A = B by showing that
any element of A contains an element of B and that any element of B contains an
element of A. Indeed, pick V e U, if (z,y) € V;, then y~'z € V, this implies that
zV NyV # 0. Therefore, V; C Vi.. Hence B C A. On the other hand, if V € U, pick
W € U such that WW =1 Cc V. If (z,y) € Wy then zW NnyW # 0. This implies
that y~lz € WW~! C V. Thercfore Wy C V;. Hence A C B. 2

1.5.2 Proposition. Let G be a topological group and let § C G be a sub-
semigroup such that the identity of G is in int(S). Then the uniformities defined
by the following bases are equal:

1) {Vo:V eld}, where V, = {(z,y) €S x §:z" 'y € V},
2) {Vo: Veld}, where Vi, = {(x.y) € S x §: zV NyV # B},
3){Ve.:Velu}, where V.= {{z,4) € SxS:2(VNS)Ny(VNS) # 08}

Proof. That the uniformitics defined by the bases 1) and 2) are equal follows
immediately from 1.5.1. Let’s prove that that the uniformitics defined by the bases
2) and 3) are equal. Indeed, pick V € U; if 2(V N S)Ny(VNS) # @ then
2V NyV # 0. Therefore V, C V, this implies that V; is in the uniformity generated
by {V. : V € U}. Hence, the uniformity gencrated by the base defined by 2) is
contained in the uniforinity generated by the base 3). To show the other inclusion,
pick V € U. Set Q = V Nint(S) # B, since 1g € int(S). Take s € Q and sct
W = Qs~!, then W € . We show that W, C V.. If (z,y) € W, then zWNyW #£ 0,
i.e., there exist ¢;, g3 € Q such that q;s~! = ygzs~!. This implies that zq; = yg3,
hence zQNyQ # §. But Q = VNint(S) C VNS, therefore t(VNS)Ny(VNE) # 9,
and thercfore W), C V... This proves that {V.: V € U} C {V, : V € U} and therefore
the unifornity gencrated by the base defined by 3) is contained in the uniformity
generated by the base defined by 2). 2



10

1.6 Wallace’s lemma

The following theorem is one of the most useful tools in the area of topological
semigroups.

1.6.1 Theorem. Let X, Y and Z be topological spaces, 4 a compact subset
of X, B a compact subset of Y, f: X x Y — Z a continuous function, and W an
open subset of Z containing f(A x B). Then there exists an open set U in X and
anopenset VinY suchthat ACU, BCV,and f(UxV)CW.

Proof. Since f is continuous, f~!(W) is an open set in X xY containing A x B.
For each {z,y) € A x B, there exist open sets M and N in X and Y, respectively,
such that z € M, y € N, and M x N C f~}(W). Since B is compact, for fixed
x € A, there are open sets M,y,..., M, in X containing z and corresponding open
sets Ny..... NomYsuchthat BCQ=NyU...UN,,. Let P=M, Nn...NM,.
Then Pisopenin X, QisopeninY, x € P, BC Q,and P x Q C f~Y(W). Since
A is compact, there exist open scts Py, ..., Py, in X and corresponding Q,,...,Qm
openin Y suchthat BCV =0Q,N...NQmand ACU = P U...UP,. Tt follows

that U and V are the required open sets. s



CHAPTER 2

2.1 Causal paths

We begin this section with the following definition:

2.1.1 Definition. Let S be a topological semigroup with identity 15. Let
a: [0,1} = S be a path on § such that a(0) = 15. The path « is called a causal
path if the following property is satisfied: Given U a neighborhood of 1g, there exists
¢ > 0 such that whenever 8,t € [0,1] with s < t < 84 ¢, then a(t) € a(s) - U, i.e.,
a(t) = a(s)u for some u € U. Given cansal paths «: [0,1) =& S and 8:[0,1] = S,

we define the concatenation a*3:[0,1] - S by

4= a(2t) for 0 <t <1/2,
= a()B(2t-1) for1/2<t<1.

2.1.2 Definition. A subsct W of a real topological vector space L is called a
cone if it satifies the following conditions:
HW+WcCw,

(i) RY - W C W,
(iii) W = W, that is, W is closed in L.

2.1.3 Example. In the additive semigroup C = {(z,y) € R? : z > 0,y > 0}
consider the path a(t) = tX where X is a unit vector in C. Given a neighborhood
U of the identity of C pick a positive real number ¢ such that the intersection of
C and the ball B(0,¢) is contained in U. If s,t € [0,1] with 8 < t < 3 + ¢, then
alt) = a{s) + (t — s)X. Clearly the vector (t —~ 8)X is in U. Observe that a similar
argument shows that rays through the origin are causal paths in an arbitrary cone
in R".

The next example generalizes the preceding one.

2.1.4 Example. Let S be a topological semigroup, and a : [0,00] = S a

one parameter subsceimigroup. Then ajg 5) is a causal path of S. Indeed, given a

11
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neighborhood U of the identity, pick ¢ > 0 such that if 0 < z < ¢, then a{z) € U.
That can be done by the continuity at zero of the path a. If s,t € [0,1] with
s <t<8+e¢ then a(t) = a(s)a(t — 8). Sincet —s < ¢, then a(t —s) € U.

2.1.5 Example. Let a : I =& G be any path in a group G such that «(0) = 1,
where I is the closed unit interval. Given a neighborhood of the identity U of G
we can choose a positive number ¢ such that if s,t € J with s <t < 8 + ¢, then
a{s)~'a(t) € U. Therefore in a group any path is a causal path.

2.1.6 Proposition. Let A : § = T be a continous homomorphism from the
topological semigroup $ to the topological scinigroup T'. If « i8 a causal path in S,
then h(a) is a causal path in T,

Proof. Let U be a neighborhood of 17. Then h~1(U) is a neighborhood of 15.
Let € > 0 be such that if s,t € [0, 1] with s <t < 8 + ¢, then at) = a{s)u for some
u € U. Since h is a homomorphism we have that (h o a)(t) = {(h o a)(s)h(u) with
h{u) e U. [

2.1.7 Proposition. Tlic coucatenation of two causal paths in a topological
semigroup is again a causal path.

Proof. Let a and 3 be causal paths in the topological semigroup §, and let
U be a neighborhood of the identity of §. Pick a neighborhood W of the iden-
tity of S such that W3 c U. Let ¢; > 0 and e2 > 0 be chosen corresponding
to W, in the definition of causal paths for a and J respectively. Take 0 < € <
min{e; /2. €2/2). Suppose that 0 < 5 <t < 5 + ¢, then we have the following three
CRBCS!
1)0<9<t<1/2,2)1/2<s<t,and3) s<1/2<t.

In case 1) (a*3)(8) = a(2s) and (axF)(t) = a(2t). Since 23 < 2t < 28+ ¢, we
have that a(2t) = a(2s)w for some w € W and therefore (a * §)(t) € (a « 3)(8)U.
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In case 2) (a*»8)(t) = a(1)3(2t — 1) and (a»F)(s) = a(1)8(2s — 1), again since
2s < 2t < 28 + €3, subtracting 1 from this inequality we get that 2s —1 <2t -1 <
25 — 1 + €5, hence 8(2t — 1) = 3(2s — 1)w for some w € W. Multiplying this last
identity by a(1) we get (a * 8)(t) = (a*» G)(s)w, i.e., (a*F)(t) € (a* 3)(s)U.

In case 3} we have that 25 < 1 < 2t < 25+ 2¢ < 1+ 2¢, which implies that 2s <
1 < 23 + ¢;. Hence, a(l) = a(28)w, for some w; € W. Also, since 1 < 2t < 1+ 2¢
which is equivalent to 0 < 2t — 1 < ¢; we have that §(2t — 1) = B(0)wy; = w; for
some w; € W. Now: (axf8)(t) = a(1)5(2t - 1) = a(2s8)ww,; € o23)W? C a(28)U,
which completes the proof of the proposition. [ ]

We introduce now the notion of causal homotopy.

2.1.8 Definition. Let o, 8 : [0,1] = § be causal paths in S with the same
end point i.e., a(l) = B(1). A causal homotopy hetween a and G is a continuous
function H : [0,1] x [0,1] = S satisfying:

a) H(t,0) = a(t) for all ¢ € [0, 1),
b) H(t,1) = B(t) for all ¢t € [0,1],
c) H{0,s) = 1g, and H(1,8) = a(l) = #(1) for all s € [0,1],
d) the path v,(t) = H(t, 3} is a causal path for all s € [0, 1].

Two paths are said to be causally homotopic if there exists a causal homotopy
between them. If H is a causal homotopy between the causal paths a and 3, we
write H : a ~ 3.

2.1.9 Proposition. The relation of causal honiotopy is an equivalence relation
on the set of causal paths, and the concatenation operation induces a well defined
associative opceration on the set I'(S) of causal homotopy classes of causal paths.

Proof. Let § be a semigroup and lct a be a causal path in §; then the map
H :[0,1] x [0,1] - S defined by H{t,s) = a(t) satisfies H : a ~ a. In other

words, the relation of causal homotopy is reflexive. Suppose now that H is a causal
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homotopy map between a and 4. Then the map F(t,s) = H(t,1 — 8) is a causal
homotopy map between § and a, which means that the relation of causal homotopy
is symmetric. Suppose now that F: a ~ g and G : 3 ~ -, then the map defined by

_J F(t,23) for0<s<1/2,
H(""’)‘{G(t,za—l) for 1/2<s< 1

is a causal homotopy map betwecen a and 4. So the relation of causal homotopy is
transitive. We have proved that the relation of causal homotopy is an equivalence
relation. We denote by [a] the causal homotopy class of the causal path a. We
define a product in I'(S) by [a][f] = [a*F). If F:a ~ a' and G: 8 ~ ' then the
map defined by

_J F(2t,8) for 0 <t <1/2,
H(t,8) = {a(l)G(2t —1.5) for1j2<t<l,

is a causal homotopy map between a + 8 and o’ » @, i.e., [a)[8] = [«'][8'], and
therefore the concatenation induces a well defined product in I'(S).

For the last part of the proposition, consider the causal paths o, 7, and w.
Define

a(gﬁ) for 0 < s < 1/4(t + 1),
F(s.t)={ o(l)(4s—t—1)  for 1/4(t + 1) < s < 1/4(t + 2),
a(l)r(l)w(iﬂgz‘fE) for 1/4(t +2) < s < 1,

to establish (o * 7} » w ~ o x (7 +w) in I'(S).

So I'(S) has the structure of a scinigroup with an identity. N

2.2 Universal properties of I'(5)

Let I'(S) denote the semigroup of causal homotopy classes of causal paths in
the semigroup §, with the semigroup operation of concatenation.

2.2.1 Definition. A local homommorphism on § is a function ¢ from a neighbor-
hood of the identity U of S into a semigroup T endowed with a Hausdorff topology

for which left translations are continnous satisfying:
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i) If a,b,ab € U then a(ab) = o(a)o(b),
ii} o is continuous on U.

The next theorem is a major one. For a proof sce [9]

2.2.2 Theorem. Let § be a subsemigroup of a topological group &G which
contains the identity e in the closure of its interior, and let U be an open set of
G containing e. Let 0 : SNU — T be a local homomorphism. Then there exists
a unique homomorphism & : I'(S) = T, such that d([a]) = o(a(l)) whenever
a: 0,1} = G is a causal path such that of[0,1)) cUNS.

2.3 The uniform topology of I'(S)

Qur goal now is to define a suitable topology on ['(S') that makes it a topological
semigroup. To do this, we define a uniformity on I'(S) and then we will consider
the topology induced by that uniformity which we will call the uniform topology of
I'(s).

2.3.1 Definition. A topological semigroup is called locally causally simply
connected if there exists a neighborhood U of the identity such that any two causal
paths with the saine end point and completely contained in U are causally homo-
topic.

2.3.2 Example. Lect a be an arbitrary causal path in the semigroup C defined
in the example 2.1.2. Counsider the causal path defined by 3(t) = ta{l). Then a
and 3 are two causal paths in C with the same end point. We show that a and 3
are causally homotopic. Indeed, we define the map H : I x I = C where [ is the
closed unit interval by:

_J 2a(t) for s <t,
H(a,t) = {ctr(s) fort < a.

Clearly H is a causal homotopy map between a and 8. So the semigroup C is

causally simply connected,
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2.3.3 Definition. A topological semigroup is called locally causally path con-
nected if there exist a basis of neighborhoods {U, : a € {1} of the identity such that
any point in U, can be connected with the identity by a causal path completely
contained in U, for any a € 2.

2.3.4 Definition. A topological semigroup is said to be locally right divisible if
given a neighborhood U of the identity, there exist a neighborhood V of the identity
such that Va,b € V there exist z,y € U such that az = by.

2.3.5 Example. Consider again the semigroup C given in the example 2.1.2.
Clearly the family {B(0,¢) N C : € > 0} is a basis of neighborhoods of the identity
of C that satisfies the condition of the definition 2.3.3, thereforec C is a locally
causally path connected semigroup. Let U be a neighborhood of the identity of
C. SetV=U IfXYeVike A=Y and B= X, clearly X + A=Y + B,
and A, B € U. So C is a locally right divisible topological semigroup. The same
argument shows that any coonmutative semigroup is locally right divisible.

2.3.6 Notation. For a ncighborhood U of the identity of a topological semi-

group S we denote by U and [[} ] the following scts:
U = {[a) € T(8) : a(]0,1)) C U},

and
[0 = {([a].[8]) : [2)[O) N [BI[0] # 0}

2.3.7 Theorem. Let S be a locally causally simply connected, locally causally

path connected, and locally right divisible topological semigroup. Then the family
A= {[{0]): U C § with U open and 15 € U}

is a basis for a uniforinity of I'(S).
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Proof. We will show that the family A satisfies the conditions of Theo-
rem 1.4.5. For [y] € T'(S), we have that [y]I/ N [y]0 = [y]U # @ since [] € (1)U,
hence ([7],[7]) € [U), i.e., the diagonal A is contained in [U/] for each open subset
of S that contains the identity. Clearly [[/]~! = [[]). If U and V are neighborhoods
of the identity of S, then [U N V] C [U] N {V], so the intersection of two members
of A contains a member of A. So conditions a), b), and d) of theorem 1.4.5 are
satisfied. Let’s prove now that condition c) is also satisfied. Let U be a neighbor-
hood of the identity of §. Since S is locally causally simply connected, we can pick
a neighborhood of the identity W C U such that any two causal paths in W with
the same end point are causally homotopic. Pick a neighborhood V of the identity
such that V2 C W and such that any point in V can be joined with the identity
by means of a causal path completely contained in V. This is possible since S is
locally causally path connected, and by the continuity of multiplication. Finally,
since S is locally right divisible, we can pick V’ C V such that for all a,b € V'
there exist z,y € V such that az = by. We claim that [V*] o [V’] C [U]. To prove
the claim, pick ([a],[3]) € [V'] o [V']. Let [y] € T(S) such that ([a],[v]) € [V’
and ([v].[8]) € [V']. Therefore, there exist a,, p; with i = 1,2, and o,([0,1]) C V",
pi([0,1]) C V' such that

[ale1] = [¥]lps] (1)

and

[lio1] = [B][os] (2)

Now take z,y € V such that oy(1)x = o3(1)yy. By the way V was chosen,
there exist 7;, 73 causal paths in V such that r(1) = y and 73(1) = z. Hence,
(o1%73)(1) = (o3%71)(1). Therefore, (oy1+73)([0.1]) C V2 C W and {03+, )([0,1]) C

V? ¢ W. Since any two causal paths in W with the same end point are causally
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homotopic, we conclude that
[01 * 13) = oz * ). (3)
Multiplying equations (1) and (2) on the right by [r;] and [r3] respectively, we get

[7llp2](7:] = [allp:][n] (4)

and
loa]lra] = [Bllea][7)- (5)

Now combining equations (4) and (5) we get that {3){og * 13] = [a][p; * 71], but
(o2 +1)([0.1)) CVEC W CU and (;m + 11 [0,1]) € V3 c W c U, which means
that [B)U N [a]U # @, thus ({a], [8]) € [0], and therefore [V?] o [V'] < [U]. 8

2.3.8 Theorem. Let S be a locally causally simply connected, locally causally
path connected, and locally right divisible topological semigroup. With the uniform
topology, multiplication is continmous at the identity of I'(S).

Proof. Let [U)([e]) be a ncighborhood of [e], the identity of the semigroup
I['(S). We may assume that U is a ncighborhood of the identity of § with the
property that any two causal paths in U with the same end point are causally
homotopic. Let V be a neighborhood of the identity of § with i/z C U and such
that for any z € V there cxists a causal path vy : [0,1] = V with y(1) = z. Let
W be a neighborhood of the identity of § such that W C V and such that for all
a,b € W there exist z,y € V with ar = by. Finally, pick W' with W? Cc W.
Consider [W')([¢]); if [0].[7] € {W'](le]) then there exits oy,02, 71,72 : [0,1] = W/
such that

[0+ a1] = [o3], (1)

and

[r* 1) = [ra}. (2)
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Now, observe that (o; s 7 % 7, )(1} = 6,{1)(7 * 11 )(1) = 01(1)73(1), but &y(1)3(1) €
W2 cCcW. Also, (7+71)(1) = Ta(1) € W C W3 C W. So there exist z,y € V such
that () * 7 * 71)(1)z = (7 * 1, )(1)y. There exist o, : [0,1] = V causal paths such
that a{l) = z and 8(1) = y. Thercfore (o, s T sy xa)(1l) = (T + 71 « G)}1), ie,
(o1 # 12 + a)(1) = (12 + B)(1) and (713 » B)([0,1])) C WV C V? C U. Also, we have
that (0, * 2+ )([0,1) CW'W'V CWV CVICU.

Since any two causal paths in U with the same end point are causally homo-
topic, we have that

[r2 » 8] = [o1 % T3 * a]. (3)

Multiplying equations (1) and (2) we get: [0 * 0y * 7 » 1] = {03 * 13]; therefore
we conclude that

[c*xoys7+7y xa] =02 %72 *a] (4)

Combining equations (2), (3), and (4) we obtain [cx 771y = 8] = [o3 » T3 * a].

Now, (11*3)([0,1])) € W'V € V2 C U and (o2+ma+a)({0,1})) c WV CV C U,
i.e., [0 * 7) € [U)([¢]). This meaus that multiplication is continious at the identity
of I'(S). s

2.3.9 Theorem. Let S a be a locally causally simply connected, locally
causally path connected, and locally right divisible topological semigroup. Then
multiplication is continuous in the second variable.

Proof. Let [a),[8] € T'(S), cousider {U]([a * B]), & neighborhood of [ * §] in
I'(S). Consider now [U}([8)]). & neighborhood of [4] in T'(S). If [] € [U)([B]), there
exist 11,72 : [0, 1] = U such that [y+v,] = [8+72), therefore [asy* 7] = [@as8*7;),
i.e., [a*q] € [U)(fa 3] (]
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2.4 Uniformity structure on semigroups

We saw in 1.5 that the topology of a topological group can be described in
terms of the right and left uniformities. The same technique does not work for
topological semigroups due to the absence of inverses for the elements of the semi-
group. However, it is possible for some semigroups to define a uniformity closely
related to the right and left uniformities of a group. We investigate in this section
the kind of semigroups for which this is possible and atudy the relationship between
the original topology of the semigroup and the topology induced by the uniformity.

Let S be a locally right divisible semigroup. For a neighborhood V of the
identity of § we define Vy as the sct of all pairs (z,y) € § x § such that zVNyV # 0.
Consider now A = {V;: V is a neighborhood of 15}.

2.4.1 Theorem. Let S be a locally right divisible topological semigroup. The
family A of subsets of § x § defined above is a uniformity for $.

Proof. It is straightforward to see that Vd'l = V4 and that A C V4 for any
neighborhood of the identity of the semigroup §. It is also clear that (UNV}s C
Ug N V4 for U and V neighborhoods of the identity of §. Let U be an arbitrary
neighborhood of the identity of the semigroup S. By the continuity of multiplication,
we can choose a ueighborhiood W of the identity of S such that W2 c U. Now, since
S is a locally right divisible semigroup, we can pick a neighborhood V C W of the
identity such that Va,b € V there exist z,y € W such that az = by. Finally pick a
neighborhood V' of the identity of § such that V2 C V. Take (z,y) € VjoVy, there
exists z € § such that {z, 2} and (z,y) are clements of V). Therefore, there exist
', 2, 2",y clements of V' such that zx' = 22’ and 22" = yy'. By theway V' and V
were chosen, there exists z;,y; € W such that 2'z; = 2"y;. Combining this relation
with the previous two relations, we get that zz’zy = 22t = 22"y = yy';n. Now,

e VW Cc W2 C U and ¢y, € VW ¢ W2 C U aud, therefore (z,y) € Uy.
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We have proved that V' o V' ¢ U. We have shown that the family A satisfies the

conditions of the definition 1.4.1, and therefore it is a uniformity for S. [
The uniform topology of the semigroup § could be different from the original

topology of S. In the rest of this chapter we are assuming that they are equal.

2.4.2 Definition. A topological semigroup S is called nice if its topology is
compatible with the uniforin topology and it satisfies definitions 2.3.1, 2.3.3, and
2.3.4.

2.4.3 Example. For a subscimigroup S of a group G such that 15 € int(8)
we saw in the proposition 1.5.2 that the uniforin topology of S is compatible with
the relative topology of §. Therefore the class of these semigroups that satisfies
the conditions given in the definitions 2.3.1, 2.3.3, and 2.3.4 are examples of nice
semigroups. Particularly, cones in R™ are nice semigroups.

2.4.4 Proposition. If § is a nice topological semigroup, the map {a] = a(1) :
I'(S) = S is continuous,

Proof. Let V be a neighborhood of a(1). Pick a neighborhood U of the identity
such that Ug(a(1)) C V. Consider [[7][a), which is a neighborhood of a in T'(S).
If {3] € [U]([a)), then there exist 3,07 : [0,1] = U such that [3 * ;] = [a « o3].
Therefore, #{1)o;(1) = a(l)az(1}). Since both o,(1) and o3(1) are elements of U,
we have that (1) € Ug(a(1)}). ]

2.5 Functorial properties of I'(S)

2.5.1 Theorem. Let S and T be nice topological seinigroupsandlet h: § =+ T
be a continuous homowmorphism. Then the map ki : T(S) = T(T) defined by
h(la]) = [h(a)] is a continuous homomorphisin,

Proof. We have that i([a)[8]) = ([« * 8]) = [k(a * 8)], but

_ [ a(2t) for 0 <t < 1/2,
‘“ﬂ‘{a(l)ﬁ(m—l) for 1/2<t < 1.
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Then

_ | h{a(2t)) for0<t <1,
h{{a * B(t)) = {h(a(l))h(ﬁ(zt —1)) for1j2<t<1.

Therefore, h([a][8]) = [(h o a) » (ho B)) = (ho a][h o 8] = h([a])h([B]). This
proves that % is a homomorphism.

Let’s sce now that | is continuous. Take [a] € T'(S), and consider [I)([A o a))
which is a neighborhood of h([a]) in I'(T'), where U is a neighborhood of the identity
of T. By continuity of &, there exists a ncighborhood V of the identity of § such
that A{(V) C U. Now, if [3] € [V]([a]), then there exist 01,03 : [0,1] = V such that
Blio1] = [alloz). Therefore, K(BDA(n]) = F((a)F([oa]). but F([o1]) and F([os))
maps the intcrval [0, 1) into U. In other words, i([8]) € [O)([A([a))).

Clearly if i : § — § is the identity homomorphism, then 1 : ['(S) - I'(S) is the
identity homomorphism of the semigroup I'(S).

Also, if h : § 2 T and g : T = U are continuous homomorphisms, then
(hog)([a]) = [(hog)(a)] = [Mg(a))] = R([g(a)]) = (k0 §)([a]), therefore (o g) =
hog.

If h: § — S is an invertible hotnomorphisi, then by the preceding results, we
have that i = (ho h-1) = ko (h=T). In other words, (k)~! = (h-1). s

2.6 Direct and semidirect products

Let §; and S2 be topological semigroups. Suppose we have a homomorphism
h from S| to the semigroup Aut(S3) of automorphisms of Sy such that the maps
(81,83) — h{81)(82) : 1 x S3 = Sz and (a1, 83) — (h(81))"(2) : S1 x Sz = S; are
continuous. Then in the cartesian product §; x §; we define a new operation given
by (z1, 1 ){x2,y2) = (z1h{y1)(z2), y1172). The set §; x §3 with this new product is
called the semidirect product between §; and §3 and it is denoted by §; x §3. Then

we can define a structure of a semidireet product between the semigroups I'(S))
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and I'(S;) via the composition T'(S3)—=S3— Aut(S;)—2» Aut(I'(S))), where « is
the endpoint homomorphism and ¢ is defined by (¢(f))}([]) = [f o] If we set
%y = ¢ o honw then it is clear that P(Sg)i) Aut(r'(S;)) is a homomorphism. This
homomorphism is given by the formula (¥([58])){[7]) = [M(B(1)) 0 4]. So therefore,
we can define I'(5;) x I'(53) as it was done above.

In what follows we prove that the semigroups I'(S; x S3) and I'(§;) x [(S3)
are actually isomorphic. But first, let's prove the following:

2.6.1 Theorem Let S); and Sz be topological semigroups. Suppose we have
defined a semidirect product §) x S3 via the homomorphism Sg—hb Aut(S;). Then
a x 3 is a causal path in §; x S3 if and only if a is a causal path in S; and F is a
causal path in 3.

Proof. Suppose that a x { is a causal path in §; x $3. Since the projection
map on the second coordinate 7 : §; X S3 = 57 is a continuous homomorphism,
by proposition 2.1.5 we have that 3 is a causal path in §;. Let’s see that a is also
a causal path in S). Let U he a neighborhood of e;, the identity of $;. The map
F :[0,1] x {ey} = 8, defined by F(s,e;) = h(B(s))(e;) = e; € U is continuous.
Therefore, by Wallace's lemma, there exists V open in §; with e; € V such that
F([0,1) x V) Cc U. In other words, h(((s)){v) € U for all v € V. Consider now
the set V x 53, which is a neighborhood of (e;,e3). Then there exist ¢ > 0 such
that if s <t < s+ € then (aft),3(t)) = (a(s), B(8)){v1,v3) with (vy,v2) € V x §3.
Therefore, aft) = a(s)h(B({s))(v1) € a{s)U.

Suppose now that a and 8 are causal paths in 8§, and S, respectively. Let’s
prove that a x G is a causal path in §) x §;. Let U; x U; be a neighborhood of
(e1,e3) the identity element of Sy x §3. Consider the map G : [0,1] x {1} = §,
defined by G(s,¢e,) = h(8(38))~}(e1) = e € U,. Since G is continuous, by Wallace’s

lemma, there exists a neighborhood V of e; in §) such that G([0,1) x V) C U;. In
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other words, h(3(s))~'(v) € U, for all s € [0, 1] and for all v € V. Now, pick ¢ > 0
such that if s <t < s + ¢ then a(t) = a(s)v and F{t) = G(s)u for some v € V and
some u € U. Then (a(s), B(s)(h(8(s))"}(v), u) = (a(s)v, B(s)u) = (a(t),5(t)) and
(h(B(8))"}(v), u) € U x Us. .

2.6.2 Theorem. Let S;—2 Aut(S;) be a homomorphism, where S; and S; are
topological semigroups; and suppose that the maps (s;,33) = h(s;)(23): S1 xS =
Sz and (8),52) = (h{#))"(s2) : §1 x S3 = S3 are continuous. Then the map
¥ : [(5; x $3) = T(8)) x T(Sz) defined by ¥([a.0)) = ([a],[5]) is a semigroup
isomorphism.

Proof. Take {[a],[8]) € T(S)) x ['(S3). Then by the previous theorem, [a x ]
is an element of I'(S; x S3). Therefore ¥ is clearly onto. Let’s see now that ¥ is one-
to—one. Suppose that ([a), [8]) = ([#].{p]). Then there exists a continuous function
F :[0,1] x [0,1] = S} such that F(t,0) = a(t) for all t € [0,1], F(t,1) = o(t) for all
t € [0,1), F(0,5) = ¢; for all s € {0,1}, F(1,8) = a{l) = o(1) for all s € [0,1] and
the path F,(t) = F(t, 8) is a causal path for all fixed s € [0, 1].

Also, there exists a continuous function G : [0,1] x {0,1} = S; such that
G(t,0) = fA(t) for all ¢ € [0,1], G(t. 1) = p(t) for all ¢ € [0,1], G(0,s) = e; for all
s € [0,1], G(1,8) = (1) = p(1) for all 5 € [0,1], and the path G,(t) = G(t,s) is a
causal path for all s fixed in [0, 1].

Define now the map F x G : [0,1] x [0,1] =+ S} x S3 by F x G(t,s) =
(F(t,s).G(t,s)) then clearly,

F x G(t,0) = (F(t.0), G(t,0)) = (a(t),A(1)),
F x G(t,1) = (F(t,1),G(t, 1)) = (a(t), p(t)),
F x G(0,5) = (F(0,8),G(0,8) = (e1,¢2)

F x G(1,8) = (F(1,s),G(1, 8)) = (a(1),3(1)) = (a(1), p(1)).
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Also, according with the above theorem, (F x G).(t) = (F,(t), G,(t)) is a causal

path in §; & S3. So we have proved that (a,3) is causally homeotopic to (o, p). In
other words [(a, 8)] = [(o, p)], which proves that ¥ is one to one.

Let’s see now that ¥ is a semigroup homomorphism. By the definition of the

product of causal paths we have that [(a, 8)]((o, p)] = [(«, B) * (o, p)], but

_ [ta.8)20) 0<t<1/2,
(@f)+(0.p) = {(a.m(n(a.p)(zt —1) 1/2<t<1/2

_ [{a.B)2t) 0<t<1/2
= Ua(DR(BO1) 0o, B)p)(2t - 1) 1/2<t< 1.

= (a,B) * (0, p)(t) = (a = h(H(1) 0 0,0 » p)(t),
so therefore,
¥([(c. B)][(0, p)]) = ([(a % h(B(1)) 0 &)], [(B * p)])
= ([a][(5(1)) o o)}, [Bllo)) = ([al. [B])([o]. [o])
= ¥([(x. B)])¥({(0. p)])-

This proves that ¥ is a homomorphism. [}



CHAPTER 3

3.1 The free and relatively free semigroups
3.1.1 Definition. Let X be a Hausdorff topological space. The free topological

semigroup Fr(X) on X is defined as the set
FriX)=XuX?uXxiu...,

where the union is a disjoint union, the topology on X" is the product topology,
and each X™ is open in Fr{X). So aset A C Fr(X) is open iff AN X" is open for
all n. Members of X" are viewed as words of length n, and the semigroup operation

on Fr(X}, denoted by o, is the juxtaposition of words,
(al,....a,,.) o] (b],... .bn) = (ﬂ.],... ,ﬂm.bl,... ..b,.).

3.1.2 Proposition. The sct Fr(X) with the topology and multiplication of
words defined above is indeed a topological semigroup.

Proof. We necd to prove that multiplication is continuous. Let (a),...,an)
and (b;,...,b,,) be clements of Fr(X), and let U be open in Fr(X) such that
ab = (a;,...,am,b1,...,b,) € U. By the definition of the topology of Fr(X) the
set U N X™*™ js an open subsct of X™+™. Thercfore, there exists Uy, Us, ..., Upngn
open subsets of X such that a e W =U, xUs x ... x Uy, b€V =Upyy X Upnya X
v X Upgnand WV = Un XMt C U a

3.1.3 Proposition. If X is locally compact, ¢ -compact, and Hausdorff, so is
the space Fr(X).

Proof. If X is locally compact then by the Tychonoff Theorem we have that
X" is locally compact for all n. Since the disjoint union of a countable family of
locally compact spaces is locally compact, we have that Fr(X) is locally compact.

Similarly, if X is o-compact so is X" for all n. Since the disjoint union of a

26
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countable family of o—compact spaces is again o-compact, we have that Fr(X) is
o—compact.

Let a,b € Fr(X) witha # b. Thena € X" and b € X™ for some integers n, m.
If n # m then X™ and X™ are disjoint neighborhoods of a and b respectively. If
n = m, then since X™ is Hausdorff there exists U and V disjoint open subsets of
X™ with a € U and b € V. By the definition of the topology of Fr(X) it is clear
that U and V are also open in Fr(X). (]

3.1.4 Proposition. The topological semigroup Fr{X) is the free topological
semigroup on X in the sense that any function into a topological semigroup § ex-
tends uniquely to a homomorphism from Fr{X) into §. The extension is continuous
if and only if the original function on X is continuous.

Proof. Given a function f : X — S, then the function f : Fr(X) = S
define by f(x..... v In) = flx)f{zq)... f(z,) is a homomorphism that extends
f. Clearly f is the unique extension of f to a homomorphism define on Fr(X).
Suppose that f is continuous. Let U be an open subset of S containing the product
flz)f(=3) ... f(x,). Since multiplication is continuous, there exists open subsets
Uy, Ug,..., U, in 8 such that f(z;) € U, foreach {, and Uy x Uz x ... x U, C U.
Since f is continuous, there cxists for cach i a set V; open in X with z;, € V;
and such that f(V;) C U, for each i. Now (z),....2,) € V; x Va x ... x V, and
f NixVeax...xV,)cU. Thus f is continuous,

Since [ is the restriction of £ to the open set X, it turns out that £ is continuous
provided that f is continuous. e

3.1.5 Definition. Let § be a semigroup, U a aubset of § containing e, the
identity of S, and A a subsct of § such that UN A # @ and (U N A)? C A
We define the relatively free (A,U) semigroup, denoted by RF(A,U), to be the

one obhtained by forming the free semigroup Fr(A NU) and then dividing out the



28

smallest congruence relation o on Fr(ANU) which identifies words (a;, az} of length
two with the corresponding word a)as of length one in the case a,,a3,a;a2 € ANU.

In this section we are mainly interested in the case when A = S and U is
an open neighborhood of the identity of S. In this case we denote RF(ANU) by
RF(U). Since o is a congrucnce relation we have that RF(U) is indeed a semigroup.
If U is a locally compact and o -compact neighborhood of the identity of § and ¢
is a closed congruence, then by Proposition 3.1.4 and Theorem 1.3.5 we have that
R(U) is actually a topological semigroup. Therefore we want to find conditions that
make o a closed congruence.

3.1.6 Definition. Let U be a ncighborhood of the identity of the topological
semigroup S. A word w € Fr(U) is derivable by a contraction from the word
w =ay*xaz*... *a, ifw=ay%azs...a,_q*(a,_10,)*a,4, *...*a, for some
1 < i <n, where a;_ a8, € U. We say that the word w is derivable by an erpansion
from the word w' = ay*a3 ... *a, ifw=a,*az*...xa,_1*a*xa’ *xa;;1%...%a,,
where a; = aa’ with a,a’ € U. We say that the word w is directly derivable from
the word w' if w is derivable from w' by a contraction or an expansion.

Note that if w is derivable by a contraction from the word w’ then length(w) =
length{w’') — 1. i w is derivable from the word w’ by an expansion then length(w) =
length(w’) + 1.

3.1.7 Definition. The word w is derfvable from the word w' if there exists a
finite sequence wy, wy, wa, ..., w, with w = wy, w' = w, and w;, is directly derivable
from w;_,.

We define now the following relation p on Fr(U) where U is a neighborhood
of the identity of the topological semigroup §. The words w and ' are p related
(we write wpw') if w is derivable from ', It is easy to sce that p is an equivalence

relation.
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3.1.8 Theorem. Let U be an arbitrary neighborhood of the identity of a
topological semigroup S. The relation p defined above is a congruence relation.

Proof. Suppose that wpw' and z is an arbitrary word of Fr(U). There exist
a finite sequence wg, wy,...,w, with w = wg, w’ = w, and w, is directly derivable
from w;.;. Consider the scquence z + wg, 2 * wy,...,2*w,. Then z*+ w = z + wy,
zew = z+w, and z + w,; is dircctly derivable from z * w;_;. So z * wpz * w'.
Similarly we can prove that w x zpw' x 2. "

Note that if ay,a3,a;a2 € U then a; * azpa;a;.

3.1.9 Theorem. The relation p defined above is the smallest congruence rela-
tion that identifies a; a3 with the product a;,a; on the condition that a;,a2,a,83 €
U. In other words p = 0.

Proof. Let a be a congruence relation on Fr(U) such that a; *azaajaz on the
condition that a,,a3,a;a; € U. We have to show that if wpw' then waw’. Indeed,
if wpw' then there exist a sequence wg, wy,...,w, such that w = wp, w' = w,,
and w; is directly derivable fromn w;_; for all i. So by the transitivity of a it
is enough to show that w;aw,_;. Suppose that w; is derivable from w;_; by a
contraction, i.c., suppose that w;_| = a) *ag+...*ax_1*ag*...*ap and w; =
ay*ag*...*ar_z*(ar_1a1)*...*a,. Since ax—) *araag_1a; and «a is a congruence
relation, we have that a) ez *...*ay_3*ax_; *araajag * ... *ap_g *{ag_1az).
Multiplying this relation in the right by a4y #... * ap we get that w,_ow,. (]

Now we want to find conditions for p to be a closed congruence.

3.1.10 Theorem. Let U be a compact neighborhood of the identity of a
topological semigroup §. Let o be the sinallest congruence relation that identifies
words of length two with their product in Fr(U). Suppose that for every pair of
words (w, w') such that wow' there exists a sequence wg, wy, ..., w,, with w = wy,

w' = w, such that w, is dircctly derivable from w,_; for 1 €t < nandn < M,
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where M is an integer that depends only on the length of the words w and w’. Then
o is a closed congruence relation and RF(U) is a topological semigroup.

Proof. Let (w,,w)) be a net in o that converges to (w, w’). We have to show
that (w, w’) € 0. Since waowg, there exists a sequence w§, wf', ..., wy,) such that
w is directly derivable from wil,, wa = w§ and w,, = wi,.

Since w € U'leestb(v)  which is an open subset of Fr(l/), and w, converges to
w, we have that w, is eventually in U'"8t8{w} Therefore, there exists 8 such that
w, € U'enethiv) vy > 3.

Similarly, w!, € Ulenath(v’)  yo > ' Taking 8" > max(0, '), we have that
wo € Ulensth(v) and o € Ulensth(w))  yo > 47 Since n{a) < M Va, the net
n{a) converges to some integer n < M, passing to a subnet if necessary, and
since the set of positive integers is discrete we have that n(a) = n eventually.
Therefore we can assuine that n{a) = n VYa > g"”. Since w{ is directly deriv-
able from w,, we have that Va > " w{ € Ulersthlw)=1 ) yylength(w)+] - gince
the set [lensthiw)~1 (j grleogth(w}+1 jg compact, we can assume that w{ converges
to a point wy € U'ensth{w)-1 ) pylength{w)+l ' Hogging to a subnet if necessary. If
wy € Ulensth(w)=1 thep by continuity of multiplication we have that w, is directed
derivable from w by a contraction, since w{ € U'**8*8{(w}-1 aventually. Similarly, if
wy € Uensth(wi+] thoy ) is directly derivable from w by an expansion. A similar
argument shows that w* converges to w; for i < n and that w; is directly deriv-
able from w,_;. Since wg = w and w,, = w' we have that (w,w’') € 0. Since U
is compact by proposition 3.1.3, Fr(U) is locally compact and o-compact, topo-
logical semigroup. By the Lawson-Madison thcorem, theorem 1.3.5, RF(U) is a
topological semigroup. [}
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3.1.11 Definition. Let S be a topological semigroup, T an algebraic semigrop,
and U C S a neighborhood of the identity of 5. A function f: U - T is called a lo-
cal homomorphism if whenever a,, a2,a,a3 € U we have that f{a1a1) = f(a1)f(aa).

3.1.12 Proposition. Let S be a topological semigroup, T an algebraic semi-
group, and f : U = T a local homomorphism, where U is a neighborhood of the
identity of S. Then f extends uniquely to a homomorphism on RF(U).

Proof. If f : Fr(U) = T is the unique extension of f to a homomorphism
defined in Fr(U), define f : RF(U) = T by f(nm{w)) = f(w) where x : Fr(U) =
RF(U) is the canonical map. Supposc that 7{w) = m(w’), then there exists a
sequence wy, wy,...,wy, of elcents of Fr(U) such that w = wy, w' = w,, and w;
is directly derivable from w;_; for all 1 < 1 € n. To show that f is well defined is
enough to prove that f (wg) = f(w.'_l) for all 1 € 1 < n. Indeed, if w; is derivable
from w;_; from an elementary contraction, then there exist ag, az, ..., a, such that
Wi—) =Gy *ag*...%a_1*ag*...%a, and w, = a; ¥ag *... xax.3 % (Ak..10¢) *
k41 *...+ap. Now, f(w;) = f(a1}f(83) ... f(ak_2)f(ak_10)}f(8k41) - .. f(ap), and
since f is a local homomorphisin, we have that f(agx_jax) = f(ax—1)f(ar), hence
f(w) = f(wi—1). Clearly f is the unique homomorphism that extends f. [

It is easy to see that the composition map U = Fr(U) -+ RF(U) is a local
homomorphism.

3.1.13 Theorem. Let G be a topological group, § C G a locally causal simply
connected, locally causal path connceted, and locally right divisible topological
subsemigroup, and U C § a compact neighborhood of the identity of S such that any
two causal paths on U with the same end point are causally homotopic and such that
any point in U can be joined with the identity with a causal path totally contained
inU. If RF(U) is obtained from Fr(U) by dividing out a closed congruence relation,
then RF(U}) is isomorphic to I'(S).
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Proof. The map i : U = I'(S) defined by i(z) = [a], where a : [0,1] 5 U is a
causal path such that a(l) = z, is a local homomorphism. By proposition 3.1.12,
there exist a unique homomorphism h : RF(U) — I'(§) such that h o j = i, where
j : U = RF(U) is the canonical map. By Lawson's theorem RF(U) is a topological
semigroup. Since the canonical map j : U =& RF(U} is a local homomorphism, by
theorem [2.2.2 ] there exist a unique homomorphism &' : I'(§) = RF(U) such that
h'oi = j. Again by the universal property of I'(S) the map hoh' = identity of I'(S)
and by the universal property of RF(U) the map A/ o h = the identity of RF(U).
Therefore I'(§5) and RF(U) are isomorphic seinigroups. [

3.2 Semigroups with compatible homotopy structure.

3.2.1 Definition. Let G be a topological group and let S be a subsemigroup.
We say that § has a compatible homotopy structure if
(i) § is pathwise connected, pathwise locally connected, and semilocally simply
connected;

(ii) the identity e is in § and in the closure of the interior of S;
(iii) two causal paths are causally homotopic if and only if they are homotopic.

It is shown in [9] that for scmigroups with compatible homotopic structure,
we can identify I'(S) with a certain subsemigroup of the simply connected covering
semigroup. It is also shown in {9] that the Ol'shankii seinigroups have a compatible
homotopic structure. Here we present another exanple.

3.2.2 Definition. A Lie algebra L is called almost abelian if there is a hyper-
plane ideal N such that:

() [N.N] = {0},
(i) there is a functional w € L such that [z,n] = w(z)n for all z € L and n € N.

The almost abelian Lie algebras are characterized by the following theorem.

For a proof see [5].
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3.2.3 Theorem. For a finite diinensional Lie algebra L the following state-

ments are equivalent:

(1) L is almost abelian.

(2) Every hyperplane in L is a subalgebra.
(3) Every vector space in L is a subalgcbra.
(4) Every cone W in L is8 a Lie semialgebra.
(5) Every half space is a Lie semialgebra.

For an almost abelian Lic algebra L, pick a Lie group G such that the expo-
nential map exp: L — G is onto. It is a well known fact that the exponential map
is a diffeomorphism from a neighborhood of zero in L into a neighborhood of the
identity of the group G. The Campbell-Hausdorfl multiplication formula extends
to L and (L, *), where the symbol * represents C -H iultiplication, is a group. Take
acone C in L, then (C, #) is a subsemigroup of (L, *). Furthermore, each ray in C
is a one paramecter semigroup with respect to the Campbell-Hausdorff multiplica-
tion. therefore, arguments similar to those given in examples 2.1.3 and 2.3.2 show
that that the semigroup (C, *) satisfics the conditions of the definition 3.2.1 and
therefore it has the compatible homotopic structure. Therefore according with the
above remark we can identify I'(C) with a subsemigroup of the simply connected
covering scmigroup of C,

3.3 Examples.

Let G be a topological group, § C G a subsemigroup, and U a neighborhood of
the identity of G such that U NS generates S. Then the injection mapi: UNS = §
is a local homomorphism and the extension map ¢ : Fr(UNS) = § is a surjective
homomorphism. Consider the canonical map n : Fr(UNS) =+ RF(U N §) and the
map ¢ : RF(UNS) - S defined by @(n(w)) = ¢(w). Clearly, the map ¢ is also onto,

and it is always true that the kernel relation of the map #, K{r), is contained in the
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kernel relation of the map ¢, K(¢). It is easy to sce that if K(7) = K(¢) then ¢ is
an isomorphism. In other words, to show that ¢ is an isomorphism, we need to show
that if 1,23,...,Zn, 1¥2,---,Um are elements of § with 2)23... 2, = n1y2..-¥m
then #(zy *x3 *... x z4)=n(y) *y3 * ... # ym). To illustrate the above technique,
consider the following examples:

3.3.1 Example. Let G = R", § = C = aconeinR"”, and U = B(0,¢)
the unit ball centered at the origin of R™. If xy,%2,...,Zn. V1. ¥2,-...0m EUNC
and O %, = YL,y then weshow Ty s 22 % ... 2z, = yy * Y2 % ... * Yy, iD
RF(U N C). In this case we can suppose that n = m filling up with zeros if
necessary. Observe that for cach i, n(z;) = 7 ((Lz;) » (Lz;)s o times o (12,)). Tt is
easy to see that the number of opcerations needed to pass from the word z; to the
word (-};:r:.-) * (-";z.-)t n times t(%z.—) is bounded by the integer n. In this particular
case we have that for all i, j, (1z,) = (1) = (1z;) » (1z;). Observe that to pass
from the word (-}.:::.-) *(1z,) to the word (;’;-:c,-) *( -};:1:.-) two operations are necessary
, first an elementary contraction and then an elementary expansion. Observe also

that
1r(x1 *Pg %... %L )= m (131)*(132)*...1#(13: )‘ n }i_n':m
" n n n "
1 I 1
oG s (G s (o)),
n T n
and that is possible to pass fromn one word to the other by a number of elementary

operations bounded by 3n3.

Observe now that,

oo ((8) () e (1)

(£ () ()

=A( *ya*... *Yn)-
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A simple computation shows that the number of elementary operations needed to
pass from the word x, s z2«...» z,, to the word y; s y3 * ... * ¢, is bounded by the
integer 8n3.

In this example we have shown that K (»x) = K(¢) and therefore C is isomorphic
to RF(U N C). We can also choose U to be a compact neighborhood of zero, for
example take U to be the closure of F{0,1). We also showed in this example that
the conditions of theorem 3.1.13 are satisfied and therefore RF(U) is isomorphic to
I(C).

3.3.2 Example. For another example, consider § = (1, +00) with the ordinary
multiplication, as a subsemigroup of the positive real numbers, U = [1,1 + ¢] where
€ is a positive real number. If t),¢3,... . t,,%1,83,...,8;, € [1,1+€]and t;t3... ¢, =
8183 ...8,, thenin RF([1,1 + €]) we have that ¢; st3x... 1, =8, xs3 ... % 3,,.

Indeed, let’s prove the affirmation for the cases m = 1 and m = 2 and for an

arbitrary n. If t)t3...¢, = 8; then

1 #tzt...*t“=(t1t2)¢t3¢“.ttn=((tltg)tg)t...*tn=.. 2

g0 the case m = 1 has been proved. Let’s consider now the case m = 2.

Suppose that t,t3...¢, = 882. Let k be such that t123... 8, < 8 <
titg ... 1, let B be such that titg... 4,0 = 35;. Itis clear that 1 < 8 < 1 +4¢€. Pick
v € {1, 14¢] such that 8,y = t,¢3... t;. Therefore we have that s;yteyy ...ty = 8182
and dividing both sides of this equation by 3, we get that yti,y ..., = 82 which
implies by the previous case that y*ty4 ... *t, = 83 in RF([1,1 +¢]. Multiplying

both sides of this relation in the left by s; we get that
S ¢y xtppy *...xt, = 8] * 83, (1)
but by the previous cnse, we have that

ty*tygx...*tp_1 %1 =48 (2)
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Combining equations (1) and (2) we get
tystge...otp_ynBeyntyyx...et, =8 %83 (3)
But since t; = 4 =4 we finally have that
tyxig*,. . »t, = 8] %83,

From equation (3) it is clear that the number of steps necessary to pass from
ty »tz+...%t, to 81 » a3 by a finite number of clementary contractions and expansions
is equal to n.

For the general case, suppose by induction that the claim is true for all integers
k such that ¥ < n and £ < m. Suppose that t,t3...t, = 882...8,,. Let k
be an integer such that tyt;... 63 < 8; < t1t3...t; Pick 8 and ¥ such that
titg... tp1 0 = 5 and

81y =titg... t. (4)

Hence vy = t,, and thercfore tity. ..t _187tr41 ...t = 8183... 8, OF equiv-
alently, s17vtt41...8n = 8182... 8. Dividing this last relation by 8, we get that
Yi41.. .ty = 82... 3, and therefore by inductive hypotheses we have that ytg . *
conk by = 82 % ... * 8. Multiplying this last relation by s; on the left of both sides

of the equation we get
S dywlppy ®... b, =8y * 83 %... %8, (5)
Combining equations (4) and (5) we finally have that
by *lag* . xtlp vty *... 2L, =8 %82 %...%38,,,

It is easy to sece that the mumber of steps required to pass from the word

ty *ta % ... %1, to the word 8, * 83 ... * a,, by a finite number of elementary
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contractions and expansions is equal to nm — n — k(m — 1) < nm. Hence the
hypotheses of theorem 3.1.13 are satisfied and therefore RF([0, 1]) is isomorphic to
both [1, 00) and I'([1, 00)).

3.3.3 Example. Let’s sce now an example in a non—commutative semigroup.

Consider the group

G={(g ’{) :x>0, ye R) c GL(2,R),

and the semigroup

s={(g ’{):lsz,osny—l}-

We identify the matrix (E I{) with the pair (z,y). Let S| = {(z,0): 1 < x}
and §3 = {(z.z — 1) : 1 £ z}, then an casy computation shows that § = §,5; =
§35). For notational convenience, we write (z,0) € Sy, as [z] and (y,y— 1) € S
as (y), then we have that (y){z] = [z1}(s1) where 2y = zy —y+1 and yy = 2.

Consider now S, = {[z](y)} : zy < 1 + ¢}, then in RF(S.), the element

[z1}(n Mz2lwa) - - . [zn)(¥n) rednces to [£4]...[Em}{#1) ... (§x) and one always ob-

tains the smne nmubaers for &,...., &, and #;,... . %,

3.4 Conclusions

For a locally causally simply connccted, locally causally path connected, and
locally right divisible topological semigroup 8, we define a uniformity for ['(S) and
hence a topology. With the uniforin topology, multiplication is continuous at the
identity of I'(S) and in the sccond variable. Furthermore, if § is a nice semigroup
then the map [a] = a(1):[(S) = S is continuous. Therefore T'(S) satisfies a
universal property. If U is a compact neighborhood of the identity of the topological
semigroup S, then under suitable hypothesis the relatively free semigroup RF(U)

is a topological scmigroup which is algebraically isomorphic to I'{(S). We conjecture
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that if S is a nice semigroup then that isomorphism is also a homeomorphism, i.e.,
is a topological isomorphism, and I'(S) is actually a topological semigroup. We
also conjecture that if C is a cone in an almost abelian Lie algebra then ['(C) is

isomorphic to C.
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