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Abstract

Recently, there has been a flurry of research on face
recognition based on multiple images or shots from either
a video sequence or an image set. This paper is also such
an attempt in multiple-shot face recognition. Specifically,
we propose a novel nonparametric method that first extracts
discriminating local models via clustering. We apply a hier-
archical distance-based clustering procedure according to
some distance measure on the appearance manifold to clus-
ter similar face images together. Based on the local models
extracted, we then construct the intrapersonal and extrap-
ersonal subspaces. Given a new test image, the angle be-
tween the projections of the image onto the two subspaces
is used as a distance measure for classification. Since a
test example contains multiple face images in multiple-shot
face recognition, the final classification combines the clas-
sification decisions of all individual test images via a ma-
jority voting scheme. We compare our method empirically
with some previous methods based on a database of video
sequences of human faces, showing that out method signifi-
cantly outperforms other methods.

1 Introduction

Over the past decade or so, the computer vision commu-
nity has witnessed an increasing trend in performing auto-
matic face recognition [16] based on either a video sequence
or an image set. While traditional face recognition methods
based on single-shot still images can achieve a certain level
of success under restricted conditions, their performance
is generally unsatisfactory under more realistic conditions
with significantly larger illumination and pose variations,
as commonly encountered in applications such as visual
surveillance and video retrieval. In this paper, we consider
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multiple-shot face recognition by extracting locally linear
models from nonlinear face appearance manifolds.

Some recent psychological and neural studies [10] show
that information useful for identifying a human face can be
found both in the invariant structure of features and in id-
iosyncratic movements and gestures. However, most ex-
isting face recognition methods which take into account
both cue types simply combine them in a somewhat ad
hoc manner. Moreover, continuous extraction of face re-
gions from every video frame is generally assumed, posing
a formidable challenge even to many state-of-the-art face
detection systems. This provides a possible explanation to
the finding that the video sequences available in the Face
Recognition Vendor Test (FRVT) 2002 could not lead to
performance improvement in terms of the recognition rate.
In this paper, instead of requiring that face extraction be
performed consecutively on all input video frames, we as-
sume independence between all the test images which are
assumed to be drawn from some fixed but unknown dis-
tribution on the underlying face appearance manifold. This
relaxed assumption allows our method to be applicable even
to sparse or unordered images, rather than images from con-
tinuous video sequences.

Human faces are complex visual patterns embedded in
high-dimensional image spaces. One possible approach to
the characterization of nonlinear face manifolds is to extract
discriminating information locally, and then make use of
these local models to characterize the structural variability
of the face appearance. A major contribution of this paper
is the introduction of a new method for automatically ex-
tracting local representative models from the face manifold
of each individual, where the representative models on the
manifold are locally linear patches that characterize some
discriminating information about the individual. Motivated
by the Isomap algorithm [13] for nonlinear dimensional-
ity reduction, we use a graph-based method to approximate
the geodesic distances between face images in the image
space. A hierarchical agglomerative clustering (HAC) al-
gorithm [3] based on geodesic distance is then applied to
the face images for each individual separately to form local



clusters of similar face images. These clusters thus formed
are used to build local models which will play an impor-
tant role in the subsequent classification problem. For each
local model, we construct two subspaces to characterize in-
trapersonal and extrapersonal variations. Given a new test
image, the angle between the projections of the image onto
the two subspaces is used as a distance measure for clas-
sification. Since a test example contains multiple face im-
ages in multiple-shot face recognition, the final classifica-
tion combines the classification decisions of all individual
test images via a majority voting scheme. We compare our
method empirically with some previous methods based on
a database of video sequences of human faces. Experimen-
tal results show that our method significantly outperforms
other competing methods.

2 Previous Work

Methods based on video sequences typically make use of
both spatial and temporal information simultaneously. For
example, Zhou et al. [17] use a probabilistic framework to
characterize the kinematics and identity using a motion vec-
tor and an identity variable, respectively. The sequential im-
portance sampling (SIS) algorithm is developed to estimate
the joint posterior distribution, and marginalization over the
motion vector yields a robust estimate of the posterior dis-
tribution of the identity variable. Recently, hidden Markov
models (HMM) [8] and probabilistic appearance manifolds
[7] are both used to learn the transition probabilities among
several viewing states embedded in the observation space.

Although facial dynamics, if properly modeled, are tol-
erant of appearance variations caused by changes in head
pose orientation and facial expression, they are not stable
and discriminating enough for use in real-world face recog-
nition systems. In this paper, we are interested in a more
general scenario in which the multiple images in the im-
age set may come from independent observations that are
not necessarily collected over consecutive time steps. As a
consequence, the images may have very different viewing
conditions. For such isolated observations, it is usually dif-
ficult to exploit the temporal relationships between images.
Two previous approaches to this problem are the mutual
subspace method (MSM) [15] and the probabilistic model-
ing method [12]. Both methods are based on very simplistic
modeling of face pattern variations using a single Gaussian
distribution on the face space. Apparently this restriction
is unsatisfactory for modeling face variations in real im-
ages such as video sequences. The manifold density diver-
gence method [1] relaxes the single Gaussian assumption
by using Gaussian mixture models instead. The dissimilar-
ity between estimated probability densities is measured in
terms of the Kullback-Leibler divergence. While the meth-
ods above are all parametric, Hadid et al. [4] use a non-

parametric approach which embeds the face manifold using
the locally linear embedding (LLE) [11] algorithm and ap-
plies k-means clustering in the embedding space. The clus-
ter centers then serve as local models for representing the
face manifold locally.

Our work bears resemblance to [8, 7, 4] in that all these
video-based face recognition methods make use of local
manifold models. However, our method does not explic-
itly embed the training images to a lower-dimensional space
before performing clustering, for two main reasons. First,
we want to avoid the computational requirements of the
embedding step which typically involves solving an eigen-
decomposition problem. Second, and perhaps more im-
portantly, embedding to a lower-dimensional space may
lead to information loss which can affect the subsequent
face recognition results. Instead, we make use of the es-
timated geodesic distances between face images directly in
the distance-based clustering procedure. Our classification
method has been inspired by the dual subspace method [9],
which differentiates between two classes of face variation:
intrapersonal and extrapersonal. The local discriminating
information is well captured by the two corresponding sub-
spaces as their dominating orientations are quite different.
In the next three sections, we will formulate the problem
more exactly and then present details of different compo-
nents of our method.

3 Problem Setting

Given a face database with C ≥ 2 subjects, where each
subject c (c = 1, 2, . . . , C) has a set Fc of nc images:

Fc = {fc,1, fc,2, . . . , fc,nc}. (1)

For each subject c, we construct a set of local models:

Pc = {pc,1, pc,2, . . . , pc,mc
}, (2)

where typically mc � nc.
Due to within-class variations in illumination, pose, fa-

cial expression and other factors, each subject is better rep-
resented by a collection of local models rather than a single
global model. The local models are obtained by first per-
forming clustering within the data set for each subject to
obtain local clusters which summarize representative latent
states of the face variations, and then applying linear fitting
to each local cluster.

Given a test set T = {t1, t2, . . . , tl} containing l images
of a subject whose identity is one of the C subjects in the
training database. We compare each test image ti with all
the gallery local models pc,j (c = 1, . . . , C; j = 1, . . . , nc)
obtained from the training data. The identity ki of test im-
age ti is determined as:

ki = arg max
1≤c≤C

{
max

1≤j≤nc

S(ti, pc,j)
}

, (3)



where S(·, ·) denotes the probability that a test image lies
on a local patch of the face manifold.

To determine the identity of the entire test set T , we ap-
ply a majority voting scheme to the set of individual deci-
sions {k1, k2, . . . , kl} to obtain a single combined decision.

4 Local Model Construction

As is typically the case, we represent each face image
of size r×s as a point in an rs-dimensional space. If we
obtain a set of face images for one subject from a video se-
quence, the different face images are expected to be highly
correlated and hence they typically lie on or close to a low-
dimensional manifold. The degrees of freedom of the man-
ifold correspond to within-class variations of the face im-
ages. Figure 1 shows a training set (blue dots) and a test
set (red stars) of images for the moving face of a subject
from two short video clips. The three leading principal
components of the data are shown. Although the two data
sets are obtained from two different video clips, we can see
that there is significant overlap between the two manifolds.
Moreover, the manifolds have relatively few independent
degrees of freedom.

Figure 1. The first three principal components of a train-
ing set (blue dots) and a test set (red stars) of images for
one moving face, which are automatically detected from
two short video clips.

4.1 Graph-Based Approximation of
Geodesic Distances

Unlike traditional linear dimensionality reduction meth-
ods (e.g., PCA and LDA) which often overestimate the in-
trinsic dimensionality of the face data set, recently pro-
posed nonlinear dimensionality reduction methods (e.g.,

Isomap [13] and LLE [11]) can effectively discover a low-
dimensional embedding of the manifold.

In this paper, we use the graph-based method of Isomap
for approximating the geodesic (or shortest-path) distances
between images in a face manifold. We briefly review the
method here. More details can be found in [13].

For each subject, we first construct an undirected neigh-
borhood graph with n nodes corresponding to the n images
in a face data set for the subject. Each node is connected
to its nearest neighbors determined with respect to the Eu-
clidean distance in the image space. There exist different
alternatives. In ε-Isomap, there is an edge between nodes
i and j if the Euclidean distance between them is smaller
than some threshold ε. Another alternative is the k-Isomap,
which connects nodes i and j if node i is among the k near-
est neighbors of node j, or vice versa. The edge weight
is equal to the Euclidean distance between the two corre-
sponding nodes in the image space.

The shortest path between any two nodes in the graph
can be computed using different shortest path algorithms.
For example, the Floyd’s algorithm has O(n3) time com-
plexity. There also exist more efficient algorithms, such
as Dijkstra’s algorithm (with Fibonacci heaps) which has
O(kn2 log n) time complexity. As a result, we obtain an
n×n matrix of geodesic distances. Instead of using this
matrix to embed the n points to a lower-dimensional space
as in Isomap, here we use the distance matrix directly in a
distance-based clustering procedure.

4.2 Hierarchical Agglomerative Cluster-
ing

Hierarchical clustering is a way to investigate grouping
in a data set, simultaneously over a variety of scales, by
creating a cluster tree called dendrogram. The tree does not
represent a single set of clusters, but rather a multi-level
hierarchy where clusters at one level are joined together as
clusters at the next higher level. This allows one to decide
what level or scale of clustering is most appropriate to the
specific application at hand.

To perform HAC on a face data set based on the geodesic
distances dG(·, ·) as computed above, we apply the follow-
ing procedure to obtain K clusters:

1. Each data point is initialized as a singleton cluster Ci.

2. Find the nearest pair of clusters according to the fol-
lowing distance measure between clusters Ci and Cj :

davg(Ci, Cj) =
1

ninj

∑
x∈Ci

∑
x′∈Cj

dG(x, x′), (4)

where ni and nj are the numbers of images in Ci and
Cj , respectively. The two nearest clusters are then



merged together to form a new cluster, and hence the
total number of clusters is reduced by one.

3. This merging procedure continues until the pre-
specified number of clusters (K) is reached.

The data points in each cluster are used to form a local
model. Local model construction will be discussed next.

4.3 Representation of Local Models

Given a training data set Fc = {fc,1, fc,2, . . . , fc,nc} for
some subject c (c = 1, 2, . . . , C), the hierarchical clustering
procedure described above starts with nc singleton clusters
and terminates when it reaches the number of clusters mc

specified beforehand depending on the length of the video
sequence or the number of images nc in the data set. In
our experiments, we set mc = 5 ∼ 9 depending on the
actual number of detected faces in the video clips (rang-
ing from 250 to 800). For each cluster formed, the cluster
mean (which usually does not correspond to a real image
in the data set) or the image nearest to the cluster mean
may be used as a representative exemplar. Thus subject
c uses the set of exemplars Ec = {ec,1, ec,2, . . . , ec,mc}
as a set of local models to represent the original data set
Fc. Figure 2 shows five exemplars extracted from a set
of 250 training images for one subject based on the above
two strategies (see Figure 3 for the original images and
Figure 1 (blue dots) for the low-dimensional embedding).
They seem to represent different head poses in the data set.
Hadid et al. [4] extract these exemplars in a similar way
(LLE + k-means) and then perform template matching in
an appearance-based face recognition system.

Figure 2. Five exemplars extracted from the set of 250
training images for one subject in Figure 1 (blue dots) based
on the cluster means (first row) or the images nearest to their
respective cluster means (second row).

While this exemplar-based representation is simple, us-
ing a single exemplar for each cluster may not fully charac-
terize the variability of the image data. We argue for rep-
resenting each local model not just in terms of its cluster
mean but also some discriminating information of the en-
tire cluster which is a local patch on the face manifold. For
instance, the mixture models for local dimensionality reduc-
tion in [6] construct an affine subspace for each cluster (i.e.,

Figure 3. Original images from the set of 250 training
images in Figure 1 (blue dots).

translation of a linear subspace to the corresponding cluster
mean).

5 Dual-Subspace Discriminative Classifica-
tion Method

It is commonly observed that variations between local
models for the same subject due to changes in illumination
and viewing direction are almost always larger than those
due to changes in face identity. When extracting discrimi-
nating information from a local model, a reasonable and ef-
ficient way is to consider how to distinguish the model from
the most confusing local models only within a small neigh-
borhood. Figure 4 shows the cluster centers of one local
model p and its six nearest local models that do not belong
to the same subject class as p. In such a small spatial scale,
the nearest neighbors seem to characterize faces viewed un-
der the same condition, e.g., +45 ◦ profile faces. The subtle
differences between these nearby models are more crucial to
classification than those between the faraway ones. Thus, in
the following analysis, we only consider discriminating in-
formation in the neighborhood of each local model, aiming
to concentrate on the “hard” examples only.

Figure 4. Cluster centers of one local model (left) and its
nearest local models that correspond to different subjects
(right).

5.1 Distance Measure for Local Models

Note that we have not described how to measure the dis-
tance between any two local models pi and pj . Let us de-



note the data matrices for pi and pj , respectively, as

X = [I1,i, I2,i, · · · , Iki,i] (5)
Y = [I1,j , I2,j , · · · , Ikj ,j ] (6)

where each column of X or Y corresponds to one image
in the corresponding cluster (local model). The columns of
X and Y define two linear subspaces X = span(X) and
Y = span(Y ) in the image space. A distance measure for
linear subspaces is the projection L2-norm:

distL2(X ,Y) = ‖PX − PY‖2, (7)

where PX and PY are the orthogonal projection matrices
onto X and Y , respectively, and ‖.‖2 denotes the matrix
L2-norm. The projection L2-norm is related to the largest
canonical angle (or principal angle) between two subspaces.
If the maximum canonical angle is small, the subspaces are
close to each other. In [5], Hotelling recursively defined the
canonical angles θ1, · · · , θr ∈ [0, π/2] between X and Y as

cos(θr) = max
x∈X

max
y∈Y

xT y = xT
r yr, (8)

subject to ‖x‖ = ‖y‖ = 1, xT xi = 0, yT yi = 0, i =
1, · · · , r − 1, where r = min(rank(X), rank(Y )).

A numerically stable algorithm to compute the canonical
angles was proposed by Bjork and Golub [2] based on QR
factorization of the data matrices X, Y and singular value
decomposition (SVD), as follows.

Let X = QXRX and Y = QY RY , where Q denotes
an orthonormal basis of the respective subspace and R is an
upper-diagonal matrix with the Gram-Schmidt coefficients
representing the columns of the original matrix in the new
orthonormal basis. The singular values s1, · · · , sr of the
matrix QT

XQY are the cosines of the principal angles:

cos(θi) = si, i = 1, · · · , r. (9)

5.2 Dual Subspaces

Using the distance measure defined above, we keep the
k nearest local models whose identities are different from
that of the local model p being considered. Given a training
face database with C subjects, where each subject c (c =
1, 2, · · · , C) has mc local models, we essentially obtain an
adjacency graph with

∑C
c=1 mc nodes, one for each local

model, and a set of edges connecting nodes pi and pj if
they are close enough (with respect to the k-neighborhood
criterion) and belong to different subjects. In the sequel, we
focus on each node and its neighbors in the graph since they
together contribute to the local discriminating information
that is useful for recognition. This mechanism is based on
the intuition that, for recognition, the salient features of a
local model are those that best distinguish it from all other
most confusing local models of recognition interest.

Motivated by the dual subspace representation proposed
in [9], we consider a feature space of ∆ vectors representing
the differences between two images (∆ = Ij−Ik). One can
define two distinct and mutually exclusive classes of facial
image variations: intrapersonal variations ΩI (correspond-
ing, for example, to different facial expressions and illumi-
nations of the same individual) and extrapersonal variations
ΩE (corresponding to variations between different individ-
uals). In our implementation (see Figure 5), all the differ-
ence vectors for the local model pi are calculated based on
the cluster center µi = 1

ki

∑ki

k=1 Ik,i, i.e.,

ΩI(i) = {∆ | ∆ = Ik,i − µi,∀Ik,i ∈ pi} (10)
ΩE(i) = {∆ | ∆ = Ik,j − µi,∀Ik,j ∈ pj , j 6= i}. (11)

We empirically find that the largest canonical angle between
the two subspaces is around 65 ◦ on the average, indicating
that their dominant orientations are quite different.

Figure 5. Illustration of the intrapersonal and extraper-
sonal subspaces in a feature space of the difference vectors
∆.

To determine whether a test face image It lies on any
local manifold pi, we first compute the difference image
∆t = It−µi and then measure the probability S(., .) in (3)
as follows

S(It, pi) =
1

Λ

(
| cos(θ(∆t, ΩI(i))) − cos(θ(∆t, ΩE(i)))|

| cos(θ(ΩI(i), ΩE(i)))|

)
, (12)

where θ(∆t,ΩI(i)) (or θ(∆t,ΩE(i))) is the largest canon-
ical angle between ∆t and the intrapersonal (or extraper-
sonal) subspace with respect to pi, and Λ is a normalization
factor which ensures that S(., .) is a probability measure.
The denominator | cos(θ(ΩI(i),ΩE(i)))| balances the in-
fluence of different local models on the probability measure
according to their respective discriminability. Specifically,
the smaller θ(ΩI(i),ΩE(i)) is, the less one should rely on
the measurement from model pi. Using the canonical angle



as a distance measure for comparison is reasonable since we
only deal with locally linear patches on the face manifold,
as opposed to global methods such as MSM [15].

6 Experiments and Discussions

We have performed extensive experiments on a 40-
subject video data set, which possesses large pose variation
and moderate differences in facial expression and illumi-
nation. Each subject is found in two video clips, one for
training and one for testing, captured using a video camera
at a rate of 30 frames per second for about 15-30 seconds.
We use the ‘AdaBoost + Cascade’ face detector of Viola and
Jones [14] to detect the face in each video frame. The faces
are successfully detected in about 2/3 of the frames. All
the detected faces are resized to gray-level images of size
45×40, followed by a histogram equalization step to elim-
inate the lighting effects. The examples shown in Figure 6
are representative of the variations in the data set.

Figure 6. Representative images of two subjects from the
data set used in our experiments.

We perform experiments on the following methods:

1. Nearest neighbor template matching with exemplars
extracted by:

(a) Random selection from the training set

(b) PCA + k-means clustering

(c) LLE + k-means clustering [4]

(d) Geodesic distance approximation + HAC

2. Mutual subspace method (MSM) [15]

3. Kullback-Leibler divergence method [12]

4. Our dual-subspace discriminative method

For all exemplar-based methods and our dual-subspace
discriminative method, we use a majority voting scheme to
combine the decisions of individual frames to give the final
classification result. Specifically, let us assume that there
are C classes and a test video sequence contains K frames.
We use variables δij (i = 1, . . . , C; j = 1, . . . ,K) to repre-
sent the decisions of the K frames, such that δij = 1 if the
jth frame is decided to belong to the ith class, and 0 oth-
erwise. The final recognition result of the test sequence is

h = arg maxC
i=1

∑
j δij , i.e., the test sequence belongs to

the hth class.

6.1 Comparison of Exemplar-based Meth-
ods

We first compare the four exemplar-based methods.
Since the focus here is the automatic extraction of local
models, we simply build appearance-based face recogni-
tion systems based on performing nearest neighbor template
matching either in the original image space or after applying
PCA and LDA which are traditional linear dimensionality
reduction methods.

The training video sequence of each subject is used to
build local models using the four exemplar-based methods.
Depending on the sequence length, 5-9 local models are
built for each subject. During the testing stage, we perform
10 random trials for each subject with each trial performed
by randomly sampling 30 frames from the corresponding
test video sequence. The recognition rates shown in Table 1
are the average results over all random trials for all subjects.

Table 1. Average recognition rates (%) of exemplar-based
methods.

Original PCA LDA
Random selection 65.62 63.21 74.62
PCA + k-means 74.02 75.26 88.29
LLE + k-means 88.33 86.76 92.43
Geodesic + HAC 89.74 88.10 94.14

The results show that the methods based on manifold
learning (LLE + k-means; geodesic + HAC) can select bet-
ter exemplars (local models) than the other methods (ran-
dom selection; PCA + k-means) since they yield higher
recognition rates. This finding is not unexpected, as meth-
ods based on manifold learning can effectively reveal mean-
ingful hidden structures in the nonlinear face manifolds.

Another interesting finding is that our method slightly
outperforms LLE which is based on explicit embedding of
the data. For the purpose of clustering (exemplar selection),
in fact there is no need to perform the last step (embedding)
in LLE or Isomap. Doing so will not only require solv-
ing an eigendecomposition problem which is expensive for
large data sets, but it can also lead to a certain degree of
information loss. The reason we prefer a global embedding
method (Isomap) to its local alternatives (e.g., LLE, Lapla-
cian eigenmap) lies in its appealing property of explicitly
preserving the global structure of a data set within a sin-
gle coordinate system. As proved in the original paper, the
approximated graph-based distances in Isomap asymptoti-
cally converge to the true geodesic distances of the manifold



given sufficient data. Moreover, unlike k-means clustering
which is sensitive to the initial seeds and may get trapped
in local minima, the HAC algorithm in our method is more
stable to the input data.

6.2 Generative vs. Discriminative Meth-
ods

We also compare our dual subspace method, which is a
discriminative method, with two previous generative meth-
ods for multiple-shot face recognition, namely, the MSM
method [15] and the Kullback-Leibler divergence method
[12].

For both methods, a single global model is built for each
subject. For our method, we set k = 6, i.e., six nearest local
models that belong to a different subject class are identified
for each local model.

Table 2. Average recognition rates (%) of two previous
generative methods and our discriminative method.

Method MSM KL Dual
Recogition rate 87.12 92.91 95.62

From the results in Table 2, we can see that our dual-
subspace discriminative method outperforms the two gen-
erative methods. While generative methods typically use
positive examples only during model training, discrimina-
tive methods make use of both positive and negative exam-
ples and hence they can explicitly exploit the discriminat-
ing information to achieve higher recognition rates. Specif-
ically, discriminating information is represented in both the
intrapersonal and extrapersonal subspaces in our method.
Moreover, the MSM and KL divergence methods use rather
simplistic Gaussian modeling that cannot model well the
complex face pattern variations.

7 Concluding Remarks

We have presented a novel approach for multiple-shot
face recognition that is based on extracting local models
from the appearance manifolds and a discriminative recog-
nition method using two subspaces representing intraper-
sonal and extrapersonal variations. Empirical results show
that our method gives very promising results when com-
pared with previous methods.

Currently we simply apply majority voting to obtain the
final classification, assuming that the examples in the test
set are i.i.d. However, for sequential data, even though there
is no guarantee that the faces can be successfully detected
from all images in the video sequence, the data set still con-
tains meaningful temporal relationships between images. In

our future work, we will consider modeling some inherent
dynamics in the “fragmented” data which hopefully can fur-
ther enhance the classification performance.
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