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Abstract. The present paper studies the following constrained vector optimization prob-
lem: min

C
f(x), g(x) ∈ −K, h(x) = 0, where f : Rn

→ Rm , g : Rn
→ Rp are locally Lipschitz

functions, h : Rn
→ Rq is C1 function, and C ⊂ Rm and K ⊂ Rp are closed convex cones.

Two types of solutions are important for the consideration, namely w-minimizers (weakly
efficient points) and i-minimizers (isolated minimizers of order 1). In terms of the Dini di-
rectional derivative first-order necessary conditions for a point x0 to be a w-minimizer and
first-order sufficient conditions for x0 to be an i-minimizer are obtained. Their effectiveness
is illustrated on an example. A comparison with some known results is done.

Keywords: vector optimization, locally Lipschitz optimization, Dini derivatives, optimal-
ity conditions
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1. Introduction

In this paper we deal with the local solutions of the constrained vector optimization

problem

(1) min
C

f(x), g(x) ∈ −K, h(x) = 0,

where f : Rn → Rm, g : Rn → Rp and h : Rn → Rq are given functions, and C ⊂ Rm

andK ⊂ Rp are closed convex cones. It is supposed that f and g are locally Lipschitz

and h is C1 function. The inclusion g(x) ∈ −K can be represented as a set of

inequalities 〈η, g(x)〉 6 0, η ∈ K ′, where K ′ is the positive polar cone of K. For

this reason the problem is referred as one with inequality and equality constraints.

Two types of solutions are important for the considerations, namely w-minimizers

(weakly efficient points) and i-minimizers (isolated minimizers of order 1). In terms
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of the Dini directional derivative we obtain first-order necessary conditions for a

point x0 to be a w-minimizer and first-order sufficient conditions for x0 to be an

i-minimizer. The paper generalizes the results from [9], where problems with only

inequality constraints are considered.

There is a growing interest toward optimality conditions for nonsmooth vector

problems, though less papers study problems with equality constraints. In the

smooth case the Fritz John optimality criterion is generalized in [16] and [13]. Uni-

fied first and second-order theory based on parabolic derivatives is proposed in [6].

Nonsmooth problems within Clarke subdifferentials are treated in [7] and [8]. Re-

cently this problem is studied with the help of scalarization [2] or by second-order

technique [15], [1]. Second-order technique based on Dini derivatives for problems

without equality constraints and C1,1 data (that is differentiable with locally Lip-

schitz derivatives) initiates in [14] (for problems with polyhedral cones) and goes on

(for arbitrary cones) in [11] and [10]. A further generalization (toward relaxing the

smoothness of the problem data) for (unconstrained) problems with ℓ-stable data

can be found in [5]. In [12] using suitable elimination procedure this technique is

extended to problems with equality constraints (with C1,1 objective function and

inequality constraints and C2 equality constraints). The present paper using similar

elimination establishes first-order conditions for problems with locally Lipschitz ob-

jective function and inequality constraints and C1 equality constraints. An example

demonstrates the effectiveness of the obtained conditions and shows that they can

work in some cases when the conditions from [7] and [8] fail.

2. Preliminaries

For the norm and the dual pairing in the considered finite-dimensional spaces we

write ‖ · ‖ and 〈·, ·〉. From the context it should be clear to what spaces exactly these
notations are applied.

For a coneM ⊂ Rk its positive polar cone is M ′ = {ζ ∈ Rk : 〈ζ, ϕ〉 > 0 for all ϕ ∈
M}. If ϕ ∈ cl conv M we set M ′[ϕ] = {ζ ∈ M ′ : 〈ζ, ϕ〉 = 0}. Then M ′[ϕ] is a closed

convex cone andM ′[ϕ] ⊂ M ′. Consequently its positive polar coneM [ϕ] := (M ′[ϕ])′

is a closed convex cone, M ⊂ M [ϕ] and (M [ϕ])′ = M ′[ϕ]. In this paper we apply

the notation M [ϕ] for M = K and ϕ = −g(x0).

The solutions of (1) (and similarly for the problem (2) considered further) are

understood in a local sense. In any case a solution is a feasible point x0, that is a

point satisfying the constraints. The feasible point x0 is said to be a w-minimizer

(weakly efficient point) for the problem (1) if there exists a neighbourhood U of x0,

such that f(x) /∈ f(x0) − intC for all feasible points x ∈ U .

To define an i-minimizer we need the concept of an oriented distance. Given a set

A ⊂ Rk, then the distance from y ∈ Rk to A is d(y, A) = inf{‖a − y‖ : a ∈ A}. The
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oriented distance from y to A is defined by D(y, A) = d(y, A) − d(y,Rk \ A). When

A = −C, where C is a convex cone, then D(y,−C) = sup{〈ξ, y〉 : ξ ∈ C′, ‖ξ‖ = 1}
(here ‖ξ‖ means the dual norm to the one given in Rk).

We say that the feasible point x0 is an i-minimizer (isolated minimizer of order 1)

for the problem (1) (and similarly for (2)) if there exists a neighbourhood U of x0

and a constant A > 0 such that

D
(

f(x) − f(x0),−C
)

> A‖x − x0‖ for all feasible x ∈ U.

The above definition generalizes to vector optimization problems the definition of

an isolated minimizer for scalar problems from [4]. Some authors (e. g. [3]) use to

say strict minimizers instead of isolated minimizers. The definition of an i-minimizer

involves the norm. However, since any two norms in a finite dimensional real space are

equivalent, the concept of an i-minimizer is actually norm-independent. Obviously,

each i-minimizer is a w-minimizer.

For a given locally Lipschitz function Φ: Rn → Rk the Dini derivative Φ′

u(x0)

of Φ at x0 in direction u ∈ Rn is defined as the set-valued Kuratowski limit

Φ′

u(x0) = Limsup
t→0+

1

t

(

Φ(x0 + tu) − Φ(x0)
)

.

If Φ is Fréchet differentiable at x0 then the Dini derivative is a singleton and can

be expressed in terms of the Jacobian Φ′

u(x0) = Φ′(x0)u. We will deal with the

Dini derivative of the function Φ: Rn → Rm+p, Φ(x) = (f(x), g(x)). Then we use

the notation Φ′

u(x0) =
(

f(x0), g(x0)
)

′

u
. Let us note that always

(

f(x0), g(x0)
)

′

u
⊂

f ′

u(x0) × g′u(x0), but in general these two sets do not coincide.

3. Problems with only inequality constraints

In this section following [9] we recall some necessary and sufficient optimality

conditions for the problem with only inequality constraints

(2) min
C

f(x), g(x) ∈ −K.

The following constraint qualification of Kuhn-Tucker type appears in the Sufficient

Conditions part of Theorem 1:

Q0,1(x
0)







if g(x0) ∈ −K and
1

tk

(

g(x0 + tku0) − g(x0)
)

→ z0 ∈ −K[−g(x0)],

then ∃uk → u0 ∃ k0 ∈ N ∀ k > k0 : g(x0 + tkuk) ∈ −K.
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Theorem 1 ([9]). Let f , g be locally Lipschitz functions and consider the prob-

lem (2).

(Necessary Conditions) Let x0 be a w-minimizer of the problem (2). Then for each

u ∈ Rn \ {0} the following condition is satisfied:

N′

0,1

{

∀ (y0, z0) ∈
(

f(x0), g(x0)
)

′

u
∃ (ξ0, η0) ∈ C′ × K ′[−g(x0)] :

(ξ0, η0) 6= (0, 0) and 〈ξ0, y0〉 + 〈η0, z0〉 > 0.

(Sufficient Conditions) Let x0 ∈ Rn and suppose that for each u ∈ Rn \ {0} the
following condition is satisfied:

S′0,1

{

∀ (y0, z0) ∈
(

f(x0), g(x0)
)

′

u
∃ (ξ0, η0) ∈ C′ × K ′[−g(x0)] :

(ξ0, η0) 6= (0, 0) and 〈ξ0, y0〉 + 〈η0, z0〉 > 0.

Then x0 is an i-minimizer of order one for the problem (2).

Conversely, if x0 is an i-minimizer of order one for the problem (2) and the con-

straint qualification Q0,1(x
0) holds, then the condition S′0,1 is satisfied.

4. Problems with inequality and equality constraints

In this section we generalize Theorem 1 to problems with both inequality and

equality constraints. We prove our result under the assumption that at the feasi-

ble point x0 the vectors h′

1(x
0), . . . , h′

q(x
0), which are the components of h′(x0), are

linearly independent. Under this assumption the considered problem (1) can be re-

duced to an equivalent problem with only inequality constraints to which Theorem 1

can be applied. Here we explain this reduction.

Let the vectors ūj ∈ Rn, j = 1, . . . , q, be determined by

(3) h′

k(x0)ūj = 0 for k 6= j, and h′

j(x
0)ūj = 1.

For each j = 1, . . . , q, the equalities (3) constitute a system of linear equations

with respect to the components of ūj , which due to the linear independence of

h′

1(x
0), . . . , h′

q(x
0) has a unique solution. Moreover, the vectors ū1, . . . , ūq solv-

ing this system are linearly independent and Rn is decomposed into a direct sum

Rn = L ⊕ L′, where L = kerh′(x0) and L′ = lin{ū1, . . . , ūq}. Let u1, . . . , un−q be

n − q linearly independent vectors in L = kerh′(x0). We consider the system of

equations

(4) hk

(

x0 +

n−q
∑

i=1

τiu
i +

q
∑

j=1

σj ū
j

)

= 0, k = 1, . . . , q.
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Taking τ1, . . . , τn−q as independent variables and σ1, . . . , σq as dependent variables,

we see that this system satisfies the requirements of the implicit function theorem

at the point τ1 = . . . = τn−q = 0, σ1 = . . . = σq = 0 (at this point hk take

the values hk(x0) = 0 because x0 is feasible, and the Jacobian ∂h/∂σ is the unit

matrix and hence is non degenerate). The implicit function theorem gives that in a

neighbourhood of x0 given by |τi| < τ , i = 1, . . . , n − q, |σj | < σ, j = 1, . . . , q, this

system possesses a unique solution σj = σj(τ1, . . . , τn−q), j = 1, . . . , q. The functions

σj = σj(τ1, . . . , τn−q) are C1, and

σj

∣

∣

τ0= σj(0, . . . , 0) = 0, j = 1 . . . , q,(5)

∂σj

∂τi

∣

∣

∣

τ0
= 0, j = 1, . . . , q, i = 1, . . . , n − q,(6)

where τ0 = (0, . . . , 0). To show the latter we differentiate (4) with respect to τi

obtaining

h′

k

(

x0 +

n−q
∑

i=1

τiu
i +

q
∑

j=1

σj ū
j

)(

ui +

q
∑

j=1

∂σj

∂τi

ūj

)

= 0.

For τ = τ0 = 0 we get

h′

k(x0)

(

ui +

q
∑

j=1

∂σj

∂τi

∣

∣

∣

τ0
ūj

)

= 0,

whence on account of ui ∈ kerh′(x0) and (3) we obtain (6).

The equivalence of the problem (1) with a problem with only inequality constraints

is given in the next lemma.

Lemma 1 ([12]). Consider the problem (1) with h ∈ C1, for which h′

1(x
0), . . . ,

h′

q(x
0), are linearly independent, and C and K are closed convex cones. Then x0 is a

w-minimizer or i-minimizer for (1) if and only if τ0 = 0 is respectively a w-minimizer

or i-minimizer for the problem

(7) min
C

f(τ1, . . . , τn−q), g(τ1, . . . , τn−q) ∈ −K,

where

f(τ1, . . . , τn−q) = f

(

x0 +

n−q
∑

i=1

τiu
i +

q
∑

j=1

σj(τ1, . . . , τn−q)ū
j

)

,

g(τ1, . . . , τn−q) = g

(

x0 +

n−q
∑

i=1

τiu
i +

q
∑

j=1

σj(τ1, . . . , τn−q)ū
j

)

.

The next theorem is our main result.
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Theorem 2. Consider the problem (1) with f , g being locally Lipschitz functions,

h ∈ C1, and C and K closed convex cones. Let x0 be a feasible point and let the

vectors h′

1(x
0), . . . , h′

q(x
0), the components of h′(x0), be linearly independent.

(Necessary Conditions). Let x0 be a w-minimizer of the problem (1). Then for

each u ∈ kerh′(x0) \ {0} the following condition is satisfied:

N′











∀ (y0, z0) ∈
(

f(x0), g(x0)
)

′

u
∃ (ξ0, η0) :

(ξ0, η0) ∈ C′ × K ′[−g(x0)], (ξ0, η0) 6= (0, 0)

and 〈ξ0, y0〉 + 〈η0, z0〉 > 0.

(Sufficient Conditions). Suppose that for each u ∈ kerh′(x0) \ {0} the following
condition is satisfied:

S′











∀ (y0, z0) ∈
(

f(x0), g(x0)
)

′

u
∃ (ξ0, η0) :

(ξ0, η0) ∈ C′ × K ′[−g(x0)], (ξ0, η0) 6= (0, 0)

and 〈ξ0, y0〉 + 〈η0, z0〉 > 0.

Then x0 is an i-minimizer of the problem (1).

P r o o f. According to Lemma 1 the feasible point x0 is a w-minimizer or i-

minimizer of the problem (1) if and only if τ0 = (0, . . . , 0) is respectively a w-

minimizer or i-minimizer of the problem with only inequality constraints (7). It

remains to apply Theorem 1 to (7) and to express the necessary and sufficient con-

ditions through the data of the problem (1).

We deal first with the necessary conditions. Lemma 1 gives that if τ0 is a w-

minimizer of (7), then for each τ = (τ1, . . . , τn−q) ∈ Rn−q \ {0} it holds

∀ (y0, z0) ∈
(

f(τ0), g(τ0)
)

′

τ
∃ (ξ0, η0) ∈ C′ × K ′[−g(τ0)] :(8)

(ξ0, η0) 6= (0, 0) and 〈ξ0, y0〉 + 〈η0, z0〉 > 0.

To the fixed vector τ = (τ1, . . . , τn−q) we juxtapose the vector

(9) u =

n−q
∑

i=1

τiu
i.

Since the vectors u1, . . . , un−q form a base in kerh′(x0), obviously (9) gives a one-

to-one correspondence between the vectors τ in Rn−q \ {0} and the vectors u in

kerh′(x0) \ {0}. Now we express the condition (8) using the vector u instead of τ

and x0, f , g instead of τ0, f , g.

We will show that (8) transforms into N′. Observe that K ′[−g(τ0)] = K ′[−g(x0)]

due to g(τ0) = g(x0). Therefore, (ξ0, η0) ∈ C′ × K ′[−g(τ0)] can be written as

82



(ξ0, η0) ∈ C′ × K ′[−g(x0)]. It remains to show that (y0, z0) ∈
(

f(τ0), g(τ0)
)

′

τ
is

equivalent to (y0, z0) ∈
(

f(x0), g(x0)
)

′

u
, where u and τ are related by (9). Indeed,

let

y0 = lim
k

1

tk

(

f(τ0 + tkτ) − f(τ0)
)

, z0 = lim
k

1

tk

(

g(τ0 + tkτ) − g(τ0)
)

,

with some sequence tk → 0+. In order to prove that (y0, z0) ∈
(

f(x0), g(x0)
)

′

u
it is

enough to show that

y0 = lim
k

1

tk

(

f(x0 + tku) − f(x0)
)

, z0 = lim
k

1

tk

(

g(x0 + tku) − g(x0)
)

.

We show only the first equality. The second one is derived similarly. Assume that

f is Lipschitz with constant λ in a neighbourhood of x0. Then

1

tk

(

f(x0 + tku) − f(x0)
)

=
1

tk

(

f(τ0 + tkτ) − f(τ0)
)

+
1

tk

(

f(x0 + tku) − f

(

x0 + tku +

q
∑

j=1

σj(tkτ1, . . . , tkτn−q)ū
j

))

→ y0.

In the above limit the first term tends toward y0 and the second toward 0. The latter

follows by the following chain of inequalities, true for sufficiently large k:

∣

∣

∣

∣

1

tk

(

f(x0 + tku) − f

(

x0 + tku +

q
∑

j=1

σj(tkτ1, . . . , tkτn−q)ū
j

))∣

∣

∣

∣

6
λ

tk

q
∑

j=1

|σj(tkτ1, . . . , tkτn−q) − σj(τ
0)| · ‖ūj‖

6 λ

q
∑

j=1

n−q
∑

i=1

∣

∣

∣

∂σj

∂τi

(θktkτ1, . . . , θktkτn−q)
∣

∣

∣
· ‖ūj‖ → 0 as k → ∞.

Here 0 < θk < 1 is given by the mean-value theorem. We have also used the fact

that σj ∈ C1 and the equalities (5) and (6).

The above reasonings prove the Necessary Conditions of the theorem. The Suffi-

cient Conditions are proved in a similar way. �

Let us make the following remark. Theorem 1 gives also the converse of the suffi-

cient conditions. To obtain a similar converse for the problem (1) with both equalities

and inequalities constraints we can write the constraint qualification Q0,1(τ
0) for the
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problem (7) and reformulate it in terms of the problem (1). What we get is the

following constraint qualification:

Q(x0)







































if g(x0) ∈ −K, h(x0) = 0, ū =
∑n−q

i=1
τ iu

i ∈ kerh′(x0)

and
1

tk

(

g(x0 + tkū) − g(x0)
)

→ z0 ∈ −K[−g(x0)],

then ∃ ūk =
∑n−q

i=1
τk

i ui → ū ∃ k0 ∈ N

∀ k > k0 : g
(

x0 + tkūk +
∑q

j=1
σj(tkτk

1 , . . . , tkτk
n−q)

)

∈ −K.

It should be noted here that if at some feasible point x0 the constrained qualifica-

tion Q(x0) holds, then the condition S′ is implied by the fact that x0 is an i-minimizer

of the problem (1).

The next example shows the effectiveness of the conditions from Theorem 2 for

particular problems. This example is used in the next section to compare Theorem 2

with some results of [8] and [7]. For brevity we omit some of the calculations.

Applying Theorem 2 we follow the usual procedure. First we find the set Nw of

the critical points, that is, the points satisfying the Necessary Conditions, which

contains all the w-minimizers. Among the critical points we distinguish the set of

the i-minimizers satisfying the Sufficient Conditions. The problem considered in

this example is with locally Lipschitz data, but not with C1 data (the function g is

not C1).

E x am p l e 1. Consider the problem (1), for which n = 2, m = 2, p = 1, q = 1,

the cones are C = R2
+ and K = R+, and the functions f , g, h, are given by

f(x1, x2) = (x1,−x2), g(x1, x2) = min(x1, x2),

h(x1, x2) = x2
1 − 2x1x2 + x2

2 − x1 − x2.

Then the sets Nw and Si of the feasible points satisfying respectively the Necessary

Conditions N′ and the Sufficient Conditions S′ are given by Nw = N1
w ∪ N2

w and

Si = S1
i ∪ S2

i , where

N1
w =

{(

x1,
1

2
(2x1 + 1 −

√
8x1 + 1)

)

:
3

8
6 x1 6 1

}

,

N2
w =

{(1

2
(2x2 + 1 −

√
8x2 + 1), x2

)

:
3

8
6 x2 6 1

}

,

S1
i =

{(

x1,
1

2
(2x1 + 1 −

√
8x1 + 1)

)

:
3

8
< x1 6 1

}

,

S2
i =

{(1

2
(2x2 + 1 −

√
8x2 + 1), x2

)

:
3

8
< x2 6 1

}

.
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Indeed, the set of the feasible points in this example is F = F 1 ∪ F 2, where

F 1 =
{(

x1,
1

2
(2x1 + 1 −

√
8x1 + 1)

)

: 0 6 x1 6 1
}

,

F 2 =
{(1

2
(2x2 + 1 −

√
8x2 + 1), x2

)

: 0 6 x2 6 1
}

.

We have h′

1(x) = h′(x) = (2x1 − 2x2 − 1,−2x1 + 2x2 − 1). Obviously, the two

components of h′

1(x) cannot vanish simultaneously, which guarantees the linear inde-

pendence of the single-valued set {h′

1(x)} at any feasible point x. Clearly, if u ∈ R2,

then
h′(x)u = (2x1 − 2x2 − 1)u1 + (−2x1 + 2x2 − 1)u2,

kerh′(x) = {(2x1 − 2x2 + 1, 2x1 − 2x2 − 1)t : t ∈ R}.

The Dini derivatives are given by

f ′

u(x) = f ′(x)u = (u1,−u2),

g′u(x) =























u1, x1 < x2,

u1, x1 = x2, u1 6 u2,

u2, x1 = x2, u2 6 u1,

u2, x2 < x1.

Obviously C′ = C = R2
+ and K ′ = K = R+. For z0 ∈ K ′ we have also K ′[z0] =

{0} when z0 < 0, and K ′[z0] = R+ when z0 = 0.

Further we denote for brevity

L = L(ξ0, η0; y0, z0) = 〈ξ0, y0〉 + 〈η0, z0〉 = ξ0
1y0

1 + ξ0
2y0

2 + η0z0.

Let x be a feasible point and u ∈ kerh′(x) \ {(0, 0)}. We can distinguish the
following cases:

1. x1 = 1

2
(2x2 + 1 −√

8x2 + 1), 3

8
6 x2 6 1.

Now y0 = (u1,−u2), z
0 = u1, L = ξ0

1u1 − ξ0
2u2 + η0u1, where

u1 = (2x1 − 2x2 + 1)t = (2 −
√

8x2 + 1)t,

u2 = (2x1 − 2x2 − 1)t = −
√

8x2 + 1 t, t 6= 0.

We have the possibilities:

1a. t > 0. Taking ξ0 = (0, 1), η0 = 0, we get L =
√

8x2 + 1 t > 0.

1b. t < 0. Taking ξ0 = (1, 0), η0 = 0, we get L = (2 − √
8x2 + 1)t > 0 with

strict inequality for x2 > 3

8
and equality for x2 = 3

8
.

2. x1 = 1

2
(2x2 + 1 −√

8x2 + 1), 0 < x2 < 3

8
.
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Now y0, z0, u and L are expressed as in the case 1. In particular

L = (ξ0
1 + η0)(2 −

√
8x2 + 1)t + ξ0

2

√
8x2 + 1 t < 0

for all t < 0 and (ξ0, η0) ∈ C′ ×K ′[−g(x)] = R2
+ ×{0}, (ξ0, η0) 6= (0, 0, 0), since

(2 −
√

8x2 + 1)t < 0 and
√

8x2 + 1 t < 0.

3. x2 = 1

2
(2x1 + 1 −√

8x1 + 1), 3

8
6 x1 6 1.

Now y0 = (u1,−u2), z
0 = u2, L = ξ0

1u1 − ξ0
2u2 + η0u2, where

u1 = (2x1 − 2x2 + 1)t =
√

8x1 + 1 t,

u2 = (2x1 − 2x2 − 1)t = (−2 +
√

8x1 + 1)t, t 6= 0.

We have the possibilities:

3a. t > 0. Taking ξ0 = (1, 0), η0 = 0, we get L =
√

8x1 + 1 t > 0.

3b. t < 0. Taking ξ0 = (0, 1), η0 = 0, we get L = (2 −
√

8x1 + 1)t > 0 with

strict inequality for x1 > 3

8
and equality for x1 = 3

8
.

4. x2 = 1

2
(2x1 + 1 −√

8x1 + 1), 0 < x1 < 3

8
.

Now y0, z0, u and L are expressed as in the case 3. In particular

L = ξ0
2

√
8x1 + 1 t + (ξ0

2 − η0)(2 −
√

8x1 + 1)t < 0

for all t < 0 and (ξ0, η0) ∈ C′ × K ′[−g(x)] = R2
+ × {0} \ {(0, 0, 0)}, since

√
8x1 + 1 t < 0 and (2 −

√
8x1 + 1)t < 0.

5. x1 = 0, x2 = 0.

Now y0 = (u1,−u2), z
0 = u1 when u1 6 u2 and z0 = u2 when u2 6 u1,

u1 = (2x1 − 2x2 + 1)t = t,

u2 = (2x1 − 2x2 − 1)t = −t, t 6= 0,

L = ξ0
1u1 − ξ0

2u2 + η0z0 =

{

(ξ0
1 + ξ0

2 − η0)t, t > 0,

(ξ0
1 + ξ0

2 + η0)t, t < 0.

Obviously, when t < 0 we have L < 0.

Thus, on the basis of Theorem 2 we see that the points which do not belong to the

set Nw determined above are not w-minimizers, and the points from the set Si are

i-minimizers. The efficiency for points in the setNw\Si = {(−1/8, 3/8), (3/8,−1/8)}
needs a separate investigation. It can be shown directly from the definition that the

point (−1/8, 3/8) is a w-minimizer but not an i-minimizer (actually it is an isolated

minimizer of order 2, a concept defined in [10]), while the point (3/8,−1/8) is not a

w-minimizer.
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5. Some comparison

First-order optimality conditions for the problem (1) with locally Lipschitz func-

tions are well-known from the classical monograph of Clarke [7] (see Theorem 6.3.1

therein), where the particular case C = K = Rn
+ is treated. A generalization to

problems with arbitrary cones C and K is presented in [8] and involves Clarke’s gen-

eralized Jacobians. Recall that Clarke’s generalized Jacobian for the vector function

f : Rn → Rm at a point x0, denoted by ∂f(x0), is defined as the convex hull of

all limits of sequences f ′(xk), where xk → x0 and the gradient f ′(xk) exists. The

following result is a particular case of Theorem 2 in [8].

Theorem 3. Consider the problem (1) with f , g being locally Lipschitz functions,

h ∈ C1, and C and K closed convex cones. Let x0 be a feasible point and assume it is

a w-minimizer of the problem (1). Then there exist vectors τ ∈ C′, λ ∈ K ′[−g(x0)],

µ ∈ Rq, not all zero, such that

(10) 0 ∈ ∂(τf + λg + µh)(x0).

The following observation gives some comparison between Theorems 3 and 2.

O b s e r v a t i o n. Consider the problem (1) with f , g and h as defined in Exam-

ple 1 and let Nw be the set described there. Then the set of points satisfying the

condition (10) is NC
w = Nw ∪ {(0, 0)}. Therefore, Theorem 3 does not reject the

point (0, 0) as a w-minimizer, while Theorem 2 does (because (0, 0) /∈ Nw).

Indeed, it is easy to check that all the points in the set Nw satisfy the necessary

conditions of Theorem 3. This is easily seen, since the functions f , g, and h are

continuously differentiable at the points x ∈ Nw. Let conv A denote the convex

hull of the set A. At the point (0, 0), which clearly is not a w-minimizer, we have

∂g(0, 0) = conv{(1, 0), (0, 1)}, while g1(x) = x1 and g2(x) = x2 are continuously

differentiable at (0, 0) and their generalized Jacobian coincides with their gradient.

Straightforward calculations show that the condition (10) is satisfied choosing τ =

(0, 1), λ = 1, and µ = 0. Hence, the necessary conditions of Theorem 3 are satisfied

at (0, 0), although (0, 0) is not a w-minimizer.

Similarly, one can show that also the necessary optimality conditions given in

Clarke [7, Theorem 6.3.1] hold at the point (0, 0). On the contrary, the necessary

conditions of Theorem 2 do not hold at (0, 0) and on this basis it follows that this

point is not a w-minimizer.

This observation is significant, since in fact (0, 0) is the only point requiring special

attention. Indeed, Clarke’s generalized Jacobian is introduced to treat nonsmooth

problems. But (0, 0) is the only point among those satisfying the equality constraints

at which the problem fails to be C1.
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It is also worth recalling that neither Theorem 3 nor Theorem 6.3.1 in [7] give

sufficient optimality conditions, while Theorem 2 does. Moreover, Theorem 2 allows

to distinguish the i-minimizers, which as Example 1 shows are rather typical type of

solutions for vector optimization problems.
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