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IN VES TIGA ClON

La sección de Difusión de Investigación en Ingeniería, como su

nombre lo indica, pretende divulgar el trabajo de investigación y

desarrollo que se haga en esta Facultad y otras Facultades de

Ingeniería del país.

Esperamos que esta sección pueda servir para aumentar los

mecanismos de comunicación de la comunidad

científico-tecnológica en el país. Consecuentes con lo anterior

invitamos a investigadores de otras universidades para que usen

este espacio para divulgar resultados que sean de interés para un

sector amplio de la ingeniería.

Efficient Computation of

Locally Monotonic Regression

Este artículo apareció publicado en la revista

"Signal Processing Letters" del IEEE en Septiembre de 1996

Artículo premiado por el Fondo de Reconocimiento

de la Actividad Académica

S
o far, the applicability of

locally monotonic regression

has been limited by the high

computational costs of the
available algorithms that compute

them. We present a powerful

theoretical result about the nature
of these regressions. As an

application, we give an algorithm

for the computation of lomo-3
regressions which reduces the
complexity of the task, from

exponential to polynomial.

I; INTRODUCTION

Locally Monotonic Regression (1)
provides a way of smoothing
signals under the smoothness

criterion of local monotonicity,

which sets a restriction on how
often a signal may change trend

(increasing to decreasing, or

viceversa). Deterministically, locally

monotonic (lomo, for sho rt)

regression provides signals that are
locally monotonic and closest,

under a given semimetric, to a
given signal. Statistically, locally

monotonic regression provides

maximum likelihood estimators (2)

of locally monotonic signals
embedded in noise.

Lomo regression may well prove to

be a useful smoothing tool; up to
now, a drawback had been the

extremely high computational
costs for computing signals of

reasonable lengths. Previous
algorithms were combinatorial and

had an exponential complexity.

Lomo regressions are obtained

flatting segments of the signal being

regressed. We show here that it is

not necessary to flat segments of
length larger than or equal to 2

(a-1), where a is the desired
degree of local monotonicity. Using
this fact, algorithms with polynomial

complexity may be obtained.

We present one such algorithm

for a=3.
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II. BASIC RESULTS

If n is a positive integer, a signal of

length n is an element of R", say

x = [x i , ..., xn]. If a is a positive

integer, n > a, a signal of length n is

said to be locally monotonic of
degree a (or lomo-a) if each of its

segments of length a is monotonic.

The locally monotonic regressions
of degree a of a signal x, are the

lomo-a signals in R" that are closest

to x, according to a semimetric for
R". Here, we consider the
Euclidean metric only.

The constant regressions of a signal

x, are the constant signals of R"

that are closest to x. Under the

Euclidean metric, constant

regressions are unique and the

value of the components of the

constant regression of x is the

average of its components. By

flatting a segment of a signal x, we

mean to replace the segment with

its constant regression, obtaining a

signal of the same length as x. The

locally monotonic regressions of a

signal can be obtained by flatting

non-overlapping segments of the

signal (1).

If x = [x 	xj is a signal of length n,	Proof:

the average of its components is

denoted as p(x) _ (x 1 + ... +xn)ln.

Similarly, its constant Euclidean

regression [p(x), ..., p(x)] is denoted

as p(x). If, in addition, y = [y , ..., y ,j is

a signal of length m, the

concatenation xly of x and y is the

signal of length n + m given by

[x,...,x,y,...,y}. If x and y are

signals of length n, we denote the

Euclidean distance between them

as d(x, y).

Lemma:

Let x = [x ... x,] be a signal of length

n, let a = [a, ..., a] and b = [b, ..., b] be

constant signals of length n. If I p(x)

- a I < jp(x) - 61, then d(x, a) < d(x, b).

That is, the closer the level of a
constant signal is to the average of
the components of a given signal,
the closer the constant signal is to

the given signal.

n
d z(x b)-d z(x a)=	

(Xi- b) 2— E (x i - a)2

1 =1	i=1

n

= E V - 2bxi + b22)

i=1

– 
E (x2 - 2axi +a2)

i =1

= n(b - p(x ))'- n(a -p(x))'

> 0.

Theorem:

In order to get the locally
monotonic regressions of degree a

of a signal, it is not necessary to flat

Let n and a be positive integers

with n > a; let x be a signal of

length n and let s be a lomo-a

regression of x. Let s =	... Is` be the

segmentation of s into (longest)
constant segments and x =	Ix"

be the corresponding partition (not
necessarily into constant segments)

of x. We show that each segment

x', r E 11, ki, can be segmented into
segments of length no larger
than 2a - 3 whose constant
regressions are the corresponding

segments of s'.

Let r E /1, k/, let m be the length of
x'and let s'= [s„ , ..., s„ m]; then,
s + i = ...= s1.,á =p( x') . if m < 2(a - 1),
there is nothing left to prove.

Otherwise, if m > 2(a - 1), let z' =

be the initial segment

segments of length larger than or

equal to 2(a - 1) .

Proof:
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Fi,2 . I. A signal of length 256.

Fig. ?. A lomo-3 re g ression of the signal in Fig. I.
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of length a-1 of x' and

z2 = [x 1+m a+z , .., x,
+„,

] be the ending

segment of length a-1 of x'. Also,

let z' =[x	 ...,x 	] be the

intermediate remaining segment of

x' ; thus, x'= z' I z3 I z2 and z' is empty

if m = 2(a - 1).

We claim that p(z') = p(x') or, in

other words, that the initial

segment of s' of length a-1 is the

constant regression of the

corresponding segment z' of x`. By

contradiction, assume p(z') p(x);

without loss of generality assume

that p(z') <p(x'); using the Lemma

above, it can be shown that the

signal

s` = s' I ... I s'- ' I P(z') I[s,.,,, ..., s^.] I 
s,^.^ I... Isk

is closer to x than s is and therefore

s' is not lomo-a. Then, [s  	..., s] is

nonconstant nondecreasing and

p(z') < s, < p(x'); then the signal,

s I ._ 
I s'- I[s,, ..., s,l I[s,.,,, ..., s„,11	I ... Is

where the segment [s 	s,] is of

length a - 1, is lomo-a and, using

the Lemma, is closer to x than s is;

this is a contradiction since s is a

regression of x. Then, p(z') =p(x').

Similarly, it can be shown that

p(z2) =p(x'); if z3 is empty, there is

nothing left to prove. Otherwise, it

remains to consider the segments

of z3 . Note that since p(x') =p(z' z'

z2 ), p(z') = p(x') and p(z2) =p(x'), then

p(z3) =p(x'). Consider two cases: the

case where the length of z3 is less

than 2(a-1) and the case where it

is larger than or equal to 2(a-1). In

the first case we are done since z',

z2 and z3 are the segments of x'that

are being looked for. In the second

case, expressing z3 as z3 = y' I ... ly'',
where the y"s are segments of

length larger than or equal to a - 1

and less than 2(a - 1), from the

Lemma (and knowing that p(z') =

p(z2) = p(z 3) = p(x)) it follows that for j

E /1, ql, p(y0 = p(x'), otherwise a

lomo-a signal closer to x can be

found; thus, z', z2 , y', ... y y are the

segments of x' being looked for,

and the proof is complete.

III. AN APPLICATION

Here, based on the Theorem,

we give the main step for a

recursive algorithm that computes

lomo-3 regressions.

Letx = [x,, ..., xi be the input signal

of length n, of which an output

lomo-3 regression signal y is desired.

Let m be the integer part of

(n+ l)/2.

Consider the following 8 ways of

partitioning the signal y into three

segments, y = y' y2 y3:

y'= [y,,...,y,,,,J .

yZ = ^x ^ x„,.,/ ,

yj = [y..r..,yi

2.	y1= [y,,....y„,^^,

yz= [ X m , X 171+1 ]

y' = [y,,,,,,
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Fig. 4. A lomo-3 regression of the signal in Fig. 3.
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Fig. 3. A 256-pt signal.   
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3. Y '=[Y ,....,Y »,,1,

y2= [ X m, X m+1 , Xm+21,

y3 = 
[Y „, +,, ..., Y i%

4. y' _ [y,, ..., y»,/

Y 2 =[ X m +1 , Xm +2 ]

y3= [Ym+3,....Y,1

5	y' _ [Y ,, ..., y",» 2/

yZ =[ Xm- 1 , X m , Xm+1]

y3 = [Y»,+z,

6.	y ' = [Y,,...,ym3J,

y2 =[ x m - 1 , Xm]

y3 = [y,„ + ,, ..., yij

y' = [y,, ..., Y ,,,J ,

y" = [ X 1p+1, X mi_2, X 1p+3] ,

y3 
= [y m +,, ..., yui

8.	y' = [y,, ..., Ym_3J

y2 = [ X m-2 + Xm-1 , X in]

y3 = [Y m+r

Cases 3 and 4 are considered only

if n >1n+2, cases 5 and 6 only if

m-1 > 1, case 7 only if n > m+3 and

case 8 only if m-2 > 1.

The algorithm proceeds recursively,

calling itself with input signals y'

and y' until the signal under

consideration has a length less

than 2. Finally, among the so

obtained signals that turn out to be

lomo-3, one that is closest to x is

chosen.

We ran the algorithms on the 256-

pt signals shown in Figures 1 and 3.

The resulting smoothed signals are

shown in Figures 2 and 4,

respectively.

IV. CONCLUSION

An important result concerning

lomo-a regressions has been

presented. An algorithm for the

computation of lomo-3 regressions

has been described; its complexity

is polynomial rather than

exponential. We have knowledge

of faster (Viterbi-type) algorithms

(3) for computing lomo

approximations with signals defined

on a finite-length alphabet. Since

the complexity of these algorithms

grows with the square of the

cardinality of the alphabet and

since the problem for real valued

signals is solvable, we think steps

that reduce the complexity of

algorithms that compute

regressions, in contrast to digital

regressions, are important. Lomo

regression is a smoothing tool with

applications in one-dimensional

data analysis and in contrast-

preserving image processing, for

example.
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