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Abstract

Locally Orderless Tracking (LOT) is a visual tracking

algorithm that automatically estimates the amount of local

(dis)order in the object. This lets the tracker specialize in

both rigid and deformable objects on-line and with no prior

assumptions. We provide a probabilistic model of the object

variations over time. The model is implemented using the

Earth Mover’s Distance (EMD) with two parameters that

control the cost of moving pixels and changing their color.

We adjust these costs on-line during tracking to account for

the amount of local (dis)order in the object. We show LOT’s

tracking capabilities on challenging video sequences, both

commonly used and new, demonstrating performance com-

parable to state-of-the-art methods.

1. Introduction

In visual tracking one often has to make an explicit or im-

plicit assumption about the type of the object being tracked,

treating it as either a rigid object or a deformable one. For

example, if tracking a rigid object, where the only appear-

ance change is due to rigid geometric transformations, it

is reasonable to use a method such as template matching

where pixel locations are fixed and governed by a geometric

transformation and similarity is reduced to per-pixel inten-

sity difference. If, on the other hand, the object is extremely

deformable, then tracking based on color histogram match-

ing might be more suitable reducing the similarity between

target and candidate to similarity between their color distri-

butions.

In this work we present Locally Orderless Tracking

(LOT), a novel visual tracking algorithm that uses a joint

spatial-appearance space and is able to estimate, on-line,

the amount of local (dis)order in the target. Thus if the

target is rigid and there is little or no local disorder then

LOT preserves spatial information like template matching.

However, if the target is nonrigid, LOT disregards spatial

information as in histogram matching.

The first contribution of our work is a new probabilistic

interpretation of the Earth Mover’s Distance (EMD) that we

name Locally Orderless Matching (LOM). Using LOM one

can calculate the likelihood of patch P being a noisy replica

of patch Q where noise can be introduced by change in the

spatial order of pixels in the patch, change in their appear-

ance, or both. In other words, LOM infers the probability

Pr(P |Q,Θ) where Θ are noise model parameters, some

of which control the cost of moving pixels spatially while

others control the cost of changing a pixels appearance, for

example due to illumination variation.

The second contribution of our work is introducing Lo-

cally Orderless Tracking which applies Locally Orderless

Matching to visual tracking. This is done, in a generative

approach, using particle filtering where particle likelihoods

are inferred using LOM. Particles are represented as signa-

tures in a joint spatial-appearance space, using superpixels

for better efficiency. Key to our approach is the noise model

used in LOM to regulate the cost of moving superpixels and

changing their appearance, and we show how the optimal

parameters of this noise model can be estimated on-line,

using maximum likelihood optimization, according to the

degree of ”rigidity” in the object.

2. Related Work

We are inspired by the work of Koenderink and Van

Doorn on the structure of locally orderless images [1] which

proposes an image representation method where the amount

of spatial order preserved globally and locally can be tuned

using two parameters. This representation was shown by

Ginneken and Haar Romeny [2] to be useful for applications

such as adaptive histogram equalization, noise removal and

segmentation. In our case, we wish to determine the opti-

mal extent of local disorder of the data for the purpose of

tracking.

In rigid object tracking one usually attempts to exploit

spatial information in the object by using template based

methods. In some cases the template is used in a simple

manner [3] while others use multiple templates and sparse



representations [4, 5, 6, 7]. These approaches offer good

stability and can handle occlusions and scale estimation but

are less suitable for handling non-rigid deformations and

dynamics such as out-of-plane-rotations.

When tracking deformable objects one often uses his-

togram representations [8] or discriminative methods that

treat the problem as a pixel-wise binary classification prob-

lem [9, 10, 11]. These approaches mostly disregard spatial

order, and can therefore handle difficult non-rigid transfor-

mations. However they are more prone to drift and are often

less stable especially at scale estimation or occlusion han-

dling. Some attempt to combine rigid and deformable ob-

ject approaches either by using mid level cues that capture

spatial information to some extent [12] or by heuristically

combining discriminative and generative components [13].

However these methods do not measure the extent of lo-

cal disorder in the data explicitly and adapt accordingly like

LOT.

The work most related to ours is that of Elgammal et

al. [14] that propose a tracker that uses a joint spatial-

appearance space and can specialize to either histogram

tracking or sum-of-square-difference (SSD) tracking by an

off-line adjustment of parameters. The proposed method is

significantly different in several ways. First and foremost,

due to the on-line parameter estimation which enables LOT

to specialize in rigid template tracking or deformable object

tracking on-line and secondly due to the use of particle fil-

tering and EMD instead of the kernel based gradient decent

approach of Elgammal et al.

The Earth Mover’s Distance (EMD) has a long history

in computer vision. EMD was first considered by Peleg et

al. [15] as an image similarity metric and popularized by

Rubner et al. [16] (who coined the name) for content based

image retrieval. A probabilistic analysis of EMD and its re-

lation with the Mallows distance was proposed by [17] al-

though that analysis differs from the proposed probabilistic

framework which introduces a noise process that governs

the ground distance in the EMD. Recently, Zhao et al. [18]

proposed a differential EMD approach that derives a gradi-

ent descent method to find the object location quickly using

the EMD as a similarity measure. However, the focus of

that paper is on using EMD to handle illumination changes,

the object is represented as a color signature and no consid-

eration is given to pixel location.

Superpixels[19] have been used in recent years for many

computer vision applications such as segmentation, classi-

fication [20, 21] and tracking [12]. In our work, similar to

[22], superpixels are used to reduce the computational cost

of EMD.

We refer interested readers to a thorough survey of the

vast work in visual tracking that can be found in [23].

3. Locally Orderless Matching

Locally Orderless Matching measures the similarity be-

tween two images or two image patches based on the EMD.

Pixels are represented in a joint spatial-appearance domain.

For appearance we use color values but other descriptors

such as local gradients or texture can also be used. For po-

sition pixel coordinates in a patch, normalized to the range

[0, 1], are taken. A pixel is represented as pi = (pLi , p
A
i )

where pLi = (x, y) is the pixels location and pAi ∈ R
k its

appearance.

We want to probabilistically explain a candidate patch P

as a noisy replica of the template Q. We begin by looking

at the pixel-wise inference problem, where patches P and

Q are treated as sets of pixels, and show that in this case

the problem is equivalent to a form of EMD optimization

problem. We then propose using signature representations

for P and Q, in which superpixels are used to cluster pixels

together, and claim the problem can now be formulated as

the signature EMD problem [16]. This is done in order to

reduce the computational cost of EMD and we justify by

bounding the error resulting from the related coarsening of

the representation.

Let us consider patches P and Q as sets of pixels. We

start with a probabilistic perspective of EMD and wish to

show that it measures the conditional probability of one set,

given the other set and model parameters. Formally, denote

the two sets by P = {pi}
n
i=1, Q = {qi}

n
i=1, and assume that

we have a probabilistic model stating the probability that a

specific element p ∈ P originated from a specific element

q ∈ Q, Pr(p|q,Θ), with Θ the model parameters. We want

to extend it to the conditional probability between the sets

Pr(P |Q,Θ).
The extension relies on a hidden 1:1 mapping between

elements of P and Q. Denote such a mapping by h :
{1, .., n} → {1, .., n} with h(i) = j meaning that element

pi was generated from element qj . We can get the probabil-

ity of P being generated from Q by marginalizing over the

possible hidden assignments (dropping Θ from the notation

as it is currently constant):

Pr(P |Q) =
∑

h

Pr(P |Q, h)Pr(h) (1)

Assuming a uniform prior over the h’s (no reason to assume

anything else) we have:

Pr(P |Q) =
1

n!

∑

h

Pr(P |Q, h) (2)

Approximating the average using maximum a posteriori

(MAP) estimation, i.e. assuming the sum is dominated by

the highest term (the best hidden map) we get:

Pr(P |Q) ∼ c ·max
h

Pr(P |Q, h) (3)



Dropping the constant c, assuming independence be-

tween the set elements and taking the logarithm we get:

logPr(P |Q) ∼ max
h

logPr(P |Q, h)

= max
h

∑n
i=1 logPr(pi|qh(i),Θ)

(4)

Proposition 3.1 Optimization problem (4) is the signature

EMD problem EMD(P,Q,d) for the following signatures and

ground distance:

P = {(p1, 1), (p2, 1), . . . , (pn, 1)}
Q = {(q1, 1), (q2, 1), . . . , (qn, 1)}
d(p, q) = −logPr(p|q,Θ)

(5)

Where the signatures are comprised of objects, e.g. (pi, wi),
each having a description pi and weight wi. In our case the

signatures are simply collections of all the pixels in patches

P and Q equally weighted.

Proof Starting with Equation (4) we have:

max
h

∑n
i=1 logPr(pi|qh(i),Θ) =

min
h

∑n
i=1−logPr(pi|qh(i),Θ) =

min
h

∑n
i=1 d(pi, qh(i))

(6)

where the mapping h can be expressed as a permutation

matrix F in which fij = 1 iff h(i) = j. Denoting dij =
d(pi, qj) the problem statement becomes:

min
∑

i,j fijdij
such that ∑

i fij = 1,
∑

j fij = 1, fij ∈ {0, 1}
(7)

If we put this integer linear programming problem in the

canonical form {min c · x|Ax = b, x ≥ 0} we find that the

matrix A is totally unimodular [24]. This in turn implies

that the linear programming problem in which we relax the

constraint fij ∈ {0, 1} to fij ≥ 0 has an integral optimum,

meaning the constraint can be relaxed without changing the

result.

The linear programming problem obtained by this relax-

ation is identical to the signature EMD with identical mass

presented by Rubner et al. [16].

min
∑
i,j

fijdij

such that

fij ≥ 0,
∑

i fij ≤ wqj ,
∑

j fij ≤ wpi∑
i,j

fij = min(
∑

i wpi
,
∑

j wqj )

(8)

To see this notice that for signatures with identical mass

the inequalities
∑

i fij ≤ wqj ,
∑

j fij ≤ wpi
can be re-

placed by equalities and then the last constraint
∑
i,j

fij =

min(
∑

i wpi
,
∑

j wqj ) can be dropped.

In other words, conditional set probability, under 1:1 map-

ping and element independence assumptions, is equivalent

to signature EMD with singleton bins. However, the equiv-

alence naturally extends to conditional probabilities with P

and Q containing repeating elements and signature EMD

with general integer bin quantities.

Proposition 3.2 Let

P = {(p1, w
p
1), (p2, w

p
2), . . . , (pn1

, wp
n1
)}

Q = {(q1, w
q
1), (q2, w

q
2), . . . , (qn2

, wq
n2
)}

(9)

be signatures for which we cluster repeating elements into

single objects increasing their weights accordingly (e.g. p1
appears w

p
1 ∈ N times in P , etc.). Solving the 1:1 pixel

matching problem for P and Q as formulated in equa-

tion (7) (which has m2 variables where m =
∑n

i=1 w
p
i )

is equivalent to solving the EMD problem (8) for P and Q

(which has n1 · n2 variables) i.e. both problems have the

same minima.

Proof sketch For all i, j in (7), we take all the vari-

ables {fk1j , . . . , fkw
p
i
j} that correspond to w

p
i similar pix-

els (with singleton weights). We then collapse each set into

a single variable representing their sum gij =
∑wp

i

l=1 fklj .

This can be done as their coefficients in the optimization ar-

gument
∑
ij

fijdij are the same. The w
p
i constraints of the

form
∑

j fklj = 1 can be replaced with a single constraint

demanding
∑

j gij = w
p
i , without changing the space of

feasible solutions. This can be done, in a similar manner, to

signature Q leading to optimization problem (8).

We see that when sets P and Q contain identical items it

lowers the computational cost of the 1:1 matching using

EMD formulation. Hence clustering similar items and re-

placing them with a single object is an attractive approxi-

mation to the likelihood. However this approximation de-

grades as the clustering becomes coarser. We can bound

this error in likelihood estimation as follows:

Proposition 3.3 Assume the ground distance d(p, q) is

a metric. Let P = {(p1, w
p
1), . . . , (pn1

, wp
n1
)}, Q =

{(q1, w
q
1), . . . , (qn2

, wq
n2
)} be two signatures and let P̂ , Q̂

be crude versions of P,Q such that any object in P̂ is cre-

ated by uniting objects in P and the same holds for Q̂,Q.

Denote by hp, hq the functions mapping each object P,Q to

its containing object in P̂ , Q̂. Then:

|EMD(P,Q, d)− EMD(P̂ , Q̂, d)| ≤∑n1

i=1 w
p
i d(pi, p̂hp(i)) +

∑n2

i=1 w
q
i d(qi, q̂hq(i))

(10)

In other words, the EMD approximation gap is bounded by

the sum of distances between the original cluster centers

and their cruder counterparts in the crude signatures. The

proof of proposition 3.3 is provided in the supplementary

material.



4. Noise Model

We have shown that Locally Orderless Matching at-

tempts to explain a set P as a noisy replica of set Q, un-

der some noise model with parameters Θ. We now turn

our attention to the choice of the noise model and ways

to estimate its parameters from the data. In general, any

distribution can be used as a noise model. One can use

prior knowledge, theoretical or empirical, about the noise to

make an educated choice. In particular we consider the case

of Gaussian noise for both location and appearance, assum-

ing independence between the two, i.e. Pr(p|q,ΘL,ΘA) =
Pr(pL|qL,ΘL) · Pr(pA|qA,ΘA).

4.1. Gaussian Noise

A Gaussian with zero mean and scalar covariance is con-

sidered for both appearance and location.

Pr(pL|qL) ∼ N(0,ΣL = σL · I)
Pr(pA|qA) ∼ N(0,ΣA = σA · I)

(11)

Denoting Θ = (σL, σA). The conditional probability is:

Pr(p|q,Θ) =
1

2πσ2
L

e
−

||pL−qL||2
2

2σ2

L ·
1

(2π)k/2σk
A

e
−

||pA−qA||2
2

2σ2

A

(12)

Ground distance in this case is:

d(p, q) =
1

2σ2
L

||pL − qL||22 +
1

2σ2
A

||pA − qA||22 +C (13)

Where C = k+2
2 log(2π) + 2log(σL) + klog(σA). This

model is simple and intuitive, closely related to Koen-

derink’s locally orderless image representation [1].

4.2. Parameter Estimation

Locally Orderless Matching with a Gaussian noise

model of the form discussed above has two parameters σA

and σL. Due to the independence assumed between ap-

pearance and location each parameter can be estimated sep-

arately using a Maximum Likelihood (ML) estimator and

p, q, σ, k will be used without the superscripts A,L. Recall

from propositions 3.1,3.2 that logPr(P |Q,Θ) ∼
∑
i,j

dijfij ,

where the fij providing the 1 : 1 mapping, are obtained

from the EMD solution. Maximum likelihood can hence be

obtained by differentiating
∑
i,j

dijfij with respect to σ and

comparing to zero. For dij = d(pi, qj) =
1
2σ ||pi − qj ||

2
2 +

k
2 log(2π) + klog(σ) we get:

σ2 =
1

k

∑
i,j

fij ||pi − qj ||
2
2

∑
i,j

fij
. (14)

Parameter estimation can be done using a Maximization-

Maximization (MM) scheme where we iterate between

EMD solution and parameter update until both converge

(convergence is guaranteed as both MM steps increase the

likelihood). Experiments showing we can correctly esti-

mate the noise parameters are provided in the supplemen-

tary material.

5. Locally Orderless Tracking

We are now ready to put all the pieces together. Locally

Orderless Tracking applies Locally Orderless Matching to

tracking. This is done in a Baysian approach using Particle-

Filtering (PF) [25] where the likelihood that a certain parti-

cle has originated from the tracked object is inferred using

Locally Orderless Matching. The overall algorithm is given

in Algorithm 1. Specific details are provided below .

To define the conditional probability between patches

Pr(P |Q,Θ) we only have to define the probabilistic noise

model for single pixels Pr(p|q,Θ). The ground distance

for the EMD is then defined as d(p, q) = −log(p|q,Θ) and

Pr(P |Q,Θ) is obtained by solving the EMD problem.

Solving an EMD problem can be a computationally chal-

lenging task, so instead of using raw pixel values we work

with superpixels. Specifically, target and candidate patches

are represented by signatures which are generated from su-

perpixels computed using TurboPixels [26] clustering built

in a region-of-intrest (ROI) which supports all the particles.

A signature consists of M clusters that reside in the signa-

ture support, i.e. a rectangle. Each cluster is represented

by its location, i.e. geometric center of mass, and average

appearance (e.g. average HSV values).

The target’s state at each frame is found using PF. A

signature is built for each of the N particles which are

rectangular image patches and the EMD is then calculated

between each of these candidate signatures {Pk}
N
k=1 and

the target signature Q0 with ground distances as explained

above (calculated using the noise model parameters Θ). The

EMD scores {EMDk}
N
k=1 are then used to set particle

weights according to πk = e−β·EMDk and the new target

state is taken to be the weighted sum over all particles. Fi-

nally, noise model parameters are updated as explained next

and new particles are drawn for the next iteration of the al-

gorithm.

Noise model parameters are updated based on the new

target state found. The EMD flow between the final can-

didate signature and the target signature Q0 is found pro-

viding the most probable 1 : 1 matching between source

and target signatures. Using this flow we estimate the noise

distribution parameters ΘML according to (14). These es-

timated parameters are then regulated using a prior ΘPrior

and a moving average (MA) process before producing the



final parameters Θn:

ΘMAP = ΘML+ΘPrior·wPrior

1+wPrior

Θn = (1− αMA) ·Θn−1 + αMA ·ΘMAP
(15)

Algorithm 1 Locally Orderless Tracking

Input: Frame I(n), target signature Q0 = {qi, w
q
i }

MQ0

i=1 ,

noise parameters Θ(n−1), particle states {X
(n)
i }

N
i=1

Output: New target state X
(n)
Target, updated parameters

Θ(n), new particle states {X
(n+1)
i }Ni=1

1. Partition ROI in I(n) into superpixels ISP

2. For each particle X
(n)
k do:

(a) Build signature Pk = {pki , w
pk

i }
MPk

i=1 using ISP

(b) Compute ground distances using (13):

{dk}ij = d(pki , qj) = −log(p
k
i |qj ,Θ

(n−1))
(c) Compute EMDk ← EMD(Pk, Q0, dk)
(d) Compute particle weight πk = e−β·EMDk

3. Normalize weights s.t
∑N

i=1 πi = 1

4. Find new target position X
(n)
Target =

∑N
i=1 πiX

(n)
i

5. Build new target signature PT and compute EMD flow

fi,j ← EMD(PT , Q0, dT )
6. Update parameters Θ(n) according to (15).

7. Draw particles {X
(n+1)
i }Ni=1 as explained in [25].

6. Experiments

This section presents experimental results. We begin

with the experimental setup followed by a demonstration of

the on-line adaptation capabilities. We then present qualita-

tive and quantitative results on challenging sequences both

commonly used and new comparing LOT with state-of-the-

art methods.

6.1. Experimental Setup

For our experiments we use HSV color space for ap-

pearance description. Both appearance and location spaces

are normalized to the range [0, 1]. Cluster weights are

determined according to the fraction of pixels associated

with them in the signature (thus ensuring a total signature

weight of 1). The state vector includes position and scale

i.e. Xi = {xi, yi, wi, hi}. We use N = 250 particles

and particle weighing parameter β is set to 10 in order

to better differentiate between particle scores. The noise

model parameters Θ = {σA, σL} are initialized according

to σAprior = 0.05, σLprior = 0.1. Prior weights for noise

parameter updating, as explained in section 5, are initial-

ized to wσprior
A

= wσprior
L

= 0.25. The ML estimator is

calculated according to (14) and the MA parameter is fixed

Sequence IVT OAB MIL VTD LOT

Dog 87 57 45.5 70 97.4

Shop 36.4 20.9 20.9 35 34.6

Girl 15.4 26.2 25 93.4 67.6

Human 88.8 26.2 25 64.6 97.6

Skating 3.8 8.8 9.8 11.5 29.4

Lemming 16.2 37.1 37.6 54.3 73.8

David 83.1 9.7 19.3 18.8 10

Sylv 45.7 31 73.2 93.4 67.6

Face 99 75 54.5 70.1 44.4

Table 1. Quantitative comparison, for 9 commonly used se-

quences, showing the percent of frames for which the PASCAL

criterion was a0 > 0.5. Best result are in bold preface. It can be

seen that LOT (the proposed method) is comparable to the state-

of-the-art as it gives the best results in 4 out of 9 sequences and is

in second place in 2 additional sequences.

to αMA = 0.3. All parameters are kept fixed for all ex-

periments. We use the target signature extracted in the first

frame as our target template. We note that estimating the

noise parameters effectively control the space of templates

that can match this target template and thus can be viewed

as a form of constrained model update.

In this configuration our hybrid Matlab-Mex implemen-

tation runs at ∼ 1 sec per frame for a target window size of

about 50x50 pixels on a standard PC.

6.2. On-line Parameter Update with Toy Example

We first demonstrate the on-line noise parameter update

capabilities of LOT using a 500 frame toy-example of a

LEGO target subject to both appearance and localization

noises. Figure 1 shows 4 sample frames from this sequence

and also the behavior of the noise parameters σL and σA

throughout the sequences.

The target is first subject to an illumination change. LOT

detects the appearance change and increases the appearance

noise parameter σA while maintaining perfect tracking. As

the illumination returns to normal the value of σA decreases.

Next the target is rotated about its origin. Modeling only 2D
translation (and not rotation) this rotation is effectively lo-

calization noise albeit not a Gaussian noise. As before the

target is tracked perfectly while LOT estimates and adapts

the value of σL on-line increasing σL as the rotation an-

gle increases and then decreasing σL as the target is rotated

back. Towards the end of the sequence the algorithm cor-

rectly tracks target scale changes without altering the noise

parameters which is a desired behavior.

6.3. Results for Commonly Used Sequences

We evaluate our performance on 9 challenging se-

quences used in recent publications [4, 5, 27, 6, 7, 12, 13].

We compare LOT’s performance with 4 state-of-the-art



Frame 1 Frame 135 Frame 290 Frame 420 Parameter Estimation

Figure 1. Parameter estimation for the LEGO sequence: (Right) Noise parameter values, σL (Dashed-Red) and σA (Solid-Blue) per frame

showing their on-line update.(Left) Four sample frames. First the target is illuminated with a strong light causing an appearance change

handled by increasing σA. Next the target is rotated and since we only model 2D translation (w/o rotation) this creates localization noise

which is handled by a large σL variation. Finally the target moves away from the camera causing a scale change which is correctly tracked

without significant noise parameter changes.

tracking algorithms with publicly available implementa-

tions: Visual Tracking Decomposition (VTD)[7], Multiple

Instance Learning (MIL)[27], Incremental Visual Tracking

(IVT)[5] and Online AdaBoost (OAB)[11].

We adopt the widely used PASCAL VOC[28] criterion

which quantifies both the centering accuracy as well as the

scale accuracy. The criterion is a0 =
area(Bp∩Bgt)
area(Bp∪Bgt)

where

Bp and Bgt denotes the predicted and ground truth bound-

ing boxes accordingly. Successful tracking is considered as

a0 > 0.5 (50%). We note that some of the sequences were

re-annotated in order to provide ground truth for each frame

that also accounts for scale changes disregarded in some of

the original annotations.

Quantitative results are presented in Table 1 where it can

be seen that LOT’s performance is comparable to the state-

of-the-art algorithms. LOT provides best performance in 4

out of 9 sequences (Dog, Human, Skating and Lemming) it

measures up to IVT and VTD for Shop and holds second

place for Girl. The remaining 3 sequences (David, Sylv and

Face) are gray-scale sequences. LOT can run in both color

and gray-scale (e.g. Dog), however using color appearance

representation (i.e. HSV ) makes gray-scale more challeng-

ing as it leaves the algorithm with only a single appearance

channel. This makes coping with severe global and local

illumination changes a difficult challenge and it is mainly

for this reason that LOT’s performance degrades on the last

3 sequences where it ranks fifth and last in David, third in

Sylv and last in Face. Although VTD and IVT produce bet-

ter results for some sequences, looking at the entire dataset

it can be seen that no other method provides better over-

all performance than LOT. We believe that MIL and OAB

have poorer performance mainly due to their lack of scale

adaptability.

Figure 2 presents sample frames from two sequences

(Dog and Skating) qualitatively showing LOT’s ability to

cope with difficult appearance changes such as massive

scale changes and out-of-plane-rotations.

Sequence IVT OAB MIL VTD LOT

DH 8.9 47.8 45.5 69.4 92.3

Shirt 0.5 66.7 32.5 79 88.1

Train 2.7 3.4 2.3 2.9 69.6

UCSDPeds 26.4 42.5 31.8 60.5 73.9

Boxing 7.3 18.75 18.4 21.2 70.1

Table 2. Quantitative comparison, for 5 new sequences, show-

ing the percent of frames for which the PASCAL criterion was

a0 > 0.5. Best result are in bold preface. It can be seen that LOT

(the proposed method) outperforms the other methods producing

significantly better results on this set of challenging sequences.

6.4. Results for New Sequences

In this part we present additional results on 5 challeng-

ing new sequences. The videos include gray-scale and color

examples with both static and moving cameras. The tar-

gets in these sequences are subject to many appearance

changes due to deformations, pose changes, out-of-plane-

rotations, massive scale changes, motion blur and illumina-

tion changes.

A quantitative comparison, based on the PASCAL crite-

rion, between LOT and the four state-of-the-art methods is

presented in Table 2. It can be seen that LOT outperforms

the other tracking methods producing significantly better re-

sults for all these sequences.

Sample frames from three of the sequences are presented

in Figure 3.

The first, 481 frame long, sequence shows a Down-Hill

(DH) bike ride. As the rider jumps and moves in and out

of shade a lot of motion blur, deformations and illumina-

tion changes are created. IVT drifts after the first jump ,

MIL and OAB keep tracking but eventually also drift. Only

VTD and LOT are able to track the rider until the end of the

sequence.

The second, 951 frame long, sequence we captured is of

a T-shirt undergoing severe non-rigid deformations and mo-

tion blur. All 4 competing algorithms are unable to track the

target through the severe non-rigid deformations and loose



Frame 270 Frame 825 Frame 977 Frame 1154 Frame 1343

Frame 1 Frame 135 Frame 245 Frame 603 Frame 707

Figure 2. Sample frames from two sequences: Dog and Skating . The different algorithms are: IVT in Yellow, OAB in Cyan, MIL in Red,

VTD in Magenta and LOT (The proposed algorithm) in Green.

track at some point. Only LOT with its inherent ability to

explain non-rigid deformations tracks the shirt through the

entire sequence.

The third, 900 frame long, sequence was taken from the

PETS-2006 dataset1. It shows a man walking around a busy

train station making many pose changes and undergoing

several occlusions. Although LOT does not have an explicit

mechanism for handling occlusions it can handle partial oc-

clusions by tracking the remaining visible part of the target

which often captures the full target color statistics. In this

sequence the first partial occlusion occurs around frame 35

causing IVT, OAB and MIL to drift. A second occlusion

at around frame 60 throws VTD off track as well. LOT is

able to overcome these 2 occlusion by shrinking and match-

ing to the remaining visible part of the target. It continues

tracking the man for the entire length of the sequence while

overcoming pose changes and additional occlusions.

The forth, 261 frame long, gray-scale, sequence taken

from the UCSD crowd dataset2 shows two people walking

and fighting. We track both people as a single target. This

crowd target undergoes non-rigid deformations as the peo-

ple draw nearer and apart and as they fight with each other.

Although all the methods are able track the targets location

throughout most of the sequence with only minor glitches,

LOT produces significantly more accurate results.

The fifth and last is a, 352 frame long, boxing sequence.

At the beginning of this sequence only LOT is able to cor-

rectly track the boxer through the difficult pose changes. All

methods drift between frame 200-225 due to a rapid move-

ment followed by an occlusion however LOT is able to lock

back on at frame 281 and continue tracking the target until

the end of the sequence.

1http://www.cvg.rdg.ac.uk/PETS2006/data.html
2http://www.svcl.ucsd.edu/projects/peoplecnt/index.htm

7. Conclusions

Locally Orderless Tracking is a new visual tracking al-

gorithm that estimates and adapts, on-line, to the rigidity of

the tracked object. The algorithm is governed by a small set

of parameters Θ that are estimated on-line allowing it to go

from rigid template matching on one end to histogram-like

tracking on the other, or be anywhere in between. At the

heart of this framework lies Locally Orderless Matching,

a new probabilistic interpretation of EMD that rigorously

shows how EMD can be used to infer the likelihood that

patch P is a noisy replica of patch Q with noise parame-

ters Θ. We have shown how these noise parameters can be

estimated from the data at hand and also presented results

demonstrating this on-line estimation and adaptation. Fi-

nally we have shown that LOT’s performance is comparable

to state-of-the-art methods on a wide range of commonly

used and new videos presenting superior performance in

many cases.

The framework developed in this work is generic to any

noise model and appearance space, future work is intended

to look into different noise models and appearance represen-

tations that might be better suited for specific applications.
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