A. Sarkar, M. Sen (Univ. Burdwan, India)

LOCALLY ϕ-SYMMETRIC GENERALIZED SASAKIAN-SPACE-FORMS ЛОКАЛЬНО ϕ-СИМЕТРИЧНІ УЗАГАЛЬНЕНІ ФОРМИ ПРОСТОРУ САСАКЯНА

The object of the present paper is to find necessary and sufficient conditions for locally ϕ-symmetric generalized Sasakian-space-forms to have constant scalar curvature, η-parallel Ricci tensor and cyclic parallel Ricci tensor. Illustrative examples are given.

Встановлено необхідні та достатні умови, при яких локально ϕ-симетричні узагальнені форми простору Сасакяна мають сталу скалярну кривизну, η-паралельний тензор Річчі та циклічний паралельний тензор Річчі. Наведено приклади.

1. Introduction. The nature of a Riemannian manifold mostly depends on the curvature tensor R of the manifold. It is well known that the sectional curvatures of a manifold determine curvature tensor completely. A Riemannian manifold with constant sectional curvature c is known as real-space-form and its curvature tensor is given by

$$
R(X, Y) Z=c\{g(Y, Z) X-g(X, Z) Y\}
$$

A Sasakian manifold with constant ϕ-sectional curvature is a Sasakian-space-form and it has a specific form of its curvature tensor. Similar notion also holds for Kenmotsu and cosymplectic space-forms. In order to generalize such space-forms in a common frame P. Alegre, D. E. Blair and A. Carriazo introduced the notion of generalized Sasakian-space-forms in 2004 [1]. But, it is to be noted that generalized Sasakian-space-forms are not merely generalization of such space-forms. It also contains a large class of almost contact manifolds. For example, it is known that [2] any three-dimensional (α, β)-trans Sasakian manifold with α, β depending on ξ is a generalized Sasakian-space-form. However, we can find generalized Sasakian-space-forms with non-constant functions and arbitrary dimensions. In [1], the authors cited several examples of generalized Sasakian-space-forms in terms of warped product spaces. In this connection, it should be mentioned that in 1989 Z. Olszak [12] studied generalized complex-space-forms and proved its existence. A generalized Sasakian-space-form is defined as follows [1]:

Given an almost contact metric manifold $M(\phi, \xi, \eta, g)$, we say that M is generalized Sasakian-space-form if there exist three functions f_{1}, f_{2}, f_{3} on M such that the curvature tensor R is given by

$$
\begin{gathered}
R(X, Y) Z=f_{1}\{g(Y, Z) X-g(X, Z) Y\}+ \\
+f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\}+ \\
+f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\},
\end{gathered}
$$

for any vector fields X, Y, Z on M. In such a case we denote the manifold as $M\left(f_{1}, f_{2}, f_{3}\right)$. Here we shall denote this manifold simply by M. In [1], the authors cited several examples of such manifolds.

If $f_{1}=\frac{c+3}{4}, f_{2}=\frac{c-1}{4}$ and $f_{3}=\frac{c-1}{4}$, then a generalized Sasakian-space-form with Sasakian structure becomes Sasakian-space-form.

Generalized Sasakian-space-forms have been studied by several authors, viz., [1, 2, 9]. As a weaker notion of locally symmetric manifolds T. Takahashi [13] introduced and studied locally ϕ symmetric Sasakian manifolds. Locally ϕ-symmetric manifolds have also been studied in the papers $[5,6]$. Symmetry of a manifold primarily depends on curvature tensor and Ricci tensor of the manifold. In the paper [4], locally ϕ-symmetric generalized Sasakian-space-forms have been studied and determined the condition for the manifold to be locally ϕ-symmetric with the additional condition that the manifold is conformally flat. In the present paper, we study locally ϕ-symmetric generalized Sasakian-space-forms and show that every locally ϕ-symmetric generalized Sasakian-space-form is conformally flat. So, the present paper improves the result of the paper [4]. The present paper is organized as follows:

Section 2 of this paper contains some preliminary results. In Section 3, we study locally ϕ symmetric generalized Sasakian-space-forms, and prove that every generalized Sasakian-space-form which is locally ϕ-symmetric is conformally flat. In this section, we also find the conditions for a locally ϕ-symmetric generalized Sasakian-space-form to have constant scalar curvature, η-parallel Ricci tensor and cyclic parallel Ricci tensor. Interestingly, we show that in a locally ϕ-symmetric generalized Sasakian-space-form all these properties hold if and only if f_{3} is constant. The last section contains illustrative examples.
2. Preliminaries. This section contains some basic results and formulas which we will use in need for.

A $(2 n+1)$-dimensional Riemannian manifold (M, g) is called an almost contact metric manifold if the following results hold [3]:

$$
\begin{equation*}
\phi^{2} X=-X+\eta(X) \xi, \quad \phi \xi=0, \quad g(X, \xi)=\eta(X) \tag{2.1}
\end{equation*}
$$

Here X is any vector field on the manifold, ϕ is a $(1,1)$ tensor, ξ is a unit vector field, η is an 1 -form and g is a Riemannian metric. This metric induces an inner product on the tangent space of the manifold. An almost contact metric manifold is called contact metric manifold if

$$
d \eta(X, Y)=\Phi(X, Y)=g(X, \phi Y)
$$

for any vector fields X, Y on the manifold. Φ is called the fundamental two form of the manifold. An almost contact metric structure is said to be normal if the induced almost complex structure J on the product manifold $M \times \mathbb{R}$ defined by

$$
J\left(X, f \frac{d}{d t}\right)=\left(\phi X-f \xi, \eta(X) \frac{d}{d t}\right)
$$

is integrable, where X is tangent to M, t is the coordinate of \mathbb{R}, and f is a smooth function on $M \times \mathbb{R}$ [3]. A normal contact metric manifold is known as Sasakian manifold. An almost contact metric manifold is Sasakian if and only if

$$
\left(\nabla_{X} \phi\right) Y=g(X, Y) \xi-\eta(Y) X
$$

for any vector fields X, Y on the manifold [3]. Here ∇ is the Levi-Civita connection on the manifold. It is also called operator of covariant differentiation.

For a $(2 n+1)$-dimensional generalized Sasakian-space-form we have [1]

$$
\begin{gather*}
R(X, Y) Z=f_{1}\{g(Y, Z) X-g(X, Z) Y\}+ \\
+f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\}+ \\
+f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\}, \tag{2.2}\\
S(X, Y)=\left(2 n f_{1}+3 f_{2}-f_{3}\right) g(X, Y)-\left(3 f_{2}+(2 n-1) f_{3}\right) \eta(X) \eta(Y), \tag{2.3}\\
r=2 n(2 n+1) f_{1}+6 n f_{2}-4 n f_{3} . \tag{2.4}
\end{gather*}
$$

Here S is the Ricci tensor and r is the scalar curvature of the space-form.
A generalized Sasakian-space-form of dimension greater than three is said to be conformally flat if its Weyl conformal curvature tensor vanishes. It is known that [9] a $(2 n+1)$-dimensional $(n>1)$ generalized Sasakian-space-form $M\left(f_{1}, f_{2}, f_{3}\right)$ is conformally flat if and only if $f_{2}=0$.

3. Locally ϕ-symmetric generalized Sasakian space-forms.

Definition 3.1. A generalized Sasakian space form is said to be locally ϕ-symmetric if

$$
\phi^{2}\left(\nabla_{W} R\right)(X, Y) Z=0
$$

for all vector fields X, Y, Z orthogonal to ξ.
This notion was introduced by T. Takahashi for Sasakian manifolds [13].
Definition 3.2. The Ricci tensor S of a generalized Sasakian-space-form is called η-parallel if it satisfies

$$
\left(\nabla_{W} S\right)(\phi X, \phi Y)=0,
$$

for any vector fields X, Y, W.
The notion of η-parallel Ricci tensor was introduced by M. Kon in the context of Sasakian geometry [11].

If X, Y, Z are orthogonal to ξ, then (2.2) takes the form

$$
\begin{gathered}
R(X, Y) Z=f_{1}\{g(Y, Z) X-g(X, Z) Y\}+ \\
+f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\} .
\end{gathered}
$$

By covariant differentiation of $R(X, Y) Z$ with respect to W, we obtain from the above equation

$$
\begin{gathered}
\left(\nabla_{W} R\right)(X, Y) Z=\nabla_{W} R(X, Y) Z-R\left(\nabla_{W} X, Y\right) Z-R\left(X, \nabla_{W} Y\right) Z-R(X, Y) \nabla_{W} Z= \\
=d f_{1}(W)\{g(Y, Z) X-g(X, Z) Y\}+ \\
+f_{1}\left\{\nabla_{W} g(Y, Z) X+g(Y, Z) \nabla_{W} X-\nabla_{W} g(X, Z) Y-g(X, Z) \nabla_{W} Y\right\}+ \\
+d f_{2}(W)\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\}+ \\
+f_{2}\left\{\nabla_{W} g(X, \phi Z) \phi Y+g(X, \phi Z) \nabla_{W}(\phi Y)-\right. \\
\text { ISSN 1027-3190. Укр. мат. журн., 2013, m. 65, № } 10
\end{gathered}
$$

$$
\begin{gather*}
-\nabla_{W} g(Y, \phi Z) \phi X-g(Y, \phi Z) \nabla_{W}(\phi X)+ \\
\left.+2 \nabla_{W} g(X, \phi Y) \phi Z+2 g(X, \phi Y) \nabla_{W}(\phi Z)\right\}- \\
-f_{1}\left\{g(Y, Z) \nabla_{W} X-g\left(\nabla_{W} X, Z\right) Y\right\}- \\
-f_{2}\left\{g\left(\nabla_{W} X, \phi Z\right) \phi Y-g(Y, \phi Z) \phi \nabla_{W} X+2 g\left(\nabla_{W} X, \phi Y\right) \phi Z\right\}- \\
-f_{1}\left\{g\left(\nabla_{W} Y, Z\right) X-g(X, Z) \nabla_{W} Y\right\}- \\
-f_{2}\left\{g(X, \phi Z) \phi \nabla_{W} Y-g\left(\nabla_{W} Y, \phi Z\right) \phi X+2 g\left(X, \phi \nabla_{W} Y\right) \phi Z\right\}- \\
-f_{1}\left\{g\left(Y, \nabla_{W} Z\right) X-g\left(X, \nabla_{W} Z\right) Y\right\}- \\
-f_{2}\left\{g\left(X, \phi \nabla_{W} Z\right) \phi Y-g\left(Y, \phi \nabla_{W} Z\right) \phi X+2 g(X, \phi Y) \phi \nabla_{W} Z\right\} . \tag{3.1}
\end{gather*}
$$

Arranging the terms of the above equation, we have

$$
\begin{gathered}
\left(\nabla_{W} R\right)(X, Y) Z=d f_{1}(W)\{g(Y, Z) X-g(X, Z) Y\}+ \\
+d f_{2}(W)\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\}+ \\
+f_{1}\left\{\nabla_{W} g(Y, Z) X+g(Y, Z) \nabla_{W} X-\nabla_{W} g(X, Z) Y-g(X, Z) \nabla_{W} Y-\right. \\
-g(Y, Z) \nabla_{W} X+g\left(\nabla_{W} X, Z\right) Y-g\left(\nabla_{W} Y, Z\right) X+g(X, Z) \nabla_{W} Y- \\
\left.-g\left(Y, \nabla_{W} Z\right) X+g\left(X, \nabla_{W} Z\right) Y\right\}+ \\
+f_{2}\left\{\nabla_{W} g(X, \phi Z) \phi Y+g(X, \phi Z) \nabla_{W}(\phi Y)-\right. \\
-\nabla_{W} g(Y, \phi Z) \phi X-g(Y, \phi Z) \nabla_{W}(\phi X)+ \\
+2 \nabla_{W} g(X, \phi Y) \phi Z+2 g(X, \phi Y) \nabla_{W}(\phi Z)- \\
-g\left(\nabla_{W} X, \phi Z\right) \phi Y+g(Y, \phi Z) \phi \nabla_{W} X-2 g\left(\nabla_{W} X, \phi Y\right) \phi Z- \\
-g(X, \phi Z) \phi \nabla_{W} Y+g\left(\nabla_{W} Y, \phi Z\right) \phi X-2 g\left(X, \phi \nabla_{W} Y\right) \phi Z- \\
\left.-g\left(X, \phi \nabla_{W} Z\right) \phi Y+g\left(Y, \phi \nabla_{W} Z\right) \phi X-2 g(X, \phi Y) \phi \nabla_{W} Z\right\} .
\end{gathered}
$$

After canceling some terms in the coefficient of f_{1} in the above equation, using the result $\left(\nabla_{W} \phi\right) X=\nabla_{W}(\phi X)-\phi \nabla_{W} X$ and arranging the terms, we get from the above equation

$$
\begin{gathered}
\left(\nabla_{W} R\right)(X, Y) Z=d f_{1}(W)\{g(Y, Z) X-g(X, Z) Y\}+ \\
+d f_{2}(W)\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\}+ \\
+f_{1}\left\{\left(\nabla_{W} g(Y, Z)-g\left(\nabla_{W} Y, Z\right)-g\left(Y, \nabla_{W} Z\right)\right) X-\right.
\end{gathered}
$$

$$
\begin{gathered}
\left.-\left(\nabla_{W} g(X, Z)-g\left(\nabla_{W} X, Z\right)-g\left(X, \nabla_{W} Z\right)\right) Y\right\}+ \\
+f_{2}\left\{\left(\nabla_{W} g(X, \phi Z)-g\left(\nabla_{W} X, \phi Z\right)-g\left(X, \nabla_{W}(\phi Z)\right)\right) \phi Y+\right. \\
+g\left(X,\left(\nabla_{W} \phi\right) Z\right) \phi Y-\left(\nabla_{W} g(Y, \phi Z)-g\left(\nabla_{W} Y, \phi Z\right)-\right. \\
\left.-g\left(Y, \nabla_{W}(\phi Z)\right)\right) \phi X-g\left(Y,\left(\nabla_{W} \phi\right) Z\right) \phi X+ \\
+2\left(\nabla_{W} g(X, \phi Y)-g\left(\nabla_{W} X, \phi Y\right)-\right. \\
\left.-g\left(X, \nabla_{W}(\phi Y)\right)\right) \phi Z+2 g\left(X,\left(\nabla_{W} \phi\right) Y\right) \phi Z+ \\
\left.+g(X, \phi Z)\left(\nabla_{W} \phi\right) Y-g(Y, \phi Z)\left(\nabla_{W} \phi\right) X+2 g(X, \phi Y)\left(\nabla_{W} \phi\right) Z\right\} .
\end{gathered}
$$

The operator ∇ of the covariant differentiation is called metric connection if $\left(\nabla_{W} g\right)(X, Y)=0$, i.e., $\nabla_{W} g(X, Y)-g\left(\nabla_{W} X, Y\right)-g\left(X, \nabla_{W} Y\right)=0$. Here we take ∇ as metric connection. Then, we also have $\left(\nabla_{W} g\right)(X, \phi Y)=0$. Thus, the above equation gives

$$
\begin{gather*}
\left(\nabla_{W} R\right)(X, Y) Z=d f_{1}(W)\{g(Y, Z) X-g(X, Z) Y\}+ \\
+d f_{2}(W)\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X+2 g(X, \phi Y) \phi Z\}+ \\
+f_{2}\left\{g(X, \phi Z)\left(\nabla_{W} \phi\right) Y-g(Y, \phi Z)\left(\nabla_{W} \phi\right) X+\right. \\
+2 g(X, \phi Y)\left(\nabla_{W} \phi\right) Z+g\left(X,\left(\nabla_{W} \phi\right) Z\right) \phi Y- \\
\left.-g\left(Y,\left(\nabla_{W} \phi\right) Z\right) \phi X+2 g\left(X,\left(\nabla_{W} \phi\right) Y\right) \phi Z\right\} . \tag{3.2}
\end{gather*}
$$

Applying ϕ^{2} on both sides of (3.2) and using (2.1), we get

$$
\begin{align*}
& \phi^{2}\left(\nabla_{W} R\right)(X, Y) Z=d f_{1}(W)\{g(X, Z) Y-g(Y, Z) X\}+ \\
& +d f_{2}(W)\{g(Y, \phi Z) \phi X-2 g(X, \phi Y) \phi Z-g(X, \phi Z) \phi Y\}+ \\
& +f_{2}\left\{g(X, \phi Z) \phi^{2}\left(\left(\nabla_{W} \phi\right) Y\right)-g(Y, \phi Z) \phi^{2}\left(\left(\nabla_{W} \phi\right) X\right)+\right. \\
& +2 g(X, \phi Y) \phi^{2}\left(\left(\nabla_{W} \phi\right) Z\right)-g\left(X,\left(\nabla_{W} \phi\right) Z\right) \phi Y+ \\
& \left.\quad+g\left(Y,\left(\nabla_{W} \phi\right) Z\right) \phi X-2 g\left(X,\left(\nabla_{W} \phi\right) Y\right) \phi Z\right\} . \tag{3.3}
\end{align*}
$$

Suppose that the manifold is locally ϕ-symmetric. Then (3.3) yields

$$
\begin{gathered}
d f_{1}(W)\{g(X, Z) Y-g(Y, Z) X\}+ \\
+d f_{2}(W)\{g(Y, \phi Z) \phi X-2 g(X, \phi Y) \phi Z-g(X, \phi Z) \phi Y\}+ \\
+f_{2}\left\{g(X, \phi Z) \phi^{2}\left(\left(\nabla_{W} \phi\right) Y\right)-g(Y, \phi Z) \phi^{2}\left(\left(\nabla_{W} \phi\right) X\right)+\right.
\end{gathered}
$$

$$
\begin{gather*}
+2 g(X, \phi Y) \phi^{2}\left(\left(\nabla_{W} \phi\right) Z\right)-g\left(X,\left(\nabla_{W} \phi\right) Z\right) \phi Y+g\left(Y,\left(\nabla_{W} \phi\right) Z\right) \phi X- \\
\left.-2 g\left(X,\left(\nabla_{W} \phi\right) Y\right) \phi Z\right\}=0 \tag{3.4}
\end{gather*}
$$

Taking the inner product g in both sides of the above equation with W we have

$$
\begin{gather*}
d f_{1}(W)\{g(X, Z) g(Y, W)-g(Y, Z) g(X, W)\}+ \\
+d f_{2}(W)\{g(Y, \phi Z) g(\phi X, W)-2 g(X, \phi Y) g(\phi Z, W)-g(X, \phi Z) g(\phi Y, W)\}+ \\
+f_{2}\left\{g(X, \phi Z) g\left(\phi^{2}\left(\left(\nabla_{W} \phi\right) Y\right), W\right)-g(Y, \phi Z) g\left(\phi^{2}\left(\left(\nabla_{W} \phi\right) X\right), W\right)+\right. \\
+2 g(X, \phi Y) g\left(\phi^{2}\left(\left(\nabla_{W} \phi\right) Z\right), W\right)-g\left(X,\left(\nabla_{W} \phi\right) Z\right) g(\phi Y, W)+g\left(Y,\left(\nabla_{W} \phi\right) Z\right) g(\phi X, W)- \\
\left.-2 g\left(X,\left(\nabla_{W} \phi\right) Y\right) g(\phi Z, W)\right\}=0 \tag{3.5}
\end{gather*}
$$

In (3.5) putting $X=W=e_{i}$, where $\left\{e_{i}\right\}$ is an orthonormal basis of the tangent space at each point of the manifold and taking summation over $i, i=1,2,3, \ldots, 2 n+1$, we get

$$
\begin{gather*}
2 n d f_{1}(W) g(Y, Z)+3 d f_{2}(W) g(Y, Z)-f_{2}\left\{g\left(\phi Z, \phi^{2}\left(\nabla_{e_{i}} \phi\right) Y\right)-\right. \\
-\sum_{i} g(Y, \phi Z) g\left(\phi^{2}\left(\nabla_{e_{i}} \phi\right) e_{i}, e_{i}\right)+2 g\left(\phi Y, \phi^{2}\left(\nabla_{e_{i}} \phi\right) Z\right)- \\
\left.-g\left(\left(\nabla_{W} \phi\right) Z, \phi Y\right)-2 g\left(\left(\nabla_{W} \phi\right) Y, \phi Z\right)\right\}=0 \tag{3.6}
\end{gather*}
$$

Putting $Z=\phi Y$, we have from the above equation

$$
\begin{gather*}
f_{2}\left\{g\left(\phi^{2} Y, \phi^{2}\left(\nabla_{e_{i}} \phi Y\right)\right)-\sum_{i} g\left(Y, \phi^{2} Y\right) g\left(\phi^{2}\left(\nabla_{e_{i}} \phi\right) e_{i}, e_{i}\right)+\right. \\
\left.+2 g\left(\phi Y,\left(\nabla_{e_{i}} \phi\right) \phi Y\right)-g\left(\left(\nabla_{W} \phi\right) \phi Y, \phi Y\right)-2 g\left(\left(\nabla_{W} \phi\right) Y, \phi^{2} Y\right)\right\}=0 . \tag{3.7}
\end{gather*}
$$

The above equation is true for any arbitrary Y orthogonal to ξ. We observe from (3.7) that for $Y \neq \xi$

$$
\begin{gathered}
g\left(\phi^{2} Y, \phi^{2}\left(\nabla_{e_{i}} \phi Y\right)\right)-\sum_{i} g\left(Y, \phi^{2} Y\right) g\left(\phi^{2}\left(\nabla_{e_{i}} \phi\right) e_{i}, e_{i}\right)+ \\
+2 g\left(\phi Y,\left(\nabla_{e_{i}} \phi\right) \phi Y\right)-g\left(\left(\nabla_{W} \phi\right) \phi Y, \phi Y\right)-2 g\left(\left(\nabla_{W} \phi\right) Y, \phi^{2} Y\right) \neq 0 .
\end{gathered}
$$

Hence, in view of (3.7) we must have

$$
\begin{equation*}
f_{2}=0 \tag{3.8}
\end{equation*}
$$

It is known that [9] a generalized Sasakian-space-form is conformally flat if and only if $f_{2}=0$. Thus, we have the following theorem.

Theorem 3.1. A locally ϕ-symmetric generalized Sasakian-space-form is conformally flat.
The above theorem gives a new result regarding the relation between locally ϕ-symmetric generalized Sasakian-space-forms and conformally flat generalized Sasakian-space-forms.

By virtue of (3.8), (3.5) takes the form

$$
d f_{1}(W)=0 .
$$

The above equation yields f_{1} is a constant. Hence, for a locally ϕ-symmetric generalized Sasakian-space-form $f_{2}=0$ and f_{1} is constant. Therefore, from (2.4), it follows that

$$
r=2 n(2 n+1) f_{1}-4 n f_{3} .
$$

The above quation yields

$$
\begin{equation*}
d r(W)=-4 n d f_{3}(W) \tag{3.9}
\end{equation*}
$$

In view of the above equation we obtain the following theorem.
Theorem 3.2. The scalar curvature of a locally ϕ-symmetric generalized Sasakian-space-form is constant if and only if f_{3} is constant.

From (2.3) we have

$$
\begin{equation*}
\left(\nabla_{W} S\right)(\phi X, \phi Y)=d\left(2 n f_{1}+3 f_{2}-f_{3}\right)(W) g(\phi X, \phi Y), \tag{3.10}
\end{equation*}
$$

where X, Y are orthogonal to ξ. If the manifold is locally ϕ-symmetric, then the above equation takes the form

$$
\left(\nabla_{W} S\right)(\phi X, \phi Y)=-d\left(f_{3}\right)(W) g(X, Y)
$$

The above equation leads us to state the following theorem.
Theorem 3.3. A locally ϕ-symmetric generalized Sasakian-space-form has η-parallel Ricci tensor if and only if f_{3} is constant.
A. Gray [8] introduced two classes of Riemannian manifolds determined by the covariant derivative of the Ricci tensor. The first one is the class \mathcal{A} consisting of all Riemannian manifolds whose Ricci tensor S is a Codazzi tensor, that is,

$$
\left(\nabla_{X} S\right)(Y, Z)=\left(\nabla_{Y} S\right)(X, Z)
$$

The second one is the class \mathcal{B} consisting of all Riemannian manifolds whose Ricci tensor is cyclic parallel, that is,

$$
\left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} S\right)(X, Z)+\left(\nabla_{Z} S\right)(X, Y)=0 .
$$

It is known that [10] the Ricci tensor of Cartan hypersurface is cyclic parallel. Now, we like to find under what condition a locally ϕ-symmetric generalized Sasakian space-form has cyclic parallel Ricci tensor. In view of (2.3), and for X, Y, Z orthogonal to ξ, we get

$$
\begin{gather*}
\left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} S\right)(X, Z)+\left(\nabla_{Z} S\right)(X, Y)=d\left(2 n f_{1}+3 f_{2}-f_{3}\right)(X) g(Y, Z)+ \\
+d\left(2 n f_{1}+3 f_{2}-f_{3}\right)(Y) g(X, Z)+d\left(2 n f_{1}+3 f_{2}-f_{3}\right)(Z) g(X, Y) \tag{3.11}
\end{gather*}
$$

For a locally ϕ-symmetric generalized Sasakian-space-form $f_{2}=0$ and f_{1} is consant. Hence, the above equation yields

$$
\begin{gather*}
\left(\nabla_{X} S\right)(Y, Z)+\left(\nabla_{Y} S\right)(X, Z)+\left(\nabla_{Z} S\right)(X, Y)= \\
=-d\left(f_{3}\right)(X) g(Y, Z)-d\left(f_{3}\right)(Y) g(X, Z)-d\left(f_{3}\right)(Z) g(X, Y) . \tag{3.12}
\end{gather*}
$$

The above equation enables us to state the following theorem.

Theorem 3.4. A locally ϕ-symmetric generalized Sasakian-space-form has cyclic parallel Ricci tensor if and only if f_{3} is constant.

By virtue of Theorems 3.2, 3.3, 3.4, we obtain the following corollary.
Corollary 3.1. For a locally ϕ-symmetric generalized Sasakian-space-form the following conditions are equivalent:
(i) the manifold has constant scalar curvature,
(ii) the manifold has η-parallel Ricci tensor,
(iii) the manifold has cyclic parallel Ricci tensor.

The above corollary gives a new result.
Remark 3.1. The notion of quarter-symmetric metric connection was introduced by S. Golab [7]. The torsion tensor of the quarter-symmetric metric connection is given by

$$
T(X, Y)=\eta(Y) X-\eta(X) Y
$$

If X, Y are orthogonal to ξ, then the torsion tensor vanishes and the quarter-symmetric metric connection reduces to Levi-Civita connection. Therefore, all the results of the present paper are of the same form with respect to quarter-symmetric metric connection and Levi-Civita connection.
4. Examples. Let us now give an example of a generalized Sasakian-space-form which is locally ϕ-symmetric.

Example 4.1. In [1], it is shown that $\mathbb{R} \times_{f} \mathbb{C}^{m}$ is a generalized Sasakian-space-form with

$$
f_{1}=-\frac{\left(f^{\prime}\right)^{2}}{f^{2}}, \quad f_{2}=0, \quad f_{3}=-\frac{\left(f^{\prime}\right)^{2}}{f^{2}}+\frac{f^{\prime \prime}}{f}
$$

where $f=f(t), t \in \mathbb{R}$ and f^{\prime} denotes derivative of f with respect to t. If we choose $m=4$, and $f(t)=e^{t}$, then M is a 5 -dimensional conformally flat generalized Sasakian-space-form, because $f_{2}=0$. We also see that $f_{3}=0$, which is a constant. Therefore, by the results obtained in the present paper M is locally ϕ-symmetric and has constant scalar curvature, η-parallel Ricci tensor and cyclic parallel Ricci tensor.

Example 4.2. Let $N(a, b)$ be a generalized complex space-form of dimension 4, then by [1], $M=\mathbb{R} \times_{f} N$, endowed with the almost contact metric structure $\left(\phi, \xi, \eta, g_{f}\right)$ is a generalized Sasakian-space-form $M\left(f_{1}, f_{2}, f_{3}\right)$ of dimension 5 with

$$
f_{1}=\frac{a-f^{\prime 2}}{f^{2}}, \quad f_{2}=\frac{b}{f^{2}}, \quad f_{3}=\frac{a-f^{\prime 2}}{f^{2}}+\frac{f^{\prime \prime}}{f}
$$

where f is a function of $t \in \mathbb{R}$ and f^{\prime} denotes differentiation of f with respect to t. Let us choose f and a as constants and $b=0$. Then $f_{2}=0$ and f_{3} is a constant. Therefore, by theorems obtained in the present paper M locally ϕ-symmetric and has constant scalar curvature, η-parallel Ricci tensor and cyclic parallel Ricci tensor.

Example 4.3. For a Sasakian-space-form of dimension greater than three and of constant ϕ sectional curvature $1, f_{1}=1, f_{2}=f_{3}=0$. Therefore, by theorems obtained in the present paper M is locally ϕ-symmetric and has constant scalar curvature, η-parallel Ricci tensor and cyclic parallel Ricci tensor.
. Alegre P., Blair D., Carriazo A. Generalized Sasakian-space-forms // Isr. J. Math. - 2004 - 14. - P. 157 - 183.
2. Alegre P., Carriazo A. Structures on generalized Sasakian-space-forms // Different. Geom. and Appl. - 2008. - 26. P. 656-666.
3. Blair D. E. Lecture notes in Mathematics. - Berlin: Springer-Verlag, 1976. - 509.
4. De U. C., Sarkar A. Some results on generalized Sasakian-space-forms // Thai. J. Math. - 2010. - 8. - P. 1-10.
5. De U. C., Sarkar A. On three-dimensional trans-Sasakian manifolds // Extracta Math. - 2008. - 23. - P. 265 - 277.
6. De U. C., Sarkar A. On three-dimensional quasi-Sasakian manifolds // SUT J. Math. - 2009. - 45. - P. 59-71.
7. Golab S. On semi-symmetric and quarter-symmetric linear connections // Tensor (New. Ser.). - 1975. - 29. P. 249-254.
8. Gray A. Two classes of Riemannian manifolds // Geom. dedic. - 1978. - 7. - P. 259-280.
9. Kim U. K. Conformally flat generalized Sasakian-space-forms and locally symmetric generalized Sasakian-spaceforms // Note Mat. - 2006. - 26. - P. 55-67.
10. Ki U.-H., Nakagawa H. A. A characterization of Cartan hypersurfaces in a sphere // Tohoku Math. J. - 1987. - 39. P. 27-40.
11. Kon M. Invariant submanifolds in Sasakian manifolds // Math. Ann. - 1976. - 219. - P. 277-290.
12. Olszak Z. On the existence of generalized complex space-forms // Isr. J. Math. - 1989. - 65. - P. 214-218.
13. Takahashi T. Sasakian ϕ-symmetric spaces // Tohoku Math. J. - 1977. - 29. - P. 91-113.
14. Yano K., Swaki S. Riemannian manifolds admitting a conformal transformation group // J. Different. Geom. - 1968. 2. - P. 161-184.
15. Yano K. Integral formulas in Riemannian geometry // Pure and Appl. Math. - 1970. - № 1.

Received 01.06.11, after revision - 14.02.12

