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Summary.

This article proposes the modelling and analysis of image texture using an extension of a locally

stationary wavelet process model into two-dimensions for lattice processes. Such a model permits

construction of estimates of a spatially localized spectrum and localized autocovariance which can

be used to characterize texture in a multiscale and spatially adaptive way. We provide the necessary

theoretical support to show that our two-dimensional extension is properly defined and has the

proper statistical convergence properties.

Our use of a statistical model permits us to identify, and correct for, a bias in established texture

measures based on non-decimated wavelet techniques. The proposed method performs nearly as

well as optimal Fourier techniques on stationary textures and outperforms them in non-stationary

situations. We illustrate our techniques using pilled fabric data from a fabric care experiment and

simulated tile data.

Keywords: random field; local spectrum; local autocovariance; texture classification; texture model; non-

decimated wavelets

1 Introduction

Wavelet techniques have recently become extremely popular in the statistical literature for

nonparametric curve estimation and for the modelling and analysis of time series. For a

general overview of wavelet techniques in statistics see the review by Abramovich, Bailey

and Sapatinas (2000), Vidakovic (1999) or Nason (2008). This article tackles the problem of

modelling and analysing image texture (or more generally, the spatial covariance structure

of lattice processes).

Our texture model is based on the locally stationary wavelet (LSW) process model

for time series from Nason, von Sachs and Kroisandt (2000) (henceforth NvSK) and

we draw our notation largely from this work. Sections 2 and 3 extend the LSW model
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into two dimensions providing extended versions of NvSK’s model, evolutionary wavelet

spectrum, localized autocovariance and their estimators. In many cases the extension is

straightforward although in a few cases some non-trivial work is required to check that

the necessary theory is still valid. Our new two-dimensional (2D) model provides localized

spectra and autocovariance for 2D lattice processes. The localization is incredibly important

for applications because the statistical properties of real-life objects often vary with location.

For example, Section 5 demonstrates how our model can deal with non-stationary texture

classification on simulated tile data.

There are many potential stochastic models for texture. However our key thesis is

that texture often has a locally stationary character. Two recent theoretical developments

for locally stationary processes are the locally stationary Fourier (LSF) framework (due

to Dahlhaus (1997)) and the LSW (due to NvSK). Here we choose LSW because one

frequently highlighted aspect of texture is that it possesses structure on many different

scales. Moreover, several researchers have highlighted that the human and mammalian

visual systems process images in a multiscale manner, preserving both local and global

information (see for example, Daugman (1990) or Field (1999)). Thus there is a compelling

argument for the development of a multiscale texture model. We are by no means the first

to notice this multiscale phenomena or indeed use wavelet techniques in this area and hence

provide a synposis of this field in Section 4.2.

There appears to be no canonical mathematical definition of “texture” although there

are plenty of qualitative descriptions. Broadly speaking, texture is the visual character of

an image region whose structure is, in some sense, regular: for example the appearance of

a woven material. The advent of computational and imaging technology has seen a truly

enormous body of work appear on texture. Much of this work focusses on discrimination,

classification and segmentation tasks. Section 4 attempts to provide an introduction to the

texture modelling and analysis literature.

One of the advantages of possessing a statistical model is that its properties can be

rigorously defined and discerned. With our model it can be seen that raw use of the popular

non-decimated wavelet transform for texture classification (or its variance) is not suitable

because, viewed as a spectral quantity, power is inappropriately spread amongst scales

and directions. Our statistical theory (and that of NvSK in 1D) shows that this can be

ameliorated by a bias correction. Once applied, our method with its bias correction gives

superior classification performance compared to the established non-decimated wavelet

methods that lack underlying models, see Section 5 for further details.

2 Locally stationary wavelet fields

2.1 Motivation

Suppose we have a random field defined on a regular grid, {Xr}r∈Z2 for which we wish to

estimate the covariance Cov(Xr,Xs) = γr,s, where r, s ∈ Z
2. The covariance structure of

such a field could take many possible forms. For example, the process could be (second-

order) stationary, or instrinsically stationary (see Priestley (1981) or Cressie (1991)) or in
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extreme cases the covariance could possess minimal controls such as γr,s = γt,u if and only

if r = t and s = u, which would permit a high degree of nonstationarity, causing problems

for estimation as information about γ(r, s) only comes from xr and xs.

The form of covariance structure that we assume lies between the two extremes of

stationarity/highly nonstationary form. We permit the covariance structure to change slowly

as a function of location. Hence the covariance structure around a particular location, r, may

be estimated by pooling information from data close by. Fields which exhibit this slowly

varying structure are termed locally stationary random fields. Many real-life images have a

locally stationary structure operating at several scales, hence our adoption of wavelets later.

There have been a several developments in the modelling of non second-order stationary

spatial processes. See, e.g., Haas (1990), Sampson and Guttorp (1992), Loader and

Switzer (1992), Le and Zidek (1992), Le, Sun and Zidek (1997), Higdon, Swall and

Kern (1999), Damian, Sampson and Guttorp (2003), Schmidt and O’Hagan (2003). These

approaches have predominantly been designed to work with multiple realizations and have

considered the more general problem of spatial processes not defined on a regular grid.

In particular, these approaches are not multiscale, an important feature in the analysis of

textured images (see Section 4.2 for further details).

More recently, wavelet models of the second-order structure were proposed by Nychka,

Wikle and Royle (2002) and Mondal and Percival (2008). Nychka et al.’s approach for

estimating the spatial field covariance structure uses temporal replication to estimate sample

covariances (i.e. multiple realizations). Mondal and Percival require a single realization and

focus on wavelet variance applied to stationary random fields.

Our model, defined below, is distinct from earlier work as it is lattice based, multiscale,

permits a locally stationary covariance structure and, critically for texture analysis, requires

only a single realization to fit the non-stationary model. First we consider the building

blocks of our model: discrete non-decimated 2D wavelets.

2.2 Discrete non-decimated 2D wavelets

We provide a brief description of wavelets here. The reader should consult

Daubechies (1992), Vidakovic (1999) or Nason (2008) for further details. A set of wavelets

is a set of functions {ψj,k(x)}j,k∈Z that act as an (orthonormal) basis for functions f in a

function space L2(R), say. The representation is given by f(x) =
∑

j,k dj,kψjk(x). If the

basis functions are orthogonal then the coefficients can be obtained in the usual way, i.e.

djk =

∫
f(x)ψjk(x) dx. (1)

The wavelets are all scalings and translations of a single function, called the mother wavelet,

ψ(x), defined by ψj,k(x) = 2j/2ψ(2jx − k). The mother wavelet has several important

properties: fast decay in time and frequency domain (often compactly supported in one

domain) and zero integral. Hence, the wavelet coefficients dj,k of a function f(x) convey

information about that function at scale proportional to 2j and location 2−jk.

Associated with a mother wavelet is a father wavelet, φ(x), which is similar to a kernel

function such as that used in kernel density estimation. Whilst wavelet coefficients provide
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information about the local oscillatory behaviour of a function the father coefficients store

information about the multiscale mean behaviour of that function. The father wavelets

satisfy a multiscale relation, called the dilation equation: φ(x) =
∑

k hkφ(2x − k), the

wavelet ψ(x) satisfies a similar equation with hk replaced by gk. Classes of mother/father

wavelets can be characterised by a suitable choice of {hk, gk}. There are many families

of wavelets. A particularly useful and famous set of compactly supported wavelets

was developed by Daubechies (1988). We use this family extensively in this paper.

A discrete wavelet transform (DWT) exists for sequence data: the pyramid algorithm

due to Mallat (1989) carries out the DWT with O(n) computational effort and memory

requirements.

Let {hk, gk} be quadrature mirror filters associated with a particular Daubechies (1992)

compactly supported continuous time wavelets. Let j ∈ Z
+ be the scale (the negative of

that in NvSK for a clearer presentation). Formulae (3) and (4) of NvSK introduced the

discrete mother wavelets ψj = (ψj,0, . . . , ψj,Lj−1) where Lj = (2j − 1)(Nh − 1) + 1 and

Nh is the number of non-zero elements of {hk}. We define the discrete father wavelets

φj = (φj,0, . . . , φj,(Lj−1)) in exactly the same way but replacing gn−2k by hn−2k of

formula (3) of NvSK. As an example, the discrete Haar father wavelet filters at scales

j = 1, 2 are φ1 = (h0, h1) = (1/
√

2)(1, 1) and φ2 = (h2
0, h1h0, h0h1, h

2
1) = 1

2 (1, 1, 1, 1).
We now define the 2D discrete father and mother wavelets.

Definition 1. Let k = (k1, k2) where k1, k2 ∈ Z. We define the 2D discrete wavelet

filters, {ψl
j}, as finite square matrices, of dimension, Lj × Lj , as follows:

ψl
j =




ψl
j,(0,0) · · · ψl

j,(0,Lj−1)
...

...
...

ψl
j,(Lj−1,0) · · · ψl

j,(Lj−1,Lj−1)


 for l = h, v or d,

where h, v and d denote the horizontal, vertical and diagonal directions; the elements are

ψh
j,k = φj,k1

ψj,k2

ψv
j,k = ψj,k1

φj,k2

and ψd
j,k = ψj,k1

ψj,k2



 for k1, k2 = 0, . . . , Lj − 1, (2)

where ψj,k, φj,k are the 1D discrete wavelets. Similarly, 2D discrete father wavelets are

defined by: φj,k = φj,k1
φj,k2

.

Example 1. For example, the discrete Haar wavelet in the diagonal decomposition

direction at scales j = 1, 2 are given by:

ψd
1 =

1

2

[
1 −1
−1 1

]
and ψv

2 =
1

4




1 1 1 1
1 1 1 1
−1 −1 −1 −1
−1 −1 −1 −1


 .
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As in 1D we can form the collection of non-decimated discrete wavelets by translations

as follows: ψl
j,u(r) = ψl

j,u−r, for j ∈ Z
+, directions l and all locations u, r ∈ Z

2, in

contrast to regular wavelets that are placed at dyadic locations. For further details see Nason

and Silverman (1995), Nason (2008), or Unser (1995) for their use in texture analysis. We

now introduce our wavelet model for random fields based on non-decimated wavelets.

2.3 Locally stationary wavelet random fields

We introduce a class of lattice processes composed of random mixtures of 2D discrete

non-decimated wavelets. Our model is one particular possible 2D extension of the locally

stationary wavelet (LSW) model of NvSK: the main structural difference between 1D and

2D cases is the introduction of the directional index l and lowest common scale J .

Definition 2. Let R = (R,S) where R = 2m, S = 2n ≥ 1 for m,n ∈ N and set

J(R,S) ≡ log2{min(R,S)} be the lowest common scale. Further, let r = (r, s) and

u = (u, v) for r,u ∈ {0, . . . , R − 1} × {0, . . . , S − 1} = R. Then a class of locally

stationary 2D wavelet processes (LS2W) is defined to be a sequence of stochastic processes

defined on a regular grid and denoted by {Xr;R}r∈R having the following representation in

the mean-square sense:

Xr;R =
∑

l

∞∑

j=1

∑

u

wl
j,u;Rψ

l
j,u(r)ξl

j,u, (3)

where the sum over l is over decomposition directions v, h and d. The decomposition

consists of {wl
j,u;R}: amplitudes which quantify the contribution made to the process at

location u; {ψl
j,u(r)}: a collection of discrete non-decimated 2D wavelets and ξl

j,u: a mean

zero random orthonormal increment sequence satisfying

E

(
ξl
j,kξ

p
m,n

)
= δj,mδk,nδl,p.

Following Fryzlewicz (2003, Section 3.2.2), the process is constructed over all possible

scales (j = 1, . . . ,∞) avoiding unnecessarily restrictive tail behaviours of key quantities

introduced later. The LS2W model also obeys the following.

1. Eξl
j,u = 0, hence E(Xr) = 0. In real applications it is unlikely that a process will

have a zero mean. To use our LS2W processes, and if a non-zero mean should exist,

then it should be modelled, estimated and removed. There are a large number of ways

in which mean removal could be accomplished, e.g., median polish, Cressie (1991),

multivariate regression or wavelet shrinkage techniques, Vidakovic (1999).

2. For each l ∈ h, v, d and scale j ≥ 1 there exists a Lipschitz-continuous function (with

respect to the L1 norm) W l
j(z) where z ∈ (0, 1)2. These functions satisfy, ∀j and l:

(a) (finiteness)
∑

l

∑∞
j=1 |W l

j(z)|2 < ∞, uniformly in z ∈ (0, 1)2; (b) (stationarity

control) the Lipschitz constants Ll
j of W l

j are uniformly bounded in j, l and

∑

l

∞∑

j=1

22jLl
j <∞.
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Note that this condition is subtly different to the 1D case; (c) (linkage) Let u
R

:=(
u
R ,

v
S

)
. Then there exists a sequence of constants C l

j such that for each dimension

set R,

sup
u

∣∣∣wl
j,u;R −W l

j

( u

R

)∣∣∣ ≤
C l

j

max(R,S)
, (4)

where for each j = 1, . . . , J(R) the supremum is over all pairs of coordinates u ∈ R
and where {C l

j} fulfills
∑

l

∑∞
j=1C

l
j <∞.

From now on we will drop the explicit dependence on R although it is still assumed. In our

2D situation we track power in the covariance decomposition of Xr with respect to scale

and direction. The smoothness assumptions on W l
j control the variation of the {wl

j,u} as a

function of u and hence the local stationarity of the process.

Example: Haar moving average (MA) fields

We use Haar wavelets to construct LS2W fields, and first define the generating fields.

Definition 3. Let c ∈ R. A Haar MA field of order j0, in direction l0, is defined to be the

LS2W process Xj0,l0
r generated by the Haar 2D non-decimated discrete wavelets with the

following condition on the amplitudes:

wl
j,u =

{
c for j = j0, l = l0,

0 otherwise.

For example, setting c = σ in the definition for j0 = 1 (finest scale) and l0 = d
(diagonal direction), using Haar wavelets and setting the orthonormal increment sequence

ξd
1,u = ǫu where {ǫu} is a purely random process with mean zero and variance 1 gives

X1,d
r = σ

∑

u

ψd
1,u−rξ

d
1,u = σ(ǫr,s − ǫr,s+1 − ǫr+1,s + ǫr+1,s+1)/2, (5)

where r = (r, s). Figure 1(a) shows a realization of the X1,d
r Haar MA field: it shows

fine “diagonal” detail as it is built from the finest scale wavelets in the diagonal direction.

Figure 1(b) shows coarser detail from scale j0 = 2 horizontal (l0 = h) and vertical wavelets

(l0 = v): a realization from the addition of two Haar MA fields with wh
2,u = wv

2,u = σ
(with all other w zero) giving

X2
r = σ

∑

u

ψh
2,u(r)ξh

2,u + σ
∑

u

ψv
2,u(r)ξv

2,u

=
σ

2
{(ǫr,s + ǫr,s+1 + ǫr+1,s + ǫr+1,s+1) − (ǫr+2,s+2 + ǫr+2,s+3 + ǫr+3,s+2 + ǫr+3,s+3)}

(6)

Haar MA fields are special cases of the MA fields due to Haining (1978), see Moore (1988)

or Cressie (1991) for further details. Any 2D MA field can be represented as the linear

combination of Haar MA fields, but not uniquely as the non-decimated representation is
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Figure 1: 2D Haar MA fields. Left: j = 1, d detail; Right: j = 2, h & v detail

over-determined. The representation follows since the (decimated) Haar wavelets form a

basis for the l2(Z2) sequence space. More generally, Daubechies MA fields can be built

using Daubechies’ (1992) wavelets. Further, because we are using shift-equivariant non-

decimated wavelets, LS2W includes a large class of correlated processes. In particular, all

stationary processes satisfying
∑

τ
|c(τ )| <∞.

Whilst the examples given above are stationary processes, the real potential of the

LS2W methodology lies in its ability to capture locally stationary behaviour. Figure 2

shows a realization obtained by juxtaposing four stationary LS2W processes: Xr =∑4
j=1

∑
uw

d
j,uψ

d
j,u(r)ξd

j,u, where {ψl
j,u} is the set of 2D Haar non-decimated discrete

wavelets, and fixing

wd
j,[2Jz] =





σ for j = 1, z ∈ (0, 1/2) × (0, 1/2);
σ for j = 2, z ∈ (1/2, 1) × (0, 1/2);
σ for j = 3, z ∈ (0, 1/2) × (1/2, 1);
σ for j = 4, z ∈ (1/2, 1) × (1/2, 1);
0 otherwise.

(7)

Strictly, this example does not meet our LS2W conditions above as it contains jump

discontinuities. However, the definition could be extended along the lines of the 1D

extension proposed by Van Bellegem and von Sachs (2008) which does permit such jumps.

The next section introduces local autocovariance of LS2W processes.

2.4 Local wavelet spectra

The covariance structure of the LS2W process in Figure 2 clearly varies from one quadrant

to the next. The following quantity measures the local power of an LS2W process at a

specific (rescaled) location z ∈ (0, 1)2, scale j and direction l.

Definition 4. Let Xr be LS2W. The local wavelet spectrum (LWS) of Xr is defined by

Sl
j(z) = |W l

j(z)|2 (8)

for z ∈ (0, 1)2, j ∈ 1, . . . , J , and l ∈ {h, v or d}.
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Figure 2: Realization of the nonstationary LS2W process given in (7), R = S = 29. The

texture detail ranges from finest (bottom left) to coarsest (top right).

The LWS is a 2D extension of the evolutionary wavelet spectrum from NvSK and an

analogue of the stationary stochastic process spectrum.

Example (continued): Haar MA fields (concatenated nonstationary)

The nonstationary LS2W example above has LWS equal to equation (7) with wd
j,2Jz

replaced by Sd
j (z) and σ by σ2. Eckley (2001, Example 3.6) gives simulation results for

spectral estimation with this process.

2.5 Covariance of LS2W processes

Since LS2W processes are built from wavelets it follows that their covariance can be

represented in terms of the covariance functions of 2D discrete non-decimated wavelets.

We define the wavelet covariance functions, and then LS2W local covariance.

Definition 5. Let j ∈ N, l ∈ {v, h, d} and τ ∈ Z
2. Then the autocorrelation (ac) wavelet

of a 2D discrete wavelet family {ψl
j,k} is given by

Ψl
j(τ ) =

∑

v∈Z2

ψl
j,v(0)ψl

j,v(τ ). (9)

The 2D ac wavelets are separable because the discrete wavelets are from (2), i.e. in the

horizontal, vertical and diagonal directions:

Ψh
j (τ ) = Φj(τ1)Ψj(τ2), Ψv

j (τ ) = Ψj(τ1)Φj(τ2), Ψd
j (τ ) = Ψj(τ1)Ψj(τ2), (10)

where τ = (τ1, τ2), and Ψj , Φj are the 1D discrete ac wavelet and father wavelets from

NvSK. The 2D discrete ac father wavelet is similarly given by Φj(τ ) = Φj(τ1)Φj(τ2).
Refer to Eckley and Nason (2005) for further details on a.c. wavelets.

Example: 2D Haar ac wavelets

The 1D Haar ac wavelet (see NvSK) is ΨH(u) = 1 − 3|u| for |u| ∈ [0, 1/2], and

|u| − 1 for |u| ∈ (1/2, 1]. The 2D Haar ac wavelet is given by Ψl
j(τx, τy) =
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Ψl
H(2−j |τx|, 2−j |τy|), where Ψl

H(u) is constructed from the separability relations in (10)

depending on l. Figure 3 shows Ψd
5(τ1, τ2) for the Haar family.
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Figure 3: 2D Haar autocorrelation wavelet at scale 5.

For stationary processes it is well-known that the autocovariance is the Fourier

transform of the spectrum. Is there a relationship between the covariance of a LS2W process

and its local wavelet spectra? Yes! The covariance of a LS2W process tends asymptotically

to the “wavelet transform” of the LWS, C(z, τ ), given by the following definition.

Definition 6. Define the local covariance (LCV), C(z, τ ), of a given LS2W process with

LWS {Sl
j(z)}, to be

C(z, τ ) =
∑

l

∞∑

j=1

Sl
j(z)Ψ

l
j(τ ), (11)

where τ ∈ Z
2 and z ∈ (0, 1)2.

Let CR(z, τ ) be the autocovariance of a LS2W process Xr, i.e. CR(z, τ ) =
Cov(X[zR],X[zR]+τ

). The following proposition shows that CR asymptotically converges

to C in (11).

Proposition 1. Let CR be the autocovariance of a LS2W process Xr and C as in

Definition 6. Then |CR(z, τ )−C(z, τ )| = O
{
min(R,S)−1

}
as R,S → ∞, uniformly in

τ ∈ Z
2 and z ∈ (0, 1)2.

Proof: See Eckley, Nason and Treloar (2008).

If Xr is stationary then Sl
j(z) is constant over z and C is the usual autocovariance

function. This is illustrated by the following example.
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Example (continued): Haar MA fields

The (stationary) process, X1,d
r given in (5) has autocovariance:

CX1(τ1, τ2) = σ2 {δτ1,0δτ2,0 − (δτ1,0δτ2,1 + δτ1,1δτ2,0 + δτ1,0δτ2,−1 + δτ1,−1δτ2,0)/2

+ (δτ1,1δτ2,1 + δτ1,−1δτ2,−1 + δτ1,−1δτ2,1 + δτ1,1δτ2,−1)/4} .

In other words, X1 has a sparse covariance representation in terms of equation (11):

CX1(τ1, τ2) = σ2Ψd
1(τ1, τ2), which does not depend on z and is exact (not asymptotic).

2.6 Uniqueness of the covariance representation

As in NvSK the question of whether (11) is invertible arises: can we represent the spectrum

in terms of the LCV (well-known for stationary processes)? This hinges on the invertibility

of the inner product matrix of the autocorrelation wavelets, AJ . To demonstrate this we first

define the inner product matrix of 2D discrete autocorrelation wavelets. This matrix differs

from the 1D case as the 2D wavelets have a directional component. To simplify notation,

we introduce a new multi-index combining scale and direction.

Definition 7. A 2D wavelet (or autocorrelation wavelet) at scale j and direction l may be

indexed by η(j, l) = j + g(l), where g(l) = 0, J, 2J for l = v, h, d for all j = 1, . . . , J .

Hence the first J entries of η correspond to vertical wavelets, the next J to horizontal

and the last J to diagonal. To simplify this we will omit the dependency on j and l. We

now define the inner product matrix of discrete ac wavelets as follows.

Definition 8. Define the operator A = (Aη,ν)η,ν≥1 by

Aη,ν =< Ψη,Ψν >=
∑

τ

Ψη(τ )Ψν(τ ). (12)

Define the 3J-dimensional matrix AJ = (Aη,ν)η,ν=1,...,3J , where J = log2(min(R,S)).

The following theorem demonstrates the invertibility of AJ .

Theorem 1. For any compactly supported Daubechies wavelet, the family of discrete 2D

autocorrelation wavelets {Ψη} is linearly independent. Hence,

1. the operator A is invertible (since all of its eigenvalues are positive) and for each

J ∈ N, the norm ||A−1
J || is bounded above.

2. the LWS is uniquely defined given the corresponding LS2W process.

Proof: See Eckley, Nason and Treloar (2008).

Invertibility permits us to show that the spectrum can be represented in terms of the LCV:
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Corollary 1. The inverse formula of (11) is

Sl
j(z) =

∑

η1

A−1
η,η1

∑

τ

C(z, τ )Ψη1
(τ ). (13)

Proof: See Eckley, Nason and Treloar (2008).

Theorem 2 in NvSK conjectured that the smallest eigenvalue of their infinite order

operator A was bounded away from zero (proved for Haar and Shannon wavelets). This

more stringent property is needed for two important results required for the estimation of the

LWS (Corollary 1 and Proposition 3 of NvSK). Whilst our infinite order operator A in (12)

differs in structure to that considered by NvSK, we conjecture that its smallest eigenvalue

is also bounded away from zero. The result is easy to show for Shannon wavelets.

3 Estimating the LWS

Having found a measure which provides a local direction-scale decomposition of power, it

is natural to enquire how one can estimate this quantity, given the prior specification of the

underlying wavelet family. The issue of what happens when one uses an alternative wavelet

family to that which underlies the process is left as an avenue for future work.

Recall from stationary theory that an estimate of the spectral density function is given

by the squared absolute value of the Fourier transform. As in NvSK, the estimator which

we propose for the LWS is founded upon the collection of squared empirical wavelet

coefficients – the local wavelet periodogram.

Definition 9. Let {Xr} be a LS2W process as defined in Definition 2. The empirical

wavelet coefficients of the process are given by dl
j,u ≡∑rXrψ

l
j,u(r).

We are now in a position to define the local wavelet periodogram (LWP).

Definition 10. The LWP of a LS2W process {Xr} is defined as

I l
j,u ≡ |dl

j,u|2. (14)

As we demonstrate in Theorem 2, the LWP is a biased estimator of the LWS.

However the form of this bias suggests a transformation of the spectra which produces

an asymptotically unbiased estimate of the LWS.

Theorem 2. Let z = (z1, z2), R = (R,S) and [zR] = ([z1R], [z2S]) where R = 2J , S =
2K for some J,K ∈ N. Further, assume that the {ξη,r} are Gaussian. Then,

E
(
Iη,[zR]

)
=
∑

η1

Aηη1
Sη1

(z) +O

(
1

min{R,S}

)
. (15)

Proof: See Eckley, Nason and Treloar (2008).
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Thus the LWP estimate of the LWS at a given (j, l)-pair is a weighted sum of the LWS

at all its locations. An example demonstrating this bias can be seen in Table 1. Note how

in the case of the third finest scale LWP in the vertical decomposition direction, Iv
3,[zR], the

estimator is a mix of contributions from various directions and scales. In particular, power

leaks from (3, v) across into the diagonal decomposition direction.

Clearly, without correction, the redundancy of the non-decimated wavelet transform

(NDWT) induces a spread of power into other directions and scales. However, if we denote

the vector of periodograms, I(z) =
{
Iη,[zR]

}
, and define the vector of corrected LWPs to

be given by L(z) = A−1
J I(z), then we obtain an asymptotically unbiased estimator of the

LWS:

E(L(z)) = S(z) +O

(
1

min {R,S}

)
(16)

Table 1: Bias weights, Aηη1
, (to 3 d.p.) entering into the LWP estimate of Sv

3 (z). For an

unbiased estimate only scale 3 vertical should be non-zero.

Direction Scale 1 Scale 2 Scale 3 Scale 4 Scale 5

Vertical 0.703 3.797 15.453 13.793 7.573

Horizontal 0.203 0.797 1.891 2.793 2.073

Diagonal 0.047 0.422 3.953 8.379 6.220

The following definition will prove useful when considering the covariance structure of

the wavelet periodogram.

Definition 11. Define

αl1,l2
j1,j2

(u1,u2) =
∑

r

ψl1
j1,u1

(r)ψl2
j2,u2

(r). (17)

In effect, this is a form of “cross-correlation” between two wavelets of the same family

at (possibly) different scales and directions, centred on different locations. Using this

identity, we can explore the covariance structure of the (uncorrected) LWP.

Theorem 3. Assume that the {ξη,r} are again Gaussian. Then the covariance between I l1
j1,p

and I l2
j2,q may be expressed as follows:

Cov(I l1
j1,pI

l2
j2,q) = 2




∑

l0

∑

j0

∑

u0

(wl0
j0,u0

)2αl1,l0
j1,j0

(p,u0)α
l2,l0
j2,j0

(q,u0)





2

.

Thus the correlation between these quantities decreases with increasing distance between

location p at scale-direction (j1, l1) and the location q at (j2, l2). In particular, when

j1 = j2, the covariance is zero when ‖p − q‖ exceeds the overlap of the corresponding

12



wavelets support. Moreover

Var(I l
j,p) = 2E(I l

j,p)2

= 2

(
∑

η1

Aηη1
Sη1

([p/R])

)2

+O

(
2j(η)

min (R,S)

)
, (18)

where j(η) ≡ η − ⌊η−1
J ⌋J simply denotes the scale element of η(j, l).

Proof: See Eckley, Nason and Treloar (2008).

The above demonstrates that the uncorrected LWP has asymptotically non-vanishing

variance. Hence, by construction, the corrected LWP will also have an asymptotically

non-vanishing variance, thus paralleling the traditional stationary case. Consequently, our

estimates of the LWS will be smoothed to obtain consistency.

Several smoothing approaches could be used in this instance, for example kernel

smoothing or a moving average approach. However as images are characterised by edges

it would appear prudent to use a smoothing scheme which has the ability to deal efficiently

with such features. Assuming that the innovations {ξl
j,u} are Gaussian it follows that,

upon squaring, each element of the wavelet periodogram has a χ2-distribution. Correcting,

to obtain an asymptotically unbiased estimate of the LWS (as suggested by Theorem 3)

leads to a complex correlated distribution for the LWP. Thus, we follow NvSK and suggest

firstly performing wavelet shrinkage of the χ2-distributed periodogram prior to correction

by A−1. A detailed description of how one may smooth using an orthonormal second-

stage wavelet basis ψ̃l,m is provided by von Sachs, Nason and Kroisandt (1997). Briefly,

smoothing is performed by implementing a non-linear thresholding of the raw (uncorrected)

periodogram, Iη(z), and then inverting the smoothed transformation to obtain the estimate

L̃η(z). This is the approach adopted within the LS2W software package developed by

Eckley and Nason (2009), who also provide details on various approaches which can be

used to visualise the LWP collection.

4 Texture description and analysis

We now consider the application of the LS2W modelling approach to texture analysis. In

laymen’s terms, texture is the visual character of an image region whose structure is, in

some sense, regular: for example the appearance of a woven material.

Texture frequently possesses structure on many different scales. Thus, when modelling

the structure of a textured image, an attempt should be made to incorporate this multiscale

reality. A model, such as that afforded by the LS2W approach, which provides a multiscale

decomposition of the covariance structure of a textured image would therefore appear

desirable. A brief introduction to statistical texture analysis is provided below, with

particular emphasis on wavelet-based approaches which have recently appeared in the

literature. For a more comprehensive review, the reader is referred to Petrou (2006).
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4.1 Statistical approaches to texture description

Comprehensive reviews of the statistical approach to texture analysis are provided by

Haralick (1979; 1986), Tuceryan and Jain (1999), Tomita and Tsuji (1990, Chapter 2)

and Petrou (2006). Reed and du Buf (1992) review feature extraction techniques for

unsupervised applications whilst Randen and Husøy (1999) provide a comparative review

of various filtering-based approaches to feature extraction.

Perhaps the most familiar statistical techniques are those based upon the autocorrelation

function and spectrum. Typically, statistics including average values of energy within

ring or wedge functions of frequency are considered. These provide features relating to

coarseness and directionality respectively (see Weszka (1976) for further details). An

alternative approach is to consider texture in terms of edgeness per unit area, see Davies

and Mitchie (1980).

Haralick et al. (1973) present a general procedure for extracting textural properties

based upon the co-occurrence matrix of an image. This matrix, Pd,φ(a, b), measures the

number of occurrences with which two pixels, of gray levels a and b respectively, appear

in R separated by a distance d in direction φ. Various measures such as energy, entropy,

contrast and correlation may be derived from the co-occurrence matrices, these features

subsequently being used for texture classification etc. Discrete sine, cosine and Hadamard

transforms are all examples of a local linear transform (LLT). With several potential LLTs

available for any given problem, Unser (1986) considers the issue of transform selection for

a given application.

4.2 Multiscale approaches to texture analysis

Recent psycho-visual research has indicated that the human and mammalian visual systems

process images in a multiscale manner, preserving both local and global information; see

Daugman (1990), Reed and Wechsler (1990) or Field (1999) for example. Such findings

have provided a strong motivation for the development of texture analysis techniques

founded upon multiscale methods.

Initial multiscale approaches to texture analysis were based upon Gabor functions,

see for example Turner (1986), Bovic, Clark and Geisler (1990) and Dunn and

Higgins (1995). However Unser (1995) provides compelling arguments against such an

approach, highlighting potential disadvantages including computational intensity

The use of the discrete wavelet transform (DWT) for texture analysis was first suggested

by Mallat (1989). This transform is appealing as it is well localised and permits a

decomposition into three different directions: vertical, horizontal and diagonal. However,

as Chang and Kuo (1993) reason, a potential disadvantage of using the DWT for texture

analysis is that it focuses on the progressive analysis of the low-frequency smooths. Thus,

the DWT does not always provide a suitably refined partition of the middle frequencies.

To combat this, Chang and Kuo (1993) suggest the use of the “tree structured” or wavelet

packet transform. Similar ideas are proposed by Saito and Coifman (1995) and Laine and

Fan (1993).
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Whilst appealing, methods such as the DWT and the Discrete Wavelet Packet Transform

lack translational equivariance (TE). Put simply, the consequence of non-TE is that a simple

integer shift of the input signal frequently results in a non-trivial change in the DWT of the

signal. This is clearly undesirable.To remedy this issue, Unser (1995) proposes the use of

the Discrete Wavelet Frame (DWF), a form of non-decimated wavelet transform, for texture

analysis. Van de Wouwer, Scheunders and Van Dyck (1999) consider the application

of the discrete (undecimated) wavelet transform to texture analysis, introducing two new

feature sets: (i) based on parameter estimates for a Weibull distribution of the wavelet detail

coefficients; (ii) motivated by the work of Haralick et al. (1973), calculating co-occurrence

matrices of the wavelet detail images.

To overcome problems of translation invariance and poor directional selectivity within

the DWT, novel multiscale transforms such as the non-decimated wavelet packet transform,

dual-tree complex wavelet transform (Kingsbury (1999)) and the steerable pyramid

(Simoncelli (1995)) have been used for various texture analysis tasks. The work by

Portilla and Simoncelli (2000) is particularly interesting, resulting in excellent texture

analysis and synthesis performance. Their steerable pyramid is rotationally and translation

invariant, and like the LS2W model, is based on an overcomplete system. We prefer a

more classical statistical-based approach which specifies a model, and then develops an

unbiased estimator for that model, whereas the texture analysis/synthesis work by Portilla

and Simoncelli (2000) appears to model aspects of the overcomplete coefficients probability

structure and then use a method to synthesize textures that agree with the estimated

probability structure. In our model language this would be equivalent to working with

the I periodogram rather than the S spectrum. We prefer the latter because the model

specification is in terms of S.

Research by Baraniuk and collaborators have focused upon hidden Markov tree

modelling of the structure contained within wavelet transforms: for example Crouse, Nowak

and Baraniuk (1998), Romberg, Choi and Baraniuk (2001), Venkatachalam, Choi and

Baraniuk (2000). Such models can capture the key features of many real world images,

for example the persistent nature of discontinuities in the wavelet domain. However,

the application of such approaches can be computationally expensive, see Romberg et

al. (2001). To combat such expense, it is often convenient to reduce the number of model

parameters, assuming that within any given scale, the parameters are constant over location.

Remark 1. The measures used by Unser (1995) for texture classification are similar to those

which we will consider in Section 5 when we apply the LS2W model to various texture

analysis problems. Both sets of measures are based on translation equivariant wavelet

transforms. However, rather than being motivated by a measure of energy or entropy, our

measure is model-based and our modelling framework permits us to recognize a statistical

bias and that, as a consequence, power in scales leaks across to other scales and directions.

Hence we can correct for this bias to obtain superior results in applications and attach

meaningful interpretations to spectral quantities. Finally, our model permits us to synthesize

texture in a controlled, model-based way. However our texture synthesis is not as general,

as that described by Portilla and Simoncelli (2000) who make use of a steerable wavelet

pyramid which has the benefit of rotational invariance (and shares TE with our method).
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5 The LS2W model and texture analysis

The LS2W model developed in Section 2 provides a rigorous stochastic framework upon

which we can build a texture discrimination/classification scheme.

Given a textured image, TI , of dimension 2J × 2J , the collection of (smoothed,

corrected) local wavelet periodograms, {L̃(z)}, forms an array of dimension 3J × 2J × 2J .

As a first step to investigating the potential of the LS2W approach to texture analysis, we

consider the following statistic, one of many which could be based upon this measure:

t(TI) =
∑

z

L̃(z) =
∑

z

A−1
J Ĩ([zR]), (19)

where Ĩ denotes the smoothed (uncorrected) local wavelet periodogram. Any given element,

{t(TI)η}η(j,l), provides a measure of the contribution made to the overall local variance

structure at scale j within direction l. This measure is similar to the “channel-variance”

proposed by Unser (1995). However, whilst Unser’s feature set is motivated by the

conservation of energy within a tight wavelet frame, no consideration is made of how the

redundancy of the DWF can affect estimates of local spectral features.

In the remainder of this section, we consider the application of the LS2W approach to

two specific texture problems. We begin by focusing on its potential to discriminate and

classify between subtly different textures encountered in pilled textile images. The second

problem focuses on the more complicated issue of non-stationary texture classification.

We will compare our results with those of other suitable approaches. Whilst the Brodatz

collection has become a standard in the texture analysis literature, we do not report any

results based on this collection here. Full results of our tests on this set are reported in

Eckley (2001).

5.1 Exploratory analysis of pilled material images

Before we begin we should warn the reader that since the images are approximately

stationary the Fourier techniques beat the wavelet methods, although with an effective

classification scheme wavelets do nearly as well. This is important since we want wavelets

to do well in the stationary case but Fourier is still the optimal paradigm in this setting. The

true power of our LS2W methodology is shown with the non-stationary problem in the next

section.

Six samples of identical material were buffed to varying degrees in an attempt to

simulate different levels of garment wear. The effect of this buffing is to induce pilling,

a building up of fibrous balls on the surface of the material. As can be seen in Figure4,

certain materials have a very fine level of pilling (for example Figure4 (1)) whilst others are

heavily pilled (Figure4 (6)).

Interestingly, some of these samples are very difficult to discriminate between visually.

To investigate the ability of the LS2W approach to discriminate between these different

textures, fifty sub-images of dimension 128 × 128 were randomly sampled from the left

hand half of each image. For each sub-image, feature sets based upon
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(1) (2) (3)

(4) (5) (6)

Figure 4: Images of materials pilled to varying degrees. Image (1) contains a fine pill

material, whilst image (6) contains heavy pilling. Images provided by Unilever Research.

Method II: using Daubechies’ Extremal Phase wavelets (N=3) and smoothed using

Daubechies Least Asymmetric (N=6) wavelet;

Method II: the uncorrected non-decimated wavelet transform;

Method III: the discrete wavelet transform;

Method IV: Fourier rings (of 10 frequency units) were evaluated.

The linear partition of the Fourier frequency space used was thought to be reasonable for

this initial study, being neither particularly fine nor coarse. Other choices of partition could

consist of a fine linear partition of the space or a logarithmic partition, thus mimicking the

division performed by wavelets. Daubechies Extremal Phase (N=3) wavelets were used for

all wavelet-based measures.

Figure 5 displays a plot of the first two linear discriminant axes for the LS2W feature set.

Note how the different pill levels span the plane: heaviest pill on the left and lightest pills on

the right. The different classes are reasonably well separated, the analysis even being able

to separate pill levels 5 and 6, two images which appear very similar to the eye. However, it

should be noted that pill levels 3 and 4 overlap. To view discriminant plots associated with

uncorrected NDWT, DWT and Fourier based features, refer to Eckley (2001, p. 103).

With such subtle differences between the images displayed in Figure4, it is interesting

to see whether the various feature extraction schemes can provide measures which permit

reasonable classification rates. To this end, a test set of fifty sub-images of dimension
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Figure 5: Linear discriminant analysis plots for measures of the Pill images based

on the LS2W model.

128 × 128 were randomly sampled from the right half of each pill image with Method I -

IV features being generated for each sub-image. These feature vectors were subsequently

used to classify the sub-images to a pill class.

To begin with, a single stage classification scheme based upon the first four linear

discriminant variables was considered. Each sub-image was classified using a minimum

(Euclidean) distance rule. In the event that the distances between a sub-image and two

(or more) texture classes were equal, the sub-image was deemed to be unclassified. The

results of this approach are displayed in Table 2. As can be seen, barely half the sub-images

are classified correctly by the multiscale methods — the LS2W approach achieving the

best results of the three. Note however, that the Fourier approach classifies approximately

two thirds of the sub-images correctly. These comparatively poor misclassification rates

are not particularly surprising, for texture classes 2, 3 and 4 are poorly separated by linear

discriminant analysis.

Noticing that it is difficult to discriminate between, for example, pill levels 3 and 4 in the

linear discriminant analysis plots associated with the multiscale approaches, it is natural to

consider a two-stage scheme in an attempt to improve classification performance. Such an

approach yields improved classification results. It is perhaps not unsurprising that the results

for the various methods are similar, for these images have a regular form. Consequently their

spectral properties in the wavelet domain will also be regular, implying that the underlying

process is in some sense stationary. We would therefore expect these textures to be well-

discriminated by Fourier features. See Eckley (2001) for further details.
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Table 2: % of Pill textures classified correctly with one- and two-step classification

algorithms.

Method % Correct % Correct

(one step) (two step)

I 57.7 70.7

II 51.7 66

III 54 65.7

IV 66 72.3

5.2 Non-stationary texture classification

The power of the LS2W modelling approach lies in its ability to analyse images whose

covariance structure is locally stationary. In other words, it is well suited to the analysis

of images whose covariance structure is globally non-stationary, but stationary within a

local region. Crucially, the LS2W approach is able to correct artefacts which arise as a

consequence of the inherent redundancy of the NDWT, the transform used in the estimation

of the spectral structure of an image. The result of this correction is that we are able to

stop power spreading across scales and directions. This is in stark contrast to using the

uncorrected techniques.

Suppose a certain tile making process generates two texture types, T1 and T2 (see Figure

6). T1 represents a desirable tile type whilst T2 is deemed to be a spoiled tile. The task

therefore is to find an approach which is able to achieve a high rate of correct classification.

T1 T2

Figure 6: Simulated examples of non-stationary textures.

Two classification approaches are considered, the first being based upon our LS2W

model whilst the second uses the NDWT. The LS2W classification approach is structured

as follows: For each of 25 realisations of tiles T1 and T2, calculate the local wavelet

periodogram using the Haar transform, smoothing each periodogram using Daubechies

Extremal Phase (N=4) wavelets. Then calculate the mean local wavelet periodogram

19



structure within each tile type, thus obtaining two spectral models, ĨT1 and ĨT2, of each

tile’s local wavelet spectral structure

A further 50 realisations of each tile type, {Ti}i=1,...,100, are then used as a test set for

classification purposes. For each test case, calculate the LWP, again using the squared detail

coefficients of the Haar NDWT smoothed using the Daubechies Extremal Phase (N=4)

wavelets. A tile Ti is then assigned to type T1 if

∑

j,l,u

(
L̃j,l,u;T1 − L̃j,l,u;Ti

)2
<
∑

j,l,u

(
L̃j,l,u;T2 − L̃j,l,u;Ti

)2

and type T2 if

∑

j,l,u

(
L̃j,l,u;T1 − L̃j,l,u;Ti

)2
>
∑

j,l,u

(
L̃j,l,u;T2 − L̃j,l,u;Ti

)2
.

An equivalent approach is adopted using the squared detail coefficients of an unsmoothed,

Haar non-decimated wavelet transform of the realisations.

Recall that in Section 5.1 the LS2W and (uncorrected) NDWT approaches yielded

similar classification rates. This was due to the original images being stationary. In this

case, the uncorrected NDWT method is only able to classify 62% of tiles correctly, but the

corrected version classifies all correctly. The reason for this is that the inherent redundancy

of the NDWT causes power to leak across directions and into lower scales, thus making

discrimination between the two tile types on the basis of their detail coefficients difficult.

The LS2W approach corrects for this leakage and therefore attains a higher classification

rate.

A further issue to consider here is that the wavelet used for generating the textures and

analysing the textures is the same: Haar. In practice, of course, the generating wavelet

might be different or, more realistically, not anything necessarily to do with wavelets.

However, even in this artificial simulation situation, the matching of the wavelets is not

a significant issue. The reason being that the model is comprised of wavelets, but with

random coefficients. Hence, there is no reason that resulting process should ‘look’ anything

like the underlying wavelet (e.g. a Brownian motion does not look particularly ‘boxy’). This

is unlike the more familiar situation of nonparametric regression using wavelets where the

model is an additive ‘signal+noise’ model and where, if the noise level is small, the noisy

function ‘looks like’ a collection of wavelets, and hence it can be critical which wavelet is

chosen to analyze the signal.

6 Conclusions and further work

Wavelet methods have been applied to many branches of statistics, from density estimation

to time series analysis. In a departure from these comparatively established areas of

research, this paper has considered the application of wavelets to the modelling of locally

stationary random fields which lie on a regular grid. We introduced the LS2W model, which

permits a local decomposition of the covariance structure into various scale contributions
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within certain directions. A wavelet analogue of the Fourier spectrum, termed the local

wavelet spectrum, was introduced to quantify this local structure together with an associated

estimation theory. A suite of routines for the (unbiased) estimation of the 2D local wavelet

spectrum has been implemented as a package in R (see Eckley and Nason (2009) for further

details). This software, together with help pages, is available for download via CRAN

(http://cran.r-project.org/).

We then considered the application of the LS2W modelling approach to texture analysis

problems, its potential being contrasted against other recently proposed wavelet-based

methods both on a conceptual and applied basis. For many texture classes, such as the

pilled images, the LS2W approach was found to achieve classification rates which were

comparable with those of the (uncorrected) NDWT – a consequence of the stationary nature

of these textures. Clearly the LS2W-approach could also be used for texture synthesis. This

is left as an avenue for future research.

The true potential of our model becomes clear when we consider its application to non-

stationary texture classification. In this case, the results obtained with an (uncorrected)

NDWT approach were found to be inferior to those of the LS2W model. This disparity

is due to the latter’s ability to correct for the power leakage which is induced by the

redundancy of the NDWT. In future work we hope to demonstrate the potential of the LS2W

model to real examples of such structures. One potential application could lie in the area

of functional neuroimaging such as fMRI or dynamic positron emission tomography (see

for example Hayasaka et al. (2004) and Worsley et al. (1996)). A particular challenge

in this area is the successful identification of localised changes in cerebaral activation.

Additionally, the LS2W approach could be applied to spatial boundary detection, also

referred to as “wombling”. Briefly, the primary inference challenges within wombling

are model estimation, spatial prediction and assessment of the estimated spatial surface

to detect either (i) physical landmark features or (ii) partition the region into disjoint sets.

The latter application is akin to texture segmentation. See Banerjee and Gelfand (2006)

for a comprehensive overview of this field. Due to its localised structure, we believe that

the LS2W model could contribute to this field either as an intermediate step to the feature

detection task or by providing a statistically rigorous framework which can be used for the

partitioning of regions (see Csillag and Kabos (2002) for an example of existing work in

this area using the DWT).

There are connections with our model (with Gaussian innovations) and Gaussian

Markov Random Field (GMRF) models. Indeed, our model can be seen as a hybridization

of a GMRF with a multiscale structure, see Rue and Held (2005).

The locally stationary two dimensional process model which we have proposed focuses

on analysing the covariance structure on regular grids of size 2m × 2n. Clearly, it is

desirable from a practical perspective to extend such an approach to more general structures,

including those with missing observations and/or unevenly spaced locations. The NDWT

does not readily lend itself to such extensions, thus alternative approaches, such as lifting

transforms, may need to be considered.

Of course, other 2D wavelet decompositions are possible and sometimes preferable.

Thus the possibility of deriving alternative model forms arises. In particular, in the future
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we are interested in considering anisotropic wavelet bases which might be more suitable

for process with differing amounts of smoothness in different directions. Moreover, whilst

this model is invariant under translations, it is not rotationally invariant (RI). We therefore

hope that formal statistical modelling frameworks based on RI-transforms, such as those

proposed by Simoncelli and Freeman (1995), will be addressed by future research. It would

also be interesting to develop a parallel theory for 2-D LSF and to create associated texture

measures. There may be textures more naturally represented by such models. In addition,

since NvSK, various relaxations of the Lipschitz conditions which control local stationarity

have been proposed. For example, within the time series setting, Fryzlewicz (2003) relaxes

the condition on the Lipschitz constants Lj to include time modulated white noise processes,

whilst the work of Van Bellegem and Von Sachs (2008) allows for jump discontinuities in

the model form.

Finally we turn to texture analysis. Although statistics has devised numerous

discrimination and classification schemes which are applied in this field, the issue of

obtaining suitable measures from textured images has not yet received much attention in

the statistics literature. Our exploratory analyses involving the standard Brodatz collection

and (more exacting) industrial collections indicate that none of the approaches considered

to date consistently excels. Thus the problem of measure choice is one which is ripe for

future research.
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