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ABSTRACT. In this paper we generalize the concept of sub-Gaussian random
variable to that of “locally” sub-Gaussian random variable. Some properties
of locally sub-Gaussian random variables are presented. It is shown that a
“local” version of the moment inequality used by Taylor and Hu in 1987 can
be used to give an equally simple proof of the strong law of large numbers for
locally sub-Gaussian random variables.

1. Introduction. Chow [7] introduced and used the concept of sub-Gaussian ran-
dom variables to prove some limit theorems for sums of independent random vari-
ables. A characteristic feature of sub-Gaussian random variables is an exponen-
tial moment inequality that can be used to almost effortlessly, re-derive complex
limit theorems that would normally require the use of sophisticated and powerful
measure-theoretic machinery. The application of sub-Gaussian techniques has in-
creased in the last twenty years. The technique was used by Taylor and Hu [18]
and implicitly by Tomkins [19], to provide a very simple proof of the Strong Law of
Large Numbers (SLLN) for sub-Gaussian random variables. It is also indicated in
Taylor and Hu [18], how the approach may be used in conjunction with truncation to
obtain a slightly more general SLLN. Van de Geer [20] obtained some optimal esti-
mation results in a regression with sub-Gaussian errors. Recently, Amini, Azarnoosh
and Bozorgonia [1] also used sub-Gaussian techniques to study the SLLN for neg-
atively dependent generalized Gaussian random variables. In more advanced work
Boucheron, Lugosi and Massart [2], Boucheron, Bousquet and Lugosi , [3] use and
expand on sub-Gaussian techniques to obtain and re-derive some useful inequalities
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for functions of independent random variables. It is however, important to note
that apart from bounded random variables and mixtures of Gaussian random vari-
ables, it is not easy to construct any other example of an unbounded sub-Gaussian
random variable. That is, though useful, the definition of a sub-Gaussian random
variable is somewhat restrictive.

In this paper the concept of sub-Gaussian random variables is generalized to
that of “locally” sub-Gaussian random variables. The class of locally sub-Gaussian
random variables includes that of sub-Gaussian random variables. Furthermore,
we show that most probability distributions used in practice such as the binomial,
Poisson, normal and gamma distributions are locally sub-Gaussian. An attractive
feature of our definition is that it leads to a moment inequality that can be used to
give a simple proof of the SLLN for locally sub-Gaussian random variables. Since the
method is applicable to most probability distributions used in practice, the method
is found to be not only accessible and appropriate for a calculus-based probability
and statistics course, but also very appealing to undergraduate students, due to the
practicality of its assumptions. Though not presented here, we can show that the
method used in this paper to prove the strong law of large numbers can also be
used in conjunction with techniques of time series analysis and stochastic processes
to prove ergodicity, that is the SLLN, for strongly dependent processes such as
long-memory time series [12] and modulated series [16]. This later research is in
progress. Ergodicity forms the basis of statistical estimation and hence is useful in
areas such as mathematical modelling, time series analysis and regression.

1.1. Motivation discussion. The term ‘sub-Gaussian’ is used in probability and
statistics to mean two slightly different concepts. In Chow [7] a random variable
X, with moment generating function M (t), is called sub-Gaussian if there exists an
a > 0 such that

M(t) < et20‘2/2, for all ¢t e R. (1)

Some properties of sub-Gaussian random variables are given in Taylor and Hu [18].
In particular, it can easily be shown that the mean of a sub-Gaussian random
variable is necessarily equal to 0.

In Vrins, Archambeau and Verleysen [21] and Chareka [6], a random variable X
with finite fourth moments and kurtosis k € [—2,00), is said to be sub-Gaussian (or
platykurtic) if  is negative, super-Gaussian (or leptokurtic) if £ > 0 and mesokurtic
if K = 0. The two definitions are not equivalent. The translated gamma distribution
with mean 0, parameter v and moment generating function M (t) = e (1 —t)77 is
not sub-Gaussian in the first sense, but can, in the second sense, be sub-Gaussian or
super-Gaussian depending on the value of 7. This example can also be used to show
that not every random variable with kurtosis equal to 0 is Gaussian. Therefore, the
second definition should be used and interpreted with caution. In the sequel we
shall use the first definition given by equation (1).

An important fact, which can readily be verified, about sub-Gaussian random
variables is that a random variable X is sub-Gaussian if and only if E (eX g 2) < 00
for some constant § > 0. This result shows that it is not easy to construct an
example of an unbounded sub-Gaussian random variable which is not a mixture of

Gaussian or generalized Gaussian random variables. This was the main motivation
for the present work.
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1.2. Sub-Gaussian random variables. It is necessary to start off with some
pertinent terminology. The moment generating function (mgf) of a random variable

X is defined as M (t) = E(etx). As indicated in [13], the domain of M (¢) is the

set of all real t for which the expectation E(etX ) exists finitely. The mgf exists for

t = 0. It is however, customary [14], [22] to say that the mgf exists if there exists a
positive number ¢ such that M (t) exists for all t € (-4, ).

2. Locally sub-Gaussian random variables.

Definition 1. Let X be a random variable with moment generating function M (t).
Then X is locally sub-Gaussian if there exist constants v € R, a € [0, oo0) and
d € (0, 00] such that

M(t) < e H80%/2 for all t e (=5, 6). (2)

It is shown below that the parameter v is unique. Clearly the parameters o and
0 are not unique. The expression on the right of inequality (2) is the moment gen-
erating function of a Gaussian (normal) random variable with mean v and variance
«?. This includes a singular (degenerate) Gaussian distribution. It is also clear that
a sub-Gaussian random variable is locally sub-Gaussian with v = 0 and § = oco. It
is well-known [22] that if inequality (2) holds then M(t) is infinitely differentiable
on (=4, 0) and X has finite moments of all orders. Routine calculus may be used
to verify the following properties of locally sub-Gaussian random variables.
(i) v =E(X).
(ii) For any k € (1,00), there is a & = 6(k) > 0 such that inequality (2) holds with
a? = ko? where 0% = var(X).
(iii) An arbitrary random variable X is degenerate i.e. P(X =v) =1, if and only
if (2) holds with oo = 0.
(iv) P(IX —v| > €) <2e7</29" ¢ € (0,6).
(v) Let {Xy,...,X,} be independent locally sub-Gaussian random variables with
respective parameters (v, o, d;). Then S, = 37" | X is locally sub-Gaussian
with parameters

1/2
v=>_ v, a= (Z?:l a?) and 6 = min{dy,...,0,}.

The first property shows that v is unique. For some distributions such as the
binomial, Poisson and the exponential distributions, it is possible to show from
first principles, that the distributions are locally sub-Gaussian. For example, the
moment generating function of a binomial distribution with parameters (n,p) is
M(t) = (1 —p+pet)". Using the elementary inequalities e < 1+t +12, t € [~1,1]
and 1+t <ef, t € R, we see that

M) = (1—p+pe)"
< [L—p+pl+t+2)”
= (1+pt+ptH"
< enpt+npt2
= e”pt+t2o‘2/2, with o? = 2np.
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Similarly, for the Poisson distribution with mean p and moment generating function
M (t) = explu(e! — 1)], we have,

M) = explu(et —1)]
< explu(l+t+t* —1)]
= explut + ut?]
e“t+t20‘2/2, with a? = 2.

For the standard exponential distribution with moment generating function M (t) =
1/(1 —1t), t <1, we have the following result.

M) = 1/(1-1t)
L+t +t2/(1—1t)

< 14t+2t2 for te[-1/2, 1/2]
= 1+t+t*a?/2
< et+t2°‘2/2, with o? = 4.

The following theorem shows that every random variable with an mgf that exists
in a neighborhood of 0 is locally sub-Gaussian. This follows readily from Taylor’s
theorem which is given in most text books on calculus and real analysis, for example,
Rudin [17].

Theorem 1. Let X be a random variable with moment generating function M (t)
and suppose that there exists § > 0 such that M (t) exists for allt € (=6, §). Then
X s locally sub-Gaussian.

3. The strong law of large numbers for locally sub-Gaussian random
variables.

Theorem 2. Let {X,,}22, be a sequence of independent locally sub-Gaussian ran-
dom variables with respective parameters (vy, n,0,) and suppose that 6, > 1/n
and Z?:l a? < CnP for some p € [0, 2) and C > 0. Then

1 n
P lim — X, —E(X;)=0] =1 3
(nl_{gon;( (X)) ) 3)

A sequence that satisfies the SLLN or Birkhoff’s ergodic theorem [8], [9] is said
to be ergodic or mean-reverting. For identically distributed random variables { X, }
having the same mean p = E(X,,), the SLLN means that the sample mean T =
L3 1 X, tends to fluctuate about the process mean .

The proof of the SLLN given in this paper is an example of a theoretical appli-
cation of the concept of locally sub-Gaussian random variables. We describe below
a practical application of the SLLN for locally sub-Gaussian random variables.

A model that is commonly used in engineering , economics, business (finance) and
education (learning curves) to model non-stationary processes that exhibit changing
volatility (variance) is given by the multiplicative growth model

X(t) = e(DE(t), t=1,2,... (4)

where ¢(t) is a slowly varying function and {£(t),t = 1,2,...} is a stationary time
series. For some examples of modulated time series see Priestley [16], Granger and
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Hatanaka [11] or Bowerman, O’Connel and Koehler [4]. A function ¢(¢) with domain
[0, 00) is slowly varying if for each = > 0,

c(tx)

c(t)
More details about slowly varying functions and their applications may be found
in Ferguson [10]. An example of a slowly varying function is ¢(t) = log(t). The
observed series X (t) is called a modulated series [11],[16]. In practice the under-
lying error series {{(t)} is assumed to be stationary. In this work we assume the
underlying series to be a sequence of independent and identically distributed lo-
cally sub-Gaussian random variables. The following corollary to theorem (2) shows

that under some very mild conditions on {£(¢)}, a modulated series will satisfy the
SLLN.

— 1 as t — oo.

Corollary 1. Let {X(t),t =1,2...} be a sequence of random variables and suppose
that X (t) satisfies the model

X(t) = c(t)§(t),

where {£(t)} is a sequence of independent and identically distributed locally sub-
Gaussian random variables each with mean p. Suppose also that the function c(t)
satisfies ¢2(t) < t? for some d € (0,1). Then

t=1

p (nlirr;oiZ(X(t) — (b)) = 0> .Y

If limy—, o c(t) = ¢, where ¢ is a known quantity then it is possible to estimate
the mean and variance of {{(t)}, although {£(t)} itself is not observable.

4. Proofs.

Proof of Theorem 1. Let M*(t) = d*M(t)/dt* be the k" derivative of M(t) and
assume without loss of generality, that u = 0. Let o? = sup{M"(t), —6/2 <t <
0/2}. Then for any ¢t € [—6/2, §/2] we have,

t2
M(t) 1+tM'(0) + 5M”(s), where 0 < |s| < [t], by Taylor’s theorem

t2
= 1—|—§M”(s)7 since M'(0) =0

t2a?
< 14—
< + 5
< et2a2/2'

In the above proof we have used the fact that M”(t) is continuous and hence
bounded on [§/2 < t < §/2] so that a? < co. We have also used the elementary
inequality 1 4+ 2 < e® which holds for all z € R. O

Proof of Theorem 2. Let S, = Y i (X; — E(X;)). It is straightforward to show

1 «n 2)1/2

that S, /n is locally sub-Gaussian with parameters v = 0, a = (F >
and 0 = 1.

Jj=1"J
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The sequence S,,/n converges to 0 almost surely or with probability 1, if and
only if, for any € > 0 the probability that |S,/n| exceeds e infinitely often (i.o.) is
0. That is,

P(|S,/n| > ¢, i.0.) =0. (5)
It is also easy to show that a sufficient condition for (5), and hence (3) to hold, is

i P(1Su/nl > €) < . (6)

The fact that condition (6) is sufficient for convergence with probability 1 follows
from the Borel-Cantelli lemma [8], or from the basic monotone properties of a
probability measure [18].

Let € € (0,1). Then application of property (iv) of locally sub-Gaussian random
variables, yields

P(|Sp/n|>€) < 2 C/RE /'] < ge=(Fn®1)/2C
It follows from the integral test for convergence of series that P (]S, /n| > €) < .
Now let € > 1. Then > >~ P(|Sn/n| > e) < ZZO:lP(\Sn/m > e*) < 00, where

€* < 1. Hence for any ¢ > 0, P (|S,/n| > ¢, i.0.) = 0. This implies that S, /n
converges to 0 almost surely. This completes the proof of theorem (2). O

Proof of corollary 1. The proof of corollary (1) follows from theorem (2) and the
fact that Y 1, t¥ < n'*9, which may be proved by induction. O

5. Conclusion. In this article we have introduced the concept of locally sub-
Gaussian random variables. This is a generalization of the definition of sub-Gaussian
random variables. The class of locally sub-Gaussian random variables includes most
probability distributions used in practice. While locally sub-Gaussian random vari-
able may be of interest in their own right, the concept provides a readily acces-
sible and powerful tool for deriving or re-deriving some complex limit theorems
in probability and statistics. This includes the strong law of large numbers for
locally sub-Gaussian random variables. The proof does not require complicated
measure-theoretic techniques such as truncation, a technique which is usually used
at graduate level.
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