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We study non-linear sigma models with N local supersymmetries in three space-time dimen-

sions. For N = 1 and 2 the target space of these models is riemannian or Kähler, respectively. All

N> 2 theories are associated with Einstein spaces. For N = 3 the target space is quaternionic,
while for N 4 it generally decomposes into two separate quaternionic spaces, associated with

inequivalent supermultiplets. For N = 5, 6, 8 there is a unique (symmetric) space for any given

number of supermultiplets. Beyond that there are only theories based on a single supermultiplet
for N = 9, 10, 12 and 16, associated with coset spaces with the exceptional isometry groups

F
4) —20)’ E( 14)’ E7( 5) and E8(~8),respectively. For N = 3 and N> 5 the D = 2 theories

obtained by dimensional reduction are two-loop finite.

1. Introduction

For space-time dimensions D ~ 4 a large variety of locally supersymmetric

theories has been explored, both with and without conformal invariance [1]. For

D = 2 conformally invariant theories have been studied extensively. In contrast,

only very few models have been worked out for D = 3. Nevertheless, gravity and

supergravity in three dimensions are of interest in their own right. As is well

known, three-dimensional field theories have a number of unique features. For

instance, massless states do not carry helicity, so that the associated degrees of

freedom can generally be described by scalar fields. Pure gravity and supergravity

are topological theories and do not give rise to physical (i.e. propagating) degrees

of freedom. Apart from conical singularities at the location of matter sources,

space-time is flat. Notwithstanding this fact, classical gravity in three dimensions

exhibits many intriguing properties [2]. More recently, pure quantum gravity in

three dimensions has been reformulated as a Chern—Simons gauge theory and
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shown to be solvable in the sense that the quantum constraints (i.e. the Wheeler—

DeWitt equation, in particular) can be solved exactly [31.In addition, genuine

observables (a la Dirac) can be constructed, in contrast to four-dimensional

canonical gravity, where the construction of observables remains an unsolved

problem even at the classical level. Moreover, the three-dimensional theory is

especially amenable to a reformulation in terms of the new canonical variables

proposed in ref. [4] (see also ref. [5] for a clear discussion); the exact solvability of

pure quantum gravity in this approach has been demonstrated in ref. [6]. A recent

treatment of pure and matter-coupled supergravity in this framework can be found

in ref. [7]. Although many open questions remain, it should be clear from these

remarks that three-dimensional gravity and supergravity can teach us a lot about

quantum gravity in general, and that the models considered here, at the very least,

can serve as non-trivial toy models.

A further motivation for studying three-dimensional supergravity is the impor-

tant role it plays in the construction of two-dimensional supergravity theories via

dimensional reduction. These dimensionally reduced theories have a number of

remarkable properties; in particular, they possess infinite-dimensional symmetries

acting on the space of solutions of the non-linear field equations [8—10].For

supergravity, these symmetries merge with the so-called “hidden symmetries” of

supergravity. All these models are classically integrable in the sense that they

admit linear systems for their non-linear field equations [9,10]. The belief that this

classical symmetry structure should play an important role for the quantum theory

was one of the main motivations for a recent investigation of the quantum

divergences of these two-dimensional supergravity theories [11],which showed that

for sufficiently high N (the number of independent supersymmetries) these models

were two-loop finite. In order to appreciate the relevance of this result, it is

important to understand the uniqueness of these theories. In ref. [11] the calcula-

tions were based on the conjectured structure of non-linear sigma models coupled

to D = 3 supergravity with homogeneous target spaces, as they were known or

expected to arise by dimensional reduction from extended supergravity in four

space-time dimensions, but to date only a few of these models have been worked

out explicitly [12,7].

The present paper aims at filling this gap and gives a complete classification of

non-linear sigma models coupled to extended supergravity in three space-time

dimensions. For rigidly supersymmetric non-linear sigma models, this analysis is

almost identical to the D = 2 case [13]. There it was established that N-extended

supersymmetric sigma models require the presence of N — 1 complex structures in

the target space. It turns out that non-linear sigma models based on irreducible

target spaces can have at most N =~ 4 supersymmetries. Extensions of this result

were studied in ref. [14],where it was found that the bound on N is not affected by

the presence of torsion, while for local supersymmetry the restriction N © 4

remains intact for conformally invariant theories. Without conformal invariance
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there are certainly theories with N> 4 [15,16], but those were never studied

systematically. Because three-dimensional supergravity has no conformal invari-

ance, one expects no restriction to N ~ 4 (although the N = 4 models remain

somewhat special as we shall see). On the other hand, extended supergravities in

four dimensions are known to be restricted to N ~ 8 in view of the non-existence

of consistent interacting theories describing massless particles with spin s> 2 (we

note, however, that this bound can possibly be circumvented in certain theories

which are not of the conventional type [17]). The fact that three-dimensional

supergravities with even N correspond to four-dimensional theories with N/2

local supersymmetries and can therefore be constructed by dimensional reduction,

suggests the bound N ~ 16 in three dimensions. Indeed, a central result of this

paper is that extended theories do satisfy this restriction, and this fact in turn

constitutes an alternative proof of the four-dimensional result. However, the result

now hinges on the geometric properties of target spaces with restricted holonomy

groups, a subject which has been studied in considerable depth in the mathemati-

cal literature [18].
Because the geometrical arguments leading to these restrictions are at the heart

of this paper, we now briefly summarize them. The general analysis of the

lagrangian and transformation rules given in sect. 3 enables us to derive the

constraints on the Riemann curvature tensor, and hence on the holonomy group of

the target manifold, that are imposed by local supersymmetry (see eq. (4.19), which

is the crucial formula). These conditions become more and more restrictive with

increasing N; for N> 4, they completely determine the target manifolds, whereas

they are not strong enough to determine them for N ~©4. In particular, for N = 1,

there are no restrictions at all, and the target space may be an arbitrary rieman-

nian manifold. For N = 2, there is one complex structure, and the target manifold

is Kähler. For N = 3 and 4, there are three almost-complex structures. For N = 3

the space is quaternionic, while for N = 4 the target space is locally a product of

two quaternionic manifolds, associated with inequivalent supermultiplets.

Nonetheless, there remains a great variety of possibilities for N ~ 4, as the

manifolds are not homogeneous in general. For N ~ 5, on the other hand, eq.
(4.19) implies that the holonomy group becomes “too small” in a sense to be made

precise in sect. 5. We first show that all manifolds are Einstein spaces and then we

derive how d (the dimension of the target space) and N are restricted: we find that

an arbitrary number of supermultiplets is permitted for N = 5, 6, 8, while only one

is allowed for N = 9, 10, 12 and 16. For other values of d and N no theories can

exist! We can then appeal to a powerful mathematical theorem [19] and use our

knowledge of the holonomy group for N ~ 5 to conclude that all the corresponding

target manifolds must be symmetric spaces; their determination is thus simply a

matter of matching the allowed values of N and d with a list of symmetric spaces.

In this way, we identify a unique symmetric space for each of these values of N

and d. The isometry groups of the target spaces corresponding to N = 5, 6, 8 are
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equal to Sp(2, k), SU(4, k) and SO(8, k), respectively, where k is the number of

supermultiplets. For N = 9, 10, 12 and 16 the corresponding target spaces possess

the exceptional isometry groups F
4~.201,E6(.14), E7(_5) and E8(+5), respectively;

remarkably, they can be interpreted as projective spaces over the octonions [18]. In

view of our previous remarks and the fact that the maximally extended N = 16

theory is invariant under the “maximally extended” exceptional Lie group E8

[8,12], we are intrigued by the fact that the apparent non-existence of massless

particles of spin s > 2 in four dimensions may be related to the non-existence of

exceptional groups beyond E8.

A characteristic feature of the non-linear sigma models with local supersymme-

try is that the target-space connection for the fermions is no longer the usual

Christoffel connection, but it contains extra terms proportional to the almost-com-

plex structures associated with the extra supersymmetries (see eq. (3.27)). This

aspects is crucial for the two-loop finiteness of the dimensionally reduced models,

which hinges on the fact that the contraction RikImRJkIm of the corresponding

curvature tensors remains independent of the modification of the fermionic

connection [11]. From the formulae derived later (in particular (3.30) and (4.11)) it

follows that this is always the case for N = 3 and N> 4. For N = 4 the situation is

somewhat more subtle, as one is in general dealing with two separate quaternionic

subspaces. Nevertheless upon using (3.30) and (4.38) one can easily establish that

this property holds whenever the two subspaces are of equal dimension. In

contrast the N = 1, 2 theories fail to be finite at one loop if the target space is not

Einstein. We will not return to this topic here and leave it to the reader to verify

these results.

This paper is organized as follows. In sect. 2 we review the construction of

D = 3 supermultiplets. Sect. 3 contains the results for the invariant lagrangian and

the supersymmetry transformation rules. The geometrical implications of the

presence of N local supersymmetries for the target space are then worked out in

sect. 4. In sect. 5 we identify the possible target spaces for N> 5. As those are all

symmetric we include a discussion of the conventional formulation of extended

supergravity coupled to non-linear sigma models with homogeneous target spaces

and elucidate the connection with the target-space approach used in the previous

sections. Some material relevant for the exceptional cosets is relegated to appendix

A.

2. Massless D = 3 supermultiplets

Consider the extended supersymmetry algebra, with the anti-commutation rela-

tion

{~,~}= —2iy~P~, (I, J= 1,...,N) (2.1)

where the Q~are N independent Majorana spinor charges and P,~ is the
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energy—momentum operator. For states with light-like momentum, say in a frame

where P°= P
1 = w and P2 = 0, eq. (2.1) takes the following form *:

{ Q~,Q
1~}= 2w5”(l + O-3)~f3. (2.2)

In a positive-definite Hilbert space of states, Q~must therefore vanish and we are

left with the real charges Qj’, which generate an N-dimensional Clifford algebra ~.

In addition a fermion-number operator F must exist satisfying F
2 = 1, which

anti-commutes with the supercharges Q~.Therefore massless supermultiplets are

representations of a real (N + 1)-dimensional Clifford algebra of positive signa-

ture. In the basis where F is diagonal we denote the bosonic indices by A, B,... =

1,. .. ,d and the fermionic indices by A, B,... = 1,. .. , d. The supercharges then

take the form of off-diagonal gamma matrices

0 T4fj 1 0
11= F= . (2.3)

F~s’C 0 0 —1

As one can always choose a basis where the gamma matrices are symmetric, the

two submatrices of F’ are each others transpose; in terms of the upper-right d x d

matrices F,~’E,which themselves have no special symmetry properties, the defining

relation of the Clifford algebra reads

24AC BC AC BC “ AB~

The irreducible supermultiplets are listed in table 1, together with their centraliz-

ers [20].

For odd values of N the supermultiplet is unique up to a similarity transforma-

tion. For even values of N the product of the N + 1 generators of the algebra,

F~FFI...FN (2.5)

commutes with F and F’. For N = 4 mod 4 it satisfies F2 = 1, so that the Clifford

algebra can be decomposed into two simple ideals, associated with the projection

operators ~(1 ±F). Inequivalent irreducible representations of_the Clifford alge-

bra correspond to one of these ideals and are characterized by F = ±1. For N = 2

mod 4 we have F2 = —1 and the representation is again unique; it cannot be

decomposed into irreducible representations unless one introduces complex pro-

jection operators. The existence of inequivalent supermultiplets is a special feature

of supersymmetry in low space-time dimensions. In higher dimensions the spinor

character of the supercharges ensures that inequivalent supermultiplets have a

* We use y)) = — io~

2,y~= ~ y2 = a-3, with charge-conjugation matrix C = a-2

Strictly speaking the charges are hermitian; we insist on reality in view of field-theoretic applica-

tions.



8 B. de Wit et a!. / Non-linear sigma models

TABLE 1

Irreducible massless supermultiplets with dN the number of bosonic states. The centralizer, which

constitutes a division algebra, contains the operators that commute with the supercharges and with

fermion number.

N dN Centralizer

1 1 R

2 2 C

3 4 H

4 4 H

5 8 H

6 8 C
7 8 R

8 8 R

n+8 16d,, asforn

different spin content, so that there is no need for making a further distinction.

From table 1 we infer that the multiplets with N = 3 and N = 4 are the same;

likewise N = 5, 6, 7, 8 have identical multiplets (this result holds again modulo 8,

so that also N = 11, 12 have identical multiplets, and so on). However, the

situation is different in the case of local supersymmetry, because the number of

gravitini is not the same for different values of N.

Observe that fermions and bosons in an irreducible multiplet transform accord-

ing to irreducible spinor representations of SO(N). Here we recall the well-known

result that the spinor representations of SO(N) are real for N = 1, 7, 8 mod 8,

complex for N = 2, 6 mod 8 and pseudo-real for N = 3, 4, 5 mod 8 (see e.g. ref.

[21]). From table 1 it is obvious that these cases correspond to the centralizers R, C

and H, respectively. For N = 2,.. . , 6 mod 8, the centralizer contains (at least) the

identity and a real antisymmetric matrix e with e
2 = — 1, acting within the bosonic

and fermionic subspaces. Clearly, e can be traded for the imaginary unit i by

complexifying the representation. By use of the complex projection operators

~(1 ±ie) the real d-dimensional SO(N) representations become (d/2)-dimen-

sional complex representations, and the matrices F~[A can be replaced by complex

d/2 X d/2 matrices. This observation will be important for the derivation of the

completeness relations and Fierz rearrangement formulas used in appendix A. For

N = 3, 4, 5 mod 8, there are two additional complex structures that anticommute

with e. Either one of them can be used to show that the representation is actually

pseudo-real.

In the remainder of this section we present the explicit construction of the

supercharges for N = 1, 2, 4, 8 mod 8, to facilitate the discussion in the subsequent
sections (for further explicit details, see ref. [22]). The representations for interme-

diate values of N have the same dimensionality as one of the N = 1, 2, 4, 8 mod 8

representations and can conveniently be studied by embedding them in the

higher-N representation; the centralizer can be explicitly constructed from the
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centralizer of the higher-N representation, possible extended with some of the

extra gamma matrices.

We start by defining a basis of the 2 x 2 real matrices, consisting of the identity

1, o~,cr
3 and c —icr2. Hence we have

�—cr103, E0i. 03, ecr301. (2.6)

For N = 1 we choose (d1 = 1)

F(2)=cr3, F’(2)=o1, (2.7)

where the number in parentheses indicates the dimension of the matrix. Hence, for

N = 1 one has F~’A= 1. We note the properties

= 1 {c, F
1} = {e, F) = 0. (2.8)

For N = 2 a representation of the Clifford algebra is constructed by taking

direct products of 2 x 2 matrices times the previous lower-dimensional algebra (so

that d
2 = 2):

F(4) = cr3 01(2),

Ft(4) =o~®F’(2), with F
12= 1 ®E (2.9)

F2(4) =o~~OF(2),

so that

F~A=(? ~),~ ?)• (2.10)

In addition we note the existence of the following three complex structures:

e
1(4) = (730�,

e2(4) = —cO 1(2), satisfying e,e~= —~l+ c~Jkek (2.11)

e3(4) = 0�,

Note that FF’F
2 = e

1, and

[e1, F!] = [e1, F2] = [e1, F] =0,

{e2, F’} = {e2, F2} = {e2, F}=0,

{e3, F’} = {e3, F2} = {e3, F) =0. (2.12)
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The centralizer of the Clifford algebra is based on e
0 1 and e1, so that the

associated symmetry group is U(1). Note, however, that in the bosonic or the

fermionic subspace e1 and F’
2 are degenerate.

Fur future use note the identities

e
1F’ = F

2F, e

1F

2 = FF’, e
1F = F’

2. (2.13)

For N = 4 we take again direct products of 2 x 2 matrices times the matrices of

the previous algebra (so that d
4 = 4):

F’(8) =u,OF’(4),

F(8)=o301(4), F
2(8) =u,®F2(4), F4(8) =E0e

1(4),

F
3(8) =cr

1 OF(4), (2.14)

with the complex structures

e1(8) = 1 0e1(4),

e2(8) = (73 0 e2(4), satisfying e1e1 = —~l+ c)Jkek (2.15)

e3(8) =cr30e3(4),

Observe that FF’F
2F3F4 = —1. As explained previously there are two inequiva-

lent representations. A second one is, for instance, found by changing the sign of

F’, F2, F3.

This time all e, commute with F’ and F,

[e,, F’] = [e,, Fl = 0. (2.16)

so that the centralizer of the algebra consists of e
0 1 and e, associated with the

group SU(2).

The S0(4) generators are

F
12=1 OF’2, F34=cr

3OFe1 =u30F
12,

F23 = 1 0 F2F = 1 0 e
1F

t, F14 = (73 0 e

1F’, (2.17)

F
3’ = 10FF’ =10e

1F
2, F24=cr

30e1F
2,

where we made use of the identities derived previously for N = 2. This shows that

FF’~= ~�hJ~vI~.FJ<I~.. (2.18)
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Therefore the SO(4) group factors into two SO(3) groups, one acting on the bosons

(the selfdual component) and one on the fermions (the anti-selfdual component).

This feature will play an important role in the discussion of N = 4 theories in sects.

4 and 5.

For N = 8, we have d
8 = 8 from table 1. The gamma matrices are then explicitly

given by

F’(16) =o~OF’(8),

F
2(16) =u

10F
2(8), F6(16) =c0e

1(8),

F(16)=cr3®1(8), F
3(16) =cr,0F3(8), F7(16)=c0e

2(8),

F
4(16) =o 0F4(8), F8(16) = e 0e

3(8),

F
5(16) =o~OF(8), (2.19)

Just as for N = 4 this representation is not unique; a second inequivalent represen-

tation exists, and may, for instance, be obtained by changing the sign of F6, F7

and F8.

For N> 8 the pattern repeats itself; for N = n + 8, the dimensionality of the

gamma matrices equals 16d~and we put (n ~ 8)

FI=Fl(2d )®F’(lo)
F=F(2d )01(16), Fs~=Fa(2d )o1(16),

F9=F1(2d~)®F(16),

(2.20)

where I = 1,..., 8 and a = 2,..., n, while F’(2d~)and F”(2d~)are the (2d~x 2d
1,)

gamma matrices corresponding to the irreducible representation of the n-dimen-

sional Clifford algebra. The centralizer is of the form Z(2d~)0 1(16), where

Z(2d~)is the centralizer of the n-dimensional Clifford algebra.

Finally, let us add that for reducible representations, the centralizer generates

the group SO(k), U(k) or Sp(k), depending on whether the centralizer for an

irreducible representation corresponds to R, C or H, respectively. Here k denotes

the number of irreducible representations. The case of N = 4 mod 4 is again

exceptional because one is dealing with inequivalent representations [23]. For k1

and k2 inequivalent representations, the corresponding groups are S0(k1) 0

SO(k2) (for N= 8 mod 8) and Sp(k1) 0 Sp(k2) (for N= 4 mod 8).

3. Lagrangian and transformation rules

In this section we present the full lagrangian and transformation rules for a

non-linear sigma model coupled to N-extended supergravity. Let us first introduce
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the separate lagrangians for pure supergravity and the non-linear sigma model.

The supergravity lagrangian can be written as follows A:

— ~ic ‘~‘{e~R~pa(o) + D,~(w)~}, (3.1)

with the SO(2, 1) covariant derivative acting on a spinor as

~ (3.2)

The spin-connection field will be regarded as an independent field (first-order

formalism). Its field equation implies that the supercovariant torsion tensor van-

ishes, i.e.

D
11~~(w)e’~~— /j!yaç(jJ = 0, (3.3)

where

D~(w)e~= a~e~+ ic~&.~be~C. (3.4)

From (3.4) one determines the spin connection; substituting the result into the

field strength

R~(w) = — + i�6~~ (3.5)

yields the Riemann tensor (up to gravitino-dependent terms). The lagrangian (3.1)

is locally supersymmetric under N independent supersymmetries. There is no

restriction on the number of independent local supersymmetries and the theory is

topological [3].

The rigidly supersymmetric non-linear sigma model is described by the la-

grangian

~mat,er = — ~g~1(~){a~’~ + ~ t)x~}~ (3.6)

where the target-space connection t equals the Christoffel symbol and the

covariant derivative is defined by (for arbitrary connection F)

D~(F)~’~ (3.7)

We denote the dimension of the target space by d, so that i, ~ = 1,.. . , d. The

* We use the Pauli—Källén metric with y,, y ~ = ~ ~ ~ y h] = ~�*h*Y~. Readers who prefer

the (—, +, +) metric multiply Dirac conjugate spinors and ~ by i, and ~*b* ~ —
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x4 terms are proportional to the Riemann tensor of the sigma-model target space,

..~4 gR~
1~,(4~l)X’YaX

2 ~kya~l (3.8)

Ignoring the extra space-time coordinate, the lagrangian (3.6) is identical to the

one in two dimensions; the x4 terms can be rewritten in a form where we sum over

only two independent gamma matrices, by using the cyclicity of the Riemann

tensor.

The non-linear sigma models have N = 1, 2 or 4 independent rigid supersymme-

tries. The extra supersymmetries are associated with complex structures f,’,,.,
labeled by P = 2,. .. N, which are hermitian,

g~Jf~k~gkJfj~~ = 0, (3.9)

and satisfy the Clifford property

f~kf~J+f~kf~= ~2~5PQ~j~ (3.10)

Furthermore they are covariantly constant (with respect to the Christoffel connec-

tion),

~ (3.11)

The upper limit on N arises because the holonomy group commutes with the

complex structures. Therefore this group must either act reducibly in target space,

in which case the target space becomes reducible (i.e. it decomposes into separate

spaces), or, by Schur’s lemma (see e.g. ref. [24]), the complex structures must

generate a division algebra; the largest such algebra is the quaternionic one with

three complex structures, corresponding to N = 4 [13]. Alternatively, one may

make use of the fact that these models are invariant under SO(N) rotations on the

fermions (for N = 4 one has only SO(3)). Combining these transformations with

supersymmetry proves that the theory must be invariant under non-uniform

translations of space-time coordinates as soon as N> 4, which implies that the

target space is reducible [14].

So far we have put Newton’s constant to unity, but in what follows we want to

be a little more explicit about the dimension of the various quantities. It is

convenient to choose all boson fields dimensionless, with the exception of the spin

connection which has dimension [1] (in mass units); the fermion fields have

dimension [~]and the supersymmetry transformation parameter dimension [—
In this way none of the transformation rules will contain dimensional parameters,

whereas the lagrangian contains just an overall constant i/K, where K has

dimension [—1]. Hence we write

1

~‘ {~.g.~i(in +~‘N +~4} (3.12)
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Here -~.g is the supergravity lagrangian, modified by extra matter-dependent

connection terms (here and henceforth we decompose the indices I into I = i and

I = P = 2,.. ., N; the gravitino field and corresponding supersymmetry parameter

with I = 1 are denoted by fi~and c, respectively),

5~s.g. -~i�P{e~R~pa(w)+~D~(w,Q)c~~+~D~(w,Q)~}, (3.13)

where

D~(w,~

D~(w,Q)~i~’~ + Qf(~)~]. (3.14)

Clearly Q[ and Q[Q can be combined into an S0(N) target-space connection

Q,~J.

The term ~‘kjn refers to the properly covariantized kinetic terms of the

non-linear sigma model,

~kin = — ~egt
1(~){g~ a~’~ F)~J}, (3.15)

where the connection F is no longer the Christoffel connection but may contain

extra terms. As only the anti-symmetric part of F appears in (3.15), we may

assume without loss of generality that the metric postulate remains satisfied,

D,(F)gJ~=O. (3.16)

The torsion now receives contributions from the spinor fields ~‘, so that (3.3)

changes into

D[~ (w)e~1— /jlyaqjl — ~iec~e
1”~g

11x~x’= 0. (3.17)

Just as in the case of rigid supersymmetry, the extra supersymmetries are

associated with tensors f,,~,,..However, in the context of local supersymmetry these

tensors are usually not complex structures, but only almost-complex structures (for

definitions, see e.g. ref. [25]); indeed, as we shall see later, their Nijenhuis tensors

do not vanish in general. The almost-complex structures appear in the lagrangian

-~‘N’which refers to the Noether terms with certain higher-order modifications to

ensure the supercovariance of the x
t field equation,

-~‘N= ~egJ~ly~(~4I(+ ~ —f~k~I’~’)

— 1e —i p.~k(~j — ci P

— 2 ~ ‘ ~ k’Pj.t JPk~L

+ ~ +

+ ~ek’y~~’[(f
1p f Q])~1 yPy~y~~ ~ + y~yVyP)~], (3.18)
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where we used that the supercovariant derivative of ~1’is equal to

= - o~+f~1~)~. (3.19)

Also the x
4 terms are modified due to the local supersymmetry, and we find

= ~e(g~’~)2 — ~eR jfk! X’YaX~~kyaXt (3.20)

The supersymmetry transformation rules are

5e~ = + ~_Pya~,P (3.21)

~/i~ =D~(w,Q)� + QrI~~’~Xy’~X’fpijy~,,~c’°, (3.22)

~‘=D~(w, Q)c~’[Q”~+Q~iQ]

+ ‘Y~’x~[(f[pfQ])
1~y~~cQ+fp11y,~,,eJ, (3.23)

= ~ ~ (3.24)

= ~ —f,~~c”)— FJ,,~~YXk. (3.25)

Let us now briefly comment on the derivation of these results. One starts with

the sum of (3.1) and (3.15) and follows the same strategy as in ref. [14] by

introducing an as yet undetermined connection F into the lagrangian and transfor-

mation rules. The first variations are standard and quickly reveal the need for the

Noether terms. At that point one has variations proportional to d4~94xcand

Th134~/JE. The former can be cancelled by introducing the Q-dependent terms in

the gravitino transformation rules, which at the same time requires one to add

corresponding Q!/J~/Jterms to the action. This restricts the form of Q1 to SO(N)

target space connections (cf. eq. (3.14)), and leads in turn to new B4B34n/JE

variations. Both the 3~04~cand 3/.B~I/JE variations vanish provided the S0(N)

curvatures satisfy the condition

R~(Q)~a1QJ’+ Q7QQJ(2 — (i *-sj) = —

R~(Q) =a~QrQ+ Q,PRQJ

4Q — Q~°QJ2— (t ~-sj) — ~(f
1pfc2]),1, (3.26)

the connection F is given by

ri—~ic~ci
ik ik ~iJPk’
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and the almost-complex structures are covariantly constant in the following sense:

Dk(1~)fp~J+ Q~QfQ)J+ Q~(f
1~,f ~ = 0. (3.28)

The latter result ensures that the Bianchi identities of the SO(N) curvatures

remain consistent with the constraints (3.26). It also allows the evaluation of the

Nijenhuis tensors (no summation over P implied)

N,~1 fj~jfp~(1~j1— (i 4-*j), (3.29)

which satisfy ~ = 0, but vanish only for N = 2 where the complex structure is

covariantly constant with respect to the Christoffel connection. Let us also note

that the curvature associated with the connection (3.27) is equal to

RIJk,(F) =RIJkj— ~ (3.30)

where we used eq. (3.28).

At this point all variations of the lagrangian linear in the spinor fields vanish.

Subsequently one concentrates on the terms proportional to three spinors with a

derivative acting on one of them. This then requires one to introduce the ~çfQI/Jc

and the x
2~variations in (3.22) (3.23) and the ~Ji~� variations contained in the

supercovariant derivative in (3.25). The gravitino fields in the lagrangian and

transformation rules are restricted by supercovariance arguments; therefore, in

view of dimensional arguments, the only extra variations that one expects are

possible ~2c terms in (3.25). However, it turns out that those are not needed and

one determines directly the x4 terms in the action (cf. eq. (3.20)) by making use of

the integrability conditions that are derived directly from (3.28) and (3.26). We

refrain from giving these conditions here, as they will be discussed in the next

section (cf. eq. (4.4)). By virtue of the integrability conditions also the remaining

variations, all cubic and quintic in the spinor fields, cancel after tedious but

straightforward calculation!

4. Target-space geometry

In this section we study the implications of local supersymmetry on the target-

space geometry. The most obvious restriction concerns the dimension of the target

space. Locally it must be decomposable into a number of supermultiplets. There-

fore we must have d = kdN, where k is an integer denoting the number of

irreducible supermultiplets and dN is the number of bosonic states of an irre-

ducible supermultiplet listed in table 1. For N = 1, 2 the remaining implications

are rather straightforward. When N = 1 the target space is a riemannian manifold
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of arbitrary dimension (as d, = 1) and no special properties are required while for

N = 2 we are dealing with a Kähler space, as there is a complex structure that is

covariantly constant with respect to the Christoffel connection (cf. eq. (3.28)).

Obviously such a space must be of even dimension. It then follows that the Ricci

tensor is related to the first Chern class.

The analysis for N> 2 is more involved. It is convenient to adopt a manifest

SO(N) notation. First introduce the anti-symmetric tensors f,~J (we freely raise

and lower SO(N) indices),

fPQf[PfQ] flP ±f~, (4.1)

and the SO(N) target-space connections Q[J, consisting of Qr~and

QIP ~Q1. (4.2)

With these definitions eqs. (3.26) and (3.28) can be written as

Rff(Q) a1QJ~— + 2Q~[’ QJIK = .

1_f1J

D
1ff~D1(t)f/,,~”+2Q7~E’f1/]K=0. (4.3)

They lead to the integrability condition

RijmkfIJml — Rjjmif himk = _f1~[’ fkj]K, (4.4)

which, as pointed out in sect. 3, was required for the cancellation of the supersym-

metry variations of the action that are cubic and quintic in the spinor fields.

Obviously the tensors f,~,act as generators of SO(N) in target space,

fIJfKL —fKL f~=

4~K[I fJ]L — 4~L[J fJ]K. (4.5)

In addition they satisfy

2

(ft,) = —1 (land J f,xed)

fIKfKJ= (N— i)~,~—(N—2)f,~,

fIJ~JfKL1’ = 2d8
1[K ~ Lu ±~N,4~IJKL~k (4.6)

The tensor J is defined by

(f~ ~ (4.7)
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For even values of N it satisfies the following properties:

.J’kf~ ~ D,(t)J~k= 0, J
2 = (_)N/2

1 J = (_)N/

2J•• (4.8)

and must be traceless, unless N = 4. For N = 4 one derives

fPfQ= ~ Jfk. (4.9)

Hence Jkk is the trace of the product of the three almost-complex structures,

which is constant so that it may be evaluated at any point in target space. As J is

symmetric for N = 4 and its square is equal to the unit matrix (cf. eq. (4.8)), we

find

Jkk = d~—d, (4.10)

where d ± are the dimensions of the subspaces for which the eigenvalue of J is

equal to ±1. More generally, for N = 4 mod 4, the subspaces with J = ±1

correspond to the inequivalent supermultiplets discussed in sect. 2.

Let us now proceed for a general value of N> 2. First we note that for N = 3

the tensors f1J define precisely three almost-complex structures, which are covari-

antly constant with respect to a non-trivial SO(3) Sp(1) connection (cf. eq. (4.3)).

Hence the target space must be quaternionic for N = 3. Leaving the special case of

N = 4 until the end of this section, we now continue as generally as possible for

N> 2. Contracting (4.4) with f,”[” and making use of (4.6) gives

RIJklfJJkt = ~df,~
11, (4.11)

while contracting (4.4) with g~,using the cyclicity of the Riemann tensor and the

above result (4.11), yields

R,1 R~kf1g’~= cg1~, (4.12)

where

c=N—2+~d>0. (4.13)

Hence we are dealing with an Einstein space ~.

* For N 3 this is in accord with the fact that quaternionic spaces of dimension higher than four are

always Einstein [26]. In the case at hand, the result also holds true for a four-dimensional target
space. Our conventions here are such that positive curvature (c> 0) corresponds to non-compact

manifolds; this convention is opposite to the one commonly adopted in the mathematical literature.
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Now decompose the Riemann curvature as RIlk! = R ijkl + ~f//ff~!,so that (4.4)

reads

‘~ gIJmp~ c/fm = 44
ijmki I ijmlJ k

This motivates us to introduce the set of independent antisymmetric tensors

h~(~),labelled by indices a defined by the requirement that they commute with

the S0(N) generators,

— h7kfJfk = 0. (4.15)

For the moment we restrict ourselves to a given point in target space, but the fact

that the S0(N) generators are realized everywhere on the manifold (in the spinor

representation), implies that the number of independent tensors h~’ and their

associated Lie-bracket structure is the same everywhere. Obviously the h” gener-

ate the subgroup H’ of SO(d) that commutes with S0(N); it will play an

important role in what follows. Because of Schur’s lemma, H’ must be one the

groups SO(k,)oSO(k
2), U(k1)OU(k2) or Sp(k1)®Sp(k2), where k, and k2

denote the number of inequivalent SO(N) representations of the target space, and

we have k = k~+ k2, as every irreducible supermultiplet contains precisely one

irreducible SO(N) multiplet of scalar fields. The nature of the group is determined

by the centralizer of the SO(N) representation and can be read off from table 1;

for N = 7, 8, 9 mod 8 the group is orthogonal, for N = 2, 6 mod 8, it is unitary, and

for N = 3, 4, 5 mod 8 it is symplectic. For odd N the spinor representation is

unique, so that one has k1 = k and k2 = 0. The structure constants of H’, which

may at this point depend on the target-space coordinates, are defined by

h~h
0— h0h’~=f~7h~. (4.16)

From the arguments given above, as well as from more general considerations, it

follows that the compact group H’ factorizes into a direct product of an abelian

group and a number of simple groups. In what follows these factor groups will

generically be denoted by H “. By a suitable redefinition we ensure that an index a

refers exclusively to one of these factor groups. Without loss of generality it is

possible to impose the normalization condition

h~h’~~= 2dN~”0. (4.17)

With this normalization it follows that ~‘©~ is an invariant tensor under H’, which

may be used to raise and lower indices. The structure constants ~ are then

totally antisymmetric.
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Taking the covariant derivative of (4.15) it follows that the covariant derivative

of h~’commutes with f~ and must therefore be proportional to the same tensors,

i.e.

D
1(1~)h~(4) =Q~(4)h~(4). (4.18)

In other words, the tensors are covariantly constant with respect to the

Christoffel connection and some connection u1~©~.In view of (4.17) this connection

is anti-symmetric in a and /3.

The fact that R commutes with S0(N) (cf. eq. (4.14)) thus implies that locally

the Riemann tensor can be written as

R,Jkl = ~5{fiJfk1 + Ca~h~jh~i}, (4.19)

where Cap(4) is some unknown tensor, symmetric in a and /3, so that the

curvature satisfies the pair-exchange property. According to (4.18), (4.19) and the

second equation of (4.3), the curvature and its multiple covariant derivatives take

their values in the algebra corresponding S0(N) 0 H’. Therefore the target-space

holonomy group must be contained in this group. Note, however, that the holon-

omy group could in principle be smaller than SO(N) 0 H’, depending on the

actual values taken by the tensor Ca~~and the connection Q~. It is known [18]

that spaces with restricted holonomy groups have special properties, so we expect

(4.19) to have important consequences. We shall return to this aspect in sect. 5.

The fact that we are dealing with an Einstein space implies

C~h~”h~1= [N(N— 1)— 8c]g1~. (4.20)

Obviously, the above expression is invariant under H’, so that

C~,f~3h”h~= 0. (4.21)

To ensure that the Riemann curvature satisfies the cyclicity property, the

tensors f~ and h~should satisfy

the/f r~ I~* ifS — 2
J[ij J ktj + ~afS

1~[ij ~ kt] — .

It is not easy to solve this equation in full generality. Therefore we first consider its

contraction with fk~~<lLand hr,, using eq. (4.5) and (4.6) and

fJh~.=0. (4.23)

The latter relation follows from the cyclicity of the trace and the fact that (for

N> 2) every tensor fL~ can be written as the commutator of two such tensors (cf.
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eq. (4.5)). Note that this is also in accord with (4.11) and (4.19). For the generators

h’~we used the same argument when imposing (4.17) to ensure that the trace of

the product of two generators belonging to different factor groups H” vanishes.

The contraction of (4.22) with f leads again to (4.20), while with h” we find

2d~Ca
0 + CyaffYf,~— i6c3,~= 0. (4.24)

This result shows that C,,
0 vanishes when a and /3 belong to the different factor

groups of H’. For that reason we may consider (4.24) and (4.21) for the simple

subgroups separately. For the abelian factor (4.24) can be solved directly,

8c
C,,0(H”) = —ö,,~, a, /3 e h” abelian. (4.25)

dN

For the simple factor groups, it is more difficult to find the solution of C,,0, but

after multiplying with h”h
0, with a and /3 belonging to the generators of the

simple factor group, and making use of (4.21), we find

16c
C,,

0(H”)h’’h
0 = 2dN + c

2(H”) h’’h”, with a, /3 ~ h”, (4.26)

where

fafYS = c2(H”)~. (4.27)

In the last equation we used Schur’s lemma. Observe that (4.26) applies also to the

abelian factor, as c2(H”) = 0 in that case.

Now there is one more conclusion we can draw from (4.22), namely that the

group SO(N) 0 H’ must act irreducibly on the target space. To show this, it is

convenient to rewrite (4.22) with tangent-space indices. Let us then assume that

there is a subspace which is left invariant by SO(N) 0 H’, so that this group acts

reducibly. Denote the indices of this invariant subspace by i, ~ and the

indices of its orthogonal complement by i ~, Subsequently consider the

cyclicity equation (4.22), with indices i11, ‘H’ k1 and l~.Because of the invariance

of the subspace there are no generators with mixed indices, so that (4.22) reduces

to

ghf ghf ~ ~,a ~ —n 2
J I))) f k111 afI i~1j1~ k111 — .

However, contracting this with ff’~ leads to an immediate contradiction. Hence

we conclude that SO(N) 0 H’ acts irreducibly on the target space.

By Schur’s lemma, this shows that the abelian factor in H’ has dimension 0 or 1,

with the square of its corresponding generator h equal to h
2 = —(2/k)1. Further-
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more both C,,
0h~*hPand h”h~,with the generators restricted to one of the factor

groups H”, are proportional to the unit matrix. In this way we find

2 dim H”
— k

32c dim H”
Cap(H”)(h~h

0)ij= — 2dN + c
2(H”) k ~ (4.29)

where the sum extends over the generators of each of the factor groups H”

separately. Last but not least, as SO(N) 0 H’ leaves the subspace invariant

constituted by equivalent SO(N) representations, it follows that the target space

should decompose entirely into SO(N) representations that are equivalent. Conse-

quently, we may put k1 = k and k2 = 0.

Now we substitute (4.29) into (4.20) to obtain a relation between N and the

number of supermultiplets. Using that c2 equals 2(k — 2), 4k and 8(k + 1), for

S0(k), SU(k) and Sp(k), while the dimensions of these groups are equal to

— 1), k
2 — 1 and k(2k + 1), respectively, leads to the following equations:

dN — 1
for N= 7, 8, 9 mod 8,

dN + k — 2

N(N—1) d~,—4

8c = dN(dN+2k) forN=6mod4,

dN + 2
for N=3,5, 12 mod 8, (4.30)

dN + 4k + 4

where c was defined in (4.13). From these equations one may verify that N(N — 1)

— dN must be positive, which implies that there can be no solutions for N> 17.

Therefore it remains to search for a finite number of explicit solutions, which are

rather rare in view of the fact that the parameters N and k must be integers. The

result of this search is shown in table 2.

We should stress that so far we did not determine the tensor Ca

0. An obvious

solution is to choose it equal to for every factor group H”. In that case the

Riemann tensor takes its values in the algebra corresponding to SO(N) 0 H’ (in

the spinor representation of SO(N) and the defining representation of H’), and it

is also invariant under this group. However, it is possible that there are alternative

solutions for C,,0, corresponding to nontrivial solutions of (4.24). The Riemann

tensor could then take its values in the algebra corresponding to a subgroup of

S0(N) 0 H’ (which should still act irreducibly on the target space). Let us denote

this group by H’ and assume that it can be written as a product of subgroups H”

that are abelian (because of Schur’s lemma, the abelian group is at most one-di-
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TABLE 2

All solutions to (4.30) with N = 3 or N ~ 5, which correspond to possible non-linear sigma models

coupled to extended supergravity in terms of N and the number of supermultiplets k. The case N = 4 is
given for comparison. There one can have two independent quaternionic subspaces corresponding to

k~and k inequivalent supermultiplets

N dN k c H’

16 128 1 30 1

12 64 1 18 Sp(l)
10 32 1 12 U(1)

9 16 1 9 1

8 8 k 6+k SO(k)
6 8 k 4+k U(k)

5 8 k 3+k Sp(k)

4 4 k.,. 2+k~ Sp(k~)

3 4 k ~(2+k) Sp(k)

mensional) or simple. In addition to (4.24) also the following condition must then

be satisfied:

dim H” dim H”

= ~ 2~’ ‘H” (4.31)
~ 2d,,,,+c

2(H ) H”cH’

1’N c
2~ )

where the subgroups H” are known from table 2. For an explicit example of this

phenomenon consider dN = 4 with the indices a, /3 taking values in the Lie

algebra corresponding to Sp(k). In that case one obvious solution corresponds to

C,,0 a ~ while a second solutions is obtained by restricting C,,0 to take only

non-zero values for a, /3 corresponding to the generators of the obvious U(k)

subgroup. We leave it to the reader to verify that in both cases one can satisfy

(4.24) and (4.31). This example is relevant for N = 3, where indeed there exist

homogeneous spaces corresponding to these solutions, namely Sp(1, k)/(Sp(i) 0

Sp(k)) and U(2, k)/(U(2) 0 U(k)). As we shall discuss in sect. 5, the fact that the

holonomy group is reduced has important consequences for the target space.

At this point we have not yet attempted to solve (4.22). The easiest way to find

solutions to this equation is to assume that one is dealing with a homogeneous

space, in which case (4.22) is just one of the Jacobi identities for the generators of

the isometry group. This will also be discussed in sect. 5. For a coset space G/H

one expects the Riemann tensor to take its values in the Lie algebra of H. In the

case at hand we know that H must be contained in SO(N) 0 H’. For a given group

H one knows the dimension of G, and in this way it is relatively easy to find coset

spaces that satisfy all the restrictions given above.

Now we turn to a discussion of the N = 4 theories. An important role is played

by the symmetric tensor J, whose definition and main properties were given in eq.
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(4.6)—(4.10). As its eigenvalues are equal to ±1, we can use it to define the

projection operators

(4.32)

By means of these projectors one decomposes the target space into two subspaces.

Because of the fact that the tensors H ± are covariantly constant, the Riemann

tensor is only nonvanishing when all its indices take values in the same subspace

(to see this use the cyclicity of the curvature). Hence we decompose the curvature

into two tensors R~),satisfying

H~+IR~I,),,=H~
1D1(1

8)R~,~,,= 0, (4.33)

where the second equation follows from the first one combined with the Bianchi

identity. Under these circumstances, the space is locally a product of two separate

riemannian spaces; this means that one can choose coordinates such that the

metric acquires a block-diagonal form, in accordance with the projectors (4.32),

where the metric of one subspace does not depend on the coordinates of the other

one.

Furthermore, because the almost-complex structures commute with the tensor

J, they can be decomposed into almost-complex structures belonging to the two

subspaces. Hence we may introduce two tensors f,’,±)l,which are only non-zero

when both indices take values in the corresponding subspace, although at this

stage they may still depend on the coordinates of both subspaces. Decomposing

the SO(4) connections in terms of two sets of SO(3) connections,

Q(±)P = — I~PQRQQR R Q,”, (4.34)

one can write (3.28) as follows:

Dk(F)f)~~”+ ~PQRQ

5~±)Qf.(.±)R = 0, (4.35)

while, according to (3.26), the curvatures of the two connections are equal to

~ ±f1~,~”. (4.36)

Hence the curvatures R’~(Q~

5~)vanish in the subspace projected out by H~.

Therefore by a suitable SO(3) gauge transformation, one can ensure that the

connections Q(~~’vanish in this subspace. The remaining identities then ensure

that the two spaces decouple completely, with separate complex structures f( ±)

and connections Q( ±) with components in the corresponding subspace and de-

pending only on the coordinates of that subspace. Note that the tensors f( ±)P

define almost-complex structures in their respective subspaces. We should perhaps
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point out here that these two subspaces do not decouple in the field theory, but

interact via the coupling to the dreibein and gravitino fields.

Hence we may now concentrate on one of these subspaces separately. Dropping

all superscripts (±), the geometry in the subspace is subject to the following

equations:

fPfQ =

8PQ’ ~PQRfR’

+ ~PQRQ~Qf.R = 0,

R~(Q)= ±f,~’. (4.37)

The subspace transforms under the action of the corresponding SO(3) group

according to inequivalent representations. Again, as we have three almost-complex

structures that are covariantly constant with respect to a non-trivial Sp(l) connec-

tion, the space is quaternionic.

For reasons of comparison we repeat some of the same steps as in the more

general case. Contracting the integrability condition corresponding to the second

equation of (4.37) with the almost-complex structures and the metric yields the

analogue of (4.11) and (4.12), but with different normalizations,

RIJklf,~=~d÷fpIJ, R

11=~(8+d~)g11, (4.38)

where d~=4k ± is the dimension of the subspace and k ± the number of

supermultiplets (which equals the quaternionic dimension of the subspace). Fur-

thermore we have a similar decomposition of the curvature as in (4.19),

RIlk! = ~{fIJfkI + C,,0h~h~,}, (4.39)

where the tensors h~,together with the identity, span the centralizer of the

almost-complex structures, so that they generate the group Sp(k ~ Together with

the complex structures they generate the group Sp(l) 0 Sp(k ,j, which must again

act irreducibly. Again one derives

C,,0(h”h
0)~~=—~(2+d~)g

1~.. (4.40)

We should point out that the presence of the two separate quaternionic spaces

can be understood from N = 2 supergravity in four space-time dimensions. In that

case there exist two inequivalent matter multiplets. The vector multiplets, whose

scalar fields parametrize a Kähler manifold [27], and the scalar (or hyper-)multi-

plets, whose scalar fields parametrize a quaternionic manifold [28]. Upon dimen-

sional reduction the Kähler space of the vector multiplets is converted into a
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quaternionic space (although not the most general) [29], so that one obtains two

quaternionic spaces associated with inequivalent supermultiplets.

Perhaps we should explain why this phenomenon can only happen for N = 4,

while there are inequivalent multiplets for all values N = 4 mod 4, as we showed in

section 2. The reason is that the group SO(N) 0 H’ must act irreducibly in the

target space, so that only one type of multiplet is allowed. The situation for N = 4

is different, because the group SO(4) factors into two separate SO(3) groups, each

of them acting in a different subspace of the target space.

The question that remains to be answered is what the possible spaces are

corresponding to N> 4. As we shall argue in the next section, it turns out that

these spaces are unique. After identifying each one of them it is rather straightfor-

ward to verify that all equations of this section are indeed satisfied.

5. Homogeneous spaces

A striking feature of the results derived in sect. 4 is that, except for the low

values N ~ 4, the number of possible theories is rather limited. In particular, for

N> 8, there remain only four theories based on a single supermultiplet corre-

sponding to N = 9, 10, 12 and 16. The bound N ~ 16 was obtained here solely on

the basis of mathematical considerations; since there is no helicity in three

dimensions, we cannot rely on “physical” arguments, unlike in four space-time

dimensions, where the analogous bound N © 8 follows from requiring absence of

massless states of helicity higher than 2. The arguments of sect. 4 are not yet

strong enough to determine the target manifolds, since we used only a contracted

version of (4.22); to find out what the possible spaces are, one must exploit the full

content of these identities. Fortunately, we can now invoke a powerful mathemati-

cal theorem to prove that the target spaces are, in fact, symmetric and therefore

homogeneous for sufficiently high N.

Theorem 5.1 [19]: Let 4’ be an irreducible riemannian manifold. If the

holonomy group at a point p ~.%‘ does not act transitively on the unit sphere in the

tangent space T~4’at p, then .4’ is a symmetric space of rank > 2.

The content of this theorem can be rephrased as follows: if the holonomy group

of .4’ is sufficiently “small” with respect to the generic holonomy group (i.e. SO(d)

for an arbitrary d-dimensional riemannian manifold), then the manifold is com-

pletely determined; if, on the other hand, it is “large”, then little can be said, and

there is a greater variety of spaces. We note, however, that the possibly holonomy

groups for irreducible non-symmetric riemannian manifolds cannot be arbitrary

subgroups of SO(d), but are strongly restricted; a complete list is given in corollary

10.92 of ref. [18]. In the case at hand, all the necessary information is encoded in

the explicit formula (4.19) for the curvature tensor, which tells us that the
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TABLE 3

Complete list of target spaces for N ~ 5 supergravity theories. The coefficient c, defined in (4.13),

coincides with the dual Coxeter number of the group G

N dN k c G/H Rank

16 128 1 30 E
5(~8)/SO(16) -~ 8

12 64 1 18 E7,_51/(SO(12)®SO(3)) 4

10 32 1 12 E5(_,4)/(SO(10)®SO(2)) 2

9 16 1 9 F41201/SO(9) I

8 8 k 6+ k S0(8, k)/(SO(8)®SO(k)) max(8, k)
6 8 k 4+ k SU(4, k)/S(U(4)®U(k)) max(4, k)

5 8 k 3 + k Sp(2, k)/(Sp(2) ® Sp(k)) max (2, k)

holonomy group is contained in SO(N) 0 H’, where the centralizer subgroup H’

can be read off from table 2. As the dimension of the target space is d = kdN, we

must therefore check whether or not the group SO(N) 0 H’ acts transitively on

the unit sphere S”’. When it does not, then the holonomy group SO(N) 0 H,

which is contained in it, does not act transitively either and we can apply the

theorem. This allows us to understand the limitations on the number of possible

theories from a slightly different point of view: extended supergravity theories are

scarce because the mismatch between the actual holonomy group SO(N) 0 H and

the generic holonomy group SO(d) = SO(kdN) becomes too big for N> 4. For

N ~ 4, the information provided by (4.19) is not sufficient to completely determine

the manifold. In particular, for N = 1, there are no restrictions at all, and the

target space is an arbitrary riemannian manifold. For N = 2, the holonomy group

has a U(1) factor; since there is one complex structure, the manifold must be

Kähler, and the holonomy group is contained in U(k) with d = 2k. As this group

acts transitively on the sphere S2k1 we get no further restrictions from the

theorem. For N = 3 and N = 4, the target spaces are quaternionic manifolds of

dimension d = 4k and d~=4k ~, respectively, and the holonomy group is con-

tained in Sp(1) 0 Sp(k). Since the group Sp(l) 0 Sp(k) acts transitively on the

sphere 54I~_1, the theorem imposes no immediate restrictions on the manifold. For

all higher values of N with the exception of N = 9, the group S0(N) 0 H’, and

therefore the holonomy group does not act transitively. According to the theorem

we can then uniquely determine the possible target manifolds by matching the

values of N and d with the list of symmetric spaces. This identification leads to the

list of spaces shown in table 3, which forms a central result of this paper ~‘. All

non-linear sigma models coupled to N> 5 supergravity are thus uniquely deter-

* By some abuse of notation we wrote orthogonal groups for the cosets where possible. It should be

clear from the text in sect. 4 what the representations are in which the isotropy group acts. As SO(N)

acts in the spinor representation it would be appropriate to denote is as Spin(N), whereas the SO(3)

group for N = 12 is actually Sp(l). Observe the importance of triality for the N = 8 coset space, which

can be used to interchange vector and spinor representations of S0(8).
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mined. The maximal number of supersymmetries is N = 16, which corresponds to

the theory constructed quite some time ago in the first paper of ref. [12]. The case

N = 9 may seem special, as Spin(9) does act transitively on S’
5, but it can be shown

that the coset space F
4/Spin(9) (which is of rank 1) is the only solution [30] ~.

We expect that the theories with even N in table 3 can be obtained by

dimensional reduction of the corresponding N/2 theories in four space-time

dimensions. To obtain the theories with odd N, one would have to further truncate

the dimensionally reduced theories, but, evidently, neither the target spaces nor

the fact that there are no theories for certain odd values of N below N = 16 and

none at all above N = 16 could have been reliably predicted on the basis of such

arguments. We should perhaps point out that exceptional groups (including G2)

also appear for symmetric quaternionic spaces. All homogeneous quaternionic

spaces are known and were given in ref. [31] (see also ref. [23]).

Having established that the target spaces are symmetric for sufficiently high N,

we devote the remainder of this section to elucidating some features of the relation

between the target-space formulation of locally supersymmetric theories as given

in sect. 3 and the formulation of extended supergravity theories as G/H coset

space theories (see, for instance, refs. [12,32]). In particular we shall indicate how

some of the results of our work arise in the context of the latter formulation. We

assume, in accord with the spaces listed in table 3, that G is a non-compact group

and H its maximal compact subgroup, so that the space is symmetric. For N> 5

the possible choices for G and H can be gleaned from table 3, but our results can

be applied for other cases as well. Together with the results derived in sect. 3, this

information then gives an explicit representation of the lagrangian and supersym-

metry transformations of the theory.

Let us first discuss the group-theoretical aspects in a little more detail. From

sect. 4 we know that the group H always factorizes according to SO(N) 0 H, where

H c H’ (for the spaces listed in table 3, H and H’ do actually coincide). The

generators of the group H will be denoted by h~where the indices a now take

their values in the Lie algebra of H: a = 1,.. . ,dim H. They commute with fermion

number and with the matrices F,~A,

h~CFC’E+ h~F.~’e= 0. (5.1)

Denoting the SO(N) generators by x’~= —xi’, where I, J,... = 1,. .., N, and

the remaining (coset) generators by Y-~,where the bosonic indices A, B,... (or

* In ref. [18] the reader may find the list of subgroups of SO(d) which act transitively on Sd_i. Besides

the regular groups, there are three exceptional cases, namely G2 acting on S

6. Spin(7) on S7 and

Spin(9) on S15. The first two of these play no role in our analysis, because the associated manifolds
are Ricci flat [18], which would lead to a contradiction with (4.12) and (4.13).
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the fermionic ones A, B,...) = 1, . . . , d were already introduced in sect. 2, the Lie

algebra of G is characterized by the commutation relations

[x’~,XKL] =

6fKXIL — ~bKXJL — ôfLXbK + ~ILXJK

[X~ X
0] =f~0

5X~ [X’~ X~]=0

[yhi vAl_ _I bJvB [v’ VA1_ ~ ~
I ‘ J 2 AD ‘ I ‘ J AB

[yA, yB] = ~FA’~X’~ + ~C,,Oh~BX

0, (5.2)

where F~ F~F

8~

1,so that ~ generates the spinor representation of SO(N).

Likewise

h~ h0 —h0 h~ —~‘‘~ h~ 53
AC CD AC CBJ -y AB

The tensor C,,
0 coincides with the tensor introduced in (4.19). Most of the Jacobi

identities implied by the algebra (5.2) are trivially satisfied once we assume that

Ca0 is H-invariant. The remaining identity, and the one that leads to the most

stringent constraints on G, arises from the commutator [yA yB], yC]; it reads

F[’,~B F’C~D]+ C,,fIh~Bh~01= 0. (5.4)

This equation is just (4.19), except that C,,0 is now assumed to be fi-invariant.

From sect. 3 we can therefore deduce its values for the spaces listed in table 3,

using the normalization (4.17). For N = 16 and 9, C,,0 obviously vanishes; for

N = 12, 10, 8 and 5, I~Iis simple, so that C,,0 is proportional to the identity, and its

eigenvalues are equal to 2, 3, 8 and 2, respectively. The case N = 6 is slightly more

complicated. For the SU(k) subgroup Ca0 is proportional to the identity with

eigenvalue equal to 4, whereas for the U(1) subgroup, we have the eigenvalue

4 + k. In appendix A we will give an explicit proof of the Jacobi identity (5.4) for

the groups E8, E7, E6 and F4.

In the coset space formulation the scalar fields that parametrize the coset space

are characterized by a matrix ~V(x) e G/H, on which G acts as a rigid symmetry

group from the left, while H is realized as a local symmetry acting from the right.

To understand that this description is equivalent to the one in terms of the

target-space coordinate fields qY(x), we note that the matrix ~ represents

d = dim(G/H) = dim G — dim H physical degrees of freedom. The spurious

(gauge) degrees of freedom associated with the subgroup H can be eliminated by
choosing a special (“unitary”) gauge where the matrix ~ is directly parametrized

through the target-space coordinate 4~(x)used before, i.e. ~= ~‘~1(x)).To

maintain this gauge choice under local supersymmetry transformations, compensat-

ing H rotations will be needed. We will also need a vielbein ef
1 as well as gauge
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connections Qff and Q7 for the tangent-space group SO(N) 0 H. These are

defined by (for a systematic and complete discussion of coset spaces, see e.g. ref.

[33])

~ t~
9~7~~Q[~X’~ + Q~’X~+ ~AyA (5.5)

where 0~is the derivative with respect to the target-space coordinate 4’.

The integrability condition corresponding to (5.5) are the so-called Cartan—

Maurer equations. In this case they read

D11 e~1= ~ e~1+ (~Q(,’FA’~B+ Q~h~)e~= 0, (5.6)

R’~— 1 A BrbJ
— 2e~eJIAB,

R~= — ieAeB1~ h
0

if 8 I j aO AD’

where R[~1 was already defined in (4.3), while R,~equals

R,~- 3
1Q7 — 0JQ,~+f~0-yQrQJ. (5.9)

The geometrical content of the theory is fixed once we identify e~as the

vielbein of the coset manifold with Q[’ and Q~the spin-connection fields. The

latter take their values in the algebra of the isotropy group, which is the subgroup

of SO(d) that acts on the tangent space with the generators ~F’~ and h~defined

above. According to (5.6) the space is torsion-free, so that the vielbein is covari-

antly constant with respect to the Christoffel connection,

D1e~=3~e,’~—1~e~+ ~ (5.10)

The vielbein cf
1 is related to the target-space metric of sect. 4 by

g,
1(4) = ef1(4)ef(4)i~AB, (5.11)

where ~AB is a symmetric and il-invariant tensor; in case there is more than one

invariant tensor, the metric is thus no longer unique. The vielbein can also be used

to convert curved into flat indices in the usual fashion; for instance, the generators

of H are related to (a subset of) the matrices h~used previously (see eq. (4.15)) by

h~= h~Bef1e7. (5.12)

The curvature tensor on G/H can be computed from

R11,,1 = —ef1eP(+RUF~+ R~h~B). (5.13)
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Using eqs. (5.7) and (5.8) one thus obtains

RABCD = ~(FA”BFC’~D+ Caph~BhgD), (5.14)

which precisely coincides with (4.19). In terms of flat indices, the curvature tensor

is therefore constant; moreover, the Jacobi identity (5.4) ensures the cyclicity of the

Riemann tensor and is thus equivalent to (4.22).

From the previous sections we know of the existence of N — 1 almost-complex

structures f,~’(remember that P, Q,... = 2,. .., N). In the coset formulation they

can be represented by

f,~’=±(F”F
1)ABef1ej~, (5.15)

and are not SO(N) covariant. On the other hand, the antisymmetric tensors f,~’,
which were defined in (4.1), are S0(N) covariant, and take the form

f/f= —F~’~ef’ef. (5.16)

The tensors f,~’are only almost-complex structures; from (5.10) and the definition

(5.15), we immediately deduce that

D
1(F)f1~=±~Q[’[F

11,F”F1]fk= _Q,Qf
1~_Q[Qf1~, (5.17)

where we made use of the definition (4.2). Relation (5.17) is nothing but the

previous formula (3.28).

In the coset formulation the fermion fields do not carry target-space indices. To

appreciate this feature, let us recall the supersymmetry transformation

= ~x’ + ~Pf,ç~i). (5.18)By making use of the supersymmetry transformation with parameter E, onenaturally defines fermion fields that transform as the components of a target-space
vector. In the coset formulation, on the other hand, one considers ~ which

takes its values in the Lie algebra of G. By a suitable (field-dependent) H-transfor-

mation, this expression can be restricted to take its values in the generators yA~

This motivates one to introduce fermion fields XA that transform covariantly

under H, so that the supersymmetry variation takes the form

~ I~/,~Aj~h.yA (5.19)

In a given gauge the two transformations should coincide, modulo a compensating

(field-dependent) H-transformation to maintain the gauge choice.
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By comparing the two supersymmetry variations we can find the relation

between the fermion fields x’ and ~A. We first observe that the direct variation of

~‘ yields

~‘~‘~‘= ~ ‘~~= ~Y(~Q[~X” + Q’X~+ ef~YA). (5.20)

Obviously the first two terms correspond to infinitesimal field-dependent H-trans-

formations. The last term should be matched with (5.19), so that

(ix’ + ~“f,~jx~)ef1 = gI~AF~I. (5.21)

Making use of (5.15) this relation leads to the identifications c’ = ±cand

= ±F~.jef1x’. (5.22)

With this result the variations (5.18) and (5.19) coincide, provided one adds a

compensating H-transformation to (5.19) with parameters

(
01f = ~4JIQ!J w(* = ~ (5.23)

This compensating transformation must be included in all supersymmetry varia-

tions. To see the corresponding relation for the fermions x’ is slightly more subtle.

Using (5.22) we find

= ±1T~L.i(~ef’x’+ ef1~x’)

= ±F~A~4~(~ef1—F~’e~)~’+ ~FIA ef1 Øç&’ c’, (5.24)

where we made use of (3.25) and (5.15). Here it is important that FJ~’ is not the

Christoffel connection, but the modified connection defined in (3.27). Using (5.10)

and (3.27) shows that the first term is equal to

~WX = — ~w
11F~~’~ — wah~xB (5.25)

where h~’
4B= F,~’Ah~BFABby virtue of (5.1). In deriving this, we also made use of

(4.2) and (5.10). The terms (5.25) are precisely cancelled by the compensating

transformation (5.23). The remaining variation thus takes the form

= ~y~E’FA’AP,f1, (5.26)

where we use the notation

PA_á’~teA (5.27)
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Finally, by similar manipulations as described above, one may verify that

D
1,(F)~’= ±(D~(f)e~)FA1AXA±e ~A3l,XA — e~4FAPAQ~~3cbixA

= ±e~F~A(6A~d1,+ ~Q~FJ~ + Q~h~4x”, (5.28)

where

Q~’=a~YQf~, Q~=d.~,4’Q~. (5.29)

The modification of the fermionic connection as given in (3.27) is thus indispens-

able for recasting the results in such a systematic and covariant form in the coset

formulation. The reader is advised to consult ref. [12] to see that these various

ingredients are indeed present for the theories constructed there.

Appendix A

In this appendix, we will establish the crucial Jacobi identity (5.4) for the

exceptional groups E8, E7, E6 and F4. For the convenience of the reader, we here

repeat formula (5.4) for C,,0 =A3,,0

rbJ rbJ .iAt.a ~ — 1
[AB CD] ~‘ [AD CD]—

For G = E8 and F4, the subgroup iI is trivial, and the second term is therefore

absent. For G = E7 and G = E6, we have H = Sp(i) and H = U(i), respectively, so

the second term in (A.i) must be taken into account; with the normalization

adopted in (4.17), we find A = 2 for E7 and A = 3 for E6, as stated below (5.4). To

prove (A.1), we will need to know the Fierz identities for matrices acting on the

d-dimensional chiral spinor representations of SO(N) (there is only one multiplet,

so we have d = dN). Since we are dealing with a real representation of the Clifford

algebra, the standard Fierz identities for complex F-matrix algebras must be

modified. Fierz identities for real Clifford algebras have been derived in ref. [22];

however, these are not quite suitable for our purposes, and we will therefore

present an alternative formulation. We will make use of the standard definition

F” ‘2k Fr” .. . Fb2k]. (A.2)

Notice that we consider only matrices built out of an even number of F-matrices,

which do not mix the d-dimensional chiral subspaces. For brevity, we will denote

these matrices by F~
2”~below, so that ~ .~‘2kV The matrices F(212) are
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symmetric for even k, and antisymmetric for odd k. Let us first record the

important formulas

Tr(F/1126Ff,...J
2k) =d(_)k(2k)!~~, (A.3)

and

F~FK1K2pFu = (N— (N— 4p)

2)FKIK2P, (A.4)

which are valid for arbitrary N (traces are understood to be over the chiral

subspace labeled by the indices A, B,... = 1,. . . , d). From the explicit representa-

tion of the F-matrices in sect. 2, it is not difficult to check that, for N = 4 mod 4,

the matrix F in (2.5) can be taken equal to the identity matrix. Since the fermion

number operator F is also unity in the chiral subspace, the matrices F~2~and

F21~ are related to each other by duality, hence linearly dependent; for

2k = N/2 there are thus only ~(~‘) linearly independent matrices. For N = 2 mod

4, we find r = e; therefore, duality now relates FV2I~~and eF~21~.For odd N, on

the other hand, all matrices are linearly independent.

For N = 8n, we have d = ~ 1 from table 1. Elementary counting arguments

show that the matrices 1, ~ ~ . . , F~4~form a complete and linearly inde-

pendent set of (real) d x d matrices (for the matrices F~4”~,one must not forget to

take into account the self-duality constraint, as we just explained). The relevant

Fierz identity for an antisymmetric matrix MAD (which is all we need for (A.1))

therefore reads

MAD = — F~ Tr( MF(2k)). (A.5)
k=1,3 2n—l ( )~

Summation over the 2k indices ~ ‘2k is implied in (A.5) and similar formulas

below. For N = 16, this sum evidently contains only two terms. Evaluating (A.5) for

the matrix MAD = F~(AF’A]D, we obtain

11 11
FC’(~F~]D= -~-~-~ + -~-~ ~ (A.6)

From (A.4), we get FL~F(2)FH= — 128F~2~and F’~F~6~F’~= 0, so (A.6) reduces to

rbJ If __..1. If hi 7
C[A B]D 2 AB CD’

from which the desired relation (A.1) follows directly (with A = 0).

For N = 4 + 8n, we have d =

2

2+4n In contrast to the previous case, a complete

set of real d x d matrices now cannot be constructed from the F-matrices alone, as

one can quickly verify by counting the number of such matrices. In addition,
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however, there are now three complex structures represented by the antisymmetric

matrices h~Dfor a = 1, 2, 3, which generate the centralizer subgroup Sp(i). With

the normalization (4.17), we have (h~)
2= —2 (no summation over a) and

[ha, h0] = 2~/~e,,
0h. (A.8)

A complete and linearly independent set of antisymmetric matrices is given

by h’’, ~ ~ . . . , h”F~
4”~,Ft4”~2~,while the symmetric matrices are

1, h’’Ft2~,Ft4~ ~ h~Ft4’~2~.Instead of writing down the general formula,

let us immediately specialize to N = 12, so that d = 64; in this case, the relevant

identities are

u’!! ru
‘C[A1 DiD

= ~ + ~

+ 2
4!~F )AB(FhFF)CD + F~(FHF(6)FIJ)CD}

= ~{—66h~Dh~D — 26F~F,~— ~ + ~ (A.9)

and

I,, Ia
‘~DID

= ~{~h~D( h~h

0h~)CD + ~

+ 2
4!~F )AD(hhFh)CD + 2.6!FAB(hFh)CD}

= ~{h~Bh~D — 3I~F~ + ~ — ~ (A.10)

where (A.3) was used (the extra factor of ~ in front of the terms containing F~
6~is

due to the self-duality constraint, which was explained above). It is now straightfor-

ward to check that

If rh _ ‘iIa ,a — — If ru ru -~a z.a
C[A’ B]D ‘~“C[A “-D]D — 2~.1AD1 CD ‘ L~ ‘AD”CD

so that (A.1) is satisfied with A = 2.

For N = 2 + 8n, we read off d = 2! +4fl from table 1. There is now only one

complex structure represented by the antisymmetric matrix hAD, which generates

the group U(1) and is again normalized such that (h)2 = —2. The antisymmetric
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matrices are h, ~ ~ . ., ~ ~ while the symmetric ones are

1, hF~
2~,. . . , hF~4”~2~,~ One checks that altogether there are ~d2 antisymmet-

nc and ~d2 symmetric matrices, so it would seem that we cannot generate a

complete set of matrices in this way. However, we now recall that the representa-

tions are complex for these values of N (see the discussion in sect. 2), which means

that, instead of getting d2 real matrices, we should end up with (d/2)2 complex

(i.e. (d/2)2 hermitean and (d/2)2 antihermitian) matrices; this is precisely the

number of matrices just obtained. Specializing to N = 10 with d = 32, the relevant

identities read

r!-I rh
1C[A’ B]D

= ~{~hAD(FuJhFuf)CD + ~

+

2.4!F)ABhFF~}

= —

4ShADhCD — 13F,~F~+ ~(hF(4))AB(hFt4))CD},(A.12)

and

hC[A h DJD ~{~hAD(h)CD + ~F~(hF~2~h)CD+

2.4!F)ADhFCD}

= —hABhCD — F~F~ — hF~

4))AB(hF(4))CD}. (A.13)

Again, it is easy to check that

FC’(A F~]D+ 3hc[A h B]D = — ~ + 3hABhCD), (A.14)

so the identity (A.1) now holds with A = 3.

Finally, for N = 9, we have d = 16. As for N = 16, there are no complex

structures; a complete and linearly independent set of real antisymmetric 16 X 16

matrices is given by the (~) matrices F~2~and the (~) matrices ~ The relevant

Fierz identity now reads

F~(AF’B~]D= -~-~~F~(FL~F(2)FhJ)CD + -~-~~FA(FL~F(6)F/J)CD.(A.15)

From (A.4), we now get F’~F~2~F’~= — 16F’2~and, by another fortunate numeri-

cal coincidence, F’~F~6~F’~= 0. Except for the different range of indices, the

resulting identity is the same as (A.7), so (A.1) is again obeyed with A = 0.
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There is no need at this point to discuss other values of N, since we know from

the classification of Lie algebras that, apart from G
2, there are no other excep-

tional Lie algebras besides the ones considered above. We have given a pedestrian

and rather explicit construction of these algebras, not least because, except for E8,

the relevant Fierz identities do not seem to have been discussed anywhere in the

literature. From the present point of view, there exist no exceptional Lie algebras

beyond E8 because the number of terms that must cancel after the Fierz rear-

rangements becomes too large, so that (A.1) can no longer be satisfied.
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