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Abstract

Supergravity, a locally supersymmetric gauge theory, may provide to describe new physics

beyond the Standard Model (BSM), such as slow-roll in�ation, the cosmological constant, and

dark sectors. In this sense, cosmological applications of supergravity can be the arena for prob-

ing outcomes of supergravity. It is also attractive that supergravity can appear as a low-energy

e�ective theory of superstrings, a possible candidate of quantum gravity. Nevertheless, it is not

trivial to build in�ationary models in supergravity due to di�culties arising mainly from the ex-

tremely constrained form of supergravity scalar potentials, complicated structure of interaction

terms, and excessive scalar degrees of freedom. These obstructions generally make it challeng-

ing to contrive a desirable in�ationary trajectory, perform the moduli stabilization to obtain the

stable de-Sitter phase, and make extra scalars to be much heavier than the Hubble scale to get

single �eld in�ation. Besides, supergravity predicts many non-renormalizable interactions. It

thus arises as e�ective �eld theory (EFT) which can be valid only up to typical energies 𝐸 below

its ultraviolet cuto� scale Λ𝑐𝑢𝑡 , and up to some accuracy of (𝐸/Λ𝑐𝑢𝑡 )𝑛 that we desire. We note that

these non-renormalizable terms may a�ect physics during and/or after in�ation.

From such points of view, it is very important in supergravity to �nd the method for relax-

ing the scalar potentials, and �exible scalar �eld dynamics (particularly for in�aton), and examine

self-consistency at the quantum level. In this thesis, therefore, we construct locally supersymmet-

ric e�ective �eld theories of in�ation by taking into account recently-proposed reformulations of

N = 1 supergravity that can enlarge the space of scalar potentials. The reformulations involve

vi



liberatedN = 1 supergravity and new Kähler-invariant Fayet-Iliopoulos terms which do not require

gauging R-symmetry. Then, we build minimal supergravity models of single-�eld slow-roll in�a-

tion and de Sitter vacua in the KKLT string background in the reformulated supergravities. At

the same time, we identify possible constraints on the cuto� for their self-consistency as EFT by

inspecting the suppression of non-renormalizable terms within the superconformal formalism,

which is very convenient to systematically manage the non-renormalizable terms.
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1 | Introduction

Cosmological in�ation and its standard ΛCDM cosmology of the Early Universe are backed

by the latest experimental data on the Cosmic Microwave Background (CMB) given in the Planck

2018 results [1–3]. This data strongly supports the existence of the so-called cold dark matter

(CDM) and cosmological constant (Λ), and a primordial accelerated expansion of the universe,

considered to be led by a hypothetical particle called in�aton particularly in form of single-�eld

slow-roll in�ation1. In particular, in�ation is considered as a very essential epoch of the early

universe since it is a key for resolving several cosmological issues like “the Horizon problem” [4].

It also has long been mysterious where theoretical origin of in�ation comes from. Unfortunately,

cosmological observations cannot theoretically be predicted solely by the Standard Model (SM)

that led to the successful discovery of Higgs scalar boson in 2012 [5]. Therefore, it is crucial to

have new theories for physics beyond the Standard Mdoel (BSM) in order to tackle such problems

of cosmological phenomena.

Supersymmetry (SUSY) may be a good candidate of the BSM physics [6]. SUSY proposes a

pairing of bosons and fermions in which �elds of di�erent spins but with the samemass belong to

an irreducible representation called “a super�eld” of the supersymmetry algebras (See Ref. [7] for

an introduction to SUSY). This means that SUSY can provide extra degrees of freedom for BSM

physics in a consistent waywith a theoretical robustness, so that theremay exist other elementary

particles for explaining the BSM sectors as superpartners of the SM bosons and fermions.
1This will be reviewed in Ch. 2 in this thesis.
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In principle, SUSY may be realized either globally or locally. Another attracting feature of

SUSY is a locally supersymmetric �eld theory called Supergravity (SUGRA) that can even carry

the SM fundamental forces, and even gravitational interaction, thanks to its local symmetry

called super-Poincaré group. It predicts a spin-3/2 fermionic superpartner of the spin-2 bosonic

�eld graviton, which is called gravitino (See a self-contained supergravity textbook in Ref. [8] (or

Refs. [9, 10]) for a detailed review of superconformal (or superspace) formalism of supergravity).

Regretfully, experimental evidence of SUSY has never been seen until now [11]. Nevertheless,

this may not be the end of the SUSY story. This is because supersymmetry may be spontaneously

broken at some scale of energy, as in the case of the spontaneously symmetry breaking of the

electroweak interaction by the stabilization of Higgs scalar �eld around the true vacuum. We call

such a scale as supersymmetry breaking scale 𝑀𝑆 . This implies that particles that belong to the

same super�eld may have di�erent masses, implying that superpartners of the SM particles may

be to be detectable. Hence, supergravity can still be a viable option for BSM physics as long as

supersymmetry breaking is considered, and it can be employed at the quantum level as a so-called

E�ective Field Theory (EFT), which will be explained more in the following.

In quantum �eld theory (QFT), one conventionally investigates dynamical phenomena of el-

ementary particles by computing “convergent” scattering (S-matrix) amplitudes (and even quan-

tum loop integrals) of various interactions among their quanta. When a amplitude can be made

with only the �nite number of counter-terms, we call such theory as renormalizable. Such renor-

malizable interactions are also called “relevant or marginally relevant.” On the other hand, “irrele-

vant” couplings in a quantum �eld theory may push the theory to be ill-behaved at high energies

due to divergences from quantum loop corrections to the amplitude constructed by such cou-

plings. This type of QFT is called non-renormalizable.

Notwithstanding this problematic feature, there is still a chance for non-renormalizable the-

ory to be e�ective for our practical use in real world. Non-renormalizable theory can typically be

considered as a theory that can be valid only up to energies below some scale Λ𝑐𝑢𝑡 called “cuto�.”
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One then treats the divergences from the quantum loop corrections by allowing ignorance be-

yond this scale and dealing with the cuto� Λ𝑐𝑢𝑡 as the actual ultraviolet cuto� on any momentum

integrals in the theory. In this way, one can obtain convergent results which are valid to some

accuracy of (𝐸/Λ𝑐𝑢𝑡 )𝑛 with some order 𝑛. This type of non-renormalizable theory is called as

E�ective Field Theory mentioned above. This will be one of the core notions in this thesis.

Normally, a quantized theory of gravity su�ers from the UV divergences of quantum loop in-

tegrals. In pure gravity, the one-loop S-matrix is �nite, but the divergences �rst appear generically

at the two-loop level. In gravity coupled to matter, the situation gets worse. The �rst divergences

appear at the one-loop level of two graviton exchanges. For these reasons, quantization of gravity

is a most di�cult and ongoing issue.

On the contrary, in supergravity, remarkable cancellation of divergences in loop integrals

may take place thanks to the supertrace structure [12]. If supersymmetry is perfectly preserved,

then the supertrace will wash out the divergences because of the same mass eigenvalues in a

supermultiplet. However, in broken supersymmetry, the problem is not trivial because the mass

gap of the super�elds in the supermultiplet will diverge. Hence, in this sense, I comment that

future investigations of supergravity divergences of quantum loop e�ects in broken supersym-

metry (for this research as well) should be performed, but I will not deal with this issue in this

thesis since it is out of its scope.

Including these issues, a quantum theory of supergravity remains one of the big puzzling

questions in theoretical high energy physics. Superstring theory2 improved this point of view,

which is a self-consistent realization of quantum gravity. This is because supergravity emerges as

its low-energy e�ective �eld theory. Speci�cally, at energies below Planck scale𝑀𝑝𝑙 ≡
√︃

ℏ𝑐
8𝜋𝐺 , the

�ve ten-dimensional superstring theories3 (‘Type I, 𝑆𝑂 (32), 𝐸8 × 𝐸8’ and ‘Type II-A & B’) can be
2In superstring theory, every elementary particle can be described by a vibrating mode of a fundamental super-

symmetric string.
3Moreover, the eleven-dimensional M-theory that incorporates the �ve superstring models through T and S

dualities can produce a 11D N = 1 supergravity.
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approximated into 10D ‘N = 1’ and ‘N = 2’ supergravities4 respectively (see Ref. [13] for a review

of supergravity and string vacua). Much below 𝑀𝑝𝑙 , it is demanded for a supergravity theory to

reduce to the four-dimensional (4D) N = 1 minimal supersymmetric standard model (MSSM)

[14] for phenomenological reasons5. In this sense, N = 1 supergravity is the intermediate link

between the low energy MSSM and its ultraviolet (UV) completion done by superstring theory,

thus pushing 4D N = 1 supergravity to be a strong candidate for a realistic low-energy e�ective

description of superstring theory.

Supergravity has recently been of great interests as a natural arena to explore in�ationary cos-

mology [15]. This is because supergravity can o�er us theoretical clues not only about in�ation

but also about the subsequent epochs of the primitive soup of elementary particles in the expand-

ing universe. In fact, realization of an in�ationary plateau by single-�eld in�aton and de Sitter

(dS) vacua in supergravity or string theory is rather challenging [16]. This is basically due to two

main problems: one is the existence of extra scalar modes, and the other is the highly-constrained

form of the so-called D and F-term scalar potentials (together with possibly quantum one-loop

e�ective potentials) predicted by the theories. The so-called 𝜂 problem6 [18] is a consequence of

such di�culty in building in�atioanry models in the context of supergravity.

In general, it is inevitably required for one to uplift a supersymmetric Anti de Sitter (AdS)

vacuum in standard 4D N = 1 supergravity to some de Sitter (dS) one (taking cancellation be-

tween terms of the potential to obtain a positive-de�nite but very small cosmological constant)

by utilizing mechanisms that go beyond the standard supergravity. To reach single-�eld slow-roll

in�ation, it is also required for a theory to keep all extra scalars but in�aton much heavier than

the Hubble scale during in�ation, which is typically demanding to realize as well.

The Kachru-Kallosh-Linde-Trivedi (KKLT)mechanism [19] is a prototypemodel to resolve the
4Supergravity can also be obtained by locally supersymmetric theory independently.
5The N > 1 supergravities are less viable phenomenologically because Yukawa couplings are proportional to a

gauge coupling and because matter fermions belong to either real or pseudo-real representations of gauge groups.
6The 𝜂 problem can be avoided by no-scale F-term scalar potential [17].
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dS issue. The underlying background of KKLT model, say KKLT string background, is a no-scale

4DN = 1 supergravity with a Kähler potential for its volume modulus and with a superpotential

that is induced by some possible string-theoretical nonperturbative corrections7. The superpo-

tential does not allow the volume modulus to transform under a R-symmetry. Speci�cally, KKLT

proposed a mechanism for uplifting the supersymmetric Anti-de Sitter (AdS) vacuuum to a dS

vacuum by adding anti-D3 brane contribution to the superpotential in the supergravity back-

ground, making a “bump” which eliminates an in�ationary plateau along the volume modulus in

the scalar potential. As an improved modi�cation of KKLT, Kachru, Kallosh, Linde, Maldacena,

McAllister and Trivedi (KKLMMT) [20] suggested another mechanism by taking into account a

contribution arising from the anti-D3 tension in a highly warped compacti�cations. Nevertheless,

appropriate realization of in�ation and moduli stabilizations has been left as an ongoing issue.

In this thesis, I will search how supergravity scalar potentials can be relaxed in a manner that

allows �exible scalar �eld dynamics. This will be done by introducing new models of the four-

dimensional N = 1 supergravity like liberated supergravity and new Kähler-invariant Fayet-

Iliopoulos terms without gauging R-symmetry. Then, I will focus on how to build minimal

supergravity models of the single-�eld slow-roll in�ation and de Sitter vacua at once together

with appropriate scalar stabilization around the minimum of the potential. Here, because string-

theoretical motivation appears, I will consider KKLT Kähler potential and superpotentials. More-

over, I determine maximum energy scale for which such models can be valid as e�ective �eld

theory. To do this, I inspect non-renormalizable interactions involved in the proposed models

using the superconformal tensor calculus in order to systematically identify possible constraints

on the cuto� in the e�cient manner. Further investigations of quantum loop e�ects will be left

for the future.

This thesis consists of twelve chapters including the introduction. In Ch. 2, I review the
7The correactions are obtained from either Euclidean D3 branes in type IIB compacti�cations or gaugino con-

densation due to D7 branes.
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basics of in�ationary cosmology that I desire to study in the supergravity language in a self-

contained manner. This is to �gure out an overall cosmological picture of various epochs of the

early universe before, during, and after in�ation. In Ch. 3, I explain a conceptual overview of

e�ective �eld theory, which is one of the core notions carried in this research. In Ch. 4, I give

a brief introduction to supersymmetry, which is an underlying idea of supergravity. In Ch. 5,

together with appendixes A (which is about spinor algebras in general dimensions) and B (which

is about superconformal tensor calculus), I elucidate the supergravity language used in this work

by reviewing in some detail the fundamental techniques of the superconformal formalism of

N = 1 supergravity. In Ch. 6, I review the recent developments on reformed supergravities, and

their in�ationary models.

From Ch. 7 through Ch. 12, I present original studies I carried out during my doctorate. In

particular, over the chapters from 7 to 9, I focus on the supergravity framework for investigating

in�ationary cosmology. Then, from Ch. 10 through Ch. 12, I explain some proposals of minimal

supergravity models of cosmological in�ation. Speci�cally, in Ch. 7, I reconstruct the equivalent

action of liberated N = 1 supergravity in the “superconformal” formalism, which was originally

constructed by Farakos et al. in the “superspace” formalism. In Ch. 8, I revisit the superconformal

actions of new Fayet-Iliopoulos (FI) terms and �nd some core constraints on the new FI terms.

In Ch. 9, I propose a new class of N = 1 supergravity called “relaxed supergravity” which can

enlarge the space of scalar potentials. In Ch. 10, I show how to build a toy model of in�ation in

the liberated supergravity by suggesting a special phase transition of the supersymmetry break-

ing scale from Planck to the electroweak scale (i.e. TeV). In Ch. 11, I o�er a supergravity model

of in�ation based on the KKLT-type supergravity with Kähler-invariant FI terms. In this model,

I show that in�ation may take place in a hidden sector and supersymmetry may be broken at

high scale via gravity mediation, leading to soft supersymmetry breaking terms in an observable

sector. In Ch. 12, I study an improved supergravity model of in�ation and minimal supersymmet-

ric standard model (MSSM). In this model, single-�eld slow-roll in�ation can be clearly realized
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thanks to production of extra scalars but in�aton that can be su�ciently heavier than the Hubble

scale during in�ation. I will also analyze the mass spectra of the visible particles in such models.

Lastly, in Ch. 13, I conclude this thesis and discuss some possible future developments that may

arise from this research.
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2 | Review 1: Inflationary Cosmology

In this chapter, we review in�ationary cosmology in a concise but self-contained manner.

This chapter is based on Ch. 1 and Ch. 2 of the lecture in Ref. [21].

2.1 Geometry of Maximally-Symmetric Spatial Slice of

Spacetime

Following the “mostly-minus” sign convention of metric (𝜂𝜇𝜈 = (+1,−1,−1,−1)), the geome-

try of spacetime manifold of universe is represented by its line element

𝑑𝑠2 = 𝑑𝑡2 − 𝑑𝑙2 where 𝑑𝑙2 ≡ 𝛾𝑖 𝑗𝑑𝑥𝑖𝑑𝑥 𝑗 , (2.1)

where we de�ne “physical coordinates” 𝑥𝑖 , “physical distance” 𝑑𝑙2, and “physical metric”

𝛾𝑖 𝑗 .

The three-dimensional spatial line element 𝑑𝑙2 with the metric 𝛾𝑖 𝑗 is homogeneous if it is

invariant under the spatial translation 𝑥′𝑖 = 𝑥𝑖 + 𝑎𝑖 for some constant shift 𝑎𝑖 , i.e. 𝑑𝑥′𝑖 = 𝑑𝑥𝑖 . The

𝑑𝑙2 is isotropic if it is invariant under the spatial rotations 𝑥′𝑖 = 𝑅𝑖𝑗𝑥
𝑗 for some rotation group

{𝑅𝑖𝑗 }, i.e. 𝑑𝑥′𝑖 = 𝑅𝑖𝑗𝑑𝑥 𝑗 . If these two symmetries (i.e. homogeneity and isotropy) are imposed on

a metric, we call this metric as “maximally symmetric.” In particular, the manifolds with the

maximally symmetric spatial metric 𝑑𝑙2 are given by three types of space, such as 3D-Euclidean
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Figure 2.1: Evolution of comoving and physical coordinates in the expanding universe. The grid is a chart
of comoving coordinates. As the universe expands, the comoving distance between the two points (0, 0)
and (1, 0) remains the same, but the corresponding physical distance increases. Figure taken from [4].

𝐸3, 3D-Sphere 𝑆3, and 3D-Hyperboloid 𝐻 3. By embedding a 3 dimensional manifold (®𝑥 ) into 4

dimensional Euclidean space (®𝑥,𝑢), we �nd the induced metrics of the spaces like 𝑆3 and 𝐻 3. Let

𝑑𝑙2 = 𝑑 ®𝑥2 ± 𝑑𝑢2 be the 4D metric (where + for 𝑆3, − for 𝐻 3). Then, from slice constraints

®𝑥2 ± 𝑢2 = ±𝑎2 for some constant “𝑎” as a scale factor, by solving 𝑑 ( ®𝑥2 ± 𝑢2) = 0, we �nd

𝑑𝑢 = ∓ 1
𝑢
®𝑥 ·𝑑 ®𝑥 , so that 𝑑𝑢2 = ( ®𝑥 ·𝑑 ®𝑥)2

𝑢2
=

( ®𝑥 ·𝑑 ®𝑥)2
𝑎2∓®𝑥2 . Notice that the fourth component𝑢 is now �xed and

expressed in terms of the coordinates ( ®𝑥). Hence, we have𝑑𝑙2 = 𝑑 ®𝑥2± ( ®𝑥 ·𝑑 ®𝑥)2
𝑎2∓®𝑥2 . Taking a rede�nition

𝑥 −→ 𝑎𝑥 , it reduces to 𝑑𝑙2 = 𝑎2
(
𝑑 ®𝑥2 ± ( ®𝑥 ·𝑑 ®𝑥)2

1∓®𝑥2
)
≡ 𝑎2

(
𝑑 ®𝑥2 + 𝑘 ( ®𝑥 ·𝑑 ®𝑥)2

1−𝑘 ®𝑥2
)
where 𝑘 = 0 for 𝐸3, 𝑘 = +1

for 𝑆3, and 𝑘 = −1 for 𝐻 3. In spherical coordinates, 𝑑 ®𝑥2 = 𝑑𝑟 2 + 𝑟 2𝑑Ω2, 𝑑Ω2 = 𝑑𝜃 2 + sin2 𝜃𝑑𝜙2,

and ®𝑥 · 𝑑 ®𝑥 = 𝑟𝑑𝑟 + 𝑟 2𝑟 · 𝑑𝑟 = 𝑟𝑑𝑟 . Therefore, putting these into the line element, we obtain the

maximally symmetric spatial metric represented by

𝑑𝑙2 = 𝑎2
(( 𝑑𝑟
√
1 − 𝑘𝑟 2

)2
+ 𝑟 2𝑑Ω2

)
= 𝑎2

(
𝑑𝜒2 + 𝑟 2(𝜒)𝑑Ω2

)
≡ 𝑎2𝑑𝑙2𝑐 where 𝑑𝜒 ≡ 𝑑𝑟

√
1 − 𝑘𝑟 2

, (2.2)

where we de�ned “comoving coordinates” (𝜒,Ω(𝜃, 𝜙)), “comoving distance1.” 𝑑𝑙2𝑐 , and “co-

moving metric” diag(1, 𝑟 2(𝜒)), and 𝑟 = 𝑟 (𝜒) is called “comoving metric distance”. This

1Refer to Fig. 2.1
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line element means the metric of the spatial slice with a �xed scale factor 𝑎 and spatial curva-

ture sign 𝑘 as being embedded in the 4D Euclidean space. Moreover, we can see this comoving line

element 𝑑𝑙2𝑐 as the line element of a cylindrical coordinate system whose chart is identi�ed with

(𝜌 = 𝑟 (𝜒), 𝜑 = Ω, 𝑧 = 𝜒) (with 𝑑𝑙2𝑐 |�xed 𝜌 = 𝑑𝜌2︸︷︷︸
=0

+𝜌2𝑑𝜑2 + 𝑑𝑧2) when 𝜌 = 𝑟 (𝜒) is �xed.

Metric distance 𝑑𝑚 ≡ 𝑟 (𝜒) is calculated as follows: from the de�nition

𝑑𝜒 ≡ 𝑑𝑟
√
1 − 𝑘𝑟 2

=⇒ 𝑑𝑚 ≡ 𝑟 (𝜒) =



𝐸3 (𝑘 = 0) : 𝜒

𝑆3 (𝑘 > 0) : 1√
𝑘
sin(

√
𝑘𝜒)

𝐻 3 (𝑘 < 0) : 1√
|𝑘 |

sinh(
√︁
|𝑘 |𝜒)

(2.3)

2.2 Friedmann–Lemaître–Robertson–Walker (FLRW)

Geometry of Expanding Universe

The so-called “Friedmann–Lemaître–Robertson–Walker (FLRW) metric” is de�ned by

themaximally-symmetric spacetime geometry consisting of time line element𝑑𝑡2 andmaximally-

symmetric spatial line element 𝑑𝑙2 where the scale factor 𝑎 now depends on time variable 𝑡 . Thus,

the FLRW metric is given by

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2(𝑡)
(
𝑑𝜒2 + 𝑟 2(𝜒)𝑑Ω2

)
. (2.4)

Note that the physical distance 𝑑𝑙2 must be di�erent according to the value of the scale factor

𝑎(𝑡), while the comoving distance 𝑑𝑙2𝑐 must be the same for any 𝑎(𝑡).

Let us consider one “physical observer𝑂𝑃 (who uses the chart of physical coordinates)” and one

“comoving observer 𝑂𝐶 (who uses the chart of comoving coordinates)”, and some dynamical object

in space. For comoving distance 𝑟𝑐 and scale factor 𝑎(𝑡), physical velocity 𝑣𝑝ℎ𝑦 that the physical
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observer 𝑂𝑃 measures is given by the time derivative of physical distance 𝑟𝑝ℎ𝑦 (𝑡) = 𝑎(𝑡)𝑟𝑐 (𝑡)

𝑣𝑝ℎ𝑦 ≡
𝑑𝑟𝑝ℎ𝑦

𝑑𝑡
=
𝑑𝑎

𝑑𝑡
𝑟𝑐︸︷︷︸

≡ 𝑣𝐻

+ 𝑎𝑑𝑟𝑐
𝑑𝑡︸︷︷︸

≡ 𝑣𝑝𝑒𝑐

= 𝑣𝐻 + 𝑣𝑝𝑒𝑐 . (2.5)

Notice that physical velocity −𝑐 ≤ 𝑣𝑝ℎ𝑦 < ∞ of the object that𝑂𝑃 measures is equal to the sum of

Hubble �ow or recession velocity 0 ≤ 𝑣𝐻 < ∞ (= velocity of a comoving virtual circle of radius

𝑟𝑐 that the comoving observer 𝑂𝐶 measures), and peculiar velocity −𝑐 ≤ 𝑣𝑝𝑒𝑐 ≤ 𝑐 (= velocity of

the dynamical object in comoving coordinates that the comoving observer 𝑂𝐶 measures). Also,

we note that while 𝑣𝑝𝑒𝑐 obeys the principle of constant speed of light by relativity, the physical

velocity does not follow it anymore. This is basically due to the fact that the recession velocity is

the velocity of not an object but expanding space itself. Plus, remark that 𝑣 > 0 is away from the

observer, while 𝑣 < 0 is approaching to the observer.

In particular, the Hubble �ow velocity is observed by the physical observer 𝑂𝑃 as follows:

de�ning 𝐻 (𝑡) ≡ ¤𝑎(𝑡)
𝑎(𝑡) which is called “Hubble parameter,” the physical observer measures the

following in physical coordinates

𝑣𝐻 ≡ 𝑑𝑎

𝑑𝑡
𝑟𝑐 = ¤𝑎𝑟𝑐 = 𝐻𝑎𝑟𝑐︸                 ︷︷                 ︸
measured by 𝑂𝐶

= 𝐻𝑟𝑝ℎ𝑦︸︷︷︸
measured by 𝑂𝑃

(2.6)

Especially, if a dynamical object is �xed at the comoving grids (i.e. 𝑑𝑟𝑐
𝑑𝑡

= 0) but apart from the

observer by 𝑟𝑝ℎ𝑦 , then its physical velocity is given solely by the Hubble �ow velocity 𝑣𝐻 = 𝐻𝑟𝑝ℎ𝑦 .

Also, the peculiar velocity can be measured by the physical observer in the way that

𝑣𝑝𝑒𝑐 = 𝑎
𝑑𝑟𝑐

𝑑𝑡︸︷︷︸
measured by 𝑂𝐶

= 𝑣𝑝ℎ𝑦 − 𝑣𝐻︸    ︷︷    ︸
measured by 𝑂𝑃

. (2.7)

Next, there is an useful concept called “comoving Hubble horizon (or Hubble radius)”
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de�ned as the radius of a comoving virtual circle whose recession velocity is luminal 𝑐 = 1, so that

𝑣𝐻 = 𝐻𝑎𝑟𝑐
!
= 𝑐 = 1 =⇒ 𝑟𝑐 = (𝑎𝐻 )−1. (2.8)

For example, if some object exists inside of the Hubble radius, then its recession velocity is sub-

luminal. On the contrary, if some object exists outside of the Hubble radius, then its recession

velocity is super-luminal.

Here is an important remark. If the comoving distance between two objects is either equal

to or greater than the Hubble radius, then they can never communicate with each other by ex-

changing photons since the physical velocity of the photons they emit is measured as 𝑣𝑝ℎ𝑦 ≥ 0

by the two objects. This means that the photons are always propagating “away” from the other

object in practice. Hence, the comoving Hubble horizon or Hubble radius can also be de�ned as

a maximal comoving distance only inside of which particles are able to do “physical interaction”

between them in the causally-connected way. For instance, thermal equilibrium of particles can

take place only if all of them are inside of the same comoving Hubble horizon. This property will

be related to the so-called “Horizon problem” about the uniform Cosmic Microwave Background

(CMB) radiations.

Meanwhile, we can reexpress the spacetimemetric by introducing a conformal or comoving

time “𝜏” given by 𝜏 ≡ 𝑡/𝑎(𝑡). By inserting this into the metric, we �nd

𝑑𝑠2 = 𝑎2(𝜏) [𝑑𝜏2 − (𝑑𝜒2 + 𝑟 2(𝜒)𝑑Ω2)]︸                            ︷︷                            ︸
static/comoving FLRW metric

(2.9)

where 𝑎(𝜏) is now a time-dependent scale factor. This metric form is convenient for studying the

propagation of light.

Next, let us consider propagation of light in the expanding universe. In this case, it is conve-

nient to use the conformal coordinates. Assume that we look at a �xed solid angle Ω. Then, the
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light travels in the radial direction 𝑑𝜒 . The corresponding metric is given by 𝑑𝑠2 = 𝑎2(𝜏) [𝑑𝜏2 −

𝑑𝜒2]. Since photons travel along the null geodesic (i.e. 𝑑𝑠2 = 0), we have the relation 𝑑𝜏2 = 𝑑𝜒2,

so that 𝑑𝜒 = ±𝑑𝜏 . Then, we have lightcone now. For the observer at a conformal time 𝜏 at the

center of the lightcone, the + corresponds to null-geodesic outgoing from the observer, while

− corresponds to null-geodesic incoming to the observer. Then, we can compute the comoving

distance Δ𝜒 between two times 𝜏𝐴, 𝜏𝐵 (or 𝑡𝐴, 𝑡𝐵):

Δ𝜒 = 𝜒 (𝜏𝐵) − 𝜒 (𝜏𝐴) =
∫ 𝜏𝐵

𝜏𝐴

𝑑𝜏 =

∫ 𝑡𝐵

𝑡𝐴

𝑑𝑡

𝑎(𝑡) =

∫ 𝑎𝐵

𝑎𝐴

𝑑𝑎

𝑎 ¤𝑎 =

∫ ln𝑎𝐵

ln𝑎𝐴

𝑑 ln𝑎
¤𝑎 =

∫ ln𝑎𝐵

ln𝑎𝐴

1
𝑎𝐻

𝑑 ln𝑎. (2.10)

where 𝑡𝑖 (𝜏𝑖) is some past (conformal) time, and 𝑡 𝑓 (𝜏𝑓 ) is some future (conformal) time. Notice

that comoving distance depends on the evolution of Hubble radius (𝑎𝐻 )−1.

• Causal in�uence: Only comoving particles whose worldlines intersect the past lighcone

of an observer at 𝑝 can send a signal to the observer at 𝑝 . Only comoving particles whose

worldlines intersect the future lighcone of an observer at 𝑝 can receive a signal from the

observer at 𝑝 .

• (comoving) particle horizon “𝜒𝑝ℎ (𝜏)” is de�ned by themaximal comoving distancewhere

the observer at 𝜏 can receive the null-geodesic signals from the past events at 𝜏𝑖 .

𝜒𝑝ℎ (𝜏) ≡
∫ 𝜏

𝜏𝑖

𝑑𝜏 =

∫ 𝑡

𝑡𝑖

𝑑𝑡

𝑎(𝑡) =

∫ ln𝑎

ln𝑎𝑖

1
𝑎𝐻

𝑑 ln𝑎 (2.11)

In particular, this particle horizon is related to the horizon problem of standard Big Bang

cosmology. The case of 𝑎𝑖 = 0 is called “Big Bang singularity.” Plus, we also call particle

horizon as “causal contact or patch” of the observer.

• (comoving) event horizon “𝜒𝑒ℎ (𝜏)” is de�ned by the maximal comoving distance where
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the observer at 𝜏 can send the null-geodesic signals to the future events at 𝜏𝑓 .

𝜒𝑒ℎ (𝜏) ≡
∫ 𝜏𝑓

𝜏

𝑑𝜏 =

∫ 𝑡𝑓

𝑡

𝑑𝑡

𝑎(𝑡) =

∫ ln𝑎𝑓

ln𝑎

1
𝑎𝐻

𝑑 ln𝑎. (2.12)

• Every observer has his own particle and event horizons.

2.3 Geodesic Motion and Redshift in FLRW Spacetime

In general, Tthe geodesic equation is given by

𝑑2𝑥 𝜇

𝑑𝜏
+ Γ

𝜇

𝛼𝛽

𝑑𝑥𝛼

𝑑𝜏

𝑑𝑥𝛽

𝑑𝜏
= 0 ⇐⇒


𝑢𝛼∇𝛼𝑢𝜇 = 0 where ∇𝛼𝑢𝜇 ≡ 𝜕𝛼𝑢

𝜇 + Γ
𝜇

𝛼𝛽
𝑢𝛽

𝑝𝛼∇𝛼𝑝𝜇 = 0 where ∇𝛼𝑝𝜇 ≡ 𝜕𝛼𝑝
𝜇 + Γ

𝜇

𝛼𝛽
𝑝𝛽

(2.13)

where 𝑢𝜇 ≡ 𝑑𝑥 𝜇/𝑑𝜏 is the 4-velocity; 𝑝𝜇 ≡ 𝑚𝑢𝜇 is the 4-momentum, and Γ
𝜇

𝛼𝛽
≡ 1

2𝑔
𝜇𝜆 (𝜕𝛼𝑔𝜆𝛽 +

𝜕𝛽𝑔𝜆𝛼 − 𝜕𝜆𝑔𝛼𝛽) is Christo�el symbol.

The FLRW metric is 𝑔𝜇𝜈 = diag(1,−𝑎2𝛾𝑖 𝑗 ) and its inverse is 𝑔𝜇𝜈 = diag(1,−𝑎−2𝛾 𝑖 𝑗 ). The only

non-vanishing Christo�el symbol components are

Γ0𝑖 𝑗 = 𝑎 ¤𝑎𝛾𝑖 𝑗 , Γ𝑖0 𝑗 =
¤𝑎
𝑎
𝛿𝑖𝑗 , Γ𝑖

𝑗𝑘
=
1
2
𝛾 𝑖𝑙 (𝜕 𝑗𝛾𝑙𝑘 + 𝜕𝑘𝛾𝑙 𝑗 − 𝜕𝑙𝛾 𝑗𝑘). (2.14)

In fact, due to homogeneity (𝑝𝜇 (𝑥′) = 𝑝𝜇 (𝑥 + 𝑎) ≈ 𝑝𝜇 (𝑥) + 𝑎𝑖𝜕𝑖𝑝𝜇
!
= 𝑝𝜇 (𝑥), so that 𝜕𝑖𝑝𝜇 = 0), the

geodesic equation of any massless/massive particle in the FLRW spacetime reduces to

𝑝0
𝑑𝑝𝜇

𝑑𝑡
= −(2Γ𝜇0 𝑗𝑝

0 + Γ
𝜇

𝑖 𝑗
𝑝𝑖)𝑝 𝑗 . (2.15)
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For 𝜇 = 0 component, we have

𝐸
𝑑𝐸

𝑑𝑡
= −𝑎 ¤𝑎𝛾𝑖 𝑗𝑝𝑖𝑝 𝑗 = −𝑎 ¤𝑎

(
− 1
𝑎2
𝑔𝑖 𝑗

)
=

¤𝑎
𝑎
𝑔𝑖 𝑗𝑝

𝑖𝑝 𝑗 =
¤𝑎
𝑎
| ®𝑝 |2. (2.16)

From the Einstein relation 𝐸2 = | ®𝑝 |2 +𝑚2,

𝐸
𝑑𝐸

𝑑𝑡
= | ®𝑝 |𝑑 |

®𝑝 |
𝑑𝑡

(2.17)

By combining (2.16) and (2.17), we obtain “3-momentum decay in FLRW spacetime” given

by

𝑑 | ®𝑝 |
| ®𝑝 |

= −𝑑𝑎
𝑎

=⇒ |®𝑝 | ∝ 1
𝑎

=⇒


| ®𝑝 | = 𝐸 ∝ 1

𝑎

| ®𝑝 | = 𝛾𝑚 |®𝑣 | ∝ 1
𝑎
,

(2.18)

where ®𝑣 is 3-velocity as “peculiar velocity,” and 𝛾 is the Lorentz factor. The result means that

the physical 3-momentum | ®𝑝 | of any massless/massive particle decays with the expansion of the

universe, so that the peculiar velocity becomes small as well. Due to this, the physical velocity

will be close to the Hubble �ow speed (i.e. recession velocity 𝑣𝐻 ).

Remarkably, combining the result of “3-momentum decay” (2.18) and de Broglie wave (𝜆 =

ℎ/| ®𝑝 |) deduces “red-shifting of wave”

𝜆 ∝ 𝑎 ⇐⇒
𝜆𝑓

𝜆𝑖
=
𝑎 𝑓

𝑎𝑖
. (2.19)

In particular, let us consider that light with wavelength 𝜆1 is emitted from a distant source at

𝑡 = 𝑡1. If an observer detects the “redshifted”wavelength 𝜆0 of the light at time 𝑡0, then a redshifted

15



parameter 𝑧 is de�ned by

𝑧 ≡ 𝜆0 − 𝜆1
𝜆1

=
𝜆0

𝜆1
− 1 ≥ 0 =⇒ 𝑧 =

𝑎0

𝑎1
− 1 for red-shifting in FLRW metric, (2.20)

where we usually set 𝑎(𝑡0) = 1. Notice that any scale factor 𝑎(𝑡1) at a given time 𝑡1 can be

represented in terms of the redshift parameter 𝑧, i.e.

𝑎(𝑡1) = (1 + 𝑧)−1, (2.21)

which means that as 𝑧 gets large, 𝑎(𝑡1) gets small and we get close to the past. Moreover, by

Taylor-expanding 𝑎(𝑡1), we get

𝑎(𝑡1) ≈ 𝑎(𝑡0) +
𝑑𝑎(𝑡0)
𝑑𝑡

(𝑡1 − 𝑡0) = 𝑎0 + 𝐻 (𝑡0)𝑎(𝑡0) (−𝑑𝑝) = 𝑎(𝑡0) [1 − 𝐻0𝑑𝑝] . (2.22)

Combining (2.20) and (2.22), up to the �rst order in 𝑡 , we obtain

𝑧 ≈ 𝐻0𝑑𝑝, (2.23)

where𝐻0 ≡ 𝐻 (𝑡0) is Hubble parameter at “today” and 𝑑𝑝 ≡ 𝑐 (𝑡0−𝑡1) for 𝑐 = 1 is physical distance.

2.4 Einstein Field Eqations in FLRW Metric: 1st and 2nd

Fridemannn, and Continuity Eqations

The dynamics of the universe is determined by the Einstein �eld equation

𝐺𝜇𝜈 = 8𝜋𝐺𝑇𝜇𝜈 , (2.24)
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where𝐺𝜇𝜈 ≡ 𝑅𝜇𝜈 − 1
2𝑅𝑔𝜇𝜈 is the Einstein tensor (where 𝑅𝜇𝜈 is Ricci tensor and 𝑅 is Ricci scalar),𝑇𝜇𝜈

is the energy-momentum tensor, and 𝐺 is the gravitational constant. For the FLRW spacetime,

we require homogeneity and isotropy. Thus, isotropy under 𝑥′𝑖 = 𝑅𝑖𝑗𝑥
𝑗 requires the average of

3-vector in time to vanish:
〈
𝑣𝑖
〉
= 0 =⇒ 𝑣𝑖 = 0. Particularly, for isotropy around 𝑥𝑖 = 0, average

of a rank-2 3-tensor𝑇 𝑖 𝑗 can be proportional to identity tensor, i.e.
〈
𝑇 𝑖 𝑗

〉
∝ 𝛿𝑖 𝑗 ≈ 𝑔𝑖 𝑗 . Homogeneity

under 𝑥′𝑖 = 𝑥𝑖 +𝑎𝑖 requires a scalar to be only a function of time in order for its average to vanish:

〈𝑆〉 = 0 =⇒ 𝑆 = 𝑆 (𝑡). Due to these, we must consider that

By isotropy: 〈𝑇𝑖0〉 = 0 =⇒ 𝑇𝑖0 = 0, (2.25)

By isotropy around x=0:
〈
𝑇𝑖 𝑗

〉
=

〈
𝐶𝑔𝑖 𝑗

〉
=

〈
𝐶 (−𝑎2𝛿𝑖 𝑗 )

〉
∝ 𝛿𝑖 𝑗

=⇒ 〈𝐶〉 = 0 =⇒ 𝐶 = −𝑃 (𝑡), (2.26)

By homogeneity: 〈𝑇00〉 = 0 =⇒ 𝑇00 = 𝜌 (𝑡), (2.27)

where 𝜌 is interpreted as energy density and 𝑃 (𝑡) is interpreted as pressure. Therefore, the energy-

momentum tensor is given by

𝑇𝜇𝜈 =
©­­«
𝜌 (𝑡) 0

0 −𝑃 (𝑡)𝑔𝑖 𝑗

ª®®¬ =⇒ 𝑇
𝜇
𝜈 = 𝑔

𝜇𝜆𝑇𝜆𝜈 = diag(𝜌 (𝑡),−𝑃 (𝑡),−𝑃 (𝑡),−𝑃 (𝑡)) in comoving frame,

(2.28)

where 𝑔𝜇𝜆 = diag(1, 𝑔𝑚𝑛). In fact, this is the stress-tensor of a “perfect �uid” seen by a comoving

observer. 𝜌 (𝑡) and 𝑃 (𝑡) are measured for a �uid at rest in the comoving coordinates. The relative

4-velocity of the perfect �uid is𝑢𝜇 = (1, ®0)𝑇 , 𝑢𝜈 = (1, ®0), which gives a matrix𝑢𝜇𝑢𝜈 = diag(1, 03×3).

When rewriting the stress tensor as

𝑇
𝜇
𝜈 = diag(𝜌 (𝑡),−𝑃 (𝑡),−𝑃 (𝑡),−𝑃 (𝑡)) = (𝜌 (𝑡) + 𝑃 (𝑡)) · diag(1, 03×3) − 𝑃 (𝑡) · diag(1, 13×3), (2.29)
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by plugging the 4-velocity back to the tensor, we can easily �nd the general form of the stress

tensor which is valid in any coordinate system

𝑇
𝜇
𝜈 = (𝜌 (𝑡) + 𝑃 (𝑡))𝑢𝜇𝑢𝜈 − 𝑃 (𝑡)𝛿𝜇𝜈 in any reference frame, (2.30)

where 𝑢𝜇 = 𝑑𝑥 𝜇/𝑑𝜏 is de�ned by the relative 4-velocity between the �uid and observer.

The continuity equation is then given by

∇𝜇𝑇 𝜇𝜈 = 𝜕𝜇𝑇
𝜇
𝜈 + Γ

𝜇

𝜇𝜆
𝑇 𝜆𝜈 − Γ𝜆𝜇𝜈𝑇

𝜇

𝜆
= 0. (2.31)

In comoving frame, by plugging Γ𝑖0 𝑗 = ¤𝑎
𝑎
𝛿𝑖𝑗 and Eq. (2.28) into Eq. (2.31) for 𝜈 = 0, we �nd a

continuity equation of the stress tensor in FLRWmetric

∇𝜇𝑇 𝜇0 = 𝜕0𝑇
0
0 + Γ𝑖𝑖0𝑇

0
0 − Γ 𝑗

𝑖0𝑇
𝑖
𝑗 = 0 =⇒ 𝑑𝜌

𝑑𝑡
+ 3

¤𝑎
𝑎
(𝜌 + 𝑃) = 0. (2.32)

Moreover, we may represent the pressure 𝑃 (𝑡) in terms of the energy density 𝜌 (𝑡) using the

equation of state

𝜔 ≡ 𝑃

𝜌
, (2.33)

where 𝜔 is a constant. Hence, we obtain “energy density evolution” given by

𝑑𝜌

𝑑𝑡
+ 3(1 + 𝜔) ¤𝑎

𝑎
𝜌 = 0 =⇒ 𝜌 (𝑡) = 𝐴[𝑎(𝑡)]−3(1+𝜔) ⇐⇒ 𝜌 (𝑡)𝑎(𝑡)3(1+𝜔) = 𝐴 = constant

𝜌 (𝑡) ∝



𝑎−3 for matter 𝜔 = 0

𝑎−4 for radiation 𝜔 = 1/3

𝑎0 for vacuum/dark energy 𝜔 = −1.

. (2.34)
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Next, let us compute the components of Ricci tensor in the FLRW metric. We �nd that by

isotropy, the 3-vectors vanish, i.e.

𝑅𝑖0 = 𝑅0𝑖 = 0. (2.35)

Using the Christo�el symbol components (2.14) (here, i.e. Γ𝑖0 𝑗 =
¤𝑎
𝑎
𝛿𝑖𝑗 ), we get

𝑅00 = −𝜕0Γ𝑙0𝑙 − Γ𝑟0𝑙Γ
𝑙
𝑟0 = −3 ¥𝑎

𝑎
. (2.36)

In addition, taking the limit of 𝛾𝑖 𝑗 around ®𝑥 = 0 as

𝛾𝑖 𝑗 ≡ 𝛿𝑖 𝑗 + 𝑘
(

𝑥𝑖𝑥 𝑗

1 − 𝑘𝑥𝑘𝑥𝑘

)
≈ 𝛿𝑖 𝑗 + 𝑘 (𝑥𝑖𝑥 𝑗 ) =⇒ 𝛾 𝑗𝑘 ≈ 𝛿 𝑗𝑘 − 𝑘 (𝑥 𝑗𝑥𝑘), (2.37)

we �nd Γ𝑖
𝑗𝑘
≈ 𝑘𝑥𝑖𝛿 𝑗𝑘 and thus

𝑅𝑖 𝑗 (𝑥) ≈ (𝑎 ¥𝑎 + 2 ¤𝑎2 + 2𝑘 + 𝑘𝑥2)𝛿𝑖 𝑗 − 𝑘2𝑥𝑖𝑥 𝑗 . (2.38)

At 𝑥𝑖 = 0, it reduces to

𝑅𝑖 𝑗 (𝑥 = 0) = (𝑎 ¥𝑎 + 2 ¤𝑎2 + 2𝑘)𝛿𝑖 𝑗 = − 1
𝑎2

(𝑎 ¥𝑎 + 2 ¤𝑎2 + 2𝑘)𝑔𝑖 𝑗 (𝑥 = 0), (2.39)

where we used 𝛾𝑖 𝑗 (𝑥 = 0) ≈ 𝛿𝑖 𝑗 and 𝑔𝑖 𝑗 = −𝑎2𝛾𝑖 𝑗 . Since the spatial dependence of the Ricci tensor

comes from that of the metric tensor 𝑔𝑖 𝑗 , 𝑅𝑖 𝑗 (𝑥 = 0) holds for general 𝑥 as well, so that

𝑅𝑖 𝑗 (𝑥) = −
( ¥𝑎
𝑎
+ 2

(
¤𝑎
𝑎

)2
+ 2

𝑘

𝑎2

)
𝑔𝑖 𝑗 (𝑥). (2.40)
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Then, it is straightforward to compute the Ricci scalar 𝑅

𝑅 = 𝑔𝜇𝜈𝑅𝜇𝜈 = 𝑔
00𝑅00 + 𝑔𝑖 𝑗𝑅𝑖 𝑗 = −6

( ¥𝑎
𝑎
+

(
¤𝑎
𝑎

)2
+ 𝑘

𝑎2

)
. (2.41)

Therefore, by inserting the values of Ricci tensor components and Ricci scalar into the Einstein

tensor (𝐺𝜇𝜈 ≡ 𝑅𝜇𝜈 − 1
2𝑅𝑔𝜇𝜈 ), we �nd all of its components as follows:

𝐺0
0 = 3

( (
¤𝑎
𝑎

)2
+ 𝑘

𝑎2

)
, 𝐺𝑖 𝑗 =

(
2
¥𝑎
𝑎
+

(
¤𝑎
𝑎

)2
+ 𝑘

𝑎2

)
𝛿𝑖𝑗 , 𝐺𝑖0 = 𝐺

0
𝑗 = 0. (2.42)

Finally, we are ready to derive the Einstein �eld equations in the FLRWmetric. The so-called “1st

Fridemannn equation” is obtained from 00-component Einstein equation:

𝐺0
0 = 8𝜋𝐺𝑇 0

0 =⇒ 𝐻 2 =

(
¤𝑎
𝑎

)2
=
8𝜋𝐺
3
𝜌 − 𝑘

𝑎2
. (2.43)

Plus, the so-called “2nd Fridemannn equation” is obtained from 𝑖 𝑗-component Einstein equa-

tion:

𝐺𝑖 𝑗 = 8𝜋𝐺𝑇 𝑖𝑗 =⇒ ¥𝑎
𝑎
= −4𝜋𝐺

3
(𝜌 + 3𝑃). (2.44)

2.5 Dimensionless Density Parameter, Cosmic Energy

Budget, and ΛCDM

The so-called “critical density” 𝜌𝑐 is de�ned by the total energy density at today (𝑡0): 𝜌𝑐 (𝑡0) ≡∑
𝐼 𝜌𝐼 (𝑡0) for some species 𝐼 = 𝑟,𝑚,Λ (i.e. radiation, matter, dark energy, respectively). In fact,

this critical density can be obtained by the 1st Fridemannn equation

𝐻 2 =
8𝜋𝐺
3
𝜌 − 𝑘

𝑎2
≈ 8𝜋𝐺

3
𝜌 =⇒ 𝜌 (𝑡 = 𝑡0) =

3𝐻 (𝑡0)2
8𝜋𝐺

≡ 𝜌𝑐 (𝑡0), (2.45)
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where 𝜌 (𝑡) is the total energy density at 𝑡 , and we used |𝑘 | � 1. Then, we de�ne “dimensionless

density parameter” Ω𝐼 for a certain specie 𝐼 as a ratio of the 𝐼 ’s density at today 𝑡0 to the critical

density 𝜌𝑐 at today 𝑡0, i.e.

Ω𝐼 ≡
𝜌𝐼 (𝑡0)
𝜌𝑐 (𝑡0)

=
𝜌𝐼 (𝑡0)∑
𝐼 𝜌𝐼 (𝑡0)

. (2.46)

Taking this de�nition, we can �nd alternative of the 1st Fridemannn equation in terms of the

dimensionless density parameters. Using Eq. (2.45), we reach

𝐻 2 =
𝜌 (𝑡)
𝜌𝑐 (𝑡0)

𝐻 2
0 −

𝑘

𝑎(𝑡)2 =
∑︁
𝐼

𝜌𝐼 (𝑡)
𝜌𝑐 (𝑡0)

𝐻 2
0 −

𝑘

𝑎(𝑡)2 . (2.47)

Since we have seen that 𝜌 (𝑡) ∝ 𝑎(𝑡)−3(1+𝜔) =⇒ 𝜌 (𝑡)𝑎(𝑡)3(1+𝜔) = constant, de�ning 𝜌𝐼 ∝

𝑎(𝑡)−3(1+𝜔𝐼 ) , we have

𝜌𝐼 (𝑡) = 𝜌𝐼 (𝑡0)
(
𝑎(𝑡0)
𝑎(𝑡)

)3(1+𝜔𝐼 )
, (2.48)

which gives rise to

𝐻 2(𝑡) = 𝐻 2
0

[∑︁
𝐼

Ω𝐼

(
𝑎(𝑡0)
𝑎(𝑡)

)3(1+𝜔𝐼 )
+ Ω𝑘

(
𝑎(𝑡0)
𝑎(𝑡)

)2 ]
≡ 𝐻 2

0

∑︁
𝛼=𝐼 ,𝑘

Ω𝛼

(
𝑎(𝑡0)
𝑎(𝑡)

)3(1+𝜔𝛼 )
, (2.49)

where we also introduced a new de�nition of the 𝑘 , i.e. Ω𝑘 ≡ − 𝑘
(𝑎0𝐻0)2 . Then, de�ning 𝑎(𝑡0) = 1

for today, it reduces to the �nal form of the alternative of the 1st Fridemannn equation

𝐻 2(𝑡)
𝐻 2
0

=
∑︁
𝛼=𝐼 ,𝑘

Ω𝛼𝑎(𝑡)−3(1+𝜔𝛼 ) = Ω𝑟𝑎
−4 + Ω𝑚𝑎

−3 + Ω𝑘𝑎
−2 + ΩΛ. (2.50)
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The cosmological observation predicts the following “cosmic energy budget” that

|Ω𝑘 | ≤ 0.01, Ω𝑟 ≈ 9.4 × 10−5, Ω𝑚 ≈ 0.32, ΩΛ ≈ 0.68, (2.51)

where the smallness of the �rst budget Ω𝑘 is called “Flatness Problem.” In particular, it is re-

markable that the matter contribution to the parameter in fact does not come from solely the

ordinary matter (i.e. baryons mostly) since it was measured as Ω𝑏 ≈ 0.05. Hence, it is inevitable

to assume that there exists a novel type of matter called “DarkMatter2 (DM)” for compensating

the di�erence in the density parameter of matter. We thus consider the sum Ω𝑚 = Ω𝑏 + Ω𝐶𝐷𝑀 ,

and obtain Ω𝐶𝐷𝑀 ≈ 0.27, which is the case of Cold3 Dark Matter (CDM).

Next, by taking advantage of the alternative of the 1st Fridemannn equation, we are going to

investigate the behavior of scale factor 𝑎(𝑡) in (conformal) time according to the species. In fact,

the di�erent scalings of the energy densities of radiation (𝜌 ∝ 𝑎−4), matter (𝜌 ∝ 𝑎−3), and dark

energy (𝜌 ∝ 𝑎0) imply that the universe was dominated by a single component for most of the

history of our universe. Given a single species 𝐼 only, the Fridemannn equation reduces to

𝐻 2 = 𝐻 2
0Ω𝐼𝑎

−3(1+𝜔𝐼 ) ⇐⇒ 𝑎−1+
3
2 (1+𝜔𝐼 )𝑑𝑎 = 𝐻0

√︁
Ω𝐼𝑑𝑡 . (2.52)

Then, the corresponding solutions to this are given as follows: when 𝜔𝐼 ≠ −1,

𝑎(𝑡) =
[
3(1 + 𝜔𝐼 )

2
√︁
Ω𝐼𝐻0(𝑡 − 𝑡0) + 1

] 2
3(1+𝜔𝐼 )

=

[
3(1 + 𝜔𝐼 )

2
√︁
Ω𝐼𝐻0𝑡

] 2
3(1+𝜔𝐼 )

∝ 𝑡
2

3(1+𝜔𝐼 ) , (2.53)

where we used 𝑎(𝑡 = 0) = 0 at which Big Bang occurs, and 𝑡0 = 2
3(1+𝜔𝐼 )

√
Ω𝐼𝐻0

. When 𝜔𝐼 = −1, we

2Dark matter does not do electromagnetic interaction since it has no its gauge charges. In this sense, it is called
“dark.”

3This means that the velocity is “non-relativistic.”
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�nd 𝑎(𝑡) = 𝑒𝐻0
√
Ω𝐼 (𝑡−𝑡0) ∝ 𝑒𝐻0

√
Ω𝐼 𝑡 ≈ 𝑒𝐻𝑡 . Therefore, we have

𝑎(𝑡) ∝



𝑡1/2 for radiation-dominated (RD), 𝑖 .𝑒 . 𝜔𝑟 = 1/3

𝑡2/3 for matter-dominated (MD), 𝑖 .𝑒 . 𝜔𝑚 = 0

𝑒𝐻𝑡 for Λ-dominated (ΛD), 𝑖 .𝑒 . 𝜔Λ = −1

. (2.54)

After Big Bang at 𝑡 = 0, expansion of the universe was �rst dominated by radiation, and then

matter, and has been being dominated by dark energy until now. It is also possible to re-express

the above equation in conformal time 𝜏 . Using 𝑑𝑡 = 𝑎𝑑𝜏 , we �nd

𝑎−2+
3
2 (1+𝜔𝐼 )𝑑𝑎 = 𝐻0

√︁
Ω𝐼𝑑𝜏 . (2.55)

The solutions to this are given by

𝑎(𝜏) =
[
(1 + 3𝜔𝐼 )

2
𝐻0

√︁
Ω𝐼𝜏

] 2
(1+3𝜔𝐼 )

∝ 𝜏
2

(1+3𝜔𝐼 ) . (2.56)

Thus,

𝑎(𝜏) ∝



𝜏2 for radiation-dominated (RD), 𝑖 .𝑒 . 𝜔𝑟 = 1/3

𝜏 for matter-dominated (MD), 𝑖 .𝑒 . 𝜔𝑚 = 0

−𝜏−1 for Λ-dominated (ΛD), 𝑖 .𝑒 . 𝜔Λ = −1

. (2.57)

The evolution of the universe that is made by the cosmic energy budget we have seen is called

“ΛCDM standard cosmology.”
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2.6 Horizon Problem and Inflation as Its Solution

In the previous section, we have seen that the alternative form of the 1st Fridemannn equation

is given by Eq. (2.50). Now, we are going to see howHubble radius (𝑎𝐻 )−1 evolves as the universe

expands. Let us consider a single component species with 𝜔 . Then, the corresponding dimen-

sionless density parameter can be set to unity (i.e. Ω = 1), and thus the Fridemannn equation

gives the evolution of Hubble radius

𝐻 2

𝐻 2
0
= 𝑎−3(1+𝜔) =⇒ (𝑎𝐻 )−1 = 𝐻−1

0 𝑎(1+3𝜔)/2. (2.58)

We observe that since all the matter sources satisfy the “strong energy condition (SEC), i.e.

1+3𝜔 > 0,” the correspondingHubble radius increases as the universe expands. Next, by inserting

the evolution of the scale factor in Eq. (2.56) for the single component species with Ω = 1, i.e.

𝑎(𝜏) =
[
(1+3𝜔𝐼 )

2 𝐻0𝜏

] 2
(1+3𝜔𝐼 )

, into Eq. (2.58), we obtain the evolution of Hubble radius in comoving

time

(𝑎𝐻 )−1 = (1 + 3𝜔)
2

𝜏 =⇒ (𝑎𝐻 )−1 ∝



𝜏 for Radiation-dominated (𝜔𝑟 = 1/3)

𝜏/2 for Matter-dominated (𝜔𝑚 = 0)

−𝜏 for Dark energy-dominated (𝜔Λ = −1)

,(2.59)

which also implies that the particle horizon 𝜒𝑝ℎ (𝜏) is given by

𝜒𝑝ℎ (𝜏) = 𝜏 =
2

(1 + 3𝜔) (𝑎𝐻 )
−1. (2.60)
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In the meantime, from 𝑎(𝜏) =
[
(1+3𝜔𝐼 )

2 𝐻0𝜏

] 2
(1+3𝜔𝐼 )

, we �nd

𝜏 =
2𝐻−1

0
(1 + 3𝜔)𝑎

(1+3𝜔)/2. (2.61)

Notice thatwhen (1+3𝜔) > 0 by the strong energy condition, the initial conformal time 𝜏𝑖 at the Big

Bang singularity (i.e. 𝑎(𝜏𝑖) ≡ 0) becomes zero, which alsomeans that the size of the particle horizon at

the singularity in our past lightcone is zero. This vanishing particle horizon at the singularitymeans

that past events at the Big Bang singularity has never existed that were able to send signals to

us at present. However, this result seriously contradicts our observation of cosmic microwave

background (CMB) radiation!

Regarding CMB, about 380000 years ago after the standard “Hot” Big Bang, the universe had

cooled down su�ciently to allow “Recombination” process where hydrogen atoms were formed

and photons were decoupled from the primordial plasma of the hydrogen atoms. We call such pho-

tons created from the decoupling during the recombination process as “CMB radiation” since

we have observed them in form of CMB. In the meantime, according to the observation, the CMB

radiation is almost perfectly isotropic with anisotropies in the CMB temperature being much

smaller than the average of the CMB temperature 𝑇𝐶𝑀𝐵 ∼ 10−4eV ∼ 2.725𝐾 , i.e. 𝛿𝑇 � 𝑇𝐶𝑀𝐵 .

The uniform temperature of the CMB radiation implies that they must be in thermal equi-

librium in causal contact in the same particle horizon in the past. Therefore, the discovery of

the uniform CMB radiation supports that there did exist the past events that were able to send

the CMB photons to us at present, and thus particle horizon at the Big Bang singularity must be

“spacious” enough to include all the possible causal contacts/patches4 of the CMB photons that

we have seen!

Now we face a critical problem due to the discordance between the vanishing particle horizon

(obtained from the ordinary sources satisfying the strong energy condition) and requirement of

4Here, the “causal contacts/patches” are de�ned by particle horizons of signals that an observer has received.
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Figure 2.2: (Horizon problem) At the last-sca�ering surface of recombination, any two points 𝑝 and 𝑞
that are apart from each other by more than one degree seem to be not in causal contact and outside
of Hubble radius since their past lightcones do not overlap before the singularity and the Hubble radius
at singularity is zero, so that they seem causally-disconnected. However, uniform CMB temperature has
been measured with very small anisotropies over the sky, implying that CMB radiations should have had
thermal equilibrium in some causal contact in the past. The upper figure is taken from [22], and the lower
figure is taken from [4].

non-vanishing particle horizon (which is predicted by our observation of the uniform CMB radiation)

at the Big Bang singularity in the past. This discordance issue is called “Horizon Problem” in

Fig. 2.2 in cosmology.

Certainly, given the result of the vanishing particle horizon, the CMB photons may seem
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Figure 2.3: (Inflation as a key solution to theHorizon problem) An era of a so-called inflation is introduced
to push the singularity to the far past, so that the CMB radiations could be in causal contact inside of the
Hubble radius at some moment before singularity. Figure taken from [4].

to be sent from causally-disconnected patches of particle horizon. Hence, for our observation

of the uniform CMB temperature to be valid, there must be “long enough” conformal time for

the causally-disconnected patches to be causally-connected inside of the common single non-

vanishing particle horizon at the singularity in the past. This is a starting point to resolve the

Horizon problem.

In respect of this, we need to move the initial singularity 𝜏𝑖 to the further far point in the past

to obtain a past lightcone where the common causal contact can be established. This is illustrated

in Fig. 2.3. To do this, we push the singularity to negative conformal time to have such an enough
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time

𝜏𝑖 =
2𝐻−1

0
(1 + 3𝜔)𝑎

(1+3𝜔)/2
𝑖

=⇒ lim
𝑎𝑖→0

𝜏𝑖 = −∞. (2.62)

This type of 𝜏𝑖 can only exist when there is a SEC-violating �uid such that

1 + 3𝜔 < 0. (2.63)

Nowwe ask: how can we get such SEC-violation giving the proper singularity? In fact, the simple

answer to this is to conjecture that there was a phase of decreasing Hubble radius in the early

universe. Let us recall the evolution of Hubble radius (2.58), and take its time derivative:

(𝑎𝐻 )−1 = 𝐻−1
0 𝑎(1+3𝜔)/2 =⇒ 𝑑

𝑑𝑡
(𝑎𝐻 )−1 = 𝐻−1

0
(1 + 3𝜔)

2
𝑎3𝜔/2. (2.64)

Then, since we are interested in the SEC-violation (2.63) (i.e. (1 + 3𝜔) < 0), we conclude that we

need to conjecture that a shrinking Hubble sphere or radius existed in the past

𝑑

𝑑𝑡
(𝑎𝐻 )−1 < 0, (2.65)

which exactly enables us to have much conformal time in the negative direction beyond 𝜏 = 0.

This is because the initial singularity of 𝑎𝑖 = 0 is now placed at 𝜏𝑖 = −∞! Moreover, the shrinking

Hubble sphere condition means “acceleration of the scale factor of space” or the so-called

“In�ation” because

𝑑

𝑑𝑡
(𝑎𝐻 )−1 = 𝑑

𝑑𝑡
(𝑎 ¤𝑎
𝑎
)−1 = 𝑑

𝑑𝑡
( ¤𝑎−1) = − ¤𝑎−2 ¥𝑎 < 0 =⇒ ¥𝑎 > 0. (2.66)

That is, it is required that accelerated expansion of the universe occurred in the past. This is why

we call in�ation as a period of acceleration.
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Here, we are �nally able to de�ne a su�cient time interval between 𝜏 = 0 and a certain instant

𝜏𝐼 < 0 (such that 0 > 𝜏𝐼 > 𝜏𝑖 ) at which the common causal contact or particle horizon of the CMB

photons could exist in the past lightcone of an observer in the past thanks to the shrinking Hubble

sphere. This special time interval Δ𝜏 = 0 − 𝜏𝐼 during which in�ation has lasted is called “Era of

In�ation.” Hence, 𝜏 = 0 is no longer the initial singularity but instead it becomes only “a critical

point of phase transition from in�ation before 𝜏 = 0 to the standard Hot Big Bang after 𝜏 = 0,”

which is called “Reheating”.

Equivalently, the shirinking Hubble sphere condition deduces that

𝑑

𝑑𝑡
(𝑎𝐻 )−1 = −(𝑎𝐻 )−2 𝑑

𝑑𝑡
(𝑎𝐻 ) = −(𝑎𝐻 )−2 [ ¤𝑎𝐻 + 𝑎 ¤𝐻 ]

= − 𝑎

(𝑎𝐻 )2 [𝐻
2 + ¤𝐻 ] = −1

𝑎

(
1 +

¤𝐻
𝐻 2

)
= −1

𝑎
(1 − 𝜀) < 0 =⇒ 𝜀 < 1 (2.67)

where we de�ne “1st slow-roll parameter”

𝜀 ≡ −
¤𝐻
𝐻 2 = −𝑑 ln𝐻

𝐻𝑑𝑡
< 1. (2.68)

In fact, this additionally implies the “almost-constant Hubble parameter” during in�ation

𝜀 < 1 =⇒ For perfect in�ation, 𝜀 = 0 =⇒ ¤𝐻 = 0 � 1 =⇒ 𝐻 = constant in time. (2.69)

Meanwhile, recalling the de�nition of Hubble parameter, we �nd the solution for the scale

factor

𝐻 ≡ ¤𝑎
𝑎
=
1
𝑎

𝑑𝑎

𝑑𝑡
=
𝑑 ln𝑎
𝑑𝑡

=⇒ 𝑎(𝑡 𝑓 ) = 𝑎(𝑡𝑖) exp
( ∫ 𝑡𝑓

𝑡𝑖

𝐻 (𝑡)𝑑𝑡
)
. (2.70)
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Now we assume that the Hubble parameter is almost constant during Δ𝑡 = 𝑡 𝑓 − 𝑡𝑖 . Then, we have

𝑎(𝑡 𝑓 ) = 𝑒𝐻Δ𝑡 ≡ 𝑒𝑁𝑎(𝑡𝑖), 𝑁 ≡ 𝐻Δ𝑡, (2.71)

where 𝑁 is called “The number of e-folds of in�ation.” In particular, it takes 𝑡𝐻 ≡ Δ𝑡 = 𝐻−1

for the scale factor to get 𝑒 ≈ 2.72 times for 𝑁 = 1 (one e-fold). We call such 𝑡𝐻 as “Hubble

expansion time.”

The next question here is how much change of the comoving particle horizon Δ𝜒 can be

large as the number of e-folds 𝑁 increases. To do this, let us introduce a time-independent

characteristic scale “𝜆” which is de�ned as the characteristic comoving distance and, at the same

time, the increasing unit of particle horizon as 𝑁 increases such that:

Δ𝜒 = 𝑁𝜆 ⇐⇒ 𝜆 ≡ Δ𝜒

𝑁
=

Δ𝜒

𝐻Δ𝑡
=

𝑎

𝑑𝑎/𝑑𝑡
𝑑𝜒

𝑑𝑡
= 𝑎

𝑑𝜒

𝑑𝑎
⇐⇒ 𝑎𝑑𝜒 = 𝜆𝑑𝑎, (2.72)

where we see that the given comoving particle horizon is 𝑁 -times of the characteristic scale 𝜆.

Moreover, from the de�nition of Hubble parameter, we can �nd the time element

𝐻 =
¤𝑎
𝑎
=
1
𝑎

𝑑𝑎

𝑑𝑡
=⇒ 𝑑𝑡 = (𝑎𝐻 )−1𝑑𝑎. (2.73)

Note that we can consider the Hubble horizon (or radius) (𝑎𝐻 )−1(𝑡) as the comoving distance

over which particles can travel for one Hubble (expansion) time 𝐻−1(𝑡) and interact with each other

at a given moment “𝑡” within the next Hubble time.

By putting (2.72) and (2.73) into the FLRW metric (i.e. 𝑑𝑠2 = 𝑑𝑡2 − 𝑎2𝑑𝜒2), we obtain its

equivalent form and can determine causality of the scale 𝜆 with respect to the Hubble radius
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(𝑎𝐻 )−1:

𝑑𝑠2 = 𝑑𝑡2 − 𝑎2𝑑𝜒2 = [(𝑎𝐻 )−2 − 𝜆2]𝑑𝑎2

=⇒



Subhorizon: (𝑎𝐻 )−1 > 𝜆 =⇒ 𝑑𝑠2 > 0 ( timelike = causally-connected )

On-horizon: (𝑎𝐻 )−1 = 𝜆 =⇒ 𝑑𝑠2 = 0 ( null-like = causally-connected )

Superhorizon: (𝑎𝐻 )−1 < 𝜆 =⇒ 𝑑𝑠2 < 0 ( spacelike = causally-disconnected )

(2.74)

That is, consider that two particles are separated by a comoving distance 𝜆 at a given moment

“𝑡𝑖 .” Then, the Hubble radius “(𝑎𝐻 )−1(𝑡𝑖)” at the time can be used for judging whether they can

interact (i.e. start to send a signal at the given time 𝑡𝑖 and receive it at some later time 𝑡 𝑓 ) with

each other at the given time 𝑡𝑖 within one Hubble time (i.e. Δ𝑡 = 𝑡 𝑓 − 𝑡𝑖 ≤ 𝑡𝐻 = 𝐻−1). That

is, if 𝜆 > (𝑎𝐻 )−1(𝑡), then they are causally-disconnected and thus cannot interact with each

other within one Hubble time. On the contrary, the particle horizon 𝜒𝑝ℎ can be used for judging

whether they were able to interact with each other at a given past moment 𝑡𝑖 ′ . That is, if 𝜆 > 𝜒𝑝ℎ

at some past time, then they have never been able to interact with each other.

Now we are ready to investigate how in�ation of the early universe in the past can wash out

the Horizon problem. Since for the observer at today 𝑡0, the Hubble horizon around the observer

is (𝑎0𝐻0)−1, the characteristic scale 𝜆 must be less than the present Hubble horizon for the initial

particle horizon 𝜆 to be causally-connected to the observer at 𝑡0: i.e. 0 ≤ 𝜆 ≤ (𝑎0𝐻0)−1. We

observe that (𝑎0𝐻0)−1 is the maximum of 𝜆. This means that the initial particle horizon 𝜆 must be

either less than or equal to (𝑎0𝐻0)−1, which is the comoving size of the observable universe. Next,

let us imagine that we go to the starting point of in�ation. Then, for the observer at the in�ation-

starting time 𝑡𝐼 , the Hubble sphere is given by (𝑎𝐼𝐻𝐼 )−1. For any 𝜆 of the regions 𝜆 ≤ (𝑎0𝐻0)−1 to

be causally-connected to the observer at 𝑡𝐼 , it is needed to impose that 𝜆(≤ (𝑎0𝐻0)−1) ≤ (𝑎𝐼𝐻𝐼 )−1.
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Figure 2.4: Hubble horizon (or radius) hierarchy for inflation to be able to resolve the Horizon problem
in a consistent way. Figure taken from [4].

Therefore, we �nd the su�cient condition for in�ation

(𝑎0𝐻0)−1 ≤ (𝑎𝐼𝐻𝐼 )−1. (2.75)

Here we comment that since normally particle horizon 𝜒𝑝𝑙 = 𝜆 + Δ𝜒 = (1 + 𝑁 )𝜆 (except for

the initial particle horizon 𝜆 at 𝑡𝐼 ) can be larger than the Hubble horizon (𝑎𝐻 )−1 all the times,

it is more conservative to use the in�ation Hubble horizon (𝑎𝐼𝐻𝐼 )−1 as a means of judging the

horizon problem.

We claim that if the entire observable universe (i.e. 𝜆 . (𝑎0𝐻0)−1) was within the

comoving Hubble horizon at the beginning of in�ation (i.e. 𝜆 . (𝑎0𝐻0)−1 . (𝑎𝐼𝐻𝐼 )−1 as

shown in Fig. 2.4), then there is no Horizon problem.
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2.7 Conditions for Inflation and Its Duration

In this section, we investigate the conditions for in�ation in detail. How long should in�ation

have lasted? The answer to this question will give us how to satisfy the �rst in�ation condition

given by Eq. (2.75). To estimate the duration of in�ation, let us assume that at the end of in�ation

at 𝑡 = 𝑡𝐸 , the universe was radiation-dominated. Hence, recalling Eq. (2.50) and putting Ω = 1 and

𝜔𝑟 = 1/3 into Eq. (2.50), we can consider the following single-component radiation-dominated

evolution of 𝐻 :

𝐻 = 𝐻0

(𝑎0
𝑎

)2
. (2.76)

Setting 𝑡 = 𝑡𝐸 , we �nd

𝐻𝐸

𝐻0
=
𝑎20

𝑎2
𝐸

=⇒ 𝑎𝐸𝐻𝐸

𝑎0𝐻0
=
𝑎0

𝑎𝐸
. (2.77)

From the energy density evolution in Eq. (2.34), we have seen that the radiation-dominated case

corresponds to 𝜌 ∼ 𝑎−4. In addition, we know that energy density of radiation is proportional

to the fourth power of temperature 𝑇 according to Stefan-Boltzman Law (i.e. 𝜌 (𝑇 ) ∝ 𝑇 4. This

leads to the fact that 𝑎−1 ∝ 𝑇 . Hence, the above relation can reduce to

𝑎𝐸𝐻𝐸

𝑎0𝐻0
=
𝑎0

𝑎𝐸
=
𝑇0

𝑇𝐸
. (2.78)

In particular, we have observation of 𝑇0 and 𝑇𝐸 , which are 𝑇0 ∼ 10−4 eV (which is today’s CMB

temperature) and 𝑇𝐸 ∼ 1015 GeV = 1024 eV at the end of in�ation. Therefore, we �nd

𝑎𝐸𝐻𝐸

𝑎0𝐻0
=
𝑎0

𝑎𝐸
=
𝑇0

𝑇𝐸
= 10−28 =⇒ (𝑎0𝐻0)−1 = 1028(𝑎𝐸𝐻𝐸)−1. (2.79)
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By inserting this result into the condition (2.75), we get

(𝑎0𝐻0)−1 = 1028(𝑎𝐸𝐻𝐸)−1 ≤ (𝑎𝐼𝐻𝐼 )−1. (2.80)

Since we have seen that 𝐻 ∼ constant in time from Eq. (2.69) during in�ation, we have 𝐻𝐼 ≈ 𝐻𝐸 ,

and thus the inequality leads to the condition on the number of e-folds for in�ation

𝑎𝐸

𝑎𝐼
≥ 1028 =⇒ ln

(
𝑎𝐸

𝑎𝐼

)
= 𝑁 ≥ 28 ln 10 ∼ 64 =⇒ 𝑁 > 64, (2.81)

where we used 𝑎𝐸 = 𝑒𝑁𝑒𝐼 . Also, from the result of (𝑎0𝐻0)−1 ∼ 1028(𝑎𝐸𝐻𝐸)−1, we get 𝑎𝐸 = 𝑒64𝑎0.

This tells us that in�ation must long last over the number of e-folds greater than 64!

In fact, there are other equivalent forms of the condition for in�ation:

• 1. Shrinking Hubble Sphere:
𝑑

𝑑𝑡
(𝑎𝐻 )−1 < 0.

• 2. Accelerated Expansion: ¥𝑎 > 0.

• 3. Slowly-varying Hubble parameter: 𝜀 = −
¤𝐻
𝐻 2 = −𝑑 ln𝐻

𝑑𝑁
< 1. This condition means that

the fractional change of the Hubble parameter (i.e. 𝑑 ln𝐻 = 𝑑𝐻/𝐻 ) is slowly-varying over

the period of one e-fold 𝑁 = 1.

• 4. Quasi-de Sitter expansion: 𝜀 ≈ 0 � 1 =⇒ 𝐻 ≈ constant in time. This means that

𝐻 =
¤𝑎
𝑎

=⇒ 𝑎(𝑡) ∝ 𝑒𝐻𝑡 . (2.82)

• 5. Negative pressure: 𝜔 < −1/3. By di�erentiating the 1st Fridemann equation with 𝑘 = 0

(spatially-�at) with respect to time and using the continuity equation ¤𝜌 = −3𝐻 (𝜌 + 𝑃), we

get ¤𝐻 = −4𝜋𝐺 (𝜌 + 𝑃). Then, by adding 𝐻 2 to this, we get

¤𝐻 + 𝐻 2 = −𝐻
2

2

(
1 + 3𝑃

𝜌

)
=⇒ −

¤𝐻
𝐻 2 − 1 =

1
2

(
1 + 3𝑃

𝜌

)
=⇒ 𝜀 − 1 =

1
2
+ 3
2
𝑃

𝜌
, (2.83)
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which gives

𝜀 =
3
2

(
1 + 𝑃

𝜌

)
=
3
2
(1 + 𝜔) < 1 =⇒ 𝜔 < −1/3. (2.84)

As we can see, in�ation requires “negative pressure” (or equivalently a violation of the

strong energy condition).

• 6. Constant density:
����𝑑 ln 𝜌𝑑 ln𝑎

���� = 2𝜀 < 1. From the continuity equation, we have

𝑑𝜌

𝑑𝑡
= −3𝐻𝜌 (1 + 𝜔) =⇒ 𝑑𝜌

𝜌
= −3 ¤𝑎

𝑎
(1 + 𝜔)𝑑𝑡 =⇒ 𝑑 ln 𝜌 = −3(1 + 𝜔)𝑑 ln𝑎. (2.85)

Thus, we have

𝑑 ln 𝜌
𝑑 ln𝑎

= −3(1 + 𝜔) = −2𝜀 =⇒
����𝑑 ln 𝜌𝑑 ln𝑎

���� = 2𝜀 < 1. (2.86)

For small 𝜀, ln 𝜌 will be constant in ln𝑎. Thus, the energy density is thus nearly constant

during expansion. However, conventional matter sources all dilute with expansion; for

example, 𝜌𝑟 ∝ 𝑎−4 and 𝜌𝑚 ∝ 𝑎−3. This means that we need to explore a new matter source

that is beyond the conventional matter form, which will be identi�ed with a real scalar

quantum �eld called “In�aton”

We have seen that in a given FLRW spacetime with the Hubble parameter 𝐻 , cosmological

in�ation can take place if and only if 𝜀 < 1 holds. Thus, it is needed to have a su�ciently long

time for 𝜀 to be small enough during in�ation. To acquire this, we have to consider 𝜀 to remain

small for a large number of e-folds of in�ation, e.g. over 60 e-folds. In this respect, we introduce

a new parameter 𝜂 where the information of slowly-varying 𝜀 over the e-folds is encoded. This

𝜂 parameter is de�ned as a ratio of fractional change of 𝜀 to change of the number of e-folds, so
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that

𝜂 ≡ 𝑑 ln 𝜀
𝑑𝑁

=
𝑑 ln 𝜀
𝐻𝑑𝑡

=
¤𝜀
𝐻𝜀

⇐⇒ 𝜀 𝑓 = 𝜀𝑖𝑒
𝜂Δ𝑁 . (2.87)

Since we are interested in 𝜀𝑖, 𝜀 𝑓 � 1, it is required to impose 𝜂Δ𝑁 → 0. This means that for any

Δ𝑁 , 𝜂 → 0, which is equivalent to

|𝜂 | � 1. (2.88)

In summary, we call the two variables 𝜀 and 𝜂 as “Hubble slow-roll parameters”:

𝜀 ≡ −
¤𝐻
𝐻 2 = −𝑑 ln𝐻

𝑑𝑁
< 1, 𝜂 ≡ 𝑑 ln 𝜀

𝑑𝑁
=

¤𝜀
𝐻𝜀

with |𝜂 | < 1. (2.89)

2.8 Scalar Field Dynamics of “Inflaton”: Slow-Roll

Inflation

In this section, we discuss a new matter form given by a real scalar �eld 𝜙 (𝑡, ®𝑥) called “In-

�aton” and its scalar �eld dynamics. Let us assume that there exists a real scalar �eld 𝜙 and this

has kinetic and potential energies given by

L =
1
2
𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙 −𝑉 (𝜙). (2.90)

If the energy-momentum tensor of the in�aton dominates the universe, it sources the evolution

of the FLRW backgroud. Hence, it is desirable to know under which conditions the in�aton can

lead to the accelerated expansion, i.e. in�ation. The corresponding energy-momentum tensor is
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given by

𝑇
𝜇
𝜈 = 𝑔

𝜇𝜆𝑇𝜆𝜈 = 𝜕
𝜇𝜙𝜕𝜈𝜙 − 𝛿𝜇𝜈

(1
2
𝑔𝛼𝛽𝜕𝛼𝜙𝜕𝛽𝜙 −𝑉 (𝜙)

)
, (2.91)

where we used 𝑇𝜆𝜈 ≡ 𝜕L
𝜕𝜕𝜆𝜙

𝜕𝜈 − 𝑔𝜆𝜈L. In particular, due to the homogeneity and isometry of the

FLRW spacetime (2.27), we impose that the in�aton �eld is given by only a function of time:

𝜙 (𝑡). Then, from Eq. (2.28) in the comoving frame, the components of the corresponding energy-

momentum tensor are given by

𝑇 0
0 =

1
2
¤𝜙2 +𝑉 (𝜙) = 𝜌𝜙 , 𝑇 𝑖𝑗 = 𝛿

𝑖
𝑗

(
− 1
2
¤𝜙2 +𝑉 (𝜙)

)
= −𝑃𝜙𝛿𝑖𝑗 (2.92)

or equivalently

𝜌𝜙 =
1
2
¤𝜙2 +𝑉 (𝜙), 𝑃𝜙 =

1
2
¤𝜙2 −𝑉 (𝜙). (2.93)

Then, the negative pressure condition is

𝜔 < −1/3 ⇐⇒ 𝜔 =
𝑃𝜙

𝜌𝜙
=

1
2
¤𝜙2 −𝑉 (𝜙)

1
2
¤𝜙2 +𝑉 (𝜙)

< −1
3

=⇒ 1
2
¤𝜙2 < 𝑉 (𝜙). (2.94)

Next, let us study the evolution of the in�aton �eld 𝜙 (𝑡). Using the relation 8𝜋𝐺 = 𝑀−2
𝑃

(where 𝑀𝑃 ≡
√︃

ℏ𝑐
8𝜋𝐺 = 1/

√
8𝜋𝐺 is “reduced Planck constant” for ℏ = 𝑐 = 1), we can re-express

the 1st Fridemann equation with spatially-�at condition 𝑘 = 0

𝐻 2 =
𝜌

3𝑀2
𝑃

(2.95)
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and we get

𝐻 2 =
𝜌𝜙

3𝑀2
𝑃

=
1

3𝑀2
𝑃

( ¤𝜙2

2
+𝑉 (𝜙)

)
. (2.96)

From the continuity equation ¤𝜌𝜙 = −3𝐻 (𝜌𝜙 + 𝑃𝜙 ), the left-hand side of this is given by ¤𝜙 ¥𝜙 +
¤𝜙𝑉 ′(𝜙) where 𝑉 ′(𝜙) ≡ 𝑑𝑉 (𝜙)/𝑑𝜙 , while the right-hand side of the equation is given by −3𝐻 ¤𝜙2.

Therefore, we obtain the equation of motion for the in�aton from the continuity equation as

follows:

¥𝜙 + 3𝐻 ¤𝜙 + 𝑑𝑉 (𝜙)
𝑑𝜙

= 0. (2.97)

Notice that this is Klein-Gordon equation for the in�aton with a friction term 3𝐻 ¤𝜙 caused by the

expansion of the universe.

Next, let us compute the slow-roll parameters 𝜀 and 𝜂. By taking the time derivative of the

1st Fridemann equation and using the continuity equation, we obtain

𝐻 2 =
𝜌𝜙

3𝑀2
𝑃

=⇒ 2𝐻 ¤𝐻 =
¤𝜌𝜙

3𝑀2
𝑃

=
1

3𝑀2
𝑃

[−3𝐻 (𝜌𝜙 + 𝑃𝜙 )] = − 𝐻

𝑀2
𝑃

(𝜌𝜙 + 𝑃𝜙 )

=⇒ ¤𝐻 = − 1
2𝑀2

𝑃

(𝜌𝜙 + 𝑃𝜙 ) = −
¤𝜙2

2𝑀2
𝑃

, (2.98)

and thus the �rst slow-roll parameter is found to be

𝜀 = −
¤𝐻
𝐻 2 =

1
2
¤𝜙2

𝑀2
𝑃
𝐻 2 . (2.99)

To get the shrinking Hubble sphere, we need to impose 𝜀 < 1, which leads to

1
2
¤𝜙2 < 𝑀2

𝑃𝐻
2 < 3𝑀2

𝑃𝐻
2 = 𝜌𝜙 =⇒ 1

2
¤𝜙2 � 𝑉 (𝜙). (2.100)
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Figure 2.5: Example of a slow-roll inflationary potential 𝑉 (𝜙) of inflaton field 𝜙 . In the shaded regions,
inflation may take place. Figure taken from [4].

We note that the smallness of 𝜀 requires kinetic energy of the in�aton to be very smaller than it total

or potential energy! That is to say, it is necessary for the in�aton to roll down very slowly along

the potential. In this sense, we call this situation for in�ation as “Slow-Roll In�ation,” which

is illustrated in Fig. 2.5. Furthermore, we have talked about the persistence of small 𝜀 during

in�ation. This is re�ected in another slow-roll parameter 𝜂. Let us calculate this in the following.

From Eq. (2.99), by taking its time derivative, we obtain

¤𝜀 = 1
𝑀2
𝑃
𝐻 2 (

¤𝜙 ¥𝜙 − ¤𝜙2 ¤𝐻 ). (2.101)

Thus, the 𝑒𝑡𝑎 parameter is found to be

𝜂 =
¤𝜀
𝜀𝐻

=
1

𝑀2
𝑃
𝐻 2 (

¤𝜙 ¥𝜙 − ¤𝜙2 ¤𝐻 )
( ¤𝜙2

2𝑀2
𝑃
𝐻

)−1
= 2

( ¥𝜙
¤𝜙𝐻

−
¤𝐻
𝐻

)
≡ 2(𝜀 − 𝛿), (2.102)

where we de�ne 𝛿 ≡ − ¥𝜙/( ¤𝜙𝐻 ). For 𝜀 to remain small for a long time (i.e. to satisfy {𝜀, |𝜂 |} � 1),

we must take the so-called “Slow-roll approximation condition” that

{𝜀, |𝛿 |} � 1, (2.103)
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where in�ation can occurs and persists.

In fact, taking the slow-roll approximation condition, we are able to simplify the 1st Fride-

mann equation (2.96), and the equation of motion for the in�aton (2.97). First, from
¤𝜙2
2 � 𝑉 (𝜙)

which is equivalent to 𝜀 � 1, the 1st Fridemann equation reduces to

𝐻 2 ≈ 𝑉 (𝜙)
3𝑀2

𝑃

. (2.104)

Remark that the Hubble expansion is determined by the scalar potential 𝑉 (𝜙) of the in�aton!

Plus, from the condition |𝛿 | = | ¥𝜙/( ¤𝜙𝐻 ) | � 1, we can ignore the term of ¥𝜙 in the equation of

motion for the in�aton, so that

¥𝜙 + 3𝐻 ¤𝜙 + 𝑑𝑉 (𝜙)
𝑑𝜙

≈ 3𝐻 ¤𝜙 + 𝑑𝑉 (𝜙)
𝑑𝜙

= 0 =⇒ ¤𝜙 ≈ −𝑉
′(𝜙)
3𝐻

. (2.105)

Finally, we are ready to compute the slow-roll parameters in terms of the potential 𝑉 (𝜙).

Using the results of Eqs. (2.104) and (2.105), we �nd

𝜀 =
¤𝜙2

2𝑀2
𝑃
𝐻 2 =

1
2𝑀2

𝑃

𝑉 ′2

9𝐻 2
1
𝐻 2 =

1
2𝑀2

𝑃

𝑉 ′2

9
9𝑀4

𝑃

𝑉 2 =⇒ 𝜀 =
𝑀2
𝑃

2

(
𝑉 ′

𝑉

)2
≡ 𝜀𝑉 , (2.106)

where we de�ned a new parameter denoted by 𝜀𝑉 since this is now determined by the potential

𝑉 (𝜙). Furthermore, taking the time derivative of the approximated equation of motion in Eq.

(2.105), we �nd

3( ¤𝐻 ¤𝜙 + 𝐻 ¥𝜙) ≈ − ¤𝜙𝑉 ′′ =⇒ 3
( ¤𝐻
𝐻 2 +

¥𝜙
¤𝜙𝐻

)
≈ −𝑉

′′

𝐻 2 =⇒ 3(𝜀 + 𝛿) ≈ 𝑉 ′′

𝐻 2 ≈ 3𝑀2
𝑃

𝑉 ′′

𝑉
, (2.107)

where 𝛿 ≡ − ¥𝜙/( ¤𝜙𝐻 ) and which gives rise to

𝜀 + 𝛿 ≈ 𝑉 ′′

3𝐻 2 ≈ 𝑀2
𝑃

(
𝑉 ′′

𝑉

)
≡ 𝜂𝑉 . (2.108)
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Since 𝜂 = 2(𝜀−𝛿) and 𝜂𝑉 ≈ 𝜀 +𝛿 , we �nd 𝜂 ≈ 2(2𝜀−𝜂𝑉 ) ≈ 2(2𝜀𝑉 −𝜂𝑉 ). Hence, considering 𝜂 � 1

for slow-roll in�ation, we can �nd the following “Slow-roll in�ation and in�ation-end/no-

in�ation conditions”


Slow-Roll In�ation: {𝜀, |𝜂 |, 𝜀𝑉 , |𝜂𝑉 |, 𝛿} � 1

In�ation-End/No-In�ation: {𝜀, |𝜂 |, 𝜀𝑉 , |𝜂𝑉 |, 𝛿} & 1
(2.109)

and we emphasize that a convenient way of judging whether a given scalar potential 𝑉 (𝜙) of

an in�aton can lead to slow-roll in�ation is to calculate the “potential slow-roll parameters”

𝜀𝑉 , 𝜂𝑉 , which are given by

𝜀𝑉 ≡
𝑀2
𝑃

2

(
𝑉 ′(𝜙)
𝑉 (𝜙)

)2
≈ 𝜀 � 1, |𝜂𝑉 | ≡ 𝑀2

𝑃

����𝑉 ′′(𝜙)
𝑉 (𝜙)

���� ≈ ����𝑉 ′′(𝜙)
3𝐻 2

���� ≈ |𝜀 + 𝛿 | � 1, (2.110)

which implies that the in�aton mass 𝑚𝜙 must be much lighter than the Hubble scale 𝐻 during

in�ation, i.e.

|𝜂𝑉 | � 1 ⇐⇒ 𝑚𝜙 � 𝐻 during in�ation. (2.111)

Also, we note that as shown in (2.109), when 𝜀𝑉 ≈ 𝜂𝑉 ≈ 1, the in�ation can end up. Thus, through

this condition, it is possible to compute the �eld value of 𝜙 , say 𝜙𝐸 , at which the in�ation can stop.

The last step we have to do is to compute the number of e-folds 𝑁 for the time interval from

𝑡𝐼 (i.e. at the beginning of in�ation) to 𝑡𝐸 (i.e. at the end of in�ation) in terms of the potential

𝑉 (𝜙). The total e-folding number 𝑁 for the whole duration of in�ation is given by

𝑁 (𝜙𝐼 , 𝜙𝐸) ≡
∫ 𝑡𝐸

𝑡𝐼

𝐻 (𝑡)𝑑𝑡 =
∫ 𝜙 (𝑡𝐸 )

𝜙 (𝑡𝐼 )

𝐻

¤𝜙
𝑑𝜙 =

∫ 𝜙 (𝑡𝐸 )

𝜙 (𝑡𝐼 )

1
√
2𝜀

|𝑑𝜙 |
𝑀𝑃

≈
∫ 𝜙 (𝑡𝐸 )

𝜙 (𝑡𝐼 )

1
√
2𝜀𝑉

|𝑑𝜙 |
𝑀𝑃

=

∫ 𝜙𝐸

𝜙𝐼

1
𝑀2
𝑃

𝑉 (𝜙)
𝑉 ′(𝜙) |𝑑𝜙 |, (2.112)
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where we note that |𝑑𝜙 | = −𝑑𝜙 since 𝑑𝜙 < 0 when 𝜙𝐼 < 𝜙𝐸 , while |𝑑𝜙 | = 𝑑𝜙 since 𝑑𝜙 > 0 when

𝜙𝐼 > 𝜙𝐸 . Here, we point out that while 𝜙𝐸 can be computed from the in�ation-end condition

(i.e. 𝜀𝑉 ≈ 𝜂𝑉 ≈ 1), the initial �eld value of 𝜙𝐼 at which the in�ation starts cannot be determined

exactly but estimated as a possible starting point of in�ation by imposing the necessary number

of e-folds for in�ation.

2.9 “Reheating” After Inflation: Scalar Field

Oscillations, Inflaton Decay, and Thermalization

During in�ation, most of the energy density in the universe is in the form of the in�aton

potential𝑉 (𝜙). Then, when the potential steepens, in�ation ends and the in�aton begins to pick

up its kinetic energy, and subsequently oscillates around the minimum of the potential. This is

the �rst process after in�ation called “Scalar Field Oscillation.” Then, via “In�aton Decay,”

the energy of in�aton has to be transferred to those of standard model (SM) particles, so that

the SM particles can be produced in the universe. The last process is “Thermalization” of the

primordial plasma of produced particles. After the in�aton is completely frozen, the SM particles

produced by the in�aton decay can interact with each other, create other particles through their

interactions, and the primordial plasma of all the particles will eventually reach thermal equilib-

rium with some characteristic temperature 𝑇𝑟ℎ called “Reheating Temperature”. In particular,

the process of the three steps are called “Reheating.”

Scalar Field Oscillation: When the slow-roll parameters 𝜀𝑉 , 𝜂𝑉 reach around 1, the in�ation

ends. After in�ation, then, the in�aton �eld 𝜙 begins to oscillate around the minimum of its po-

tential𝑉 (𝜙). About this minimum, it is possible to assume that the potential can be approximated

to a quadratic potential𝑉 (𝜙) ≈ 1
2𝑚

2
𝜙
𝜙2 corresponding to the mass term of in�aton, where the am-

plitude of 𝜙 is small. The in�aton 𝜙 (𝑡) can still be considered as a homogeneous �eld depending
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only on the time 𝑡 . Then, from the de�nition of 𝜂𝑉 in Eq. (2.108), we have

𝜀 + 𝛿 ≈ 𝑉 ′′

3𝐻 2 ≈ 𝑀2
𝑃

𝑉 ′′

𝑉
≡ 𝜂𝑉 =⇒ 𝜂𝑉 ≈ 𝑉 ′′

3𝐻 2 =
1
3

𝑚2
𝜙

𝐻 2 . (2.113)

Since 𝜂𝑉 & 1 after in�ation, we get the following result

𝑚2
𝜙

𝐻 2 & O(1) . (2.114)

This means that the oscillation period 𝑇osc = 𝑚−1
𝜙

of the in�aton around the potential minimum

must be very shorter than the expansion time 𝑡𝐻 = 𝐻−1. Thus, the mass of in�aton when in�ation

is not active must be heavier than the Hubble scale 𝐻 : 𝐻−1 � 𝑚−1
𝜙

⇐⇒ 𝑚𝜙 � 𝐻 . In this

mass limit𝑚𝜙 � 𝐻 , it is possible to neglect the friction term 3𝐻 ¤𝜙 in the equation of motion for

the in�aton, so that ¥𝜙 ≈ −𝑚2
𝜙
𝜙 , whose solution is found to be the conventional oscillating one

𝜙 = 𝐴 sin(𝑚𝜙𝑡). Next, let us consider the continuity equation (i.e. ¤𝜌𝜙 = −3𝐻 (𝜌𝜙 + 𝑃𝜙 )). Then, we

obtain

¤𝜌𝜙 + 3𝐻𝜌𝜙 = −3𝐻𝑃𝜙 =⇒ ¤𝜌𝜙 + 3𝐻𝜌𝜙 = −3𝐻 (
¤𝜙2

2
− 1
2
𝑚2
𝜙
𝜙2) = 3𝐻

2
(𝑚2

𝜙
𝜙2 − ¤𝜙2). (2.115)

Taking the time average over one period of oscillation𝑇𝑜𝑠𝑐 (i.e. 〈𝑓 (𝑡)〉𝑇 ≡ 1
𝑇

∫ +𝑇 /2
−𝑇 /2 𝑓 (𝑡)𝑑𝑡 ), we �nd

〈
¤𝜌𝜙 + 3𝐻𝜌𝜙

〉
𝑇
=
3𝐻
2
(𝑚2

𝜙

〈
𝜙2〉

𝑇
−

〈 ¤𝜙2〉
𝑇
) =

3𝐻𝐴2𝑚2
𝜙

2
(
〈
sin2(𝑚𝜙𝑡)

〉
𝑇
−

〈
cos2(𝑚𝜙𝑡)

〉
𝑇
) = 0,

(2.116)

where we used the solution 𝜙 = 𝐴 sin(𝑚𝜙𝑡) and the fact that
〈
cos2(𝑚𝜙𝑡)

〉
𝑇
=

〈
sin2(𝑚𝜙𝑡)

〉
𝑇
= 1/2.

The result “
〈
¤𝜌𝜙 + 3𝐻𝜌𝜙

〉
𝑇
= 0” means that the energy density decays as

〈
𝜌𝜙 (𝑡 𝑓 )

〉
𝑇
=

〈
𝜌𝜙 (𝑡𝑖)

〉
𝑇
𝑒
−3

∫ 𝑡𝑓
𝑡𝑖

𝐻𝑑𝑡
=

〈
𝜌𝜙 (𝑡𝑖)

〉
𝑇
𝑒−3𝑁 =

〈
𝜌𝜙 (𝑡𝑖)

〉
𝑇

(𝑎(𝑡 𝑓 )
𝑎(𝑡𝑖)

)−3
∝ 𝑎(𝑡 𝑓 )−3, (2.117)
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wherewe used𝑎(𝑡 𝑓 ) = 𝑒𝑁𝑎(𝑡𝑖). We observe that as the universe expands, decaying behavior of the

energy density of the in�aton after in�ation is the same as that of the conventional “pressureless

(𝜔 = 𝑃/𝜌 = 0)” matter! Also, the result (2.117) means that the amplitude of oscillation of the

in�aton decreases as the universe expands since

〈
𝜌𝜙

〉
𝑇
=

〈
1
2
¤𝜙2 + 1

2
𝑚2
𝜙
𝜙2

〉
𝑇

=
1
2
𝑚2
𝜙
𝐴2 〈

(cos2(𝑚𝜙𝑡) + sin2(𝑚𝜙𝑡))
〉
𝑇
=
1
2
𝑚2
𝜙
𝐴2 =⇒ 𝐴2 ∝ 𝑎−3.

(2.118)

In�aton Decay: There must be interaction terms of the in�aton �eld coupling to the standard

model �elds in their Lagrangians because the universe must be �lled with matter. The energy

stored in the in�aton �eld must then be transferred to the ordinary particles of matter. If the

infaton can decay into bosons via a mechanism of “parametric resonance” sourced by bose con-

densation e�ects, then the decay may be very rapid, which is called “Preheating.” If the in�aton

can only decay into fermions, then the decay is slow. In this case, the energy density follows:

¤𝜌𝜙 + 3𝐻𝜌𝜙 = −Γ𝜙𝜌𝜙 where Γ𝜙 parameterizes the in�aton decay rate.

Thermalization: After the in�aton decay, particles of matter have to be produced, and then

they will form a primordial plasma. Then, in this plasma, the particles reach thermal equilibrium

with some temperature𝑇𝑟ℎ called “Reheating Temperature” via their possible interactions with

creating and annihilating other particles. The reheating temperature is determined by the energy

density 𝜌𝑟ℎ at the end of the reheating epoch. Because the universe is cooled down as it expands,

𝜌𝑟ℎ is less than the energy density of the in�aton 𝜌𝜙,𝐸 at the end of in�ation. IF the reheating

takes long, then it may be possible that 𝜌𝑟ℎ � 𝜌𝜙,𝐸 . Some particles (e.g. gravitino) never reach

thermal equilibrium when their interactions are very weak. Moreover, as long as momentum of

a particle is much higher than its mass, the energy density of the particle behaves like radiation.

After thermalization of the plasma, the era of the standard Hot Big Bang begins.

44



3 | Review 2: Effective Field Theory

In this chapter, we brie�y review conceptual aspects of e�ective �eld theory (EFT). This chap-

ter is based on the lecture of EFT in Ref. [23].

3.1 What is Effective Field Theory (EFT)? Why EFT?

In high energy physics, we pursue quantum �eld theory that is valid at all energies from in-

frared (IR) to ultraviolet (UV) scales, and contains full physical information (such as dynamical

�eld degrees of freedom, Lagrangians, symmetries, partition function, etc). In this sense, we call

such a theory as “UV theory,” while we call the theory that is valid only at low energies and lost

the information of the UV physics as “IR theory,” so that this includes partial physical informa-

tion. In fact, in real world, we face particular physical systems that are in the region of particular

energies (i.e. not all energies). In this situation, it is su�cient to have the practical theory that

can be valid only at certain energies of our interest and contains partial physical information of our

interest. We call this practical theory as “E�ective Field Theory (EFT)”. Usually, EFT is obtained

by a low-energy approximation (also called “IR limit”) of a UV theory, so that EFT is considered

as IR theory.

Why do we use the e�ective Lagrangian? There are some motivations to work with L𝐸𝐹𝑇

rather than the fundamental one L𝑈𝑉 . The �rst is simplicity; that is, we can handle �nitely-

many terms. The second is calculability; that is, we can resum the large logarithms arising from
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loop-integral calculations into a renormalization gorup �ow of the EFT parameters. The last is

agnosticity; that is, it is hard to know the fundamental UV theory.

3.2 Locality and Perturbativity in Field Theory

In the following, I describe the conceptual aspects of EFT that are necessary to understand

the research of this dissertation. Let us consider a physical system whose dynamics is governed

by a UV Lagrangian L𝑈𝑉 (𝜙,𝐻 ) for some light �elds {𝜙} that we wish to treat, and heavy �elds

{𝐻 } that we cannot access or wish to ignore. Then, the UV theory is fully characterized by the

following partition function

𝑍𝑈𝑉 [𝐽𝜙 , 𝐽𝐻 ] =
∫

[𝐷𝜙] [𝐷𝐻 ] exp
(
𝑖

∫
𝑑𝑑𝑥 (L𝑈𝑉 (𝜙,𝐻 ) + 𝐽𝜙𝜙 + 𝐽𝐻𝐻 )︸                                     ︷︷                                     ︸

=𝑆𝑈𝑉 [𝜙,𝐻 ]

)
, (3.1)

where 𝐽𝜙,𝐻 are the external currents as source corresponding to some �elds 𝜙,𝐻 respectively. Ev-

ery 𝑛-point correlator (i.e. S-matrix scattering amplitude), the main �eld-theoretical observable,

of the relevant �elds can be obtained by di�erentiating the partition function 𝑍 with respect to

the current 𝐽 . In EFT, however, we are interested in the correlators of 𝜙 ’s only through the EFT

partition function 𝑍𝐸𝐹𝑇 [𝐽𝜙 ] represented by

𝑍𝐸𝐹𝑇 [𝐽𝜙 ] =
∫

[𝐷𝜙] exp
(
𝑖

∫
𝑑𝑑𝑥 (L𝐸𝐹𝑇 (𝜙) + 𝐽𝜙𝜙)︸                         ︷︷                         ︸

=𝑆𝐸𝐹𝑇 [𝜙]

)
, (3.2)
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which can be obtained by integrating out1 the “heavy” �eld degrees of freedom 𝐻 in the path

integral. Here, from the UV partition function, we can de�ne the EFT one as follows:

𝑍𝐸𝐹𝑇 [𝐽𝜙 ] ≡ 𝑍𝑈𝑉 [𝐽𝜙 , 𝐽𝐻 = 0] . (3.3)

Now it is essential to understand what locality and perturbaility are in �eld theory:

Locality (of Lagrangian in �eld theory) — Analytic mathematical object like function or

functional 𝐹 (𝑥) is called “local at a �xed local point of evaluation” if it is �nitely Taylor-expandable2

in polynomials3 at the �xed local point 𝑥 where we want to evaluate the function 𝐹 (𝑥) in an open

covering of some local coordinate chart 𝑋 (𝑥 ∈ {𝑋 }). If something is not in the case, it is called

“non-local” because it will be in�nitely Taylor-expandable in polynomials when the non-local ob-

ject is evaluated at a single local point of interest in the end.

For example, let us assume a “non-contact” interaction term of two �elds,L(𝑥,𝑦) = 𝜙1(𝑥)𝜙2(𝑦),

depending on two local points 𝑥,𝑦. We express 𝑦 = 𝑥 + Δ𝑥 for some interval Δ𝑥 . Then, at some

single point 𝑥 , we have

L(𝑥,𝑦) |evaluated at 𝑥 = {𝜙1(𝑥)𝜙2(𝑥 + Δ𝑥)}|evaluated at 𝑥

= 𝜙1(𝑥)
∞∑︁
𝑛=0

𝜙
(𝑛)
2 (𝑥)
𝑛!

(Δ𝑥)𝑛︸                        ︷︷                        ︸
evaluated at 𝑥

= 𝜙1(𝑥)
(
𝑒Δ𝑥 ·

𝜕
𝜕𝑥𝜙2(𝑥)

)
, (3.4)

where we Taylor-expanded 𝜙2(𝑥 + Δ𝑥) at the single local point 𝑥 of our interest. We observe
1See Ref. [23] for a review of how to integrate out the heavy �eld modes, or Ref. [24] for one recent work about

a simpli�ed method of how to integrate out heavy modes in the functional formalism, or see Ref. [25] for another
work on the integrating-out method.

2Taylor expansion is a mathematical way of representing any “analytic” function as a local expansion in form of
an in�nite sum of polynomials. In principle, non-local function can be written only by an in�nite sum of polynomials
if Taylor-expanded. We call a function as �nitely Taylor-expandable when its Taylor expansion can be approximated
by a �nite sum of polynomials up to some order of interest if the expansion parameter can be very small. In this case,
we are blind to the information of the higher-order terms beyond the order of interest since a perturbative expansion
lost them.

3Polynomial means that the exponent of a term is given only by non-negative integer. Non-polynomial is not
polynomial, i.e. fractional/negative exponent like 𝑓 (𝑥) =

√
𝑥 or 𝑥−1.
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that L(𝑥, 𝑥 + Δ𝑥) is non-local. This is because while 𝜙1(𝑥) remains the same after evaluation

at 𝑥 , 𝜙2(𝑥 + Δ𝑥) becomes an “in�nitely Taylor-expandable” function at the evaluation point 𝑥 .

Especially, we can see that after the last equality, the function L can also be represented by the

product of “nonlinear di�erential operator” (i.e. 𝑒Δ𝑥 ·
𝜕
𝜕𝑥 ) and𝜙2(𝑥)! Also, we see that when Δ𝑥 → 0,

the function L(𝑥) becomes local in �elds as expected. Conclusively, if a function depends on

multiple points of evaluation (i.e. literally, non-local) or includes nonlinear di�erential operator

(with respect to the evaluation variable) at a single evaluation point, then the function is non-

local.

The e�ective Lagrangian L𝐸𝐹𝑇 is a non-local4 object. As above, after Taylor expanding at a

single local point in the space of �elds and their derivatives, the e�ective Lagrangian L𝐸𝐹𝑇 can

also be represented by a local Lagrangian, but with in�nitely-many interaction terms in principle.

Fortunately, however, there is a particular situation where the non-local e�ective Lagrangian

L𝐸𝐹𝑇 can be properly approximated to a “local” e�ective Lagrangian with �nitely-many terms5

only if the non-local Lagrangian can be perturbative:

Perturbativity — An analytic (local or non-local) object is called “perturbative” if it can be

local (i.e. �nitely Taylor-expandable in polynomials at a single local point) up to certain order of

accuracy we wish when a very small expansion (also called “perturbation”) parameter 𝜖 � 1 is

given.

For example, L𝐸𝐹𝑇 ⊃ 𝜙2(𝑥)�𝜙2(𝑥) is local in �elds and their derivatives, while L𝐸𝐹𝑇 ⊃

𝜙2(𝑥) (� +𝑀2)−1𝜙2(𝑥) is non-local because at the evaluation point 𝑥 , we face the situation that

(� + 𝑀2)−1 = 𝑀−2 − 𝑀−4� + · · · . But if we are able to take a low-energy (or long-distance)

limit of |𝑝 | � 𝑀 (or 𝐿 = |𝑝 |−1 � 𝑀−1) when its 4-momentum is much smaller than the mass

scale𝑀 , then we can express the non-local Lagrangian as a local Lagrangian with �nitely-many

terms up to some order using the local expansion (� + 𝑀2)−1 ≈ 𝑀−2 − 𝑀−4� + · · · , so that
4Here, in EFT, Non-local means non-polynomial in the �elds and their derivatives.
5This is because it is impossible to us to treat in�nitely-many terms in real world.

48



L𝐸𝐹𝑇 ⊃ 𝜙2𝑀−2𝜙2 − 𝜙2𝑀−4�𝜙2 + · · · . In this case of the low-energy limit, we say that the non-

local Lagrangian is perturbative. However, remember that we are blind to physics at high energy

(or short-distance) scale |𝑝 | � 𝑀 (or 𝐿 = |𝑝 |−1 � 𝑀−1).

We can only treat and analyze �nitely-many terms in practice, so that we necessi-

tate local Lagrangians by taking advantage of perturbativity. That is, perturbativity is a

strategy of approximating non-local object to be local up to some accuracy.

3.3 Scaling

We have seen that the e�ective Lagrangian is non-local, and thus this has in�nitely-many

interaction terms in general “before imposing the low-energy limit.” Certainly, this is not favored

in physics because the in�nitely-many terms are beyond our control and knowledge! Hence, it

is inevitable for one to be able to treat the non-local e�ective Lagrangian L𝐸𝐹𝑇 as a perturba-

tive expansion. Once such perturbativity is given to L𝐸𝐹𝑇 , it is then needed to have a special

way of organizing the calculations in a consistent expansion and single out the most relevant

contributions, which is called “Power counting rule.”

To achieve this, let us talk about “scaling property” of Lagrangian and action. Let us consider

a 4-dimensional local relativistic EFT Lagrangian L𝐸𝐹𝑇 of mass dimension 4 (or action 𝑆𝐸𝐹𝑇 of

mass dimension zero):

𝑆𝐸𝐹𝑇 ≡
∫

𝑑4𝑥L𝐸𝐹𝑇 (𝜙) =
∫

𝑑4𝑥

[
(𝜕𝜇𝜙)2 −𝑚2𝜙2 − 𝜅𝜇𝜙3 − 𝜆𝜙4 −

Finite 𝑁∑︁
𝑛+𝑑>4

𝑐𝑛,𝑑

Λ𝑛+𝑑−4
𝜙𝑛−1𝜕𝑑𝜇𝜙

]
, (3.5)

where O (𝑛+𝑑) = 𝜙𝑛−1𝜕𝑑𝜇𝜙 are dimension-(𝑛 + 𝑑) operators; 𝑐𝑛,𝑑 are dimensionaless Wilson coef-

�cients; Λ is a (dimension-1) cuto� scale of the EFT; 𝜕 is the (dimension-1) derivative operator

with respect to the spacetime coordinate 𝑥 𝜇 , and 𝑛,𝑑 are positive and non-negative integers, re-

spectively. Again, this Lagrangian is perturbative. Next, we consider re-scaling by going from
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old 𝑥 to new coordinates 𝑥′, which is given by

𝑥𝜇 −→ 𝜉𝑥′𝜇, 𝑖 .𝑒 . 𝑥𝜇 = 𝜉𝑥
′
𝜇 ⇐⇒ 𝑥′𝜇 = 𝑥𝜇/𝜉, (3.6)

where 𝜉 is a re-scaling dimensionless parameter. The point is that 𝜉 −→ 0 means “zooming

in6” on short-distance scales or high energies in the new reference frame, while 𝜉 −→ ∞ means

“zooming out” on long-distance scales or low energies in the new reference frame. In particular,

we will be interested in the low-energy limit since we wish to ignore or are not able to know

something.

By investigating how the e�ective Lagrangian L𝐸𝐹𝑇 changes as the re-scaling parameter in-

creases (i.e. when taking the low-energy limit 𝜉 −→ ∞ or sizing down 𝑥′ equivalently), we can

�gure out the importance of various relevant terms as we go to lower energies away from the

UV theory underlying EFT. When taking the rescaling 𝑥 = 𝜉𝑥′, the �rst kinetic action changes to∫
𝑑4𝑥 (𝜕𝜙)2 =

∫
𝑑4𝑥′𝜉4 · 𝜉−2(𝜕′𝜙)2 =

∫
𝑑4𝑥′𝜉2(𝜕′𝜙)2. However, this is not canonically normalized.

Hence, we need to take additional rescaling for the �eld 𝜙 in the way

𝜙 = 𝜉−1𝜙′, (3.7)

so that the kinetic action can become canonical as
∫
𝑑4𝑥 (𝜕𝜙)2 =

∫
𝑑4𝑥′(𝜕′𝜙′)2. Then, considering

both re-scalings, we �nd

𝑆𝐸𝐹𝑇 =

∫
𝑑4𝑥′

[
(𝜕𝜇𝜙′)2 −𝑚2𝜉2𝜙′2 − 𝜅 (𝜉𝜇)𝜙′3 − 𝜆𝜙′4 −

Finite 𝑁∑︁
𝑛+𝑑>4

𝑐𝑛,𝑑

(𝜉Λ)𝑛+𝑑−4
𝜙′𝑛−1𝜕′𝑑𝜇 𝜙

′
]
. (3.8)

We observe that as 𝜉 −→ ∞ (low-energy limit), the𝜙2 and𝜙 terms grows. We call these “growing”

terms as “relevant” interaction term. We see that the 𝜙4 term remains constant. The “constant”
6For instance, we can see microorganisms (of “micro meter scales” in reality) as that of “centimeter scales” on our

eyes by zooming in (i.e. taking 𝜉 −→ 0 or sizing up 𝑥 ′ equivalently) through microscope.
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terms are called “marginally relevant” interaction term. On the contrary, inside the �nite sum,

we note that the terms are suppressed with the power of 𝜉−𝐷 where we call 𝐷 = 𝑛 + 𝑑 − 4 > 0 as

“scaling dimension of 𝜉” that uniquely determines the scaling behavior of the interaction term.

We call such “suppressed” terms as “irrelevant” interaction term. The interaction term becomes

more irrelevant since more suppressed as the scaling dimension of 𝜉 (i.e. 𝐷) gets larger.

3.4 EFT expansion

In 𝑑-dimensional spacetime, the e�etive Lagrangian L𝐸𝐹𝑇 that includes all the e�ective op-

erators can be represented by an in�nite sum of local, gauge-invariant, Lorentz-invariant, mass

dimension-𝛿 operators O (𝛿)
𝑖

(𝑥) with their mass dimension-(𝑑 − 𝛿) expansion coe�cients 𝐶 (𝑑−𝛿)
𝑖

L𝐸𝐹𝑇 (𝑥) =
∞∑︁
𝛿≥0

∑︁
𝑖

𝐶
(𝑑−𝛿)
𝑖

O (𝛿)
𝑖

(𝑥), (3.9)

where the Lagrangian’s mass dimension is given by [L] = 𝑑 since the action 𝑆 =
∫
𝑑𝑑𝑥L is

dimensionless and [𝑑𝑑𝑥] = −𝑑 . In particular, we derive the mass dimensions of �elds through

those of their canonical kinetic Lagrangians7.

Furthermore, we can extract the mass dimension from the dimensionful coe�cients. By in-

troducing the so-called “cuto� scale” Λ with mass dimension-1, i.e. [Λ] = 1, we re-de�ne the

coe�cients as follows:

𝐶
(𝑑−𝛿)
𝑖

≡
𝑐𝛿
𝑖

Λ𝛿−𝑑
, (3.10)

7For example, scalar 𝜙 , spinor 𝜓 , and vector 𝐴𝜇 �elds have the corresponding mass dimensions [𝜙] = 𝑑−2
2 ,

[𝜓 ] = 𝑑−1
2 , and [𝐴𝜇] = 𝑑−2

2 , respectively, because [ 12 |𝜕𝜇𝜙 |
2] = [𝜓𝑖�𝜕𝜓 ] = [− 1

4 |𝐹𝜇𝜈 |
2] = 𝑑 . Plus, when the vector is

gauged, we have [𝐷𝜇] = [𝜕𝜇] = [𝑔𝐴𝜇] = [𝑔] + [𝐴𝜇] = 1, so that the gauge coupling parameter may be dimensionful
because [𝑔] = 1− [𝐴𝜇] = 4−𝑑

2 . Moreover, in 𝑑 = 4− 2𝜖 of dimensional regularization (DR), [𝑔] = 𝜖 . Thus, making the
gauge coupling to be dimensionless, we take rede�nition 𝑔 = 𝑔𝜇𝜖 for some DR mass scale 𝜇 with mass dimension-1,
i.e. [𝜇] = 1, and dimensionless coupling 𝑔, i.e. [𝑔] = 0.
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where 𝑐𝛿
𝑖
is de�ned as the “dimensionless” parameter8 that couples to an e�ective operator O (𝛿)

𝑖
(𝑥)

and called as “Wilson (dimensionless) coe�cient.” With this rede�nition, we de�ne “EFT

expansion” given by

L𝐸𝐹𝑇 (𝑥) =
∞∑︁
𝛿≥0

∑︁
𝑖

𝑐𝛿
𝑖

Λ𝛿−𝑑
O (𝛿)
𝑖

(𝑥) =
∞∑︁
𝛿≥0

1
Λ𝛿−𝑑

L𝛿 where L𝛿 ≡
∑︁
𝑖

𝑐𝛿𝑖 O𝛿
𝑖 (𝑥), (3.11)

where L𝛿 is called “dimension-𝛿 e�ective interaction.” It is worth noting that the cuto� scale Λ

means the short-distance/high-energy scale at which new physics occurs. Moreover, for later use,

we shall call “𝛿 − 𝑑” as “cuto� scaling dimension9.”

3.5 Power Counting Rule and Renormalizability

In quantum �eld theory (QFT), Lagrangian is classi�ed into two types as follows. The “rele-

vant” Lagrangian with “negative cuto� scaling” (i.e. 𝛿 −𝑑 < 0) is called “super-renormalizable”;

the “marginally-relevant” Lagrangian with “zero cuto� scaling” is called “marginally renormal-

izable,” and the “irrelevant” Lagrangian with “positive cuto� scaling” (i.e. 𝛿 − 𝑑 > 0) is called

“non-renormalizable.” In short, “renormalizability10” in QFT is applicable to the (marginally)

relevant Lagrangians with “non-positive cuto� scaling.”

In particular, we call the quantum �eld theory that only includes renormalizable Lagrangians

as “renormalizable theory,” while the theory that also includes non-renormalizable Lagrangians

as “non-renormalizable theory.” In fact, e�ective �eld theory is non-renormalizable theory.

In this section, I will explain how power counting rule is associated with renormalizability;

how di�erent renormalizable and e�ective �eld (or non-renormalizable) theories are, and why

e�ective �eld theory is physically useful in spite of its non-renormalizability.

Let us consider a dimensionless scattering amplitude A in 𝑑-dimensional spacetime. If one
8Usually, this dimensionless coe�cient will be of order of O(1).
9That is, it is equal to “E�ective-Operator Minus Spacetime (EOMS) dimensions.”
10See Ref. [26] for a brief review on renormalization in QFT, which gives an insightful overview of renormalization.
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works at some typical momentum scale 𝑝 , then a single insertion of a dimension-𝛿 e�ective op-

erator in the Feynman’s scattering graph gives the following scaling behavior of the scattering

amplitude

A ∼
( 𝑝
Λ

)𝛿−𝑑
. (3.12)

We note that the “amplitude scaling” in (𝑝/Λ) is equal to the cuto� scaling. Furthermore, when

inserting a set of higher dimensional operators in any Feynman’s scattering graph, the ampliture

scales as

A ∼
( 𝑝
Λ

)𝑛
where 𝑛 ≡

∑︁
𝑖

(𝛿𝑖 − 𝑑), (3.13)

where 𝑖 runs over all the inserted operators, and the amplitude scaling 𝑛 is given by the sum of

cuto� scalings of all the inserted operators. We call the equation of amplitude scaling𝑛 as “Power

counting formula” and 𝑛 means “the order of correction to amplitude” as well

𝑛 ≡
∑︁
𝑖

(𝛿𝑖 − 𝑑). (3.14)

The power counting formula let us know how to organize the amplitude calculations. For exam-

ple, in (𝑑 = 4)-dimensional spacetime, if one want to compute a scattering amplitude A to the

leading order 𝑛 = 0, i.e. (𝑝/Λ)0, then one can only use the interactions with non-positive cuto�

scaling, i.e. L𝛿−𝑑≤0, such as L2, L3, and L4. For the correction (𝑝/Λ)1, one has 1 =
∑
𝑖 (𝛿𝑖 − 4)

and thus need to consider a single insertion of dimension-5 interaction L5. For the correction

(𝑝/Λ)2, one has 2 = ∑
𝑖 (𝛿𝑖 − 4) and thus need to consider single insertion of L6 or two insertions

of L5, and so on.

The Power counting rule is to use the power counting formula for a �xed amplitude scaling

𝑛 of our interest in order to know which interactions L𝛿 ’s should be inserted into the scattering
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graph of a correction in (𝑝/Λ)𝑛 to the �nal amplitude.

Now we are ready to compare the renormalizable and non-renormalizable (or e�ective �eld)

theories. First, as an example, let us say that we consider some “divergent” amplitude with loops

for a �xed 𝑛 made by inserting 𝑚-multiples of a single operator L𝛿 into the graph. Then, we

have 𝑛 =𝑚(𝛿 −𝑑). Since the graph is divergent, it is required to add a counterterm (CT) to make

the Lagrangian renormalizable. Hence, if we assume that a new single operator L𝛿 ′ is enough to

create the counterterm, then we must have it such that 𝑛 = 𝛿′ −𝑑 . Therefore, by considering two

power counting formulae, we can solve for 𝛿′ as follows:

𝑚(𝛿 − 𝑑) = 𝛿′ − 𝑑 =⇒ 𝛿′ =𝑚(𝛿 − 𝑑) + 𝑑. (3.15)

The response to this result will be di�erent as follows:

• Non-Renormalizable Theory (e.g. E�ective Field Theory): Since we now consider L𝛿

as “non-renormalizable” operator, L𝛿 has “positive cuto� scaling,” i.e. 𝛿 −𝑑 > 0. This leads

to the condition that 𝛿′ > 𝑑 or equivalently 𝛿′ − 𝑑 > 0. Notice that this condition is not

upperbound on the dimension of the new operator L𝛿 ′ . For example, for a single dimension-

5 operator L5, in general, the loop graphs with ‘two insertions’ of L5 (so, we consider

𝑛 = 2(5−4) = 2 order correction to amplitude) are divergent. Thus, one need a counterterm

to cancel out the divergence from the loops. That is, the counterterm should be given by

the dimension-6 operatorL6 because we have 𝛿′ = 2(5−4)+4 = 6 where𝑚 = 2, 𝛿 = 5, 𝑑 = 4

are input. Then, the renormalized Lagrangian must be written as

L = L4 +
1
Λ
L5 −→ L𝑟𝑒𝑛 = L4 +

1
Λ
L5 +

1
Λ2L

(𝐶𝑇 )
6 . (3.16)

Notice that this is merely “renormalizable to the correction (𝑝/Λ)2.” Continuing this way, one

can generate operators of arbitrarily higher dimensions 𝛿′ > 𝛿 > 𝑑 by inserting multiples
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of operators with 𝛿 −𝑑 > 0. The renormalization process of cancelling out the divergences

continues in�nitely. This means that we generate an in�nite sum of non-renormalizable

terms in the e�ective Lagrangian L𝐸𝐹𝑇 =
∑
𝛿≥0

L𝛿
Λ𝛿−𝑑

in the end game.

• Renormalizable Theory: In renormalizable theory, since we have operators with non-

positive cuto� scaling, i.e. L𝛿≤𝑑 , the possible new operators can be considered such that

𝛿′ =𝑚(𝛿 − 𝑑) + 𝑑 ≤ 𝑑 . This is exactly the upperbound on the dimension of new operators

L𝛿 ′! For example, for the square-shape one-loop graph made by four insertions of the

dimension-4 vertex operator of 𝑒−𝑒+𝐴𝜇 coupling, the corresponding counterterm can be

made by the new operatorL𝛿 ′=4 since 𝛿′ = 4(4−4)+4 = 4 ≤ 𝑑 = 4 where𝑚 = 4, 𝑑 = 4, 𝛿 = 4

are input. We note that the new operators contributing to the counterterms11 have already

been included in the original renormalizable LagrangianL𝛿≤𝑑 . In conclusion, renormalizable

terms are those with non-positive cuto� scailing 𝑛 ≤ 0. Divergences in such a QFT can be

absorbed by local operators with 0 ≤ 𝛿 ≤ 𝑑 .

Concluding remarks:

• Renormalizable theory is a special case of EFT where we take Λ −→ ∞. Thus, scattering

amplitudes can be computed to arbitrary accuracy because of no corrections in (𝑝/Λ)𝑛 to

the amplitude.

• A theory with operators of dimension 𝛿 > 𝑑 (i.e. “over-spacetime-dimension”) is referred

to as non-renormalizable theory because the in�nitely-many higher dimensional operators

are needed to renormalize the theory.

• However, as long as one is interested in corrections of the maximal value of the ampli-

tude scaling 𝑛 up to some accuracy, it is su�cient to consider �nitely-many operators
11We do not need to add counterterms for the negative dimension operators like 𝜙 (𝑥)−2 since there are no diver-

gences of this type.
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that can contribute to the amplitude of interest. This is the situation that non-local La-

grangian is approximated into the local one up to the desirable accuracy. This implies that

non-renormalizable theory can be as good as renormalizable theory from the viewpoint of

practical use of a theory!

• Again, EFT (= non-renormalizable theory) can have only �nite number of e�ective opera-

tors if one wish to keep the corrections in (𝑝/Λ)𝑛 only up to some maximal value of 𝑛.

• The (𝑝/Λ) suppression of a given graph at low energy 𝑝 � Λ implies that non-local ef-

fective Lagrangian can be well-approximated into a local Lagrangian as a �nite sum of the

operators:

L𝐸𝐹𝑇 (𝑥) =
∞∑︁
𝛿≥0

1
Λ𝛿−𝑑

L𝛿 ≈
Finite N∑︁
𝛿≥0

1
Λ𝛿−𝑑

L𝛿 when 𝑝 � Λ. (3.17)

According to this result, it is worth noticing that if we have some “e�ective” Lagrangian

with a characteristic mass scale 𝑀 and dimensionless “remnant” Wilson coe�cient 𝐶𝛿

generically assumed to be apart from O(1), i.e. in the following form

L𝐸𝐹𝑇 (𝑥) ⊃
Finite N∑︁
𝛿≥0

𝐶𝛿

𝑀𝛿−𝑑L𝛿 , (3.18)

then for this e�ective Lagrangian to be “local,” it must be required that

𝐶𝛿

𝑀𝛿−𝑑 .
1

Λ𝛿−𝑑
=⇒ 𝐶𝛿 .

(
𝑀

Λ

)𝛿−𝑑
. (3.19)

We observe that the remnant Wilson coe�cient 𝐶𝛿 must be constrained. If 𝑀 ∼ Λ, then

the coe�cient 𝐶𝛿 becomes of order of O(1) as the usual one. This argument will be used

throughout this dissertation.
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4 | Review 3: Supersymmetry

This chapter is based on Refs. [7, 27, 28].

For several decades, supersymmetry has been developed as a main framework that could

explain new physics beyond the Standard Model (SM). Particularly, it is motivated by the fact that

it can give us the answers to some problems about the gauge coupling uni�cation, dark matter

candidate (Lightest Supersymmetric Particle: LSP), and Higgs mass hierarchy. Unfortunately,

however, we have never seen yet any experimental evidence of supersymmetry even though

many experiments have been done. For this reason, it is considered that supersymmetry may

be broken spontaneously at some point in the past as so does the electroweak interaction in the

SM. Neverthless, supersymmetry has been deeply studied much due to its mathematically cogent

structure, which may be expected to be realized in nature in a certain way. For example, taking

advantage of the superalgebra, gravitation and other fundamental forces can be uni�ed within

supergravity formulationwhich is a locally supersymmetric �eld theory and even this can be used

as a model of the in�ationary cosmology. In addition to this, supersymmetry is a fundamental

ingredient of string theory.

In that sense, this review is devoted to its mathematical features and techniques in order for

one to understand how supersymmetry is formed and what physical applications can be obtained

in a somewhat rigorous way. From the viewpoint of this, we need to �rst look at the Coleman-

Mandula theorem given by

Theorem 4.1 (Coleman-Mandula Theorem). The most general Lie algebra of symmetries of the
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S-matrix contains the energy momentum generator 𝑃𝜇 and the Lorentz rotation generator 𝑀𝜇𝜈 , and

a �nite number of Lorentz invariant bosonic generators 𝐵𝑙 of some internal compact Lie group.

However, we can make this restrictions to be relaxed by taking the supersymmetry, which

were proposed by Haag, Łopuszański, and Sohnius. Supersymmetry is de�ned as a graded Lie

algebra that has additional algebraic system using anti-commutator in addition to the usual Lie

algebra.

4.1 Supersymmetry Algebras

In this section, we wish to talk about how mathematics of supersymmetry is de�ned, and it

can overcome the limitation given by the Coleman-Mandula theorem.

De�nition 4.2 (Graded Algebra). Let 𝐿 be the direct sum of N+1 (𝑁 > 1) vector subspaces 𝐿𝑘 as

follows:

𝐿 =

𝑁⊕
𝑘=0

𝐿𝑘 . (4.1)

Then, the space 𝐿 satis�es a multiplication rule ◦ that is de�ned by a map ◦ : 𝐿 × 𝐿 → 𝐿 such

that 𝑢𝑘 ∈ 𝐿𝑘 =⇒ 𝑢 𝑗 ◦ 𝑢𝑘 ∈ 𝐿 𝑗+𝑘 mod(N+1). This is called 𝑍 (𝑁+1)-graded algebra because the group

whose elements are the numbers of indices for the vector subspaces 𝐿𝑘 is isomorphic to a �nite

cyclic group 𝑍/(𝑁 + 1)𝑍 1with the addition operation modulo (𝑁 + 1). Such a property with the

multiplication ◦ is called “grading”.

Now we utilize this property to de�ne the so-called “super-Poincaré algebra” that is Poincare

algebra equipped with the superalgebra that has structure of a 𝑍2-graded Lie algebra which can

avoid the restrictions o�ered by the Coleman-Mandula theorem. First of all, we are going to see

the de�ntion of the 𝑍2-graded Lie algebra as follows:
1e.g. 𝑍2 ≡ 𝑍/2𝑍 = {0, 1} = {𝑥 ∈ 𝑍 |𝑥 = 𝑛 mod(2) ∧ 𝑛 ∈ 𝑍 }
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De�nition 4.3 (Superalgebra). A superalgebra is a 𝑍2-graded Lie algebra de�ned by a 𝑍2-graded

algebra whose multiplication is given by a Lie bracket such that: (1) Supersymmetrization: For

all 𝑥𝑖 ∈ 𝐿𝑖, 𝑥 𝑗 ∈ 𝐿 𝑗 (𝑖, 𝑗 = 0, 1), 𝑥𝑖 ◦ 𝑥 𝑗 = (−1) (𝑖× 𝑗)+1𝑥 𝑗 ◦ 𝑥𝑖 . (2) Generalized Jacobi identity:

(−1)𝑖𝑘 (𝑥𝑖 ◦ 𝑥 𝑗 ) ◦ 𝑥𝑘 + (−1) 𝑗𝑖 (𝑥 𝑗 ◦ 𝑥𝑘) ◦ 𝑥𝑖 + (−1)𝑘 𝑗 (𝑥𝑘 ◦ 𝑥𝑖) ◦ 𝑥 𝑗 = 0. (4.2)

Then, we are �nally ready to introduce the Super-Poincaré.

De�nition 4.4 (Super-Poincaré algebra). Super-Poincaré algebra is de�ned by a 𝑍2-graded Lie

algebra 2 𝐿 = 𝐿0 ⊕ 𝐿1 where 𝐿0 is an union of the Poincare algebra of 𝑆𝑂 (3, 1) and a �nite set of

Lorentz scalar (internal) Lie algebras of compact Lie groups𝐺𝑙 (𝑙 = 1, 2, 3, · · · , 𝑀 ,𝑀 is the number

of the internal Lie groups), and 𝐿1 ≡
⊕N

𝑖=1 𝐿
(𝑖)
1 whose 𝐿(𝑖)1 is 𝑆𝑝𝑎𝑛{𝑄𝑖𝑎}, 𝑎 = 1, 2, 3, 4 where 𝑄𝑖𝑎 3

are Majorana spinors and 𝑖 = 1, 2, 3, · · · , N (this N is called ‘dimension of supersymmetry’)

such that

• 𝑃𝜇 ◦𝑄𝑖𝑎 = [𝑃𝜇, 𝑄𝑖𝑎] = 0

• 𝑀𝜇𝜈 ◦𝑄𝑖𝑎 = [𝑀𝜇𝜈 , 𝑄
𝑖
𝑎] = (𝑀𝜇𝜈 )𝑎𝑏𝑄𝑖𝑏

• 𝑄𝑖𝑎 ◦𝑄
𝑗

𝑏
= {𝑄𝑖𝑎, 𝑄

𝑗

𝑏
} = −2(𝛾 𝜇𝐶)𝑎𝑏𝑃𝜇

• 𝑄𝑖𝑎 ◦𝑄
𝑗

𝑏
= {𝑄𝑖𝑎, 𝑄

𝑗

𝑏
} = −2(𝐶𝛾 𝜇)𝑎𝑏𝑃𝜇

• 𝑄𝑖𝑎 ◦𝑄
𝑗

𝑏
= {𝑄𝑖𝑎, 𝑄

𝑗

𝑏
} = 2(𝛾 𝜇)𝑎𝑏𝑃𝜇

• [𝐵𝑙 , 𝑄𝑖𝑎] = 𝑓
𝑖 𝑗

𝑙
𝑄
𝑗
𝑎

2The elements of 𝐿0 and 𝐿1 are considered as ‘bosonic’ and ‘fermionic’ variables, respectively.
3The reason why we consider di�erent 𝑄𝑖𝑎s with the index ‘𝑖’ is that for all 𝑎 of the Majorana spinor 𝑄𝑖𝑎 the

multiplication ◦ between the elements of the internal Lie algebras in the 𝐿0 and the 𝐿1 must be closed back into the
𝐿1, while the product between the elements of the internal Lie algebras and the Poincaré algebra is closed into the
𝐿0 naturally. Therefore, in general, the indices of the elements in the two subspaces 𝐿0 and 𝐿1 have to be allowed
to mix via structure constants of their commutation relation. That is why we can consdier a general N -extended
supersymmetry algebra.
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• [𝐵𝑙 , 𝑃𝜇] = [𝐵𝑙 , 𝑀𝜇𝜈 ] = 0

where 𝑃𝜇, 𝑀𝜇𝜈 , 𝐵𝑙 ∈ 𝐿0 and 𝑄𝑖𝑎 ∈ 𝐿
(𝑖)
1 ; 𝛾 𝜇 are the gamma matrices; 𝐶 is the charge conjugation

matrix4, and 𝑄𝑎 = (𝑄𝑇𝐶)𝑎, 𝑄𝑎 = (𝐶𝑄𝑇 )𝑎 (Majorana conjugate). Note that [·, ·] is anti-symmetric

but {·, ·} is symmetric. However, we call them as commutator and anti-commutator respectively.

Here, the commutation relations can be obtained by using the generalized Jacobi identity of

three variables and their given algebras. For instance, the commutation relations [𝑃,𝑄], [𝑀,𝑄],

and {𝑄,𝑄} (we dropped the relevant indices for simplicity) can be found by evaluating the Jacobi

identities of the three elements (𝑃, 𝑃,𝑄), (𝑀,𝑀,𝑄), and (𝑄,𝑄, 𝑃 ) respectively.

The detailed derivations of the commutators are as follows. At �rst, consider the 𝑃, 𝑃,𝑄 set,

and suppose that the supercharge has a commutation relation de�ned by [𝑃 𝜇, 𝑄𝑖𝑎] ≡ 𝑐 (𝛾 𝜇𝐶)𝑎𝑏𝑄𝑖𝑏 ∈

𝐿
(𝑖)
1 , where 𝑐 (𝛾 𝜇𝐶)𝑎𝑏 are its structure constants and 𝑐 is a constant. Then, their Jacobi identity is

[[𝑃 𝜇, 𝑃𝜈 ], 𝑄𝑖𝑎] + [[𝑃𝜈 , 𝑄𝑖𝑎], 𝑃 𝜇] + [[𝑄𝑖𝑎, 𝑃 𝜇], 𝑃𝜈 ] = 0

=⇒ 𝑐2 [𝛾𝜈𝐶𝛾 𝜇𝐶 − 𝛾 𝜇𝐶𝛾𝜈𝐶]𝑎𝑐𝑄𝑖𝑐 = 0

=⇒ 𝑐2 [𝛾𝜈 (𝛾 𝜇)𝑇 − 𝛾 𝜇 (𝛾𝜈 )𝑇 ]𝑎𝑐𝑄𝑖𝑐 = 0

=⇒ 𝑐 = 0 (4.4)

Thus, it turns out that [𝑄𝑖
𝑏
, 𝑃𝜈 ] = 0. This is as expected because the supercharge does not depend

on spacetime coordinate, whichmeans it has spacetime translation invariance so that we consider

global supersymmetry.

Next, consider the 𝑀,𝑀,𝑄 set, and de�ne [𝑀𝜇𝜈 , 𝑄𝑖𝑎] ≡ (𝑏𝜇𝜈 )𝑎𝑏𝑄𝑖𝑏 , where (𝑏
𝜇𝜈 )𝑎𝑏 are its struc-

ture constants. Applying the Jacobi identity to the set and after some tedious calculations, we
4In any representation (Dirac, Weyl, Majorana), the following relations have to hold:

𝐶 ≡ 𝑖𝛾2𝛾0, 𝐶2 = −1, 𝐶−1 = 𝐶𝑇 = 𝐶† = −𝐶, (𝛾𝜇)𝑇 = 𝐶𝛾𝜇𝐶, (𝛾5)𝑇 = −𝐶𝛾5𝐶. (4.3)
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�nd

[[𝑀𝜇𝜈 , 𝑀𝜌𝜎 ], 𝑄𝑖𝑎] + [[𝑀𝜌𝜎 , 𝑄𝑖𝑎], 𝑀𝜇𝜈 ] + [[𝑄𝑖𝑎, 𝑀𝜇𝜈 ], 𝑀𝜌𝜎 ] = 0

=⇒ [𝑏𝜇𝜈 , 𝑏𝜌𝜎 ]𝑎𝑏 = −𝑖 (𝜂𝜇𝜌𝑏𝜈𝜎 − 𝜂𝜈𝜌𝑏𝜇𝜎 − 𝜂𝜇𝜎𝑏𝜈𝜌 + 𝜂𝜈𝜎𝑏𝜇𝜌), (4.5)

which is exactly same as the commutation relation of 𝑀𝜇𝜈s as representation of the Lorentz al-

gebra for a spinor. Thus, we can conclude that [𝑀𝜇𝜈 , 𝑄𝑖𝑎] ≡ (𝑀𝜇𝜈 )𝑎𝑏𝑄𝑖𝑏 .

Plus, let us consider a Jacobi identity of the 𝑄,𝑄, 𝑃 set. Then, the identity is given by

[{𝑄𝑖𝑎, 𝑄
𝑗

𝑏
}, 𝑃 𝜇] − {[𝑄 𝑗

𝑏
, 𝑃 𝜇], 𝑄𝑖𝑎} + {[𝑃 𝜇, 𝑄𝑖𝑎], 𝑄

𝑗

𝑏
} = 0. (4.6)

Since a supercharge and the spacetime translation operator already commute, the Jacobi identity

implies that

[{𝑄𝑖𝑎, 𝑄
𝑗

𝑏
}, 𝑃 𝜇] = 0. (4.7)

This tells us that {𝑄𝑖𝑎, 𝑄
𝑗

𝑏
} must have no a Lorentz generator𝑀𝜇𝜈 because this does not commute

with the momentum. That is, the anti-commutator can be proportional to any operator that

commutes with the spacetime translation generator 𝑃 𝜇 .

Now, let us �nd the most general admissible form of the anti-commutator. Since the super-

charges are anticommuting elements of a Cli�ord algebra, their commutation relations must be

closed in the algebra as well. Thus, a result of a commutation relation can be represented by

a linear combination of the basis elements of the Cli�ord algebra, i.e. the 𝛾-matrices and their

products.

Since (𝛾 𝜇)𝑇 = 𝐶𝛾 𝜇𝐶 in any representation and {𝑄𝑖𝑎, 𝑄
𝑗

𝑏
} is symmetric under the interchange

𝑎, 𝑖 ↔ 𝑏, 𝑗 , we have to consider the charge conjugation matrix 𝐶 and the de�nite symmetries.

Hence, from the possible basis matrices of a general commutator of two anti-commuting vari-
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ables, given by

𝐶, 𝛾5𝐶, 𝛾
𝜇𝐶,𝛾 𝜇𝛾5𝐶, 𝛾

𝜇𝛾𝜈𝐶, 𝛾 𝜇𝛾𝜈𝛾5𝐶, · · · , (4.8)

we can only choose𝐶,𝛾 𝜇𝐶,𝛾 𝜇𝛾5𝐶 . This is because there is no generators but 𝑃𝜇, 𝑀𝜇𝜈 allowed by the

Coleman-Mandula theorem; that is, there are no the corresponding tensorial generators for the

𝛾 𝜇𝛾5𝐶 etc and [{𝑄𝑖𝑎, 𝑄
𝑗

𝑏
}, 𝑀𝜇𝜈 ] ≠ 0. However, there can be bosonic generators that can be allowed

to exist in the Coleman-Mandula theorem. Therefore, the commutator can be represented by

{𝑄𝑖𝑎, 𝑄
𝑗

𝑏
} = (𝛾 𝜇𝐶)𝑎𝑏𝑚𝑖 𝑗𝑃𝜇 +𝐶𝑎𝑏𝑉 𝑖 𝑗 + 𝑖 (𝛾5𝐶)𝑎𝑏𝑍 𝑖 𝑗 , (4.9)

where 𝑚𝑖 𝑗 = 𝑚 𝑗𝑖,𝑉 𝑖 𝑗 = −𝑉 𝑗𝑖, 𝑍 𝑖 𝑗 = −𝑍 𝑗𝑖 that are required to meet the interchange symmetries

𝑎, 𝑖 ↔ 𝑏, 𝑗 and they are real matrices.

Moreover, since {𝑄𝑖𝑎, 𝑄
𝑗

𝑏
} = 0 when 𝑖 ≠ 𝑗 , we have to impose𝑚𝑖 𝑗 ≡ 𝑎𝛿𝑖 𝑗 where 𝑎 is a constant,

which will be determined by imposing that (when N = 1) [𝛿1, 𝛿2] using the above expression

with the 𝑎 must be equal to [𝛿1, 𝛿2] = 2
(
(𝜃2)𝑎 (𝛾 𝜇)𝑎𝑏 (𝜃1)𝑏

)
𝑃𝜇 in the Majorana representation 5.

Then, it turns out that 𝑎 = −2, which give us the following:

{𝑄𝑖𝑎, 𝑄
𝑗

𝑏
} = −2(𝛾 𝜇𝐶)𝑎𝑏𝛿𝑖 𝑗𝑃𝜇 +𝐶𝑎𝑏𝑉 𝑖 𝑗 + 𝑖 (𝛾5𝐶)𝑎𝑏𝑍 𝑖 𝑗 , (4.10)

where we call the bosonic generators𝑉 𝑖 𝑗 and𝑍 𝑖 𝑗 as “Central charges” because they commute with

each other and even all the Poincaré and supercharge generators. Hence, the relation reduces to

{𝑄𝑎, 𝑄𝑏} = −2(𝛾 𝜇𝐶)𝑎𝑏𝑃𝜇 . (4.11)
5If we represent the supercharges𝑄,𝑄 and 𝜃, 𝜃 in the Weyl representation, we need to evaluate the commutation

relation [𝛿1, 𝛿2] in the same representation.
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Also, by multiplying the charge conjugation matrix to this, we can get the following:

{𝑄𝑎, 𝑄𝑏}𝐶𝑏𝑐 = 𝑄𝑎𝑄𝑏𝐶𝑏𝑐 +𝑄𝑏𝐶𝑏𝑐𝑄𝑎

= 𝑄𝑎 (𝑄𝑇𝐶)𝑐 + (𝑄𝑇𝐶)𝑐𝑄𝑎

= 𝑄𝑎𝑄𝑐 +𝑄𝑐𝑄𝑎 = {𝑄𝑎, 𝑄𝑏}, (4.12)

and −2(𝛾 𝜇𝐶2)𝑎𝑐𝑃𝜇 = 2(𝛾 𝜇)𝑎𝑐𝑃𝜇 , together with 𝐶2 = −1 and 𝑄 = 𝑄𝑇𝐶 . This gives us

{𝑄𝑎, 𝑄𝑏} = 2(𝛾 𝜇)𝑎𝑏𝑃𝜇 . (4.13)

Similarly, we can get

{𝑄𝑎, 𝑄𝑏} = −2(𝐶𝛾 𝜇)𝑎𝑏𝑃𝜇 . (4.14)

So far, we have derived all the commutation relations that de�ne the super-Poincaré algebras.

In the meantime, we are going to only consider N = 1 supersymmetry (also called ‘pure

supersymmetry’) so that we can drop the indices 𝑖, 𝑗 from now on.

4.2 Some Remarks of Supersymmetry Algebras

In this section, we now look into the representations of supersymmetry. First of all, we are

going to see the three special properties of supermultiplets.

• All component �elds belonging to an irreducible representation of supersymmetry (a su-

permultiplet) have the identical mass.

• The energy 𝑃0 in supersymmtric theory is always positive.

• A supermultiplet always has an equal number of boson and fermion degrees of freedom.
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Let us now check these properties. The �rst statement comes from the following:

[𝑃2, 𝑃 𝜇] = [𝑃2, 𝑀𝜇𝜈 ] = [𝑃2, 𝑄𝑖𝑎] = 0. (4.15)

For the second statement, we can easily see this by evaluating

N∑︁
𝑖=1

Tr[{𝑄𝑖𝑎, 𝑄𝑖𝑎}(𝛾0)] = 2NTr[(𝛾 𝜇𝛾0)]𝑃𝜇 = 8N𝑃0 > 0,

(4.16)

where we used Tr[𝛾 𝜇𝛾𝜈 ] = 4𝜂𝜇𝜈 , and the trace is done over the spinor indices. Thus, it implies

that 𝑃0 > 0. To get the third one, let us introduce a fermionic operator de�ned by (−1)𝑁𝑓 in which

(−1)𝑁𝑓 = +1 for bosonic states and (−1)𝑁𝑓 = −1 for fermionic states. This now anti-commute

with the supercharge: {(−1)𝑁𝑓 , 𝑄𝑖𝑎} = 0.

Then, for any supermultiplet, by taking the trace over the supermultiplet indices, we have

Tr[(−1)𝑁𝑓 {𝑄𝑖𝑎, 𝑄
𝑗

𝑏
}] = Tr[(−1)𝑁𝑓𝑄𝑖𝑎𝑄

𝑗

𝑏
+ (−1)𝑁𝑓𝑄 𝑗

𝑏
𝑄𝑖𝑎]

= Tr[−𝑄𝑖𝑎 (−1)𝑁𝑓𝑄
𝑗

𝑏
+𝑄𝑖𝑎 (−1)𝑁𝑓𝑄

𝑗

𝑏
]

= 0, (4.17)

where the �rst term is obtained by using the commutator {(−1)𝑁𝑓 , 𝑄𝑖𝑎} = 0, while the second

term is obtained by taking a permutation for the three operators inside the trace.

By the way, since {𝑄𝑎, 𝑄𝑏} = 2(𝛾 𝜇)𝑎𝑏𝑃𝜇 , for 𝑖 = 𝑗 , we have

Tr[(−1)𝑁𝑓 2(𝛾 𝜇)𝑎𝑏𝑃𝜇] = 2(𝛾 𝜇)𝑎𝑏𝑃𝜇Tr[(−1)𝑁𝑓 ] = 0 =⇒ Tr[(−1)𝑁𝑓 ] = 0. (4.18)

This tells us that there must be the same number of the bosonic and fermionic degrees of freedom

on a supermultiplet.
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In fact, by the theorem of Haag, Łopuszański, and Sohnius, it is known that the supersymme-

try algebra is the most general superalgebra admissible as a symmetry of quantum �eld theory.

Therefore, this can be considered as an extension to superalgebra of the Coleman-Mandula the-

orem.

We omit putting the representations of supersymmetry algebras, which are explianed in detail

in Ref. [1, 2, 3]. The point is that for N = 1 global supersymmetry, there is a massless super-

multiplet |𝑝𝜇, 𝜆 >, |𝑝𝜇, 𝜆 + 1/2) >, while a massive supermultiplet is given by 2|𝑚, 𝑗 = 𝑦;𝑝𝜇, 𝑗3 >

, |𝑚, 𝑗 = 𝑦 + 1/2;𝑝𝜇, 𝑗3 >, |𝑚, 𝑗 = 𝑦 − 1/2;𝑝𝜇, 𝑗3 >, where 𝑦 is superspin number that is a label of a

cli�ord vacuum |Ω >= |𝑚, 𝑗 = 𝑦;𝑝𝜇, 𝑗3 >.

4.3 Superspace Formalism and Supersymetry

Transformations

4.3.1 Superspace

In this section, we introduce a new concept called “superspace”. The coordinate 𝑧 on this

space is called “super-coordinates” and de�ned by 𝑧 ≡ (𝑥 𝜇, 𝜃𝛼 , 𝜃 ¤𝛼 ).

Here, we use the Weyl representation, instead of the Majorana for convenience.

From the anti-commutator {𝑄𝑎, 𝑄𝑏} = 2(𝛾 𝜇)𝑎𝑏𝑃𝜇 , we can �nd

{𝑄𝛼 , 𝑄 ¤𝛼 } = 2(𝜎𝜇)𝛼 ¤𝛼𝑃𝜇 . (4.19)

Then, it gives us

[𝜃𝑄, 𝜃𝑄] = [𝜃𝛼𝑄𝛼 , 𝜃 ¤𝛼𝑄
¤𝛼 ] = 2𝜃𝛼 (𝜎𝜇)𝛼 ¤𝛽𝜃

¤𝛽𝑃𝜇, (4.20)

where 𝜃𝑄 ≡ 𝜃𝛼𝑄𝛼 , (𝜃𝑄)† = (𝜃𝛼𝑄𝛼 )† = (𝑄𝛼 )†(𝜃𝛼 )† = 𝑄 ¤𝛼𝜃 ¤𝛼 = −𝑄 ¤𝛼𝜃 ¤𝛼 = 𝜃 ¤𝛼𝑄 ¤𝛼 ≡ 𝜃𝑄, 𝜃𝜎𝑚𝜃 ≡
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𝜃𝛼 (𝜎𝑚)𝛼 ¤𝛼𝜃 ¤𝛼 .

Then nowwe are ready to introduce a general group element that generates a Super-Poincaré

group de�ned by

𝑔(𝑧, 𝜔) = 𝑔(𝑥, 𝜃, 𝜃, 𝜔)

≡ exp[𝑖 (−𝑥 𝜇𝑃𝜇 −
1
2
𝜔𝜇𝜈𝑀𝜇𝜈 + 𝜃𝛼𝑄𝛼 + 𝜃 ¤𝛼𝑄

¤𝛼 )],

(4.21)

where 𝑧 is the super-coordinate and𝜔𝜇𝜈 is the corresponding parameter to the Lorentz generator.

For simplicity, we set 𝜔𝜇𝜈 = 0, which is not of interest. Then, the group element is 𝑔(𝑧) ≡

exp[𝑖 (𝑥 𝜇𝑃𝜇 + 𝜃𝛼𝑄𝛼 + 𝜃 ¤𝛼𝑄 ¤𝛼 )] ≡ exp(𝑖𝑧𝐴𝐺𝐴).

Now, let us consider a product of two group elements to see what happens:

𝑔(𝑧1)𝑔(𝑧2) = exp(−𝑖𝑧𝐴1𝐺𝐴) exp(−𝑖𝑧𝐴2𝐺𝐴) = 𝑔(0, 𝜖, 𝜖)𝑔(𝑥, 𝜃, 𝜃 )

= exp[−𝑖 (𝜖𝛼𝑄𝛼 + 𝜖 ¤𝛼𝑄 ¤𝛼 )] exp[−𝑖 (−𝑥 𝜇𝑃𝜇 + 𝜃𝛼𝑄𝛼 + 𝜃 ¤𝛼𝑄
¤𝛼 )]

= exp[−𝑖 (𝜖𝛼𝑄𝛼 + 𝜖 ¤𝛼𝑄 ¤𝛼 − 𝑥 𝜇𝑃𝜇 + 𝜃𝛼𝑄𝛼 + 𝜃 ¤𝛼𝑄
¤𝛼 + 1

2
[𝜖𝛼𝑄𝛼 + 𝜖 ¤𝛼𝑄 ¤𝛼 , 𝜃𝛼𝑄𝛼 + 𝜃 ¤𝛼𝑄

¤𝛼 ])]

= exp[−𝑖 (−𝑥 𝜇𝑃𝜇 + (𝜃𝛼 + 𝜖𝛼 )𝑄𝛼 + (𝜃 ¤𝛼 + 𝜖 ¤𝛼 )𝑄 ¤𝛼 + 1
2

(
[𝜖𝛼𝑄𝛼 , 𝜃 ¤𝛼𝑄

¤𝛼 ] + [𝜖 ¤𝛼𝑄 ¤𝛼 , 𝜃𝛼𝑄𝛼 ]
)
)]

= exp[−𝑖 (−𝑥 𝜇𝑃𝜇 + (𝜃𝛼 + 𝜖𝛼 )𝑄𝛼 + (𝜃 ¤𝛼 + 𝜖 ¤𝛼 )𝑄 ¤𝛼 + 1
2

(
2𝜖𝛼 (𝜎𝜇)𝛼 ¤𝛽𝜃

¤𝛽𝑃𝜇 − 2𝜃𝛼 (𝜎𝜇)𝛼 ¤𝛽𝜖
¤𝛽𝑃𝜇

)
)]

= exp[−𝑖 (−(𝑥 𝜇 − 𝜖𝛼 (𝜎𝜇)𝛼 ¤𝛽𝜃
¤𝛽 + 𝜃𝛼 (𝜎𝜇)𝛼 ¤𝛽𝜖

¤𝛽)𝑃𝜇 + (𝜃𝛼 + 𝜖𝛼 )𝑄𝛼 + (𝜃 ¤𝛼 + 𝜖 ¤𝛼 )𝑄 ¤𝛼 )]

= 𝑔(𝑥′, 𝜃 ′, 𝜃 ′) = exp(𝑖𝑧′𝐴𝐺𝐴) = exp(𝑖Λ𝐴𝐵𝑧
𝐵𝐺𝐴), (4.22)

where we used [𝜖𝑄, 𝜃𝑄] = [𝜖𝑄, 𝜃𝑄] = 0 and 𝑧′𝐴 = Λ𝐴
𝐵
𝑧𝐵 . Hence, the group operation generates

the following transformations

𝑥 𝜇 → 𝑥 𝜇 − 𝜖𝛼 (𝜎𝜇)𝛼 ¤𝛽𝜃
¤𝛽 + 𝜃𝛼 (𝜎𝜇)𝛼 ¤𝛽𝜖

¤𝛽, 𝜃𝛼 → 𝜃𝛼 + 𝜖𝛼 , 𝜃 ¤𝛼 → 𝜃 ¤𝛼 + 𝜖 ¤𝛼 . (4.23)
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4.3.2 General supersymmetry transformations of a Lorentz invariant

superfield

Meanwhile, let us consider a general function on the superspace Φ(𝑧), which is called “super-

�eld” and can be expanded in terms of component �elds:

Φ(𝑥, 𝜃, 𝜃 ) = 𝜑 (𝑥) + 𝜃𝜓 (𝑥) + 𝜃 𝜒 (𝑥) + 𝜃𝜃𝑀 (𝑥) + 𝜃𝜃𝑁 (𝑥)

+(𝜃𝜎𝜇𝜃 )𝑉𝜇 (𝑥) + (𝜃𝜃 )𝜃𝜆 + (𝜃𝜃 )𝜃𝜌 (𝑥) + (𝜃𝜃 ) (𝜃𝜃 )𝐷 (𝑥), (4.24)

where 𝜑,𝑀, 𝑁, 𝐷 are scalar �elds; 𝜓, 𝜒, 𝜆, 𝜌 are spinor �elds, and 𝑉𝜇 is a vector �eld. These are

called “component �elds”.

Then, using the usual symmetry argument 6 for the supersymmetry transformation, we have

𝑒−𝑖 (−𝑎
𝜇𝑃𝜇+𝜖𝑄+𝜖𝑄)Φ(𝑥 𝜇, 𝜃𝛼 , 𝜃 ¤𝛼 )𝑒+𝑖 (−𝑎

𝜇𝑃𝜇+𝜖𝑄+𝜖𝑄) ≡ Φ(𝑥′𝜇, 𝜃 ′𝛼 , 𝜃 ′¤𝛼 ) = Φ(𝑥 𝜇, 𝜃𝛼 , 𝜃 ¤𝛼 , 𝑎
𝜇, 𝜖𝛼 , 𝜖 ¤𝛼 ). (4.25)

Then, by rede�ning the variables, we can get

𝑒−𝑖 (−𝑥
𝜇𝑃𝜇+𝜃𝑄+𝜃𝑄)Φ(0, 0, 0)𝑒+𝑖 (−𝑥𝜇𝑃𝜇+𝜃𝑄+𝜃𝑄) ≡ Φ(𝑥 𝜇, 𝜃𝛼 , 𝜃 ¤𝛼 ) = 𝑔(𝑧2)Φ(0, 0, 0)𝑔(𝑧2)−1. (4.26)

6For a �nite general symmetry transformation as a realization (or fundamental representation) of a symmetry
group that acts on the “Realization space” R of a (local) �eld 𝜙 (𝑧) (which is considered as an element in a ‘Function
space’, e.g. Hilbert space) given by U(𝜖) ≡ 𝑒𝛿 (𝜖) = 𝑒𝜖

𝐴G𝐴 where G𝐴 is the symmetry realization generator and 𝜖𝐴
is the corresponding transformation parameter which is a conjugate of the generator, the transformation is given
by 𝜙 ′(𝑧) = U(𝜖)𝜙 (𝑧) = 𝜙 (𝑧 ′), where 𝑧 ′ ≡ 𝑧 ′(𝜖) = Λ(𝜖)𝑧 and Λ(𝜖) is the coordinate symmetry transformation of
the coordinates 𝑧 generated by theU(𝜖). On the other hand, as an adjoint representation of a symmetry group that
acts on the “Adjoint representation space (i.e. the Lie algebra of the group)” 𝑅 of a (local) �eld 𝜙 (𝑧) (which is now
considered as a quantum operator on the ‘Hilbert space’), the transformation is given by 𝜙 ′(𝑧) = 𝑈 (𝜖)𝜙 (𝑧)𝑈 (𝜖)−1,
where𝑈 (𝜖) ≡ 𝑒−𝜖𝐴𝐺𝐴 ,𝐺𝐴 is the adjoint representation symmetry generator, and 𝜖𝐴 is the same symmetry parameter.
Therefore, from the two transformations, we �nd an equality such that 𝑈 (𝜖)𝜙 (𝑧)𝑈 (𝜖)−1 = U(𝜖)𝜙 (𝑧) = 𝜙 (𝑧 ′),
where 𝑧 ′ ≡ 𝑧 ′(𝜖) = Λ(𝜖)𝑧. Also, we can see that the 𝑈 (𝜖) generates the Λ(𝜖) after all. This implies that 𝛿 (𝜖)𝜙 =

−𝜖𝐴 [𝐺𝐴, 𝜙] = 𝜖𝐴G𝐴𝜙 .
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Thus, using this relation, we can reach the following

𝑒−𝑖 (𝜖𝑄+𝜖𝑄)Φ(𝑥 𝜇, 𝜃𝛼 , 𝜃 ¤𝛼 )𝑒+𝑖 (𝜖𝑄+𝜖𝑄) = 𝑔(𝑧1)Φ(𝑥 𝜇, 𝜃𝛼 , 𝜃 ¤𝛼 )𝑔(𝑧1)−1

= 𝑔(𝑧1)𝑔(𝑧2)Φ(0, 0, 0) (𝑔(𝑧1)𝑔(𝑧2))−1

= 𝑔(𝑧′)Φ(0, 0, 0)𝑔(𝑧′)−1 ≡ Φ(𝑥′𝜇, 𝜃 ′𝛼 , 𝜃 ′¤𝛼 )

= Φ(𝑥 𝜇 − 𝜖𝛼 (𝜎𝜇)𝛼 ¤𝛽𝜃
¤𝛽 + 𝜃𝛼 (𝜎𝜇)𝛼 ¤𝛽𝜖

¤𝛽, 𝜃𝛼 + 𝜖𝛼 , 𝜃 ¤𝛼 + 𝜖 ¤𝛼 )

= 𝑒𝑖 (𝜖Q+𝜖Q̄)Φ(𝑥 𝜇, 𝜃𝛼 , 𝜃 ¤𝛼 ), (4.27)

where Q is a realization of the transformation acting on the function space of Φ. Next, let us

�nd the explicit form of the realization generators Q. From the above equation, by expanding the

transformed Φ, we have

Φ(𝑥 𝜇 − 𝜖𝛼 (𝜎𝜇)𝛼 ¤𝛽𝜃
¤𝛽 + 𝜃𝛼 (𝜎𝜇)𝛼 ¤𝛽𝜖

¤𝛽, 𝜃𝛼 + 𝜖𝛼 , 𝜃 ¤𝛼 + 𝜖 ¤𝛼 )

≈ Φ(𝑥, 𝜃, 𝜃 ) + 𝑖 (−𝜖𝛼 (𝜎𝜇)𝛼 ¤𝛽𝜃
¤𝛽 + 𝜃𝛼 (𝜎𝜇)𝛼 ¤𝛽𝜖

¤𝛽)𝜕𝜇Φ

+𝜖𝛼 𝜕

𝜕𝜃𝛼
Φ + 𝜖 ¤𝛼

𝜕

𝜕𝜃 ¤𝛼
Φ + · · ·

= Φ + 𝑖 (𝜖𝛼Q𝛼 + 𝜖 ¤𝛼 Q̄ ¤𝛼 )Φ. (4.28)

By using 𝜖 ¤𝛼 Q̄ ¤𝛼 = −𝜖 ¤𝛼 Q̄ ¤𝛼 = Q̄ ¤𝛼𝜖 ¤𝛼 ; 𝜃𝛼 (𝜎𝜇)𝛼 ¤𝛽𝜖
¤𝛽 = 𝜃 𝛽 (𝜎𝜇)𝛽 ¤𝛼𝜖 ¤𝛼 ; and 𝜖 ¤𝛽

𝜕

𝜕𝜃 ¤𝛽
= − 𝜕

𝜕𝜃 ¤𝛽
𝜖 ¤𝛽 = 𝜀

¤𝛽 ¤𝛼 𝜕

𝜕𝜃 ¤𝛼 𝜖 ¤𝛽 =

−𝜀 ¤𝛼 ¤𝛽 𝜕

𝜕𝜃 ¤𝛼 𝜖 ¤𝛽 , and by identifying each term in both sides, we �nally have the realizations of the

supercharges as follows:

Q𝛼 = −𝑖 𝜕

𝜕𝜃𝛼
− (𝜎𝜇)𝛼 ¤𝛽𝜃

¤𝛽𝜕𝜇, (4.29)

Q̄ ¤𝛼 = +𝑖 𝜕

𝜕𝜃 ¤𝛼 + 𝜃 𝛽 (𝜎𝜇)𝛽 ¤𝛼𝜕𝜇, (4.30)

P𝜇 = −𝑖𝜕𝜇 . (4.31)

After some lengthy calculations with the above realizations and the symmetry transformation
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relation given by

𝛿 (𝜖)Φ = 𝑖 (𝜖𝛼Q𝛼 + 𝜖 ¤𝛼 Q̄ ¤𝛼 )Φ(= −𝑖 [𝜖𝛼𝑄𝛼 + 𝜖 ¤𝛼𝑄 ¤𝛼 ,Φ]), (4.32)

we can get the explicit forms of the in�nitesimal supersymmetry transformations of the compo-

nent �elds of the super�eld Φ as follows:

𝛿𝜖𝜑 = 𝜖𝜓 + 𝜖𝜒, (4.33)

𝛿𝜖𝜓 = 2𝜖𝑀 + 𝜎𝜇𝜖 (𝑖𝜕𝜇𝜑 +𝑉𝜇), (4.34)

𝛿𝜖 𝜒 = 2𝜖𝑁 − 𝜖𝜎𝜇 (𝑖𝜕𝜇𝜑 −𝑉𝜇), (4.35)

𝛿𝜖𝑀 = 𝜖𝜆 − 𝑖

2
𝜕𝜇𝜓𝜎

𝜇𝜖, (4.36)

𝛿𝜖𝑁 = 𝜖𝜌 + 𝑖

2
𝜖𝜎𝜇𝜕𝜇 𝜒, (4.37)

𝛿𝜖𝑉𝜇 = 𝜖𝜎𝜇𝜆 + 𝜌𝜎𝜇𝜖 +
𝑖

2
(𝜕𝜈𝜓𝜎𝜇𝜎𝜈𝜖 − 𝜖𝜎𝜈𝜎𝜇𝜕𝜈 𝜒),

(4.38)

𝛿𝜖𝜆 = 2𝜖𝐷 + 𝑖

2
(𝜎𝜈𝜎𝜇𝜖)𝜕𝜇𝑉𝜈 + 𝑖𝜎𝜇𝜖𝜕𝜇𝑀, (4.39)

𝛿𝜖𝜌 = 2𝜖𝐷 − 𝑖

2
(𝜎𝜈𝜎𝜇𝜖)𝜕𝜇𝑉𝜈 + 𝑖𝜎𝜇𝜖𝜕𝜇𝑁, (4.40)

𝛿𝜖𝐷 =
𝑖

2
𝜕𝜇 (𝜖𝜎𝜇𝜆 − 𝜌𝜎𝜇𝜖), (4.41)

where the 𝛿𝜖𝐷 is a total derivative in particular 7.

4.3.3 Classification of superfields

The following are super�elds:

• Linear combinations of super�elds, Φ + Ψ, etc.

• Products of super�elds, ΦΨ, etc.
7𝜃 -derivatives to be added
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• Spacetime derivatives of super�elds, 𝜕𝜇Φ, etc.

• Super-covariant derivatives of super�elds,D𝛼Φ, D̄ ¤𝛼Φ, etc. Note that 𝜕𝛼Φ is not a super�eld

because 𝛿𝜖 (𝜕𝛼Φ) = −𝑖 [𝜖𝑄 + 𝜖𝑄, 𝜕𝛼Φ] = −𝑖𝜕𝛼 [𝜖𝑄 + 𝜖𝑄,Φ] = 𝜕𝛼𝑖 (𝜖Q + 𝜖Q̄)Φ ≠ 𝑖 (𝜖Q +

𝜖Q̄)(𝜕𝛼Φ), i.e. [𝜕𝛼 , 𝜖Q + 𝜖Q̄] ≠ 0. That is why we de�ne a super-covariant derivative given

by

D𝛼 ≡ 𝜕𝛼 + 𝑖 (𝜎𝜇)𝛼 ¤𝛽𝜃
¤𝛽𝜕𝜇, (4.42)

D̄ ¤𝛼 ≡ −𝜕𝛼 − 𝑖𝜃 𝛽 (𝜎𝜇)𝛽 ¤𝛼𝜃
¤𝛽𝜕𝜇, (4.43)

which satisfy [D𝛼 , 𝜖Q + 𝜖Q̄] = [D̄ ¤𝛼 , 𝜖Q + 𝜖Q̄] = 0 and some anticommutation relations 8.

• Constant scalar Φ = 𝑓 can be super�eld, but constant spinor 𝑐 , in Φ = 𝜃𝑐 , cannot because

there exists 𝛿𝜖Φ = 𝜖𝑐 .

In general, the most general super�eld Φ is not an irreducible representation of supersym-

metry. Thus, we can get rid of some degrees of freedom of the component �elds by imposing

possible constraints on a super�eld. The possible constraints are as follows:

• “Chiral super�eld” Φ is a super�eld that obeys a constraint D̄ ¤𝛼Φ = 0.

• “Anti-Chiral super�eld” Φ̄ is a super�eld that obeys a constraint D𝛼 Φ̄ = 0, where Φ̄ ≡ Φ†.

• “Vector super�eld” 𝑉 is a super�eld that obeys a constraint 𝑉 † = 𝑉 .

• “Linear super�eld” 𝐿 is a super�eld that obeys two constaints DD𝐿 = 0 and 𝐿† = 𝐿.
8{D𝛼 ,Q𝛽 } = {D𝛼 , Q̄ ¤𝛽 } = {D̄ ¤𝛼 ,Q𝛽 } = {D̄ ¤𝛼 , Q̄ ¤𝛽 } = {D𝛼 ,D𝛽 } = {D̄ ¤𝛼 , D̄ ¤𝛽 } = 0, but {D𝛼 , D̄ ¤𝛽 } = −2𝑖 (𝜎𝜇)𝛼 ¤𝛽 𝜕𝜇 .
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4.3.3.1 Chiral superfields

To �nd a chiral super�eld, let us consider Φ(𝑦, 𝜃, 𝜃 ) with𝑦𝜇 = 𝑥 𝜇 +𝑖𝜃𝜎𝜇𝜃 . Then, the constraint

gives

D̄ ¤𝛼Φ = −𝜕 ¤𝛼Φ = 0, (4.44)

which implies that the chiral super�eld does not depend on the 𝜃 in the new super-coordinate

(𝑦, 𝜃, 𝜃 ). Thus, it can be expanded as

Φ(𝑦, 𝜃 ) = 𝐴(𝑦) +
√
2𝜃𝜓 (𝑦) + 𝜃𝜃𝐹 (𝑦), (4.45)

where we replaced 𝜃 in the general super�eld into
√
2𝜃 for convention. The chiral super�eld can

also be written by

Φ(𝑥, 𝜃, 𝜃 ) = 𝐴 +
√
2𝜃𝜓 + 𝜃𝜃𝐹 + 𝑖𝜃𝜎𝜇𝜃𝜕𝜇𝐴 − 𝑖

√
2
(𝜃𝜃 )𝜕𝜇𝜓𝜎𝜇𝜃 −

1
4
(𝜃𝜃 ) (𝜃𝜃 )𝜕𝜇𝜕𝜇𝐴, (4.46)

which transform as

𝛿𝐴 =
√
2𝜖𝜓, (4.47)

𝛿𝜓 = 𝑖
√
2𝜎𝜇𝜖𝜕𝜇𝐴 +

√
2𝜖𝐹, (4.48)

𝛿𝐹 = 𝑖
√
2𝜖𝜎𝜇𝜕𝜇𝜓 . (4.49)

Particularly, the product of chiral super�elds is a chiral super�eld, and any holomorphic func-

tion 𝑓 (Φ) of a chiral super�eld Φ is always a chiral super�eld. However, Φ†Φ and Φ + Φ† are not

chiral but real super�elds.
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4.3.3.2 Vector superfields

Another constrained one is a real vector super�eld. Let𝑉 be a real vector super�eld such that

𝑉 †(𝑥, 𝜃, 𝜃 ) = 𝑉 (𝑥, 𝜃, 𝜃 ). Then, we have 𝜑∗ = 𝜑 ≡ 𝐶,𝜓 = 𝜒,𝑀 = 𝑁 ∗,𝑉𝜇 = 𝑉
†
𝜇 , 𝜆 = 𝜌, 𝐷∗ = 𝐷 and

𝑉 (𝑥, 𝜃, 𝜃 ) = 𝐶 (𝑥) + 𝜃𝜙 (𝑥) + 𝜃𝜙 (𝑥) + 𝜃𝜃𝑀 (𝑥) + 𝜃𝜃𝑀∗(𝑥)

+(𝜃𝜎𝜇𝜃 )𝑉𝜇 (𝑥) + (𝜃𝜃 )𝜃𝜆 + (𝜃𝜃 )𝜃𝜆(𝑥) + (𝜃𝜃 ) (𝜃𝜃 )𝐷 (𝑥). (4.50)

By the way, a real super�eld Φ + Φ† gives us

Φ + Φ† = 𝐴 +𝐴∗ +
√
2𝜃𝜓 +

√
2𝜃𝜓 + (𝜃𝜃 )𝐹 + (𝜃𝜃 )𝐹 ∗

+𝑖 (𝜃𝜎𝜇𝜃 )𝜕𝜇 [𝐴 −𝐴∗] − 𝑖
√
2
(𝜃𝜃 )𝜃𝜎𝜇𝜕𝜇𝜓

− 𝑖
√
2
(𝜃𝜎𝜇𝜃 )𝜃𝜎𝜇𝜕𝜇𝜓 − 1

4
(𝜃𝜃 ) (𝜃𝜃 )�[𝐴 +𝐴∗] .

(4.51)

The interesting fact is that there is a term 𝑖𝜕𝜇 [𝐴+𝐴∗] as the coe�cient of (𝜃𝜎𝜇𝜃 ) which is similar

to the usual gauge transformation of a vector gauge �eld. Hence, now we are going to choose

a special vector super�eld by shifting two components of the 𝑉 as 𝜆 → 𝜆 − 𝑖
2𝜎

𝜇𝜕𝜇𝜙 and 𝐷 →

𝐷 − 1
4�𝐶 . Then, it turns out that

𝑉 (𝑥, 𝜃, 𝜃 ) = 𝐶 + 𝜃𝜙 + 𝜃𝜙 + 𝜃𝜃𝑀 + 𝜃𝜃𝑀∗ + (𝜃𝜎𝜇𝜃 )𝑉𝜇 + (𝜃𝜃 )𝜃 [𝜆 − 𝑖

2
𝜎𝜇𝜕𝜇𝜙]

+(𝜃𝜃 )𝜃 [𝜆 − 𝑖

2
𝜎𝜇𝜕𝜇𝜙] + (𝜃𝜃 ) (𝜃𝜃 ) [𝐷 − 1

4
�𝐶] . (4.52)

For this specially chosen vector super�eld, we can construct a supersymmetric generalization of

the gauge transformation:

𝑉 → 𝑉 ′ = 𝑉 − (Φ + Φ†) = 𝑉 − 1
2
𝑖 [Λ − Λ†], (4.53)
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where Φ ≡ 1
2𝑖Λ. The component transformations are obtained as

𝐶′ = 𝐶 +𝐴 +𝐴∗, (4.54)

𝜙′ =
√
2𝜓, (4.55)

𝑀′ = 𝑀 + 𝐹, (4.56)

𝑉 ′
𝜇 = 𝑉𝜇 + 𝑖𝜕𝜇 [𝐴 −𝐴∗], (4.57)

𝜆′ = 𝜆, (4.58)

𝐷′ = 𝐷, (4.59)

where we can see that the 𝜆, 𝐷 are gauge invariant �elds. In the meantime, there is a special

gauge, which is called “Wess-Zumino Gauge”. This gauge requires

𝑉 ′ ≡ 𝑉𝑊𝑍 ,𝐶
′ = 𝑀′ = 𝜙′ = 0. (4.60)

This leads to

𝑉𝑊𝑍 = (𝜃𝜎𝜇𝜃 ) [𝑉𝜇 + 𝑖𝜕𝜇 (𝐴 −𝐴∗)] + (𝜃𝜃 )𝜃𝜆 + (𝜃𝜃 )𝜃𝜆 + (𝜃𝜃 ) (𝜃𝜃 )𝐷, (4.61)

where the Wess-Zumino gauge does not �x the gauge freedom because we dod not �x the imag-

inary part of the scalar component �eld 𝐴, which gives the gauge transformation of the vector

component 𝑉𝜇 . On the other hand, the Wess-Zumino gauge breaks the supersymmetry because

the gauge conditions 𝜙 = 𝑀 = 0 cannot be compatible with the supersymmetry transforma-

tions of the 𝜙,𝑀 in the sense that there still exist their supersymmetry transformations given by
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𝛿𝜖𝜙 |𝑊𝑍 = 𝜎𝜇𝜖𝑉𝜇 and 𝛿𝜖𝑀 |𝑊𝑍 = 𝜖𝜆. If 𝐴 is purely real, then we have

𝑉𝑊𝑍 = (𝜃𝜎𝜇𝜃 )𝑉𝜇 + (𝜃𝜃 )𝜃𝜆 + (𝜃𝜃 )𝜃𝜆 + (𝜃𝜃 ) (𝜃𝜃 )𝐷,

(4.62)

which produces

𝑉 2
𝑊𝑍 =

1
2
(𝜃𝜃 ) (𝜃𝜃 )𝑉𝜇𝑉 𝜇, 𝑉 3

𝑊𝑍 = 0, (4.63)

𝑒𝑉𝑊𝑍 = 1 +𝑉 + 1
2
𝑉 2 = 1 + (𝜃𝜎𝜇𝜃 )𝑉𝜇 + (𝜃𝜃 )𝜃𝜆 + (𝜃𝜃 )𝜃𝜆 + (𝜃𝜃 ) (𝜃𝜃 ) [𝐷 + 1

4
(𝜃𝜃 ) (𝜃𝜃 )] (4.64)

There is another supersymmetric super�eld in terms of a general vector super�eld𝑉 . This is

called “supersymmetric �eld strength”W𝐴 de�ned by

W𝛼 ≡ −1
4
(D̄D̄)D𝛼𝑉 (𝑥, 𝜃, 𝜃 ), (4.65)

W̄¤𝛼 ≡ −1
4
(DD)D̄ ¤𝛼𝑉 (𝑥, 𝜃, 𝜃 ), (4.66)

where satisfy D𝛼W̄¤𝛼 = D̄ ¤𝛼W𝛼 = 0, D𝛼W𝛼 = D̄ ¤𝛼W̄ ¤𝛼 and they are gauge invariant, W′
𝛼 =

W𝛼 , W̄′
¤𝛼 = W̄¤𝛼 .

If the vector super�eld contains non-abelian vector components, then its supersymmetric

�eld strength is given by

W𝛼 ≡ −1
4
(D̄D̄)𝑒−𝑉D𝛼𝑒

𝑉 , (4.67)

W̄¤𝛼 ≡ −1
4
(DD)𝑒−𝑉 D̄ ¤𝛼𝑒

𝑉 , (4.68)

where they transform under 𝑉 ′ = 𝑉 + Φ + Φ† as

W′
𝛼 = 𝑒Φ

†W𝛼𝑒
Φ. (4.69)
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4.4 Supersymmetric Gauge Theory

To implement the Standard Model (SM), let us consider N = 1 global supersymmetry, which

is only a realistic possibility for describing the SM.

First of all, since we want to get a supersymmetric Lagrangian which is ‘invariant up to the

total derivative’ under the supersymmetry transformations, we have to �nd out which one can

be such a supersymmetric one.

We observe that for a general scalar super�eld, in the 𝜃 2𝜃 2𝐷-term, the D-term transforms as

the total derivative, while for a chiral super�eld, in the 𝜃 2𝐹 -term, the F-term transforms as the

total derivative. Therefore, we can expect that the supersymmetric Lagrangian must be obtained

only from the D-term of certain scalar super�elds and the F-term of certain chiral super�elds.

In particular, we can construct the most general supersymmetric Lagrangian in terms of chiral

super�elds

L = [𝐾 (Φ†,Φ)] |𝐷 + [𝑊 (Φ) + 𝑊̄ (Φ̄)] |𝐹 , (4.70)

where 𝐾 is called “Kähler-potential” and𝑊 is called “Super-potential”.

A simple model for this is called “Wess-Zumino model”, which is given by

𝐾 = Φ†Φ, 𝑊 = 𝛼 + 𝜆Φ + 𝑚
2
Φ2 + 𝑔

3
Φ3. (4.71)

Now, let us consider a gauge transformation

Φ → Φ′
𝑖 = 𝑒

𝑖𝑞𝑖ΛΦ𝑖, (4.72)

where Λ is chiral. However, the Kähler potential is not invariant under the gauge transformation

because Φ′†
𝑖
Φ′
𝑖 = 𝑒

𝑖𝑞𝑖 (Λ−Λ†)Φ†
𝑖
Φ𝑖 ≠ Φ†

𝑖
Φ𝑖 . On the other hand, the following construction is gauge
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invariant under 𝑉 → 𝑉 + 𝑖 (Λ − Λ†) since

Φ†
𝑖
𝑒2𝑞𝑖𝑉Φ𝑖 → Φ′†

𝑖 𝑒
2𝑞𝑖𝑉 ′

Φ′
𝑖 = Φ†

𝑖
𝑒𝑖𝑞𝑖 (Λ−Λ

†)𝑒2𝑞𝑖𝑉 𝑒−𝑖𝑞𝑖 (Λ−Λ
†)Φ𝑖 = Φ†

𝑖
𝑒2𝑞𝑖𝑉Φ𝑖 . (4.73)

For the superpotential𝑊 [Φ𝑖], we have to restrict some terms in the superpotential only if they

are not gauge invariant. Then, its action is written by

𝑆 =

∫
𝑑4𝑥

∫
𝑑4𝜃

{
Tr[W𝐴 [𝑉 ]W𝐴 [𝑉 ]]𝛿2(𝜃 ) + Tr[W̄ ¤𝐴 [𝑉 ]W̄

¤𝐴 [𝑉 ]]𝛿2(𝜃 )

+Tr[Φ†
𝑖
𝑒2𝑞𝑖𝑉Φ𝑖] +𝑊 [Φ𝑖]𝛿2(𝜃 ) + 𝑊̄ [Φ†

𝑖
]𝛿2(𝜃 )

}
(4.74)

In the component level, for abelian gauge theory, the supersymmetric Lagrangian can be repre-

sented by

L = [Φ†𝑒2𝑞𝑉Φ]𝐷 + [𝑊 [Φ] + ℎ.𝑐]𝐹 + [1
4
W𝛼W𝛼 + ℎ.𝑐.]𝐹 + [𝜉𝑉 ]𝐷 , (4.75)

(Φ†𝑒2𝑞𝑉Φ)𝐷 = 𝐹 ∗𝐹 + |𝜕𝜇𝜑 |2 + 𝑖𝜓𝜎𝜇𝜕𝜇𝜓 + 𝑞𝑉𝜇 (𝜓𝜎𝜇𝜓 + 𝑖𝜑∗𝜕𝜇𝜑 − 𝑖𝜑𝜕𝜇𝜑∗)

+
√
2𝑞(𝜑𝜆𝜓 + 𝜑∗𝜆𝜓 ) + 𝑞(𝐷 + 𝑞𝑉𝜇𝑉 𝜇) |𝜑 |2,

( 1
4
W𝛼W𝛼 + ℎ.𝑐.)𝐹 =

1
2
𝐷2 − 1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 − 𝑖𝜆𝜎𝜇𝜕𝜇𝜆,

(𝑊 [Φ] + ℎ.𝑐)𝐹 = 𝐹 ∗𝐹 + ( 𝜕𝑊
𝜕𝜑

𝐹 + ℎ.𝑐.) − 1
2
( 𝜕

2𝑊

𝜕𝜑2 𝜓𝜓 + ℎ.𝑐.)

(4.76)
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5 | Review 4: 4𝐷 N = 1 Supergravity in

the Superconformal Formalism

This chapter is mainly based on Refs. [8, 29–31].

5.1 Why Conformal Supergravity?

In the four-dimensional N = 1 Poincaré supergravity, the actions of supermultiplets are in-

variant under transformations of super-Poincaré symmetry, which consists of spacetime dif-

feomorphisms (i.e. general coordinate transformations), local Lorentz symmetry, and local su-

persymmetry. This is established as a “physical” theory. On the other hand, for the so-called

conformal supergravity or superconformal gravity, its actions are invariant under transformations

of superconformal symmetry, which is a set of super-Poincaré symmetries and four addi-

tional symmetries (dilatation, chiral 𝑈 (1) symmetry, special supersymmetry (i.e. 𝑆-SUSY), and

special conformal symmetry). In superconformal theory, supermultiplets are promoted into rep-

resentations of the superconformal group, so that they become “superconformal multiplets.”

In particular, the four additional symmetries can be broken by gauge-�xing conditions to get a

physical theory, meaning that one can obtain the Poincaré supergravity theory from the broken

superconformal theory. At �rst glance, one may think this conformal approach seems more labo-

rious, and ask: why do we consider conformal supergravity? In fact, there are two main reasons
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for this.

The �rst bene�t from conformal supergravity is that the superconformal formalism can yield

the (physical) Poincaré supergravity in a convenient manner. For example, in the other approach

like the superspace formalism, it is required to make graviton and gravitino to be canonical by

taking complicated rescalings. On the contrary, in the superconformal formalism, it is possible

to simply obtain the canonical kinetic terms of graviton and gravitino by imposing gauge-�xing

conditions on the so-called “compensator1” multiplet introduced in the superconformal formal-

ism.

The second bene�t is that the conformal supergravity can give us a uni�ed description of

Poincaré supergravity with di�erent types of gravity multiplet. In the superspace formalism, it is

di�cult to �gure out the relationships between di�erent sets of the auxiliary �eld of gravity mul-

tiplet. However, those relationships can be comprehensively understood in the conformal super-

gravity in that di�erent sets of auxiliary �eld in Poincaré supergravity can correspond to di�erent

compensator multiplets in the conformal supergraivty; that is, Old/New/Non-Minimal formula-

tion of Poincaré Supergravity can be obtained by the conformal supergravity with Chiral/Real-

Linear/Complex-Linear compensator multiplet.

5.2 Tensor Calculus of General Gauge Field Theory

This subsection is particularly based on Refs. [8, 30].

“Tensor Calculus” centers around the notion of “Gauge Covariance.” For example, let us

consider “a tensor in general relativity (GR).” In GR, the general coordinate transformations (GCT)

or spacetime di�eomorphism is a gauge symmetry of local translation whose gauge parameter
1The �elds removed after gauge �xing are called compensators.
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and generators are given by 𝜉𝜇 and momentum operator 𝑃𝜇 = 𝜕𝜇 , which generates

𝑥′𝜇 = 𝑥 𝜇 + 𝜉𝜇, 𝛿𝐺𝐶𝑇 (𝜉)𝑥 𝜇 = 𝜉𝜈𝑃𝜈𝑥 𝜇 = 𝜉𝜈𝜕𝜈𝑥 𝜇 = 𝜉𝜇 . (5.1)

A vector 𝑉 𝜇 transfroms under the GCT as

𝑉 ′𝜇 =
𝜕𝑥′𝜇

𝜕𝑥𝜈
𝑉 𝜈 ≈

(
𝛿
𝜇
𝜈 +

𝜕𝜉𝜇

𝜕𝑥𝜈

)
𝑉 𝜈 = 𝑉 𝜇 + 𝜆𝜇𝜈 (𝑥)𝑉 𝜈 =⇒ 𝛿𝐺𝐶𝑇 (𝜆)𝑉 𝜇 = 𝜆

𝜇
𝜈 (𝑥)𝑉 𝜈 , (5.2)

where we de�ne 𝜆𝜇𝜈 (𝑥) ≡ 𝜕𝜉𝜇

𝜕𝑥𝜈
and take it as a gauge parameter. So, in this notation, we have

𝜉𝜇 = 𝜆
𝜇
𝜈𝑥

𝜈 . However, the ordinary derivative of the vector 𝜕𝜈𝑉 𝜇 cannot be covariant. This is

because

𝜕′𝜈𝑉
′𝜇 =

( 𝜕𝑥𝜌
𝜕𝑥′𝜈

𝜕𝜌

) ( 𝜕𝑥′𝜇
𝜕𝑥𝜎

𝑉 𝜎
)
=
𝜕𝑥𝜌

𝜕𝑥′𝜈
𝜕𝑥′𝜇

𝜕𝑥𝜎
𝜕𝜌𝑉

𝜎 + 𝜕𝑥𝜌

𝜕𝑥′𝜈

[
𝜕

𝜕𝑥𝜌

( 𝜕𝑥′𝜇
𝜕𝑥𝜎

)]
𝑉 𝜎 ≠

𝜕𝑥𝜌

𝜕𝑥′𝜈
𝜕𝑥′𝜇

𝜕𝑥𝜎
𝜕𝜌𝑉

𝜎 . (5.3)

The point here is that the problematic discrepancy from this gauge transformation of the vec-

tor under the GCT comes from the fact that the transformation contains the derivative of the

gauge parameter, i.e. 𝜕
𝜕𝑥𝜌

(
𝜕𝑥 ′𝜇

𝜕𝑥𝜎

)
= 𝜕𝜌𝜆

𝜇
𝜎 . The “correct” covariant derivative is found to be ∇𝜈𝑉 𝜇 ≡

𝜕𝜈𝑉
𝜇 + Γ

𝜇
𝜌𝜈𝑉

𝜌 where Γ
𝜇
𝜌𝜈 is Christo�el symbol as “connection” for the GCT, which as expected

can transform covariantly under the GCT.

Regarding the lesson learned from the example of GCT in GR, we can deduce that any tensor

de�ned with respect to the GCT must properly vary under the GCT whose gauge transformation does

not contain any derivatives of the gauge parameter 𝜉𝜇! This statement is a “punchline” in this exam-

ple. Hence, we can state that if an object can have its own gauge transformation without derivatives

of gauge parameter for a certain gauge symmetry, then the object is “covariant or tensorial” with

respect to the gauge symmetry and it can thus be de�ned as a tensor with respect to the symmetry.

We call this property of being covariant under a (gauge) symmetry as “(Gauge) Covariance2.”
2The precise structure of “Covariance” or “Tensoriality” can also be understood in the mathematical language
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Particularly, I would like to distinguish between a normal tensor de�ned with respect to only the

GCT in GR and another tensor also de�ned with respect to extra gauge symmetries together with

the GCT. I will call the latter as “gauge-covariant tensor” as a stressed terminology of tensor.

5.2.1 Consistency reqirements of tensor calculus

Let us consider a set of Lie symmetries

𝛿 (𝜖) ≡ 𝜖𝐴𝑇𝐴, (5.4)

where𝐴 is an index of generators of the symmetries; 𝜖𝐴 is a transformation parameter, and𝑇𝐴 is a

generator indexed by 𝐴 as the active operator acting on the �eld space. It is very important to be

careful about the order of symmetry transformations since these are related to the Lie algebras.

In tensor calculus, the product operation is de�ned by the active operation

𝛿 (𝜖1)𝛿 (𝜖2)Φ = 𝛿 (𝜖1)
(
𝛿 (𝜖2)Φ

)
= 𝛿 (𝜖1)

(
𝜖𝐵2𝑇𝐵Φ

)
= 𝜖𝐵2 𝛿 (𝜖1)

(
𝑇𝐵Φ

)
= 𝜖𝐵2 𝜖

𝐴
1𝑇𝐴𝑇𝐵Φ. (5.5)

Then, we suppose that the symmetries satisfy the following three consistency conditions [30]

• 1. (O�-shell) Closed algebras of the symmetries: For any two generators 𝑇𝐴,𝑇𝑏 , the

following “(anti)commutator” holds.

[𝑇𝐴,𝑇𝐵} = 𝑓 𝐶
𝐴𝐵 𝑇𝐶 ⇐⇒ [𝛿 (𝜖1), 𝛿 (𝜖2)} = (𝜖𝐵2 𝜖𝐴1 𝑓 𝐶

𝐴𝐵 )𝑇𝐶 = 𝛿 (𝜖3 ≡ 𝜖𝐵2 𝜖𝐴1 𝑓 𝐶
𝐴𝐵 ) (5.6)

where [•, •} is de�ned as the “graded commutator,” and the third parametermay be given by

through the theory of Principal and Associated Fiber Bundles (See Nakahara’s textbook for a review of this viewpoint
in Ref. [32]). In particular, gauge symmetry can be considered as a redundancy of mathematical description for a
theory, which is called Gauge redundancy. This aspect is understood in the constrained Hamiltonian systems
(see Ref. [33] for a comprehensive review on the topic). References [34, 35] give introductions to symmetries and
dynamics of constrained systems. Also, a student-friendly example about the topic is well-described in Ref. [36].
Geometrical analysis of the aspect is explained in Ref. [37]. The general constrained dynamics that considers both
bosonic and fermionic variables can be found in Ref. [38].
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a function of the other two parameters and some possible structure constants or functions

𝑓 ’s of the algebras. By requiring this closure of algebras, we can �nd the structure constants

or functions.

• 2. Commutativity of Lie and Exterior derivatives (by geometrical axiom): This condi-

tion �xes the gauge transformations of the gauge connections or gauge �elds 𝐴𝐴𝜇 ’s.

[𝛿 (𝜖), 𝑑] = 0 ⇐⇒ [𝛿 (𝜖), 𝜕𝜇] = 0, (5.7)

where 𝑑 = 𝑑𝑥 𝜇𝜕𝜇 = 𝑑𝜆L𝜉 where L𝜉 is a Lie derivative along the vector �eld 𝜉 = 𝜉𝜇𝜕𝜇 .

In particular, we can also represent the exterior derivative in terms of covariant generators

𝑇𝐴 (≠ 𝑇𝐴 from the set of normal generators and local translation) and gauge-connection

one-forms 𝐴𝐴 ≡ 𝐴𝐴𝜇𝑑𝑥
𝜇 = 𝐴𝐴𝜇 𝜉

𝜇𝑑𝜆 (where 𝑑𝑥 𝜇 = 𝜉𝜇𝑑𝜆 along the curve of the vector �eld

𝜉 parameterized by 𝜆) corresponding to the relevant gauge �elds 𝐴𝐴𝜇 of gauge symmetries

𝛿 (𝜖) = 𝜖𝐴𝑇𝐴 made by the covariant generators 𝑇𝐴 in the following manner [30]

𝑑
!
= 𝐴𝐴𝑇𝐴 (= 𝑑𝜆L𝜉 ). (5.8)

This will be used for covariantizing the GCT (i.e. local translation) and equivalently de�n-

ing a reformed covariant derivative “D𝑎” which is comparable with the covariant GCT.

Later, we will follow the index convention that small Latin alphabet “𝑎, 𝑏, 𝑐” means “tan-

gent” (local (Lorentz) frame) indices and small Greek alphabet “𝜇, 𝜈, 𝜌” means “world”

(curved frame) indices. Especially, the reformed covariant derivatives D𝑎 will be shown

throughout all the supergravity sections in this dissertation.

• 3. de Rham Cohomology (by geometrical theorem): This condition �xes the curvatures
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of the gauge �elds and covariant derivatives.

𝑑2 = 0 ⇐⇒ [𝜕𝜇, 𝜕𝜈 ] = 0 on scalar, [∇𝜇,∇𝜈 ] = −𝑅 𝜌
𝜇𝜈 ∇𝜌 . (5.9)

Here is a remark of the algebras. For any two generators𝑇𝐴,𝑇𝐵 of the symmetry algebras, we

can consider their commutation relation in the form of {𝑇𝐴,𝑇𝐵] =
∑
𝑖 𝑓

𝐶𝑖
𝐴𝐵

𝑇𝐶𝑖 where 𝑓
𝐶𝑛

𝐴𝐵
is its

structure constant (or function if it is �eld-dependent and forms a soft algebra). In particular, if𝐶𝑖

has𝑛 indices {𝑎𝑖1 · · ·𝑎𝑖𝑛}, then we have to consider “symmetry-factor rule of (anti)symmetric-

index contraction” which is to multiply the symmetry factor “
1
𝑛!
” in front of the contracting

part of (anti)symmetric 𝑛-indices to avoid “double-counting”; for example, for 𝐴𝑀 ∈ {𝐴𝑎𝑏} and

𝐵𝑀 ∈ {𝐵𝑎𝑏} each of which is the de�ning elements of the set (e.g. for an antisymmetric rank-2

tensor, 𝐴21 = −𝐴12 where 𝐴12 is the de�ning element), the contraction of the two sets can be

de�ned by 𝐴𝑀𝐵𝑀 ≡ 1
2!𝐴

𝑎𝑏𝐵𝑎𝑏 . Thus, we have to have the following

{𝑇𝐴,𝑇𝐵] =
∑︁
𝑖

𝑓
𝐶𝑖

𝐴𝐵
𝑇𝐶𝑖 −→ {𝑇𝐴,𝑇𝐵] =

∑︁
𝑖

1
𝑛𝑖 !
𝑓

𝑎𝑖1···𝑎𝑖𝑛
𝐴𝐵

𝑇𝑎𝑖1···𝑎𝑖𝑛 (5.10)

This commutator algebra should be closed o�-shell in general. Normally, given commutation

relations of the algebras, it will be needed to read o� the structure constants (or functions) from

the commutation relations in order to compute relevant quantities of our interest like curvature

using them.

5.2.2 “Covariant” qantity, gauge field, and curvature

Under the transformations 𝛿 (𝜖) = 𝜖𝐴𝑇𝐴 of any generators 𝑇𝐴 (including the covariant ones

𝑇𝐴), a covariant quantity “Φ” is de�ned by a quantity transforming without derivatives of gauge
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parameters in the way

𝛿 (𝜖)Φ = 𝜖𝐴𝑇𝐴Φ ≡ 𝜖𝐴𝐾𝐴 (Φ), (5.11)

where we de�ne 𝐾𝐴 (Φ) ≡ 𝑇𝐴Φ which may be either linearly or non-linearly realized in the quan-

tity Φ. As expected, the ordinary derivative of the quantity which transforms under the relevant

symmetries cannot transform covariantly. That is, we face the same issue as we saw from the

GCT example in GR:

𝛿 (𝜖)𝜕𝜇Φ = 𝜕𝜇 (𝜖𝐴𝐾𝐴) = 𝜖𝐴 (𝜕𝜇𝐾𝐴) + (𝜕𝜇𝜖𝐴)𝐾𝐴 (5.12)

To obtain the covariant derivatives “𝐷𝜇 ,” it is mandatory to introduce gauge �elds “B𝐴
𝜇 ,” whose

transformations are de�ned by

𝛿 (𝜖)B𝐴
𝜇 ≡ 𝜕𝜇𝜖

𝐴 + 𝜖𝐶B𝐵
𝜇 𝑓

𝐴
𝐵𝐶 . (5.13)

Then, the corresponding gauge-covariant derivatives can be de�ned by subtracting the symmetry

transformations 𝛿 (B𝐴
𝜇 ) (whose gauge parameter is replaced by the gauge �eld) from the ordinary

derivative 𝜕𝜇 ; that is,

𝐷𝜇Φ ≡ (𝜕𝜇 − B𝐴
𝜇𝑇𝐴)Φ = (𝜕𝜇 − 𝛿 (B𝐴

𝜇 ))Φ. (5.14)
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Certainly, we can check that

𝛿 (𝜖)𝐷𝜇Φ = 𝜖𝐴𝜕𝜇𝐾𝐴 + (𝜕𝜇)𝐾𝐴 − (𝛿 (𝜖)B𝐴
𝜇 )𝐾𝐴 − B𝐴

𝜇 𝛿 (𝜖)𝐾𝐴

= 𝜖𝐴𝜕𝜇𝐾𝐴 − 𝜖𝐶B𝐵
𝜇 𝑓

𝐴
𝐵𝐶 𝐾𝐴 − B𝐴

𝜇 𝛿 (𝜖)𝐾𝐴

= 𝜖𝐴𝜕𝜇𝐾𝐴 − 𝜖𝐴B𝐵
𝜇 [𝑇𝐵,𝑇𝐴]Φ − B𝐵

𝜇 𝜖
𝐴𝑇𝐴𝑇𝐵Φ = 𝜖𝐴 (𝜕𝜇𝐾𝐴 − B𝐵

𝜇𝑇𝐵𝐾𝐴) = 𝜖𝐴𝐷𝜇𝐾𝐴 .

(5.15)

Moreover, there is another covariant quantity called curvature “𝑅𝐴𝜇𝜈” of the gauge �elds B𝐴
𝜇 ,

which is de�ned in the way

𝑅𝐴𝜇𝜈 ≡ 𝜕𝜇B𝐴
𝜈 − 𝜕𝜈B𝐴

𝜇 + B𝐶
𝜈 B𝐵

𝜇 𝑓
𝐴

𝐵𝐶 = 2𝜕[𝜇B𝐴
𝜈] + B𝐶

𝜈 B𝐵
𝜇 𝑓

𝐴
𝐵𝐶 . (5.16)

The gauge transformations of these curvatures are given by

𝛿 (𝜖)𝑅𝐴𝜇𝜈 = 2𝜕[𝜇𝜕𝜈]𝜖𝐴 + 2𝜕[𝜇 (𝜖𝐶B𝐵
𝜇]) 𝑓

𝐴
𝐵𝐶 +

(
(𝜕𝜈𝜖𝐶 + 𝜖𝐷B𝐸

𝜈 𝑓
𝐶

𝐸𝐷 )B𝐵
𝜇 𝑓

𝐴
𝐵𝐶 − (𝜇 ↔ 𝜈)

)
= 𝜖𝐶 (2𝜕[𝜇B𝐵

𝜈] 𝑓
𝐴

𝐵𝐶 ) + 𝜖𝐷B𝐸
𝜈 B𝐵

𝜇 𝑓
𝐶

𝐸𝐷 𝑓 𝐴
𝐵𝐶 + 𝜖𝐷B𝐶

𝜈 B𝐸
𝜇 𝑓

𝐵
𝐸𝐷 𝑓 𝐴

𝐵𝐶

= 𝜖𝐶 (2𝜕[𝜇B𝐵
𝜈] 𝑓

𝐴
𝐵𝐶 ) − 𝜖𝐶B𝐸

𝜈 B𝐷
𝜇 𝑓

𝐵
𝐸𝐷 𝑓 𝐴

𝐵𝐶 = 𝜖𝐶
[
2𝜕[𝜇B𝐵

𝜈] − B𝐸
𝜈 B𝐷

𝜇 𝑓
𝐵

𝐸𝐷

]
𝑓 𝐴
𝐵𝐶

= 𝜖𝐶𝑅𝐵𝜇𝜈 𝑓
𝐴

𝐵𝐶 ,

=⇒ ∴ 𝛿 (𝜖)𝑅𝐴𝜇𝜈 = 𝜖𝐶𝑅𝐵𝜇𝜈 𝑓 𝐴
𝐵𝐶 . (5.17)

where we take advantage of the Jacobi identity in the third equality:

∑︁
𝐵

(
𝑓 𝐵
𝐶𝐸 𝑓 𝐴

𝐵𝐷 + (cyclic in C,D,E.)
)
=

∑︁
𝐵

(𝑓 𝐵
𝐶𝐸 𝑓 𝐴

𝐵𝐷 + 𝑓 𝐵
𝐷𝐶 𝑓 𝐴

𝐵𝐸 + 𝑓 𝐵
𝐸𝐷 𝑓 𝐴

𝐵𝐶 ) = 0. (5.18)
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Note that the curvatures tranform covariantly under the gauge transformations. Plus, the curva-

tures satisfy the Bianchi identities

𝐷 [𝜌𝑅
𝐴
𝜇𝜈] = 0. (5.19)

5.2.3 Covariantization of the local translation: covariant general

coordinate transformation (CGCT), and constraints for its

consistency

In the previous sections, we have talked about symmetry algebras, covariant derivatives,

gauge �elds, and curvatures. Importantly, these symmetries are assumed to be “internal” and

“general.” This means that the gauge �elds B𝐴
𝜇 that we have so far considered may involve the

vielbein “𝑒𝑎𝜇” (or equivalently called “graviton”) as the gauge �eld of the local translation symme-

try 𝑃𝑎 in a theory of gravity. In fact, this fact brings us a “bad” problem about covariant derivative

of local translation. To see how this arise, let us assume that we have only a local translation, so

that the corresponding gauge covariant derivative is given by 𝐷𝜇 = 𝜕𝜇 − 𝑒𝑎𝜇𝑃𝑎 where 𝑃𝑎 = 𝜕𝑎 is

the momentum generator. However, from the properties of vielbein 𝑒𝑎𝜇𝑒
𝜇

𝑏
= 𝛿𝑎

𝑏
(invertibility) and

𝐴𝑎 = 𝑒𝑎𝜇𝐴
𝜇, 𝐴𝜇 = 𝑒

𝑎
𝜇𝐴𝑎 (change of reference frame), we reach the fact that

𝐷𝜇 = 𝜕𝜇 − 𝑒𝑎𝜇𝑃𝑎 = 𝜕𝜇 − 𝑒𝑎𝜇𝜕𝑎 = 𝜕𝜇 − 𝜕𝜇 = 0. (5.20)

Here, we see that this 𝐷𝜇 is physically ill-de�ned, and thus we have to covariantize the local

translation 𝑃𝑎 in an alternative manner in order to obtain a “well-de�ned covariant derivative.” In

fact, there is a clever way of doing this. Let us recall the alternative form of the exterior derivative

𝑑 in Eg. (5.8), which was given by

𝑑 = 𝑑𝜆L𝜉 = B𝜇𝑑𝑥
𝜇 = 𝑑𝜆𝜉𝜇B𝐴

𝜇𝑇𝐴, (5.21)
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where we replaced the notation of gauge �eld 𝐴𝐴𝜇 by B𝐴
𝜇 . It is worth noticing that the right-hand

side of the relation in Eq. (5.21) was de�ned by a linear combination of all the possible covariant

generators 𝑇𝐴. Hence, instead of the original local translation 𝑃 , there must be a covariant local

translation 𝑃 in the combination. Keeping this in mind, let us assume that the generators 𝑇𝐴 and

corresponding gauge �eldsB𝐴
𝜇 of all the gauge symmetries including “covariant local translation”

𝑃𝑎 (no normal local translation 𝑃𝑎 in the sum of B𝐴
𝜇𝑇𝐴 in Eq. (5.21)) can be decomposed into

𝑇𝐴 = {𝑃𝑎,𝑇𝐴≠𝑃 = 𝑇𝐴≠𝑃 (≡ 𝑇𝐴≠𝑃,𝑃 )}, B𝐴
𝜇 = {𝑒𝑎𝜇,B𝐴≠𝑃,𝑃

𝜇 }, (5.22)

where 𝑃𝑎 ≡ D𝑎 is now de�ned as a covariant local translation or covariant GCT generator

that is assigned to the “vielbein” gauge �eld 𝑒𝑎𝜇 , which can also be realized as a “covariant di�er-

ential operator” denoted byD𝑎 analogous to the conventional gauge covariant derivatives. Then,

from Eq. (5.21) , we get the following relation

𝑑𝜆L𝜉 = 𝑑𝜆

(
𝜉𝜇𝑒𝑎𝜇𝑃𝑎 + 𝜉𝜇B𝐴≠𝑃,𝑃

𝜇 𝑇𝐴≠𝑃,𝑃

)
=⇒ 𝜉𝜇𝑒𝑎𝜇𝑃𝑎 = L𝜉 − 𝜉𝜇B𝐴≠𝑃,𝑃

𝜇 𝑇𝐴≠𝑃,𝑃 on any tensor (5.23)

and thus we are able to de�ne the so-called “covariant general coordinate transformation

(CGCT)” in the way

𝛿𝐶𝐺𝐶𝑇 (𝜉) = 𝛿𝐺𝐶𝑇 (𝜉) − 𝛿𝑆𝐺 (𝜉𝜇B𝐴≠𝑃,𝑃
𝜇 ) on any tensor, (5.24)

where

𝛿𝐶𝐺𝐶𝑇 (𝜉) ≡ 𝜉𝜇𝑒𝑎𝜇𝑃𝑎 = 𝜉𝑎𝑃𝑎, (5.25)

𝛿𝐺𝐶𝑇 (𝜉) = L𝜉 by de�nition of the original GCT, (5.26)

𝛿 (𝜉𝜇B𝐴≠𝑃,𝑃
𝜇 ) ≡ 𝜉𝜇B𝐴≠𝑃,𝑃

𝜇 𝑇𝐴≠𝑃,𝑃 . (5.27)
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Now let us de�ne the covariant derivative D𝑎 that can be comparable with the CGCT. Consider

the CGCT on a world scalar 𝜙 . Then, we get its CGCT as

𝛿𝐶𝐺𝐶𝑇 (𝜉)𝜙 = 𝜉𝜇𝜕𝜇𝜙 − 𝛿 (𝜉𝜇B𝐴≠𝑃,𝑃
𝜇 )𝜙 = 𝜉𝜇

(
𝜕𝜇 − 𝛿 (B𝐴≠𝑃,𝑃

𝜇 )
)
𝜙

!
= 𝜉𝜇𝑒𝑎𝜇𝑃𝑎 on “world scalar,” (5.28)

where 𝛿𝐺𝐶𝑇 (𝜉)𝜙 = 𝜉𝜇𝜕𝜇𝜙 . Then, de�ning a realization of the covariant local translation operator

“𝑃𝑎” as the well-de�ned covariant derivative “D𝑎” that we desire to have, one can obtain

𝑒𝑎𝜇D𝑎 =

(
𝜕𝜇 − B𝐴≠𝑃,𝑃

𝜇 𝑇𝐴≠𝑃,𝑃

)
on “world scalar.” (5.29)

Then, by using the invertibility of the vielbein 𝑒𝑎𝜇 , we can reach a reformation of the covariant

derivative with respect to the covariant local translation in desirable form:

D𝑎 = 𝑒
𝜇
𝑎 (𝜕𝜇 − B𝐴≠𝑃,𝑃

𝜇 𝑇𝐴≠𝑃,𝑃 ) = 𝜕𝑎 − B𝐴≠𝑃,𝑃
𝑎 𝑇𝐴≠𝑃,𝑃 on “world scalar.” (5.30)

We emphasize that this new covariant derivative acts on any world scalar living on any tangent

space de�ned over a (curved) spacetime, but the derivative itself rotates under the local Lorentz

transformation because it is a local-Lorentz vector. In the other words, the covariant derivative

D𝑎 can be applied to any local-frame tensors as world scalars! For example, a local-Lorentz vector

�eld 𝐵𝑏 has its covariant derivative given by D𝑎𝐵𝑏 . In the presence of covariant derivatives,

the equations of motion for some �elds are obtained by simply replacing the ordinary partial

derivative with the suitable covariant derivatives [39]. Then, we call such equations as (gauge)

covariant equations of motion. The properties of covariant derivative [39] are as follows:

• 1. (Operation rule) The gauge covariant derivative acts on objects that respond to a coor-

dinate transformation as well as a gauge transformation.

• 2. (Covariant quantity) The gauge covariant derivative of a �eld transforms as the �eld
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itself does whose gauge transformation has no spacetime derivatives of gauge parameter.

• 3. (Necessity of gauge �eld or connection) A gauge �eld𝐴𝜇 consisting of gauge connection

𝐴 = 𝐴𝜇𝑑𝑥
𝜇 must be embedded in the covariant derivative in order to de�ne covariant

quantity under the relevant gauge transformation.

• 4. (Product law) The covariant derivative obeys Leibniz rule with appropriate parity as the

product law, i.e. D𝑎 (𝜙1𝜙2) = (D𝑎𝜙1)𝜙2 + (−1) |D𝑎 | |𝜙1 |𝜙1(D𝑎𝜙2) where | · | = 0 for even or

bosonic and | · | = 1 for odd or fermionic.

• 5. (Restoration to ordinary derivative) For a gauge invariant scalar, the gauge covariant

derivative is identical to the ordinary partial derivative, i.e. D𝑎 (inv.scalar) = 𝜕𝑎 (inv.scalar).

Now, remember that the original local translation “𝑃𝑎” was not a spacetime symmetry but one

of internal gauge symmetries. However, the covariant local translation “𝑃𝑎” has been identi�ed

with a spacetime symmetry not as an internal one because it becomes the covariant general

coordinate transformation. Hence, it is reasonable to check whether or not the reformation of

the local translation a�ects the closure of symmetry algebras. If so, there may be some constraints

for its consistency.

Then, let us evaluate the general coordinate transformation (GCT) of a “world-indexed vec-

tor” gauge �eld B𝐴
𝜇 , which can be considered as a local Lorentz scalar since it has no local frame

indices. We point out that the Einstein summation in the GCT includes standard gauge symme-

tries and the normal local translation 𝑃𝑎 (without the covariant local translation 𝑃𝑎 in the GCT since

we have no channel to introduce such a covariant one now.). That is, consider the origical situation

with closed symmetry algebras of the normal local translation and standard gauge symmetries.

Then, the GCT of the gauge �eld with the world vector index 𝜇 is given by its non-trivial Lie
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derivative

𝛿𝐺𝐶𝑇 (𝜉)B𝐴
𝜇 = L𝜉B𝐴

𝜇 = 𝜉𝜈𝜕𝜈B𝐴
𝜇 + B𝐴

𝜈 𝜕𝜇𝜉
𝜈

= 𝜉𝜈𝜕𝜈B𝐴
𝜇 + B𝐴

𝜈 𝜕𝜇𝜉
𝜈 + (𝜉𝜈B𝐶

𝜈 B𝐵
𝜇 𝑓

𝐴
𝐵𝐶 − 𝜉𝜈B𝐶

𝜈 B𝐵
𝜇 𝑓

𝐴
𝐵𝐶 ) + (−𝜉𝜈𝜕𝜇B𝐴

𝜈 + 𝜉𝜈𝜕𝜇B𝐴
𝜈 )

= −𝜉𝜈 (𝜕𝜇B𝐴
𝜈 − 𝜕𝜈B𝐴

𝜇 + B𝐶
𝜈 B𝐵

𝜇 𝑓
𝐴

𝐵𝐶 )

+ 𝜕𝜇 (𝜉𝜈B𝐴
𝜈 ) + (𝜉𝜈B𝐶

𝜈 )B𝐵
𝜇 𝑓

𝐴
𝐵𝐶 + 𝜉𝜈B𝐵

𝜈 M 𝐴
𝐵𝜇︸                                                ︷︷                                                ︸

≡𝛿 (𝜉𝜈B𝑀≠𝑃
𝜈 )B𝐴𝜇

−𝜉𝜈B𝐵
𝜈 M 𝐴

𝐵𝜇

= −𝜉𝜈𝑅𝐴𝜇𝜈 + 𝛿 (𝜉𝜈B𝑀≠𝑃
𝜈 )B𝐴

𝜇 − 𝜉𝜈B𝐵
𝜈 M 𝐴

𝜇𝐵

= 𝜉𝜈𝑅𝐴𝜈𝜇 − 𝜉𝜈B𝐵
𝜈 M 𝐴

𝜇𝐵 + 𝛿 (𝜉𝜈B𝑀≠𝑃,𝑃
𝜈 )B𝐴

𝜇 + 𝛿 (𝜉𝜈𝑒𝑎𝜈 )B𝐴
𝜇

= 𝜉𝜈
(
𝑅𝐴𝜈𝜇 − 2B𝐵

[𝜈M
𝐴

𝜇]𝐵︸               ︷︷               ︸
≡𝑅𝐴𝜈𝜇

)
+ 𝛿 (𝜉𝜈B𝑀≠𝑃,𝑃

𝜈 )B𝐴
𝜇 + 𝜉𝜈𝑒𝑎𝜈𝑃𝑎B𝐴

𝜇 , (5.31)

where we de�ne a covariant curvature “𝑅𝐴𝜈𝜇”

𝑅𝐴𝜈𝜇 ≡ 𝑅𝐴𝜈𝜇 − 2B𝐵
[𝜈M

𝐴
𝜇]𝐵 , (5.32)

and generalized gauge transformation of gauge �eld including possible “non-gauge �eld

e�ects”M 𝐴
𝜇𝐵

𝛿 (𝜖)B𝐴
𝜇 ≡ 𝜕𝜇𝜖

𝐴 + 𝜖𝐶B𝐵
𝜇 𝑓

𝐴
𝐵𝐶 + 𝜖𝐵M 𝐴

𝐵𝜇 . (5.33)

Using the de�nition of the CGCT, we can rewrite Eq. (5.31) as

𝛿𝐶𝐺𝐶𝑇 (𝜉)B𝐴
𝜇 ≡ 𝛿𝐺𝐶𝑇 (𝜉)B𝐴

𝜇 − 𝛿 (𝜉𝜈B𝑀≠𝑃,𝑃
𝜈 )B𝐴

𝜇 = 𝜉𝜈𝑅𝐴𝜈𝜇 + 𝜉𝜈𝑒𝑎𝜈𝑃𝑎B𝐴
𝜇

!
= 𝜉𝑎𝑃𝑎B𝐴

𝜇 . (5.34)

Notice that this CGCT of a gauge �eld is completely di�erent from the gauge transformation of

a curvature in Eq. (5.17).
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Hence, for one to be able to take the replacement 𝑃𝑎 −→ 𝑃𝑎 in the symmetry algebras, we

need to identify 𝑃𝑎 with 𝑃𝑎 on the local Lorentz scalar, i.e. 𝜉𝑎𝑃𝑎B𝐴
𝜇 = 𝜉𝑎𝑃𝑎B𝐴

𝜇 . As a result, we have

to impose the following constraints 𝐶 = 0

∀𝐴 : 𝐶 ≡ 𝜉𝜈𝑅𝐴𝜇𝜈 (𝑇𝐴)
!
= 0, (5.35)

where 𝑇𝐴 involves the original (i.e. non-covariant) local translation 𝑃𝑎 and the other standard

gauge symmetries.

From the above constraints (5.35), one can see that they cannot be preserved under their

gauge transformations (i.e. 𝛿 (𝜖)𝑅𝐴𝜇𝜈 = 𝜖𝐶𝑅𝐵𝜇𝜈 𝑓
𝐴

𝐵𝐶
≠ 0 in general) given by Eq. (5.17) as long as

additional shifts are not introduced. To understand how this works, let us consider some general

situation. Let 𝐶 (𝜔,𝜙) = 0 be a constraint consisting of an independent �eld 𝜙 and a dependent

�eld 𝜔 = 𝜔 (𝜙) which can be solved by the constraint. Then, let us assume that the dependent

�eld𝜔 has a new transformation, which is modi�ed by an additional shift “𝛿𝑎𝑑𝑑” for compensating

the remaining changes from the old transformation 𝛿𝑜𝑙𝑑𝜔 ; that is to say, we have

𝛿𝑛𝑒𝑤𝜔 = 𝛿𝑜𝑙𝑑𝜔 + 𝛿𝑎𝑑𝑑𝜔. (5.36)

Then, consider the transformation of the constraint

𝛿𝑛𝑒𝑤𝐶 = 𝛿𝑜𝑙𝑑𝐶 + 𝛿𝑎𝑑𝑑𝐶 = 𝛿𝑜𝑙𝑑𝐶 + 𝜕𝐶

𝜕𝜔
𝛿𝑎𝑑𝑑𝜔 = 0. (5.37)

Thus, given 𝛿𝑜𝑙𝑑𝜔 and 𝛿𝑜𝑙𝑑𝐶 , the invertibility of 𝜕𝐶/𝜕𝜔 allows one to acquire the additional shifts

𝛿𝑎𝑑𝑑𝜔 in this way

𝛿𝑎𝑑𝑑𝜔 (𝜙) = −
(
𝜕𝐶

𝜕𝜔

)−1
𝛿𝑜𝑙𝑑𝐶

���
𝜔=𝜔 (𝜙)

, (5.38)
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where we insert the solution for the dependent �eld 𝜔 , i.e. 𝜔 = 𝜔 (𝜙). This trick shows how the

constraint can be preserved under the new transformations modi�ed by the additional shifts. In

the following section, we will use this later.

5.3 Stückelberg Trick and Gauge Eqivalence Program

Superconformal tensor calculus uses the procedure of “Gauge Equivalence Program” [31].

This is a program where one utilizes “more symmetry” as an extra in constructing a symmetric

theory than the number of symmetries that he wants to impose on the �nal model, and then

remove unwanted symmetries by gauge �xing in the end. The point is that this extra symmetry

is only used as not physical symmetry but a tool for building models! In superconformal tensor

calculus, we will consider superconformal symmetry group, but this will not be imposed on the

�nal physical actions of our theory.

In fact, the gauge equivalence program works based on the Stückelberg mechanism and its

underlying philosophy.

The Stückelberg mechanism (or trick) is a way of introducing new �elds (which are called

“Stückelberg or Compensator �elds”) for compensating the remaining shifts of existing �elds of

a theory that is not gauge-invariant under a (extra) symmetry of interest in order to make this

symmetry to become gauge invariance of the theory. Hence, in principle, we can make any

theory to be gauge invariant after applying the Stückelberg trick to the theory (See Ref. [40] for

a detailed review on the Stückelberg mechanism). It is worth noting that Stückelberg �eld can be

either physical or unphysical in our favor.

The Gauge Equivalence Program inspired by the Stückelberg mechanism consists of the

following �ve steps:

• 1. (Full Symmetry with Extras): De�ne “full symmetries” by introducing “extra symme-

tries” of our interest into the existing ones in our hands (i.e. specify (1) symmetry genera-
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tors, (2) transformation parameters, (3) gauge �elds, (4) their o�-shell closed algebras of the

symmetry generators with the corresponding structure constants/functions, and (5) their

transformation rules). In this step, gauge multiplets containing the extra gauge �elds must

be de�ned. Again, transformation rules of all the involved �elds under the “full” symme-

tries must be de�ned.

• 2. (Compensator): De�ne Stückelberg �elds that will not be physical or auxiliary in the

end, so that sometimes they may be de�ned as a ghost with the kinetic terms of a wrong

sign (for example, this appears when producing the Einstein curvature term after �xing the

dilatation in conformal gravity). Usually, “unphysical” Stückelberg �eld is called just com-

pensator. This compensator must transform under the symmetry in the way to compensate

the remaining shifts of the other existing �elds. Later on, compensators will be removed

by gauge �xing conditions.

• 3. (Invariant Action): Construct the actions which are invariant under the full symmetry

groups including the extra symmetries.

• 4. (Gauge Fixing): Choose gauge �xing conditions for unwanted symmetries. These

gauge constraints must be non-invariant under the unwanted symmetries. Di�erent gauge

choices lead to the equivalent theories that are merely related by proper “�eld rede�nitions.”

• 5. (Rewriting): Rewrite the actions and transformation rules of the relevant independent

quantities by inserting the solutions of dependent quantities which were obtained from the

gauge �xing conditions into them. Then, the resulting transformation rules can be given

by a linear combination of the existing and extra invariances (into which the solutions of

the dependent �elds are input) are called “decomposition laws,” which leave the gauge �xing

conditions to be invariant.
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5.4 Gauge Eqivalence Program for Superconformal

Symmetry of N = 1 Supergravity: Extra symmetry and

Compensator

We are now in a position to apply the gauge equivalence program to theN = 1 Supergravity.

As a �rst step of the program, we assume that our full symmetry group is de�ned by a superconfor-

mal symmetrywhich contains not only the super-Poincaré group of the Poincaré supergravity but

also dilatation, special conformal symmetry, conformal supersymmetry (a.k.a. 𝑆 supersymmetry),

and chiral 𝑈 (1) symmetry as extra symmetries. For the second step, we introduce a conformal

compensator 𝑆0 with the Weyl/chiral weights (1, 1) for the old-minimal formulation of super-

gravity. In fact, these two steps are explained in detail in the appendix B (superconformal tensor

calculus of N = 1 supergravity) of this thesis because they correspond to “technical” side.

5.5 Gauge Eqivalence Program for Superconformal

Symmetry of N = 1 Supergravity: Invariant Action,

Gauge Fixing, and Decomposition Laws

In this section, we perform the remaining three steps of the program. To do this, we will

construct a most general superconformal action of the supergravity which is invariant under the

superconformal symmetry. Then, by taking superconformal gauge �xing conditions, we �nd the

physical action of the Poincaré supergravity, and the corresponding decomposition laws.
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5.5.1 Brief review on Kähler transformations

Before going into the main story of supergravity action, we review the necessary concept

called “Kähler geometry.” The Kähler manifold as a target space has the followingKählermetric

“𝑔𝛼𝛽” characterizing the line element 𝑑𝑠2 in the complex coordinates 𝑧𝛼 ∈ C:

𝑑𝑠2 = 2𝑔𝛼𝛽𝑑𝑧
𝛼𝑑𝑧𝛽, (5.39)

where the metric must be identi�ed as

𝑔𝛼𝛽 ≡ 𝜕𝛼𝜕𝛽𝐾 (𝑧, 𝑧), (5.40)

where the function 𝐾 determining the Kähler metric is called “Kähler potential.” In particu-

lar, it is possible to compute the corresponding Christo�el symbol, covariant derivatives, and

curvatures. Hence, we may have

Γ𝛼
𝛽𝛾

= 𝑔𝛼𝛿𝜕𝛽𝑔𝛾𝛿 , (5.41)

Especially, from the de�nition of the Kähler metric, we see that there is an isometry given by

𝐾 (𝑧, 𝑧) −→ 𝐾 (𝑧, 𝑧) + 𝑓 (𝑧) + 𝑓 (𝑧) (5.42)

for some holomorphic function 𝑓 (𝑧). Then, for a general function𝑉 (𝑧, 𝑧), we can generally de�ne

the so-called Kähler transformation

𝑉 (𝑧, 𝑧) −→ 𝑉 (𝑧, 𝑧) exp
[
− 𝑎−1(𝑤+𝑓 (𝑧) +𝑤−𝑓 (𝑧))

]
, (5.43)
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where we de�ne “Kähler weights” (𝑤+,𝑤−). Moreoevr, in fact, this can be related into dilata-

tion and chiral U(1) symmetries. For a scalar function V(𝑋,𝑋 ) on the embedding space with

coordinates (𝑋,𝑋 ) larger than the target space (𝑧, 𝑧),

𝛿V(𝑋,𝑋 ) = 𝑤+(𝜆𝐷 + 𝑖𝜆𝑇 )V(𝑋,𝑋 ) +𝑤−(𝜆𝐷 − 𝑖𝜆𝑇 )V(𝑋,𝑋 ), (5.44)

where 𝜆𝐷,𝑇 are the gauge parameters of dilatation and chiral U(1) symmetires. Then, in general,

it can be represented in terms of the target space variables in this way

V(𝑋,𝑋 ) ≡ 𝑆𝑤+
0 𝑆

𝑤−
0 𝑉 (𝑧, 𝑧), (5.45)

where we introduce conformal compensators with the conformal weights, i.e. 𝑆0 and 𝑆0 has 𝑤+

and 𝑤−, respectively. Notice that the target space function 𝑉 (𝑧, 𝑧) is inert under the conformal

scaling, but must transform under Kähler transformations. The Kähler covariant derivatives

“∇𝛼” can be de�ned as

∇𝛼𝑉 (𝑧, 𝑧) ≡ 𝜕𝛼𝑉 (𝑧, 𝑧) +𝑤+𝑎
−1(𝜕𝛼𝐾 (𝑧, 𝑧))𝑉 (𝑧, 𝑧), (5.46)

∇̄𝛼𝑉 (𝑧, 𝑧) ≡ 𝜕𝛼𝑉 (𝑧, 𝑧) +𝑤−𝑎
−1(𝜕𝛼𝐾 (𝑧, 𝑧))𝑉 (𝑧, 𝑧), (5.47)

which produces that

[∇𝛼 , ∇̄𝛽]𝑉 (𝑧, 𝑧) = 𝑎−1(𝑤− −𝑤+)𝑔𝛼𝛽𝑉 (𝑧, 𝑧), (5.48)

and the covariant derivaives in spacetime

∇𝜇 = 𝜕𝜇𝑧𝛼∇𝛼 + 𝜕𝜇𝑧𝛼 ∇̄𝛼 . (5.49)
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As a concluding remark, it is also certain that ∇𝛼𝑉 is a covariant quantity that can transform as

Eq. (5.43).

5.5.2 Superconformal invariant action of N = 1 supergravity

Here we derive a physical action of the four dimensionalN = 1 Poincaré supergravity from

the action of its conformal supergravity. First, let us consider the following general supercon-

formal action

𝑆 = [𝑁 (𝑍 𝐼 , 𝑍 𝐼 )]𝐷 + [W(𝑍 𝐼 )]𝐹 + [𝑓𝐴𝐵 (𝑍 𝐼 )𝜆𝐴𝑃𝐿𝜆𝐵]𝐹 + 𝑐.𝑐 . (5.50)

where𝑍 𝐼 ≡ {𝑋 𝐼 ,Ω𝐼 , 𝐹 𝐼 } are chiral superconformalmultiplets with anyWeyl/chiral weights (𝑤, 𝑐);

𝑁 (𝑍 𝐼 , 𝑍 𝐼 ) is a “composite” real superconformal multiplet with the Weyl/chiral weights (2, 0)

whose arguments are given by the chiral multiplets 𝑍 𝐼 ’s; W(𝑍 𝐼 ) is a “composite” chiral super-

conformal multiplet with the Weyl/chiral weights (3, 3) as a holomorphic function of the chiral

multiplets; Λ̄𝐴𝑃𝐿𝜆𝐵 is a composite chiral superconformal multiplet with the Weyl/chiral weights

(3, 3) which is a fermionic bilinear of the gauginos of a vector multiplet𝑉 ≡ {𝐴𝐴𝜇 , 𝜆𝐴, 𝐷𝐴}with the

Weyl/chiral weights (0, 0), and 𝑓𝐴𝐵 (𝑍 𝐼 ) is a composite chiral superconformal multiplet with the

Weyl/chiral weights (0, 0) as a holomorphic function of the chiral multiplets and called Gauge

kinetic function. In particular, the speci�c forms of 𝑁 andW must be given by

𝑁 (𝑍 𝐼 , 𝑍 𝐼 ) ≡ 𝑆0𝑆0Φ(𝑍𝛼 , 𝑍𝛼 ) ≡ −𝑎𝑆0𝑆0𝑒−𝐾 (𝑍
𝛼 ,𝑍𝛼 )/𝑎, W(𝑍 𝐼 ) ≡ 𝑆30𝑊 (𝑍𝛼 ), (5.51)

where 𝑎 is a real constant; the index 𝐼 runs over 0 and 𝛼 ’s; 𝑆0 ≡ {𝑠0, 𝜒0, 𝐹 0} is a conformal compen-

sator chiral multiplet with theWeyl/chiral weights (1, 1); 𝑍𝛼 ≡ {𝑧𝛼 , 𝜒𝛼 , 𝐹𝛼 }’s arematter (physical)

chiral multiplets with the Weyl/chiral weights (0, 0); Φ(𝑍𝛼 , 𝑍𝛼 ) ≡ −𝑎𝑒−𝐾 (𝑍𝛼 ,𝑍𝛼 )/𝑎 is a composite

real superconformal multiplet with the Weyl/chiral weights (0, 0) of the chiral multiplets 𝑍 𝐼 ’s
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(where 𝐾 (𝑍𝛼 , 𝑍𝛼 ) is called Kähler potential and de�ned with the weights (0, 0) as a real func-

tion of the matter chiral multiplets because it de�nes the corresponding Kähler metric.);𝑊 (𝑍𝛼 )

is called Superpotential and de�ned as a holomorphic function of matter chiral multiplets, and

which is due to the property of homogeneity of the functions with respect to their Weyl scal-

ing dimension; that is, 𝑁 (Λ𝑆0, Λ̄𝑆0) = ΛΛ̄𝑁 (𝑆0, 𝑆0) and W(Λ𝑆0) = Λ3W(𝑆0) (or equivalently

𝑍 𝐼W𝐼 = 3W(𝑍 )) for some chiral multiplet Λ with the weights (0, 0).

Here are some remarks about gauge symmetry 𝛿 . Given Killing vector �elds of the symmetry,

the physical matter chiral scalars transform as

𝛿𝑍𝛼 = 𝜃𝐴𝑘𝛼𝐴 (𝑍 ). (5.52)

On the contrary, the conformal compensator must transform as

𝛿𝑆0 = 𝑎
−1𝜃𝐴𝑆0𝑟𝐴 (𝑍 ). (5.53)

Plus, the Kähler potential can transform as

𝛿𝐾 (𝑍, 𝑍 ) = 𝑓 (𝑍 ) + 𝑓 (𝑍 ) = 𝜃𝐴 (𝑟𝐴 (𝑍 ) + 𝑟𝐴 (𝑍 ))
!
= 𝛿𝐾 ¥𝑎ℎ𝑙𝑒𝑟𝐾, (5.54)

which can be identi�ed with the Kähler transformation. The corresponding moment map P𝐴 can

be given by

P𝐴 = 𝑖 (𝑘𝛼𝐴𝜕𝛼𝐾 − 𝑟𝐴) = 𝑐.𝑐 . (5.55)

Then, using the superconformal tensor calculus, after elimination of all auxiliary �elds and

97



lengthy simpli�cations, the component actions of the conformal supergravity can be found to be

𝑒−1L =
1
6
𝑁

[
− 𝑅(𝑒, 𝑏) +𝜓𝜇𝑅𝜇 + 𝑒−1𝜕𝜇 (𝑒𝜓 · 𝛾𝜓 𝜇)

]
−𝑉

+L0 + L1/2 + L1 + L𝑚𝑎𝑠𝑠 + L𝑚𝑖𝑥 + L𝑑 + L4𝑓 , (5.56)

where 𝑅𝜇 ≡ 𝛾 𝜇𝜌𝜎
(
𝜕𝜌+ 1

2𝑏𝜌+
1
4𝜔

𝑎𝑏
𝜌 (𝑒, 𝑏)𝛾𝑎𝑏− 3

2𝑖A𝜌𝛾∗
)
𝜓𝜎 andA𝜇 = 𝑖

1
2𝑁

[
𝑁𝐼 𝜕𝜇𝑋

𝐼−𝑁𝐼 𝜕𝜇𝑋 𝐼
]
+ 1
𝑁
𝐴𝐴𝜇P𝐴

L0 = −𝐺𝐼 𝐽𝐷𝜇𝑋 𝐼𝐷𝜇𝑋
𝐽 , (5.57)

L1/2 = −1
2
𝐺𝐼 𝐽 (Ω̄𝐼

��̂𝐷
(0)Ω𝐽 + Ω̄𝐽

��̂𝐷
(0)Ω𝐼 ), (5.58)

L1 = (Re𝑓𝐴𝐵)
[
− 1
4
𝐹𝐴𝜇𝜈𝐹

𝜇𝜈𝐵 − 1
2
𝜆𝐴��𝐷

(0)𝜆𝐵
]
+ 1
4
𝑖

[
(Im𝑓𝐴𝐵)𝐹𝐴𝜇𝜈𝐹 𝜇𝜈𝐵 + (𝐷𝜇Im𝑓𝐴𝐵)𝜆𝐴𝛾∗𝛾 𝜇𝜆𝐵

]
(5.59)

𝑉 = 𝑉𝐹 +𝑉𝐹 = 𝐺 𝐼 𝐽W𝐼W̄𝐽︸       ︷︷       ︸
≡𝑉𝐹

+ 1
2
(Re𝑓 )−1𝐴𝐵P𝐴P𝐵︸                 ︷︷                 ︸

≡𝑉𝐷

, (5.60)

L𝑚𝑎𝑠𝑠 =
1
2
W𝜓𝜇𝑃𝑅𝛾

𝜇𝜈𝜓𝜈 −
1
2
∇𝐼W𝐽 Ω̄

𝐼Ω𝐽 + 1
4
𝐺 𝐼 𝐽W̄𝐽 𝑓𝐴𝐵𝐼𝜆

𝐴𝑃𝐿𝜆
𝐵

+
√
2𝑖

(
− 𝜕𝐼P𝐴 + 1

4
𝑓𝐴𝐵𝐼 (Re𝑓 )−1 𝐵𝐶P𝐶

)
𝜆𝐴Ω𝐼 + ℎ.𝑐., (5.61)

L𝑚𝑖𝑥 = 𝜓 · 𝛾 𝑃𝐿
(1
2
𝑖P𝐴𝜆𝐴 + 1

√
2
W𝐼Ω

𝐼
)

︸                          ︷︷                          ︸
=−𝑃𝐿𝑣 (=Goldstino)

+ℎ.𝑐., (5.62)
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where W𝐼 ≡ 𝜕W/𝜕𝑋 𝐼 ≡ 𝜕𝐼W, 𝐺𝐼 𝐽 ≡ 𝜕𝐼 𝜕𝐽𝑁 and

L𝑑 =
1
8
(Re𝑓𝐴𝐵)𝜓𝜇𝛾𝑎𝑏 (𝐹𝐴𝑎𝑏 + 𝐹

𝐴
𝑎𝑏
)𝛾 𝜇𝜆𝐵 + 1

√
2

{
𝐺𝐼 𝐽𝜓𝜇��𝐷𝑋

𝐽𝛾 𝜇Ω𝐼 − 1
4
𝑓𝐴𝐵𝐼 Ω̄

𝐼𝛾𝑎𝑏𝐹𝐴
𝑎𝑏
𝜆𝐵

−2
3
𝑁𝐼 Ω̄

𝐼𝛾 𝜇𝜈𝐷𝜇𝜓𝜈 + ℎ.𝑐.
}
, (5.63)

L4𝑓 = −1
6
𝑁L𝑆𝐺,𝑡𝑜𝑟𝑠𝑖𝑜𝑛

+
{
− 1
4
√
2
𝑓𝐴𝐵𝐼𝜓 · 𝛾Ω𝐼𝜆𝐴𝑃𝐿𝜆

𝐵 + 1
8
∇𝐼 𝑓𝐴𝐵𝐽 Ω̄𝐼Ω𝐽𝜆𝐴𝑃𝐿𝜆

𝐵 + ℎ.𝑐.
}

+ 1
16
𝑖𝑒−1𝜀𝜇𝜈𝜌𝜎𝜓𝜇𝛾𝜈𝜓𝜌

(
Ω̄𝐽𝛾𝜎Ω

𝐼 + 1
2
Re𝑓𝐴𝐵𝜆𝐴𝛾∗𝛾𝜎𝜆𝐵

)
− 1
2
𝐺𝐼 𝐽𝜓𝜇Ω

𝐽𝜓 𝜇Ω𝐼

+1
4
𝑅𝐼𝐾 𝐽𝐿Ω̄

𝐼Ω𝐽 Ω̄𝐾Ω𝐿 − 1
16
𝐺 𝐼 𝐽 𝑓𝐴𝐵𝐼𝜆

𝐴𝑃𝐿𝜆
𝐵 𝑓𝐶𝐷𝐽𝜆

𝐶𝑃𝑅𝜆
𝐷

+ 1
16

(Re𝑓 )−1𝐴𝐵
(
𝑓𝐴𝐶𝐼 Ω̄

𝐼 − 𝑓𝐴𝐶𝐼 Ω̄𝐼
)
𝜆𝐶

(
𝑓𝐵𝐷𝐽 Ω̄

𝐽 − 𝑓𝐵𝐷𝐽 Ω̄𝐽
)
𝜆𝐷 + 𝑁𝐴𝐹𝜇𝐴𝐹

𝜇
,

L𝑆𝐺,𝑡𝑜𝑟𝑠𝑖𝑜𝑛 ≡ − 1
16

[
(𝜓 𝜌𝛾 𝜇𝜓𝜈 ) (𝜓𝜌𝛾𝜇𝜓𝜈 + 2𝜓𝜌𝛾𝜈𝜓𝜇) − 4(𝜓𝜇𝛾 ·𝜓 ) (𝜓 𝜇𝛾 ·𝜓 )

]
, (5.64)

where 𝐴𝐹𝜇 ≡ 𝑖 1
4𝑁

[√
2𝜓𝜇

(
𝑁𝐼Ω

𝐼 −𝑁𝐼Ω𝐼
)
+𝑁𝐼 𝐽 Ω̄𝐼𝛾𝜇Ω

𝐽 + 3
2 (Re𝑓𝐴𝐵)𝜆

𝐴𝛾𝜇𝛾∗𝜆𝐵
]
. The relevant covariant

derivatives are given by

𝐷𝜇𝑋
𝐼 = 𝜕𝜇𝑋

𝐼 − 𝑏𝜇𝑋 𝐼 −𝐴𝐴𝜇𝑘 𝐼𝐴 − 𝑖A𝜇𝑋
𝐼 , (5.65)

𝐷
(0)
𝜇 Ω𝐼 =

(
𝜕𝜇 −

3
2
𝑏𝜇 +

1
4
𝜔 𝑎𝑏
𝜇 (𝑒, 𝑏)𝛾𝑎𝑏 +

1
2
𝑖A𝜇

)
Ω𝐼 −𝐴𝐴𝜇 𝜕𝐽𝑘 𝐼𝐴Ω

𝐽 , (5.66)

𝐷
(0)
𝜇 𝜆𝐴 =

(
𝜕𝜇 −

3
2
𝑏𝜇 +

1
4
𝜔 𝑎𝑏
𝜇 (𝑒, 𝑏)𝛾𝑎𝑏 −

3
2
𝑖A𝜇𝛾∗

)
𝜆𝐴 −𝐴𝐶𝜇𝜆𝐵 𝑓 𝐴

𝐵𝐶 , (5.67)

𝐷𝜇𝜓𝜈 =

(
𝜕𝜇 +

1
2
𝑏𝜇 +

1
4
𝜔 𝑎𝑏
𝜇 (𝑒, 𝑏)𝛾𝑎𝑏 −

3
2
𝑖A𝜇𝛾∗

)
𝜓𝜈 . (5.68)

5.5.3 Superconformal gauge fixing: 𝐾, 𝐷, 𝑆,𝐴(𝑜𝑟𝑇 )-gauge fixings

Now we are ready to reduce the superconformal action to the physical one by imposing su-

perconformal gauges. First of all, it is possible to �x the special conformal symmetry in the way

K-gauge : 𝑏𝜇 = 0 (5.69)
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since its special conformal transformation is given by 𝛿𝐾 (𝜆𝐾 )𝑏𝜇 = 2𝜆𝐾𝜇 . Second, looking at

the curvature term −𝑁
6 𝑅(𝑒, 𝑏) in the superconformal action (5.56), we notice that if we can �x

𝑁 = − 3
𝜅2

where 𝜅 is de�ned as a dimensionful gravitational coupling constant such that

𝜅2 ≡ 8𝜋𝐺 = 𝑀−2
𝑝𝑙

for the reduced Planck mass 𝑀𝑝𝑙 ≡ 2.4 × 1018GeV, then we can obtain the

Einstein curvature term proportional to L𝐸𝑖𝑛𝑠𝑡𝑒𝑖𝑛 ∼ 1
2𝑅(𝑒)!

D-gauge : 𝑁 ≡ −3𝜅−2 =⇒ 3𝜅−2 !
= 𝑎 and 𝑆0𝑆0𝑒

−𝐾/𝑎 = 1. (5.70)

It turns out that this D-gauge choice can eliminate the kinetic mixing terms of “graviton” and

other “scalars.” In addition, we can similarly remove the kinetic mixing terms of “gravitino” and

other “fermions” by �xing the conformal supersymmetry (i.e. 𝑆-SUSY) through

S-gauge : 𝑁𝐼Ω
𝐼 ≡ 0 ⇐⇒ 𝑁𝐼Ω

𝐼 ≡ 0 =⇒ 𝑃𝐿𝜒
0 =

1
𝑎
𝜅2𝑃𝐿𝜒

𝛼 (5.71)

Moreover, we can �x the chiral U(1) symmetry by imposing

A (or T)-gauge : 𝑆0 = 𝑆0 =⇒ 𝑠0 = 𝑠0 = 𝑒
𝐾/2𝑎 . (5.72)

5.5.4 Physical action of N = 1 supergravity

The physical action of the general N = 1 supergraivity theory can now be obtained by the

spacetime integral of a gauge-�xed Lagrangian from the the action in Eq. (5.56) and constraints

in Eqs. (5.69), (5.70), (5.71), and (5.72).

Before looking into the physical action, we summarize some points.

• Chiral multiplets, and Kähler Potential: Consider chiral supermultiplets {𝑧𝛼 , 𝑃𝐿𝜒𝛼 }

indexed by 𝛼 , whose kinetic Lagrangians are determined by their Kähler potential 𝐾 (𝑧, 𝑧).

Then, the Kähler metric of the scalar target space is invariant udner the Kähler transfor-
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mation

𝑔𝛼𝛽 ≡ 𝜕𝛼𝜕𝛽𝐾 (𝑧, 𝑧), 𝐾 (𝑧, 𝑧) −→ 𝐾 (𝑧, 𝑧) + 𝑓 (𝑧) + 𝑓 (𝑧), (5.73)

where 𝑓 (𝑧) is given as some holomorphic function of the matter scalars.

• Gauge multiplets: Consider gauge multiplets {𝐴𝐴𝜇 , 𝜆𝐴} indexed by 𝐴, whose kinetic La-

grangians are determined by the symmetric gauge kinetic functions 𝑓𝐴𝐵 (𝑧) = 𝑓𝐵𝐴 (𝑧).

• Superpotential: Choose a superpotential𝑊 (𝑧) ofmatter scalars. Superpotential is a world

scalar, but it transforms under the Kähler transformation as

𝑊 (𝑍 ) −→ 𝑒−𝜅
2 𝑓 (𝑧)𝑊 (𝑧). (5.74)

• Gauge symmetry (R-symmetry): Consider a Lie group𝐺 with structure constants 𝑓 𝐶
𝐴𝐵

.

Then, the theory can have gauge symmetry provided that 𝐾,𝑊 , 𝑓𝐴𝐵 obey some proper con-

ditions by gauge invariance. Let 𝜃𝐴 be a gauge parameter. Then, the gauge transformation

of matter scalar is given by

𝛿𝑔𝑎𝑢𝑔𝑒𝑧
𝛼 ≡ 𝜃𝐴𝑘𝛼𝐴 (𝑧), (5.75)

where the gauge Killing vector 𝑘 𝐼
𝐴
is determined by Real moment map “P𝐴 (𝑧, 𝑧)” such

that

𝑘𝛼𝐴 (𝑧) = −𝑖𝑔𝛼𝛽𝜕𝛽P𝐴 (𝑧, 𝑧), ∇𝛼𝜕𝛽P𝐴 (𝑧, 𝑧) = 0, (5.76)

in which ∇𝛼 contains the Levi-Chivita connection of the Kähler metric. In fact, the Kähler

potential 𝐾 does not have to be invariant under the gauge symmetry because this shift can

101



be considered as a Kähler transformation. That is,

𝛿𝑔𝑎𝑢𝑔𝑒𝐾 = 𝜃𝐴 [𝑟𝐴 (𝑧) + 𝑟𝐴 (𝑧)]
!
= 𝑓 (𝑧) + 𝑓 (𝑧) = 𝛿𝐾 ¥𝑎ℎ𝑙𝑒𝑟𝐾, (5.77)

𝑟𝐴 ≡ 𝑘𝛼𝐴𝜕𝛼𝐾 + 𝑖P𝐴, 𝑓 (𝑧) ≡ 𝜃𝐴𝑟𝐴 . (5.78)

Here is a technical remark. From the de�nition of 𝑟𝐴, we can just read the moment map as

P𝐴 ≡ 𝑖 (𝑘𝛼𝐴𝜕𝛼𝐾 − 𝑟𝐴). (5.79)

In fact, the fermions can vary under the Kähler transformation

𝑃𝐿𝜒
𝛼 −→ 𝑒𝑖𝜅

2 (Im𝑓 (𝑧))/2𝑃𝐿𝜒
𝛼 , (5.80)

𝑃𝐿𝜓𝜇 −→ 𝑒−𝑖𝜅
2 (Im𝑓 (𝑧))/2𝑃𝐿𝜓𝜇, (5.81)

𝑃𝐿𝜆
𝐴 −→ 𝑒−𝑖𝜅

2 (Im𝑓 (𝑧))/2𝑃𝐿𝜆
𝐴 (5.82)

Plus, the gauge kinetic function must be gauge invariant, i.e. 𝛿𝑔𝑎𝑢𝑔𝑒 𝑓𝐴𝐵 (𝑧) = 0. Lastly, the

superpotential𝑊 (𝑧) must satisfy

𝛿𝑔𝑎𝑢𝑔𝑒W = W𝐼𝑘
𝐼
𝐴 = 0 =⇒ 𝑘𝛼𝐴∇𝛼𝑊 + 𝑖𝜅2P𝐴𝑊 =𝑊𝛼𝑘

𝛼
𝐴 + 𝜅2𝑟𝐴𝑊 = 0,

∴ 𝛿𝑔𝑎𝑢𝑔𝑒𝑊 (𝑧) =𝑊𝛼𝑘
𝛼
𝐴 = −𝜅2𝑟𝐴𝑊 (𝑧) !

= 𝛿𝐾 ¥𝑎ℎ𝑙𝑒𝑟𝑊 (𝑧) . (5.83)

Notice that the gauge transformation of the superpotential is also equivalent to its Kähler

transformation. In particular, when 𝑟𝐴 ≡ 𝑖𝜉𝐴 for some constant 𝜉𝐴, 𝑟𝐴 is called as “standard

Fayet-Iliopoulos term.” Moreover, it is worth noticing that if 𝑟𝐴 = 0, then the symmetry

𝛿𝑔𝑎𝑢𝑔𝑒 must be realized as Gauged non-R symmetry. If 𝑟𝐴 ≠ 0, then the symmetry 𝛿𝑔𝑎𝑢𝑔𝑒

is realized as a Gauged R-symmetry. Hence, for usual gauged non-R symmetries, both

Kähler potential and superpotential must be invariant under them.
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After lengthy calculations, we reach the following physical action:

𝑒−1L =
1
2𝜅2

[𝑅(𝑒) −𝜓𝜇𝑅𝜇] − 𝑔𝛼𝛽
[
𝜕𝜇𝑧

𝛼𝜕𝜇𝑧𝛽 + 1
2
𝜒𝛼��𝐷

(0)𝜒𝛽 + 1
2
𝜒𝛽��𝐷

(0)𝜒𝛼
]
−𝑉

+(Re𝑓𝐴𝐵)
[
− 1
4
𝐹𝐴𝜇𝜈𝐹

𝜇𝜈𝐵 − 1
2
𝜆𝐴��𝐷

(0)𝜆𝐵
]

+1
4
𝑖

[
(Im𝑓𝐴𝐵)𝐹𝐴𝜇𝜈𝐹 𝜇𝜈𝐵 + (𝜕𝜇Im𝑓𝐴𝐵)𝜆𝐴𝛾∗𝛾 𝜇𝜆𝐵

]
+1
8
(Re𝑓𝐴𝐵)𝜓𝜇𝛾𝑎𝑏 (𝐹𝐴𝑎𝑏 + 𝐹

𝐴
𝑎𝑏
)𝛾 𝜇𝜆𝐵 +

[
1
√
2
𝑔𝛼𝛽𝜓𝜇��̂𝜕𝑧

𝛽𝛾 𝜇 𝜒𝛼 + ℎ.𝑐.
]

[
1

4
√
2
𝑓𝐴𝐵𝛼𝜆

𝐴𝛾𝑎𝑏𝐹𝐵
𝑎𝑏
𝜒𝛼 + ℎ.𝑐.

]
+ L𝑚𝑎𝑠𝑠 + L𝑚𝑖𝑥 + L4𝑓 , (5.84)

where the Kähler metric 𝑔𝛼𝛽 is de�ned by the Kähler potential 𝐾 (𝑧, 𝑧) in the way that 𝑔𝛼𝛽 ≡

𝜕𝛼𝜕𝛽𝐾 (𝑧, 𝑧). The �rst term corresponds to the kinetic terms of graviton and gravitino with 𝑅𝜇

𝑅𝜇 ≡ 𝛾 𝜇𝜌𝜎
(
𝜕𝜌 +

1
4
𝜔 𝑎𝑏
𝜌 (𝑒)𝛾𝑎𝑏 −

3
2
𝑖A𝜌𝛾∗

)
𝜓𝜎 . (5.85)

The second term contains the kinetic terms of matter complex scalars and fermions with the

following covariant derivatives

𝜕𝜇𝑧
𝛼 ≡ 𝜕𝜇𝑧

𝛼 −𝐴𝐴𝜇𝑘𝛼𝐴 (𝑧), (5.86)

𝐷
(0)
𝜇 𝜒𝛼 ≡

(
𝜕𝜌 +

1
4
𝜔 𝑎𝑏
𝜌 (𝑒)𝛾𝑎𝑏 +

3
2
𝑖A𝜌𝛾∗

)
𝜒𝛼 −𝐴𝐴𝜇

𝜕𝑘𝛼
𝐴
(𝑧)

𝜕𝑧𝛽
𝜒𝛽 + Γ𝛼

𝛽𝛾
𝜒𝛾 𝜕𝜇𝑧

𝛽, (5.87)

where

Γ𝛼
𝛽𝛾

≡ 𝑔𝛼𝛿𝜕𝛽𝑔𝛾𝛿 , (5.88)

A𝜇 ≡ 1
6
𝜅2

[
𝜕𝜇𝑧

𝛼𝜕𝛼𝐾 − 𝜕𝜇𝜕𝛼𝐾 +𝐴𝐴𝜇 (𝑟𝐴 − 𝑟𝐴).
]

(5.89)

Note that the covariant derivatives of scalars only contain the usual Yang-Mills (YM) gauge con-

nections 𝐴𝐴𝜇 , while the covariant derivatives of spinor have K"ahler connection A𝜇 , Lorentz spin
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connection, YM gauge connection, and Christo�el symbol Γ𝛼
𝛽𝛿
. The K"ahler connectionA𝜇 trans-

forms as

𝛿A𝜇 = −1
3
𝜅2𝜕𝜇 (𝜃𝐴Im𝑟𝐴 + Im𝑓 ). (5.90)

The scalar potential 𝑉 is given by

𝑉 = 𝑉− +𝑉+ = 𝑉𝐹 +𝑉𝐷 ,

𝑉− ≡ −3𝜅2𝑒𝜅2𝐾𝑊𝑊̄ , 𝑉+ ≡ 𝑒𝜅2𝐾∇𝛼𝑊𝑔𝛼𝛽 ∇̄𝛽𝑊̄ + 1
2
(Re𝑓 )−1𝐴𝐵P𝐴P𝐵, (5.91)

𝑉𝐹 ≡ 𝑒𝜅
2𝐾∇𝛼𝑊𝑔𝛼𝛽 ∇̄𝛽𝑊̄ − 3𝜅2𝑒𝜅

2𝐾𝑊𝑊̄
!
= 𝜅−4𝑒𝐺 (𝐺𝛼𝐺𝛼𝛽𝐺𝛽 − 3),

𝑉𝐷 ≡ 1
2
(Re𝑓 )−1𝐴𝐵P𝐴P𝐵, (5.92)

where𝐺 ≡ 𝜅2𝐾+ln(𝜅3𝑊 )+ln(𝜅3𝑊̄ ) is de�ned as a “Kähler-invariant” (dimensionless) supergravity

G-function (and thus 𝐺𝛼𝛽 = 𝜅2𝑔𝛼𝛽 ), and supersymmetry breaking scale 𝑀𝑆 can be identi�ed by

the vacuum expectation value of the positive potential, i.e. 𝑀2
𝑆
≡ 〈𝑉+〉. The Kähler covariant

derivative of the superpotential𝑊 is given by

∇𝛼𝑊 ≡ 𝜕𝜇 + 𝜅2(𝜕𝛼𝐾)𝑊 . (5.93)

Then, the next two terms in the physical action are the gravitation representation of the gauge

multiplet’s kinetic terms. The corresponding covariant derivative is given by

𝐷
(0)
𝜇 𝜆𝐴 ≡

(
𝜕𝜇 +

1
4
𝜔 𝑎𝑏
𝜇 (𝑒)𝛾𝑎𝑏 −

3
2
𝑖A𝜇𝛾∗

)
𝜆𝐴 −𝐴𝐶𝜇𝜆𝐵 𝑓 𝐴

𝐵𝐶 . (5.94)

The �fth term is the supercurrent coupling of gauge multiplet of form𝜓𝜇J 𝜇 , where the superco-
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variant gauge curvature is given by

𝐹𝐴
𝑎𝑏

≡ 𝑒𝜇𝑎𝑒𝜈𝑏
(
2𝜕[𝜇𝐴𝐴𝜈] + 𝑓

𝐴
𝐵𝐶 𝐴𝐵𝜇𝐴

𝐶
𝜇 +𝜓 [𝜇𝛾𝜈]𝜆

𝐴
)
. (5.95)

Here we see that there is a fermionic bilinear contribution in the supercovariant gauge curvature.

This is in fact tomake it transform covariantly under the local supersymmetry. It is worth noticing

that the supergravity equations of motion are supercovariant in the end. Next, let us look at the

fermion bilinear mass term

L𝑚𝑎𝑠𝑠 =
1
2
𝑚3/2𝜓𝜇𝑃𝑅𝛾

𝜇𝜈𝜓𝜈 −
1
2
𝑚𝛼𝛽 𝜒

𝛼 𝜒𝛽 −𝑚𝛼𝐴𝜒
𝛼𝜆𝐴 − 1

2
𝑚𝐴𝐵𝜆

𝐴𝑃𝐿𝜆
𝐵 + ℎ.𝑐., (5.96)

where the gravitino mass parameter𝑚3/2 and fermion mass matrix components are given by

𝑚3/2 ≡ 𝜅2𝑒𝜅
2𝐾/2𝑊, (5.97)

𝑚𝛼𝛽 ≡ 𝑒𝜅
2𝐾/2∇𝛼∇𝛽𝑊 = 𝑒𝜅

2𝐾/2(𝜕𝛼 + 𝜅2𝜕𝛼𝐾) (∇𝛽𝑊 ) − 𝑒𝜅2𝐾/2Γ𝛾
𝛼𝛽
∇𝛾𝑊

= 𝑒𝜅
2𝐾/2(𝜕𝛼 + 𝜅2𝜕𝛼𝐾) (∇𝛽𝑊 ) − 𝑒𝜅2𝐾/2𝑔𝛾𝛿𝜕𝛼𝑔𝛽𝛿∇𝛾𝑊, (5.98)

𝑚𝛼𝐴 ≡ 𝑖
√
2
[
𝜕𝛼P𝐴 − 1

4
𝑓𝐴𝐵𝛼 (Re𝑓 )−1𝐵𝐶P𝐶

]
=𝑚𝐴𝛼 , (5.99)

𝑚𝐴𝐵 ≡ −1
2
𝑒𝜅

2𝐾/2𝑓𝐴𝐵𝛼𝑔
𝛼𝛽 ∇̄𝛽𝑊̄ . (5.100)

Importantly, the location of the minimum of the potential is determined by

𝜕𝛼𝑉 ≡ 𝜕𝑉

𝜕𝑧𝛼
= 𝑒𝜅

2𝐾
(
− 2𝑚̄3/2∇𝛼𝑊 +𝑚𝛼𝛽𝑔

𝛽𝛽 ∇̄𝛽𝑊̄
)
− 𝑖
√
2
P𝐴 (Re𝑓 )−1𝐴𝐵𝑚𝛼𝐵 . (5.101)

The mixing term of gravitino and matter fermions is given by

L𝑚𝑖𝑥 ≡ 𝜓 · 𝛾
[
1
2
𝑖𝑃𝐿𝜆

𝐴P𝐴 + 1
√
2
𝜒𝛼𝑒𝜅

2𝐾/2∇𝛼𝑊
]
+ ℎ.𝑐. (5.102)
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The �nal compoent of the action is given by the four-fermion terms

L4𝑓 ≡ 1
2
𝜅−2L𝑆𝐺,𝑡𝑜𝑟𝑠𝑖𝑜𝑛

+
{
− 1
4
√
2
𝑓𝐴𝐵𝛼𝜓 · 𝛾 𝜒𝛼𝜆𝐴𝑃𝐿𝜆𝐵 +

1
8
(∇𝛼 𝑓𝐴𝐵𝛽)𝜒𝛼 𝜒𝛽𝜆𝐴𝑃𝐿𝜆𝐵 + ℎ.𝑐.

}
+ 1
16
𝑖𝑒−1𝜀𝜇𝜈𝜌𝜎𝜓𝜇𝛾𝜈𝜓𝜌

(1
2
Re𝑓𝐴𝐵𝜆𝐴𝛾∗𝛾𝜎𝜆𝐵 + 𝑔𝛼𝛽 𝜒𝛽𝛾𝜎 𝜒𝛼

)
− 1
2
𝑔𝛼𝛽𝜓𝜇 𝜒

𝛽𝜓 𝜇 𝜒𝛼

+1
4

(
𝑅𝛼𝛾𝛽𝛿 −

1
2
𝜅2𝑔𝛼𝛾𝑔𝛽𝛿

)
𝜒𝛼 𝜒𝛽 𝜒𝛾 𝜒𝛿

+ 3
64
𝜅2

[
(Re𝑓𝐴𝐵)𝜆𝐴𝛾𝜇𝛾∗𝜆𝐵

]2
− 1
16
𝑓𝐴𝐵𝛼𝜆

𝐴𝑃𝐿𝜆
𝐵𝑔𝛼𝛽 𝑓𝐶𝐷𝛽𝜆

𝐶𝑃𝑅𝜆
𝐷

+ 1
16

(Re𝑓 )−1𝐴𝐵
(
𝑓𝐴𝐶𝛼 𝜒

𝛼 − 𝑓𝐴𝐶𝛼 𝜒𝛼
)
𝜆𝐶

(
𝑓𝐵𝐷𝛼 𝜒

𝛽 − 𝑓𝐵𝐷𝛽 𝜒𝛽
)
𝜆𝐷

−1
4
𝜅2𝑔𝛼𝛽 (Re𝑓 )𝜒𝛼𝜆𝐴𝜒𝛽𝜆𝐵 (5.103)

5.5.5 Decomposition laws

We have seen that after imposing the superconformal gauge, we obtain the physical action

of N = 1 supergravity. In fact, according to gauge equivalence program, we should get the

106



decomposition laws. Hence, the physical transformations of the �elds are then identi�ed as

𝛿𝑒𝑎𝜇 =
1
2
𝜖𝛾𝑎𝜓𝜇, (5.104)

𝛿𝑃𝐿𝜓𝜇 =

(
𝜕𝜇 +

1
4
𝜔 𝑎𝑏
𝜇 (𝑒)𝛾𝑎𝑏 −

3
2
𝑖A𝜇

)
𝑃𝐿𝜖 +

(1
2
𝜅2𝛾𝜇𝑒

𝜅2𝐾/2𝑊
)

︸               ︷︷               ︸
≡ 𝛿𝑠𝑃𝐿𝜓𝜇

𝑃𝑅𝜖 +
1
4
𝜅2𝑃𝐿𝜓𝜇𝜃

𝐴 (𝑟𝐴 − 𝑟𝐴)

+(quadratic in fermions)𝜖, (5.105)

𝛿𝑧𝛼 =
1
√
2
𝜖𝑃𝐿𝜒

𝛼 , (5.106)

𝛿𝑃𝐿𝜒
𝛼 =

1
√
2
𝑃𝐿��̂𝜕𝑧

𝛼 +
(
− 1
√
2
𝑒𝜅

2𝐾/2𝑔𝛼𝛽 ∇̄𝛽𝑊̄
)

︸                       ︷︷                       ︸
≡ 𝛿𝑠𝑃𝐿 𝜒

𝛼

𝑃𝐿𝜖 + 𝜃𝐴
[ 𝜕𝑘𝛼

𝐴
(𝑧)

𝜕𝑧𝛽
𝜒𝛽 + 1

4
𝜅2(𝑟𝐴 − 𝑟𝐴)𝜒𝛼

]
+(quadratic in fermions)𝜖, (5.107)

𝛿𝐴𝐴𝜇 = −1
2
𝜖𝛾𝜇𝜆

𝐴 + 𝜕𝜇𝜃𝐴 + 𝜃𝐶𝐴𝐵𝜇 𝑓 𝐴
𝐵𝐶 , (5.108)

𝛿𝑃𝐿𝜆
𝐴 =

[
1
4
𝛾 𝜇𝜈𝐹𝐴𝜇𝜈 +

1
2
𝑖𝛾∗(Re𝑓 )−1𝐴𝐵P𝐵︸                ︷︷                ︸

≡ 𝛿𝑠𝑃𝐿𝜆
𝐴

]
𝜖 + 𝜃𝐵

[
𝜆𝐶 𝑓 𝐴

𝐶𝐵 + 1
4
𝜅2𝛾∗(𝑟𝐵 − 𝑟𝐵)𝜆𝐴

]
+(quadratic in fermions)𝜖, (5.109)

where we de�ne special parts called “Fermion shift” as the only scalar part of the supersymmetry

transformation:

𝛿𝑠𝑃𝐿𝜓𝜇 ≡
1
2
𝜅2𝛾𝜇𝑒

𝜅2𝐾/2𝑊, 𝛿𝑠𝑃𝐿𝜒
𝛼 ≡ − 1

√
2
𝑒𝜅

2𝐾/2𝑔𝛼𝛽 ∇̄𝛽𝑊̄ , 𝛿𝑠𝑃𝐿𝜆
𝐴 ≡ 1

2
𝑖𝛾∗(Re𝑓 )−1𝐴𝐵P𝐵 .(5.110)

Then, the scalar potential can be rewritten in terms of these fermion shifts:

𝑉 = −1
2
(𝐷 − 2) (𝐷 − 1)𝜅2𝑒𝜅2𝐾 |𝑊 |2 + 2(𝛿𝑠𝑃𝐿𝜒𝛼 )𝑔𝛼𝛽 (𝛿𝑠𝑃𝑅𝜒𝛽) + 2(𝛿𝑠𝑃𝐿𝜆𝐴)Re𝑓𝐴𝐵 (𝛿𝑠𝑃𝑅𝜆𝐵), (5.111)
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where we de�ne a general spacetime dimension 𝐷 . Regarding this potential, we observe that

supersymmetric solutions lead to

𝑉 |supersymmetric = −1
2
(𝐷 − 2) (𝐷 − 1)𝜅2𝑒𝜅2𝐾 |𝑊 |2 ≤ 0, (5.112)

which means that vacua must be either Minkowski (if𝑊 = 0) or Anti-de-Sitter (AdS) (if𝑊 ≠ 0)

on the supersymmetric solutions in supergravity.

5.5.6 Mass dimension

Here is a remark about mass dimension. In fact, the “physical” scalar 𝑧′𝛼 must have the canon-

ical mass dimension [𝑧′𝛼 ] = 1, so that its superpartner fermion has [𝜒′𝛼 ] = 3/2, and auxiliary �eld

has [𝐹 ′𝛼 ] = 2. Meanwhile, since scalar �elds can normally appear non-linearly in the physical

action, it is more convenient to take them as “dimensionless,” i.e. [𝑧𝛼 ] = 0 through the re-scaling

𝑧′𝛼 ≡ 𝜅−1𝑧 , so that the other superpartners of 𝑧𝛼 must have modi�ed mass dimensions, i.e.

[𝜒𝛼 ] = 1/2 and [𝐹𝛼 ] = 1. In this unit, then, it turns out that the Kähler metric 𝑔𝛼𝛽 and also Kähler

potential 𝐾 (𝑧, 𝑧) must be dimension “2” from the kinetic term of the scalars [𝑔𝛼𝛽𝜕𝜇𝑧𝛼𝜕𝜇𝑧𝛽] = 4,

i.e. [𝑔𝛼𝛽] = [𝐾] = 2. In fact, regardless of the re-scaling, the canonical mass dimensions of the

various quantities are given by

[𝜅] = −1, [𝑓𝐴𝐵 (𝑧)] = 0, [A𝜇] = 1, [𝐾] = [𝑔𝛼𝛽] = [P𝐴] = [𝑟𝐴] = 2, [𝑊 (𝑧)] = 3. (5.113)

5.5.7 Global SUSY limit

The normalization of the independent functions𝐾,𝑊 , 𝑓𝐴𝐵,P𝐴, 𝑟𝐴 is de�ned in such a way that

we can obtain the global supersymmetry limit by taking 𝜅 = 𝑀−1
𝑝𝑙

= 0 or equivalently𝑀𝑝𝑙 −→ ∞

after “re-scaling of gravitino” (𝜓 −→ 𝜅𝜓 ) to remove the gravitino dependence from the physical

action of global supersymmetry.
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5.6 Supersymmetry Breaking and

Super-Brout-Englert-Higgs (BEH) Effect

5.6.1 Goldstino and the super-BEH effect

In this section, we are going to discuss a Goldstino mode which plays a critical role in super-

symmetry breaking. Previously, in the superconformal approach, we have obtained the Goldstino

spinor 𝑃𝐿𝑣 de�ned by

𝑃𝐿𝑣 ≡ − 1
√
2
W𝐼𝑃𝐿Ω

𝐼 − 1
2
𝑖P𝐴𝑃𝐿𝜆𝐴, (5.114)

whereW ≡ 𝑠30𝑊 (𝑧). After the superconformal gauge �xing, we observe that the mixing term of

gravitino and matter fermions is found as

L𝑚𝑖𝑥 = −𝜓 · 𝛾𝑃𝐿𝑣 + ℎ.𝑐., (5.115)

where the Goldstino becomes

𝑃𝐿𝑣 = −1
2
𝑖𝑃𝐿𝜆

𝐴P𝐴 − 1
√
2
𝑃𝐿𝜒

𝛼𝑒𝜅
2𝐾/2∇𝛼𝑊 . (5.116)

We can also rewrite this in terms of the fermion shifts

𝑃𝐿𝑣 = 𝑃𝐿𝜒
𝛼𝛿𝑠𝑃𝑅𝜒𝛼 + 𝑃𝐿𝜆𝐴𝛿𝑠𝑃𝑅𝜆𝐴, (5.117)

where

𝛿𝑠𝑃𝑅𝜒𝛼 ≡ 𝑔𝛼𝛽𝛿𝑠𝑃𝑅𝜒𝛽 = − 1
√
2
𝑒𝜅

2𝐾/2∇𝛼𝑊, 𝛿𝑠𝑃𝑅𝜆𝐴 = (Re𝑓 )𝐴𝐵𝛿𝑠𝑃𝑅𝜆𝐵 = −1
2
𝑖P𝐴 . (5.118)
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The important point here is that the supersymmetry transforation of the Goldstino can be given

by

𝛿𝑃𝐿𝑣 =
1
2
𝑉+𝑃𝐿𝜖 + vectors, derivatives of scalars, (quadratic terms in fermion)𝜖. (5.119)

One can derive this using the decomposition laws and the de�nition of the positive potential 𝑉+.

From this shift of the Goldstino, we can conclude the following. If 𝑉+ > 0 in a supersymmetry

breaking vacuum, then the Goldstino goes through the shift 𝛿𝑃𝐿𝑣 in Eq. (5.119), which means that

we can set any value of the Goldstino in the direction of the SUSY transformation. Hence, the

most convenient gauge can be chosen by

𝑣 = 0 (supersymmetry gauge), (5.120)

which removes the Goldstino degree of freedom in the physical action by washing out the mixing

term L𝑚𝑖𝑥 of gravitino and matter fermions. The remaining gravitino mass parameter term𝑚3/2

remains the same as that of the massive Rarita-Schwinger action (i.e. massive gravitino action).

Thus, in Minkowski space (when 𝑉 = 0), we can consider𝑚3/2 as the “physical” gravitino mass

that can be produced by the elimination of Goldstino!

Of course, the super-BEH e�ect a�ects the other fermion masses. To see how this works, let

us consider the gravitino terms in the physical action. When assuming that scalars are �xed as

constants and neglecting the other irrelevant terms, we can obtain the following gravitino action

𝑒−1L =
1
2𝜅2

𝜓𝜇

[
− 𝛾 𝜇𝜈𝜌𝜕𝜈 + (𝑚3/2𝑃𝑅 + 𝑚̄3/2𝑃𝐿)𝛾 𝜇𝜌

]
𝜓𝜌 −𝜓𝜇𝛾 𝜇𝑣 . (5.121)

Then, let us introduce a massive gravitino state

𝑃𝐿Ψ𝜇 ≡ 𝑃𝐿𝜓𝜇 −
2𝜅2

3|𝑚3/2 |2
𝜕𝜇𝑃𝐿𝑣 −

𝜅2

3𝑚̄3/2
𝛾𝜇𝑃𝑅𝑣 . (5.122)
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Then, by inserting this massive gravitino state in the above action and diagonalizing the action,

we obtain

𝑒−1L =
1
2𝜅2

Ψ̄𝜇
[
− 𝛾 𝜇𝜈𝜌𝜕𝜈 + (𝑚3/2𝑃𝑅 + 𝑚̄3/2𝑃𝐿)𝛾 𝜇𝜌

]
Ψ𝜌

+ 𝜅2

3|𝑚3/2 |2
[
𝑣�𝜕𝑣 + 2𝑣 (𝑚3/2𝑃𝑅 + 𝑚̄3/2𝑃𝐿)𝑣

]
. (5.123)

Then, by inserting Eq. (5.117) into Eq. (5.123) and reading the corresponding contributions to the

fermionmass matrix, we �nd that the additional fermionmass by the elimination of the Goldstino

are found to be

𝑚
(𝑣)
𝛼𝛽

= − 4𝜅2

3𝑚3/2
(𝛿𝑠𝑃𝑅𝜒𝛼 ) (𝛿𝑠𝑃𝑅𝜒𝛽), (5.124)

𝑚
(𝑣)
𝛼𝐴

= − 4𝜅2

3𝑚3/2
(𝛿𝑠𝑃𝑅𝜒𝛼 ) (𝛿𝑠𝑃𝑅𝜆𝐴), (5.125)

𝑚
(𝑣)
𝐴𝐵

= − 4𝜅2

3𝑚3/2
(𝛿𝑠𝑃𝑅𝜆𝐴) (𝛿𝑠𝑃𝑅𝜆𝐵). (5.126)

Therefore, the full fermion mass matrix must be re-written as

𝑚
𝑔

𝛼𝛽
≡𝑚𝛼𝛽 +𝑚(𝑣)

𝛼𝛽
, (5.127)

𝑚
𝑔

𝛼𝐴
≡𝑚𝛼𝐴 +𝑚(𝑣)

𝛼𝐴
, (5.128)

𝑚
𝑔

𝐴𝐵
≡𝑚𝐴𝐵 +𝑚(𝑣)

𝐴𝐵
. (5.129)

This consequence of generation of gravitino and matter fermions by elimination of the Goldstino is

called “Super-BEH E�ect.”

There is additional remark about the Goldstino. Using the previous results, we can re-express

the �rst �eld derivative of the scalar potential and gauge invariance condition of the superpoten-
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tial as follows:

𝜕𝛼𝑉 = −
√
2
[
𝑚𝛼𝛽𝛿𝑠𝑃𝐿𝜒

𝛽 +𝑚𝛼𝐵𝛿𝑠𝑃𝑅𝜆
𝐵 − 2𝑚̄3/2𝛿𝑠𝑃𝑅𝜒𝛼

]
, (5.130)

𝑚𝛽𝐴𝛿𝑆𝑃𝐿𝜒
𝛽 − 2𝑚̄3/2𝛿𝑠𝑃𝑅𝜆𝐴 = 0, (5.131)

where the second line is obtained by the gauge invariance condition

𝛿𝑔𝑎𝑢𝑔𝑒W = W𝐼𝑘
𝐼
𝐴 = 0 =⇒ 𝑘𝛼𝐴∇𝛼𝑊 + 𝑖𝜅2P𝐴𝑊 =𝑊𝛼𝑘

𝛼
𝐴 + 𝜅2𝑟𝐴𝑊 = 0. (5.132)

Then, combining Eqs. (5.111) and the above fermion masses, Eq. (5.131) can be re-written by

𝑚
𝑔

𝛼𝛽
𝛿𝑠𝑃𝐿𝜒

𝛽 +𝑚𝑔

𝛼𝐴
𝛿𝑠𝑃𝐿𝜆

𝐵 + 2𝜅2

3𝑚3/2
𝑉𝛿𝑠𝑃𝑅𝜒𝛼 = − 1

√
2
𝜕𝛼𝑉 , (5.133)

𝑚
𝑔

𝐴𝛽
𝛿𝑠𝑃𝐿𝜒

𝛽 +𝑚𝑔

𝐴𝐵
𝛿𝑠𝑃𝐿𝜆

𝐵 + 2𝜅2

3𝑚3/2
𝑉𝛿𝑠𝑃𝑅𝜆𝐴 = 0. (5.134)

Hence, with respect to these results, we �nd that in the vacuum (𝜕𝛼𝑉 = 0) with zero cosmological

constant 𝑉 = 0, the full fermion mass matrix must have a zero eigenvector with the vanishing

masses as expected.
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6 | Review 5: Recent Developments of

Inflationary Models in

Supergravity

In this chapter, we review recent developments of in�ationary models in supergravity. Super-

gravity based in�ation models and their general di�culties are well-reviewed in Ref. [16]. In re-

cent decades, several supergravity models for covering both in�ation and MSSM phenomenology

have been investigated in the literature [41–47]. Most recently, Domcke and Schmitz presented a

supergravity model unifying high-scale supersymmetry breaking, viable D-term hybrid in�ation,

spontaneous B-L breaking at the scale of grand uni�cation, baryogenesis via leptogenesis, and

standard model neutrino masses [41]. Chakravarty, Gupta, Lambiase, and Mohanty in Ref. [43]

found a Higgs in�ation model in the supergravity embedding of MSSM by taking into account all

higher order non-renormalizable terms to the MSSM superpotential, in which the in�aton is from

the 𝑆𝑈 (2) Higgs doublet. However, the superpotential in this model has no clear connection to its

string-theoretical origin. In Ref. [44], Pallis constructed a model that links Starobinsky-type in-

�ation in no-scale supergravity to MSSM by introducing an arbitrarily-chosen superpotential for

in�ation. Due to this arbitrariness of superpotential, it seems hard to explore its string-theoretical

origin as well.

In Ref. [45], Ferrara, Kallosh, Linde, Marrani and Van Proeyen proposed a construction of
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embedding Next-to MSSM model and realizing in�ation in their supergravity setup. However,

the authors found a strong tachyonic instability problem during in�ation in their model, and

mentioned that its remedy is required to support the Higgs-type in�ation [45]. In Ref. [46],

Kaminska and Pachole built a supergravity model of in�ation and preheating by considering non-

minimal Kähler potential as well as MSSM and its nonrenormalizable superpotentials to generate

MSSM in�ation [48, 49]. In Ref. [47], Enqvist, Mether, and Nurmi investigated a supergravity

origin of the MSSM in�ationary scenarios [48, 49] with a string-motivated Kähler potential but

with MSSM and its higher order nonrenormalizable corrections to superpotential not related to

string theory, where in�aton is identi�edwith a gauge invariant combination of squark or slepton

�elds. We see that it is not manifest how the superpotentials used in Refs. [46, 47] can be obtained

from superstring theory.

Some “string-inspired” supergravity models of in�ation based on Type IIB string compacti�-

cations have been studied by T. Li, Z. Li, and Nanopoulos [50–52]. The authors used KKLT super-

potential [19] and �rst introduced anomalous U(1) gauge symmetry for generating a contribution

to D-terms [50–52]. Their models focus on realizing viable in�ation and moduli stabilizations,

while MSSM phenomenology has not been embedded into the models. Therefore, it turns out that

a string-inspired supergravity model of in�ation compatible with MSSM phenomenology has not

yet been su�ciently investigated, causing the strong motivation of our work.

In terms of supersymmetry (SUSY), there is an issue about rich �eld degrees of freedom.

Supersymmetric theory predicts many �eld degrees of freedom exceeding the number of �elds

that standard model (SM) currently has due to their superpartners. This means the SM fermions

must pair with superpartner scalars. On the contrary, there are a few scalar bosons including

Higgs �eld in the SM phenomenology and even superparticles have never been discovered yet,

signaling that supersymmetry was spontaneously broken at a certain mass scale, say 𝑀𝑆 , less

than𝑀𝑝𝑙 .

In addition, there is another problem that many scalar bosons may cause in the early universe
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cosmology. In fact, single-�eld slow-roll in�ation is strongly supported by recent cosmological

observations from Planck 2018 data [1–3]. This implies that in�aton, which is a hypothetical

scalar boson responsible for in�ation, must be the unique scalar boson with mass less than the

Hubble scale during in�ation among possible scalar multi-�elds if they exist in the in�ationmodel

of interest. Thus, it turns out that one should be able to integrate out unnecessary scalar degrees of

freedom and simultaneouslymake the relevantmass spectra to be phenomenologically acceptable

in a supergravity model of interest.

In fact, Vennin, Koyama, andWands [53] found that an e�ective single-�eld slow-roll in�ation

may take place even under the introduction of extra scalars. This argument can be valid only if

certain reheating scenario conditions on decay rates and masses of in�aton and extra scalars are

satis�ed [53], implying that numerous extra scalars may lead to a great deal of constraints our

model must obey. This may be viewed as another obstruction in constructing phenomenological

models. Due to this, we pursue to minimize the number of possible extra light scalars living

in our model. That is, remaining a few necessary light scalars, one should be able to make the

other super�uous scalars much heavy to obtain minimal reheating scenario constraints to follow

by integrating out such scalar modes. Accordingly, in the following chapters, I will utilize the

argument of Ref. [53] when we in our models encounter a light Higgs mass and consider this as

such a few extra light scalar.

Another possibility for enlarging the space of scalar potentials in supergravity can be new

Fayet-Iliopoulos (FI) terms without gauging R-symmetry. Recently, such new FI terms have been

proposed and used for constructing reliable supergravity models of in�ation by many authors

[54–59]. Our observation here is that the absence of a gauged R symmetry in the new FI term

signals that such new FI terms can be compatible with the KKLT string background. In this

sense, in Ref. [60], we �rst proposed such a supergravity model of in�ation and dS vacua by

adding a “constant” new FI term1 (i.e. called ACIK-FI term [54]) to supergravity in the KKLT
1Such new FI term has been long regarded to be banned in supergravity. This is because the only possible FI
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string background, while appropriate realization of MSSM phenomenology has not been made in

the model since there was no truncation of many light scalar modes. So, an improvement on our

previous work [60] has to be made if we wish to embed MSSM into such supergravity.

terms were thought to arise from a gauged R-symmetry [61–63], require a R-symmetric superpotential [64] and be
subject to quantization conditions when a compact R-symmetry group is gauged [65].
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7 | Reconstruction of Liberated N = 1

Supergravity in the Superconformal

Formalism

This chapter is based on the author’s original work in Ref. [66, 67].

In this chapter, we compute the component action of liberated N = 1 supergravity in su-

perconformal tensor calculus1 [68–70]. We �nd that the superconformal Lagrangian of liberated

N = 1 supergravity [71] can be written by a D-term

L𝑁𝐸𝑊 ≡
[
Y2 𝑤2𝑤̄2

𝑇 (𝑤̄2)𝑇 (𝑤2)
U(𝑍, 𝑍 )

]
𝐷

, (7.1)

in which we de�neY ≡ 𝑆0𝑆0𝑒−𝐾/3 where 𝑆0 is a conformal compensator withWeyl/chiral weights

(1, 1) and 𝐾 is a Kähler potential with the weights (2, 0). The notation for the other �elds is as

follows: 𝑤2 ≡ W2 (𝐾)
Y2 , 𝑤̄2 ≡ W̄2 (𝐾)

Y2 , W2(𝐾) ≡ W𝛼 (𝐾)W𝛼 (𝐾) where W𝛼 (𝐾) is a �eld strength

multiplet with respect to the Kähler potential;U(𝑍, 𝑍 ) is a general function of matter multiplets

𝑍 , and𝑇 (𝑤̄2),𝑇 (𝑤2) are chiral projection of 𝑤̄2 and its conjugate respectively. The expression in

Eq. (7.1) will be a key equation in this chapter.
1Superconformal tensor calculus is reviewed in the appendix B of this dissertation.
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7.1 Embedding Super-Weyl-Kähler Transformations as an

Abelian Gauge Symmetry into the Superconformal

Formalism

In liberatedN = 1 supergravity [71], a key idea is that the Super-Weyl-Kähler transformation

can be promoted to an Abelian gauge symmetry. Liberated supergravity was constructed in [71]

using the superspace formalism, where a Kähler transformation is introduced to compensate the

variation of the action under a super-Weyl rescaling. In this work instead, we want to construct

the equivalent liberated supergravity using the superconformal tensor calculus to analyze the

fermionic interactions in a systematical and economical way. To do so, we introduce a conformal

compensator multiplet, called 𝑆0, removing the variation while maintaining the Kähler potential

invariant under superconformal symmetry. Therefore, unlike the superspace formalism, it is

essential to de�ne such a gauge transformation independently of superconformal symmetry.

To �nd the Super-Weyl-Kähler transformations that are compatible with the superconformal

formalism, we recall �rst the Super-Weyl-Kähler transformations that are used in the superspace

formalism. A Kähler function 𝐾 (𝑧, 𝑧), whose arguments have the vanishing Weyl/chiral weights,

is de�ned up to a chiral gauge parameter Σ. The rede�nition by Σ acts on the components of the
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Kähaler multiplet as

𝐾 → 𝐾 + 6Σ + 6Σ̄, (7.2)

𝑊 →𝑊𝑒−6Σ, 𝑊̄ → 𝑊̄ 𝑒−6Σ̄ (7.3)

𝑇 → 𝑒−4Σ+2Σ̄𝑇, 𝑇 → 𝑒2Σ−4Σ̄𝑇, (7.4)

D𝛼𝐾 → 𝑒Σ−2Σ̄D𝛼𝐾, W𝛼 → 𝑒−3ΣW𝛼 , W2 → 𝑒−6ΣW2, (7.5)

𝑇 (W̄2) → 𝑇 (W̄2)𝑒−4Σ−4Σ̄, (7.6)

D𝛼W𝛼 → 𝑒−2Σ−2Σ̄D𝛼W𝛼 , (7.7)

𝐸 → 𝐸𝑒2Σ+2Σ̄, E → E𝑒6Σ. (7.8)

where 𝐸 and E are the D- and F-term densities, respectively.

Next, it may be useful to recall the relation between the superspace and superconformal for-

malisms. The invariant actions from the superconformal formalism are identi�ed with those from

the superspace calculus as follows [72]:

[V]𝐷 = 2
∫

𝑑4𝜃𝐸V, (7.9)

[S]𝐹 =

∫
𝑑2𝜃ES +

∫
𝑑2𝜃 ĒS̄, (7.10)

whereV is a superconformal real multiplet with the Weyl/chirial weights (2,0) and S is a super-

conformal chiral multiplet with Weyl/chiral weights (3,3). To make the action invariant under

the super-Weyl-Kähler transformations we should impose that the corresponding superconfor-

mal multiplets transform as

V → V𝑒−2Σ−2Σ̄, S → S𝑒−6Σ. (7.11)

Instead of considering the Kähler transformation of the Kähler potential a superconformal
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compensator is introduced in the superconformal formalism to eliminate the variation of the

action transformed by a super-Weyl rescaling (also called Howe-Tucker transformation [10]).

Thus, the compensator must transform as

𝑆0 → 𝑆0𝑒
−2Σ, 𝑆0 → 𝑆0𝑒

−2Σ̄, (7.12)

resulting in

𝑆0𝑆0𝑒
−𝐾/3 → 𝑆0𝑆0𝑒

−𝐾/3𝑒−2Σ−2Σ̄, (7.13)

where 𝐾 is invariant under the superconformal symmetry (i.e. super-Weyl rescaling), so that the

action can be invariant as desired.

At this point, di�erently from the usual story of the superconformal symmetry, we require a

“Kähler transformation” of the Kähler potential in order to construct a “liberated” supergravity

that is invariant under the same Super-Weyl-Kähler transformations as an abelian gauge sym-

metry used in [71]. Therefore, we assume that the superconformal compensators are inert under

the super-Weyl-Kähler transformations

𝑆0 → 𝑆0, 𝑆0 → 𝑆0, (7.14)

while the Kähler potential does transform under the same transformations as above, namely as

𝐾 → 𝐾 + 6Σ + 6Σ̄, so that

Y → Y𝑒−2(Σ+Σ̄), (7.15)

𝑤2 ≡ W2(𝐾)
(𝑒−𝐾/3𝑆0𝑆0)2

→ 𝑤2𝑒−2Σ+4Σ̄, (7.16)

𝑇
(
𝑤2) → 𝑇

(
𝑤2𝑒−2Σ+4Σ̄

)
𝑒2Σ−4Σ̄ = 𝑇

(
𝑤2) . (7.17)
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7.2 List of Superconformal Multiplets

In this section, we present all the superconformal multiplets of the liberated N = 1 super-

gravity following the notations and multiplication laws used in [8, 70].

7.2.1 Kähler potential multiplet

Let us consider𝑛 physical chiral multiplets of matter 𝑧𝐼 ≡ {𝑧𝐼 , 𝑃𝐿𝜒 𝐼 , 𝐹 𝐼 }where 𝐼 = 1, 2, 3, · · · , 𝑛

and their anti-chiral multiplets 𝑧𝐼 ≡ {𝑧𝐼 , 𝑃𝑅𝜒 𝐼 , 𝐹 𝐼 }.2 Then, according to the superconformal tensor

calculus, the Kähler potential multiplet can be written as follows:

𝐾 (𝑧, 𝑧) = {𝐶𝐾 ,Z𝐾 ,H𝐾 ,K𝐾 ,B𝐾
𝜇 ,Λ𝐾 ,D𝐾 } (7.18)

2The complex conjugates are 𝑧𝐼 ≡ (𝑧𝐼 )∗, 𝜒 𝐼 ≡ (𝜒 𝐼 )𝐶 , 𝜒 𝐼 ≡ (𝜒 𝐼 )𝐶 , and 𝐹 𝐼 ≡ (𝐹 𝐼 )∗ (The barred index is the complex
conjugate index, so that the handedness of fermion becomes opposite, i.e. (𝑃𝐿/𝑅 𝜒)𝐶 = (𝑃𝐿/𝑅)𝐶 (𝜒)𝐶 = 𝑃𝑅/𝐿 (𝜒)𝐶 .).
The chiralities of fermion are speci�ed as 𝜒 𝐼 ≡ 𝑃𝐿𝜒 𝐼 and 𝜒 𝐼 ≡ 𝑃𝑅 𝜒 𝐼 . The Majorana conjugates are (𝑃𝐿/𝑅 𝜒) = 𝜒𝑃𝐿/𝑅
(The handedness is preserved.).
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where

𝐶𝐾 = 𝐾 (𝑧, 𝑧), (7.19)

Z𝐾 = 𝑖
√
2(−𝐾𝐼 𝜒 𝐼 + 𝐾𝐼 𝜒 𝐼 ), (7.20)

H𝐾 = −2𝐾𝐼𝐹 𝐼 + 𝐾𝐼 𝐽 𝜒 𝐼 𝜒 𝐽 , (7.21)

K𝐾 = −2𝐾𝐼𝐹 𝐼 + 𝐾𝐼 𝐽 𝜒 𝐼 𝜒 𝐽 = H ∗
𝐾 , (7.22)

B𝐾
𝜇 = 𝑖𝐾𝐼D𝜇𝑧

𝐼 − 𝑖𝐾𝐼D𝜇𝑧
𝐼 + 𝑖𝐾𝐼 𝐽 𝜒 𝐼𝛾𝜇 𝜒 𝐽 , (7.23)

Λ𝐾 = 𝑃𝐿Λ𝐾 + 𝑃𝑅Λ𝐾 (7.24)

𝑃𝐿Λ𝐾 = −
√
2𝑖𝐾𝐼 𝐽 [(��D𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ] −

𝑖
√
2
𝐾𝐼 𝐽𝐾 𝜒

𝐾 𝜒 𝐼 𝜒 𝐽 , (7.25)

𝑃𝑅Λ𝐾 =
√
2𝑖𝐾𝐼 𝐽 [(��D𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ] +

𝑖
√
2
𝐾𝐼 𝐽𝐾 𝜒

𝐾 𝜒 𝐼 𝜒 𝐽 , (7.26)

D𝐾 = 2𝐾𝐼 𝐽

(
− D𝜇𝑧

𝐼D𝜇𝑧 𝐽 − 1
2
𝜒 𝐼𝑃𝐿��D𝜒 𝐽 − 1

2
𝜒 𝐽𝑃𝑅��D𝜒 𝐼 + 𝐹 𝐼𝐹 𝐽

)
+𝐾𝐼 𝐽𝐾

(
− 𝜒 𝐼 𝜒 𝐽𝐹𝐾 + 𝜒 𝐼 (��D𝑧 𝐽 )𝜒𝐾

)
+ 𝐾𝐼 𝐽𝐾

(
− 𝜒 𝐼 𝜒 𝐽𝐹𝐾 + 𝜒 𝐼 (��D𝑧 𝐽 )𝜒𝐾

)
+1
2
𝐾𝐼 𝐽𝐾𝐿 (𝜒 𝐼𝑃𝐿𝜒 𝐽 ) (𝜒𝐾𝑃𝑅𝜒𝐿). (7.27)
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Here the covariant derivatives3 of chiral multiplets of matter with the weights (0, 0) are given by

D𝑎𝑧
𝐼 = 𝑒

𝜇
𝑎

[
𝜕𝜇𝑧

𝐼 − 1
√
2
𝜓𝜇 𝜒

𝐼
]
, (7.28)

D𝑎𝑃𝐿𝜒
𝐼 = 𝑒

𝜇
𝑎𝑃𝐿

[ (
𝜕𝜇 +

1
4
𝜔𝑎𝑏𝜇 𝛾𝑎𝑏 −

1
2
𝑏𝜇 −

3
2
𝑖𝐴𝜇

)
𝜒 𝐼 − 1

√
2
(��D𝑧𝐼 + 𝐹 𝐼 )𝜓𝜇

]
.

(7.29)

Note that the only bosonic contribution to D𝐾 is given by

D𝐾 |boson = 2𝐾𝐼 𝐽
(
−𝜕𝜇𝑧𝐼 𝜕𝜇𝑧 𝐽 + 𝐹 𝐼𝐹 𝐽

)
≡ F̃ (7.30)

and we especially denote this by F̃ . We also note that the F̃ is positive de�nite up to terms

containing spatial gradients; so, for small spatial gradients,

D𝐾 |boson ≡ F̃ ∼ 2𝐾𝐼 𝐽
(
¤𝑧𝐼 ¤̄𝑧 𝐽 + 𝐹 𝐼𝐹 𝐽

)
> 0. (7.31)

7.2.2 Compensator multiplet

Chiral compensators 𝑆0, 𝑆0 with the Weyl/chiral weights (1,1) are de�ned as follows. The

chiral supermultiplets 𝑆0 = {𝑠0, 𝑃𝐿𝜒0, 𝐹0} and 𝑆0 = {𝑠∗0, 𝑃𝑅𝜒0, 𝐹 ∗0 } can be embedded into the super-
3From Eq. (16.34) in Ref. [8] we �nd that for a general superconformal chiral multiplet (𝑧𝐼 , 𝑃𝐿𝜒 𝐼 , 𝐹 𝐼 ) with

Weyl/chiral weights (𝑤, 𝑐 = 𝑤) and gauge symmetries with Killing vector �elds 𝑘𝐼
𝐴
, the full superconformal co-

variant derivatives D𝑎 are given by

D𝑎𝑧
𝐼 = 𝑒

𝜇
𝑎

[
(𝜕𝜇 −𝑤𝑏𝜇 −𝑤𝑖𝐴𝜇)𝑧𝐼 −

1
√
2
𝜓𝜇 𝜒

𝐼 −𝐴𝐴𝜇𝑘𝐼𝐴
]
,

D𝑎𝑃𝐿𝜒
𝐼 = 𝑒

𝜇
𝑎𝑃𝐿

[ (
𝜕𝜇 +

1
4
𝜔𝑎𝑏𝜇 𝛾𝑎𝑏 − (𝑤 + 1/2)𝑏𝜇 + (𝑤 − 3/2)𝑖𝐴𝜇

)
𝜒 𝐼 − 1

√
2
(��D𝑧𝐼 + 𝐹 𝐼 )𝜓𝜇

−
√
2𝑤𝑧𝐼𝜙𝜇 −𝐴𝐴𝜇 𝜒 𝐽 𝜕𝐽 𝑘𝐼𝐴

]
.

123



conformal formalism as

𝑆0 ≡ {𝑠0,−𝑖
√
2𝑃𝐿𝜒0,−2𝐹0, 0, 𝑖D𝜇𝑠0, 0, 0}, (7.32)

𝑆0 ≡ {𝑠∗0, 𝑖
√
2𝑃𝑅𝜒0, 0,−2𝐹 ∗0 ,−𝑖D𝜇𝑠

∗
0, 0, 0}. (7.33)

Then, the composite real compensator 𝑆0𝑆0 is

𝑆0𝑆0 = {C0,Z0,H0,K0,B0
𝜇 ,Λ0,D0}, (7.34)

where 4

C0 = 𝑠0𝑠
∗
0 |0𝑓 , (7.35)

Z0 = 𝑖
√
2(−𝑠∗0𝑃𝐿𝜒0 + 𝑠0𝑃𝑅𝜒0) |1𝑓 , (7.36)

H0 = −2𝑠∗0𝐹 0 |0𝑓 , (7.37)

K0 = −2𝑠0𝐹 ∗0 |0𝑓 , (7.38)

B0
𝜇 = 𝑖𝑠∗0D𝜇𝑠0 − 𝑖𝑠0D𝜇𝑠

∗
0 + 𝑖 𝜒0𝛾𝜇𝑃𝑅𝜒0 = 𝑖𝑠∗0𝜕𝜇𝑠0 − 𝑖𝑠0𝜕𝜇𝑠∗0 |0𝑓 + · · · , (7.39)

𝑃𝐿Λ0 = −
√
2𝑖 [(��D𝑠∗0)𝑃𝑅𝜒0 − 𝐹 ∗0𝑃𝐿𝜒0] = −

√
2𝑖 [(�𝜕𝑠∗0)𝑃𝑅𝜒0 − 𝐹 ∗0𝑃𝐿𝜒0] |1𝑓 + · · · , (7.40)

𝑃𝑅Λ0 =
√
2𝑖 [(��D𝑠0)𝑃𝐿𝜒0 − 𝐹0𝑃𝑅𝜒0] =

√
2𝑖 [(�𝜕𝑠0)𝑃𝐿𝜒0 − 𝐹0𝑃𝑅𝜒0] |1𝑓 + · · · , (7.41)

D0 = 2
(
−D𝜇𝑠0D𝜇𝑠∗0 −

1
2
𝜒0𝑃𝐿��D𝜒0 − 1

2
𝜒0𝑃𝑅��D𝜒0 + 𝐹0𝐹 ∗0

)
= 2(−𝜕𝜇𝑠0𝜕𝜇𝑠∗0 + 𝐹0𝐹 ∗0 ) |0𝑓 + · · · ,

(7.42)
4𝑃𝐿,𝑅𝛾odd indices = 𝛾odd indices𝑃𝑅,𝐿
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where the covariant derivatives of the conformal compensator (𝑠0, 𝑃𝐿𝜒0, 𝐹 0) with Weyl/chiral

weights (1, 1) are given by

D𝑎𝑠0 = 𝑒
𝜇
𝑎 (𝜕𝜇𝑠0 −

1
√
2
𝜓𝜇 𝜒

0), (7.43)

D𝑎𝑃𝐿𝜒
0 = 𝑒

𝜇
𝑎𝑃𝐿

[ (
𝜕𝜇 +

1
4
𝜔𝑎𝑏𝜇 𝛾𝑎𝑏 −

3
2
𝑏𝜇 −

1
2
𝑖𝐴𝜇

)
𝜒0 − 1

√
2
(��D𝑠0 + 𝐹 0)𝜓𝜇 −

√
2𝑠0𝜙𝜇

]
. (7.44)

7.2.3 The composite real compensator Υ ≡ 𝑆0𝑆0𝑒−𝐾/3

Υ = {CΥ,ZΥ,HΥ,KΥ,BΥ
𝜇 ,ΛΥ,DΥ} (7.45)

has components

CΥ = Υ = 𝑠0𝑠0𝑒
−𝐾/3 |0𝑓 , (7.46)

ZΥ = 𝑒−𝐾/3Z0 +
𝑖
√
2

3
Υ(𝐾𝐼 𝜒 𝐼 − 𝐾𝐼 𝜒 𝐼 )

= 𝑖
√
2Υ(− 1

𝑠0
𝑃𝐿𝜒

0 + 1
𝑠∗0
𝑃𝑅𝜒

0 + 1
3
𝐾𝐼 𝜒

𝐼 − 1
3
𝐾𝐼 𝜒

𝐼 ) |1𝑓 , (7.47)

HΥ = 𝑒−𝐾/3H0 + Υ
(2
3
𝐾𝐼𝐹

𝐼 + ( 1
9
𝐾𝐼𝐾𝐽 −

1
3
𝐾𝐼 𝐽 )𝜒 𝐼 𝜒 𝐽

)
− 1
2
[Z̄0𝑃𝐿ZΥ + Z̄Υ𝑃𝐿Z0]

= −2Υ( 𝐹
0

𝑠0
− 1
3
𝐾𝐼𝐹

𝐼 ) |0𝑓 + · · · , (7.48)

KΥ = 𝑒−𝐾/3H ∗
0 + Υ

(2
3
𝐾𝐼𝐹

𝐼 + ( 1
9
𝐾𝐼𝐾𝐽 −

1
3
𝐾𝐼 𝐽 )𝜒 𝐼 𝜒 𝐽

)
− 1
2
[Z̄0𝑃𝑅ZΥ + Z̄Υ𝑃𝑅Z0],

= −2Υ( 𝐹
0∗

𝑠∗0
− 1
3
𝐾𝐼𝐹

𝐼 ) |0𝑓 + · · · , (7.49)

BΥ
𝜇 = 𝑒−𝐾/3B0

𝜇 − 𝑖Υ
(1
3
𝐾𝐼D𝜇𝑧

𝐼 − 1
3
𝐾𝐼D𝜇𝑧

𝐼 − ( 1
9
𝐾𝐼𝐾𝐽 −

1
3
𝐾𝐼 𝐽 )𝜒 𝐼𝛾𝜇 𝜒 𝐽

)
+1
4
𝑖 [Z̄0𝛾∗𝛾𝜇ZΥ + Z̄Υ𝛾∗𝛾𝜇Z0],

= 𝑖Υ( 1
𝑠0
𝜕𝜇𝑠0 −

1
𝑠∗0
𝜕𝜇𝑠

∗
0 −

1
3
𝐾𝐼 𝜕𝜇𝑧

𝐼 + 1
3
𝐾𝐼 𝜕𝜇𝑧

𝐼 ) |0𝑓 + · · · . (7.50)
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ΛΥ = 𝑒−𝐾/3Λ0 − 𝑖
√
2Υ

(
( 1
9
𝐾𝐼𝐾𝐽 −

1
3
𝐾𝐼 𝐽 ) [(��D𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ]

+1
2
(− 1

27
𝐾𝐼𝐾𝐽𝐾𝐾 + 1

9
(𝐾𝐼 𝐽𝐾𝐾 + 𝐾𝐼𝐾𝐾𝐽 + 𝐾𝐼𝐾𝐽𝐾 ) −

1
3
𝐾𝐼 𝐽𝐾 )𝜒𝐾 𝜒 𝐼 𝜒 𝐽

−( 1
9
𝐾𝐼𝐾𝐽 −

1
3
𝐾𝐼 𝐽 ) [(��D𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ]

−1
2
(− 1

27
𝐾𝐼𝐾𝐽𝐾𝐾 + 1

9
(𝐾𝐼 𝐽𝐾𝐾 + 𝐾𝐼𝐾𝐾𝐽 + 𝐾𝐼𝐾𝐽𝐾 ) −

1
3
𝐾𝐼 𝐽𝐾 )𝜒𝐾 𝜒 𝐼 𝜒 𝐽

)
+1
2

(
[𝑖𝛾∗��B0 + ReH0 − 𝑖𝛾∗ImH0 −��D(𝑠0𝑠∗0)]ZΥ

+[𝑖𝛾∗��BΥ + ReHΥ − 𝑖𝛾∗ImHΥ −��D(Υ)]Z0

)
,

= −
√
2𝑖𝑒−𝐾/3 [(�𝜕𝑠∗0)𝑃𝑅𝜒0 − 𝐹 ∗0𝑃𝐿𝜒0] +

√
2𝑖𝑒−𝐾/3 [(�𝜕𝑠0)𝑃𝐿𝜒0 − 𝐹0𝑃𝑅𝜒0]

−𝑖
√
2Υ

(
( 1
9
𝐾𝐼𝐾𝐽 −

1
3
𝐾𝐼 𝐽 ) [(�𝜕𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ] − ( 1

9
𝐾𝐼𝐾𝐽 −

1
3
𝐾𝐼 𝐽 ) [(�𝜕𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ]

)
+1
2

[{
𝑖𝛾∗(𝑖𝑠∗0�𝜕𝑠0 − 𝑖𝑠0�𝜕𝑠∗0) + Re[−2𝑠∗0𝐹 0] − 𝑖𝛾∗Im[−2𝑠∗0𝐹 0] − �𝜕(𝑠0𝑠∗0)

}
×
{
𝑖
√
2Υ(−𝑠−10 𝑃𝐿𝜒0 + 𝑠−1∗0 𝑃𝑅𝜒

0 + 1
3
𝐾𝐼 𝜒

𝐼 − 1
3
𝐾𝐼 𝜒

𝐼 )
}

+
{
𝑖𝛾∗

(
𝑖Υ(𝑠−10 �𝜕𝑠0 − 𝑠−1∗0 �𝜕𝑠

∗
0 −

1
3
𝐾𝐼 �𝜕𝑧

𝐼 + 1
3
𝐾𝐼 �𝜕𝑧

𝐼 )
)
+ Re[−2Υ(𝐹 0𝑠−10 − 1

3
𝐾𝐼𝐹

𝐼 )]

−𝑖𝛾∗
(
− 2Υ(𝐹 0𝑠−10 ) − 1

3
𝐾𝐼𝐹

𝐼
)
− �𝜕Υ

}{
𝑖
√
2(−𝑠∗0𝑃𝐿𝜒0 + 𝑠0𝑃𝑅𝜒0)

}]����
1𝑓

+ · · · .

(7.51)
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DΥ = 𝑒−𝐾/3D0 + Υ

[
2( 1
9
𝐾𝐼𝐾𝐽 −

1
3
𝐾𝐼 𝐽 )

(
− D𝜇𝑧

𝐼D𝜇𝑧 𝐽 − 1
2
𝜒 𝐼𝑃𝐿��D𝜒 𝐽

−1
2
𝜒 𝐽𝑃𝑅��D𝜒 𝐼 + 𝐹 𝐼𝐹 𝐽

)
+ (− 1

27
𝐾𝐼𝐾𝐽𝐾𝐾 + 1

9
(𝐾𝐼 𝐽𝐾𝐾 + 𝐾𝐼𝐾𝐾𝐽 + 𝐾𝐼𝐾𝐽𝐾 )

−1
3
𝐾𝐼 𝐽𝐾 )

(
− 𝜒 𝐼 𝜒 𝐽𝐹𝐾 + 𝜒 𝐼 (��D𝑧 𝐽 )𝜒𝐾

)
+(− 1

27
𝐾𝐼𝐾𝐽𝐾𝐾 + 1

9
(𝐾𝐼 𝐽𝐾𝐾 + 𝐾𝐼𝐾𝐾𝐽 + 𝐾𝐼𝐾𝐽𝐾 ) −

1
3
𝐾𝐼 𝐽𝐾 )

×
(
− 𝜒 𝐼 𝜒 𝐽𝐹𝐾 + 𝜒 𝐼 (��D𝑧 𝐽 )𝜒𝐾

)
+ 1
2

{
− 1
3
𝐾𝐼 𝐽𝐾𝐿 +

1
81
𝐾𝐼𝐾𝐽𝐾𝐾𝐾𝐿

− 1
27

[𝐾𝐼 𝐽𝐾𝐾𝐾𝐿 + 𝐾𝐼𝐾𝐾𝐽𝐾𝐿 + 𝐾𝐼𝐾𝐽𝐾𝐾𝐿 + 𝐾𝐼𝐿𝐾𝐽𝐾𝐾 + 𝐾𝐼𝐾𝐽𝐿𝐾𝐾 + 𝐾𝐼𝐾𝐽𝐾𝐾𝐿]

+1
9
[𝐾𝐼 𝐽𝐾 + 𝐾𝐼 𝐽𝐿𝐾𝐾 + 𝐾𝐼 𝐽𝐾𝐾𝐿 + 𝐾𝐼𝐾𝐿𝐾𝐽 + 𝐾𝐼𝐾𝐾𝐽𝐿 + 𝐾𝐼𝐿𝐾𝐽𝐾 + 𝐾𝐼𝐾𝐽𝐾𝐿]

}
×(𝜒 𝐼𝑃𝐿𝜒 𝐽 ) (𝜒𝐾𝑃𝑅𝜒𝐿)

]
+1
2
(H0H ∗

Υ + H ∗
0HΥ − 2B0

𝜇B
𝜇

Υ − 2D(𝑠0𝑠∗0) · D𝑒−𝐾/3 − 2Λ̄0ZΥ − 2Λ̄ΥZ0 − Z̄0��DZΥ − Z̄Υ��DZ0).

=

[
𝑒−𝐾/32(−𝜕𝜇𝑠0𝜕𝜇𝑠∗0 + 𝐹0𝐹 ∗0 ) + 2Υ( 1

9
𝐾𝐼𝐾𝐽 −

1
3
𝐾𝐼 𝐽 ) (−𝜕𝜇𝑧𝐼 𝜕𝜇𝑧 𝐽 + 𝐹 𝐼𝐹 𝐽 )

+1
2
(−2𝑠∗0𝐹 0)

(
− 2Υ( 𝐹

0∗

𝑠∗0
− 1
3
𝐾𝐼𝐹

𝐼 )
)
+ 1
2
(−2𝑠0𝐹 0∗)

(
− 2Υ( 𝐹

0

𝑠0
− 1
3
𝐾𝐼𝐹

𝐼 )
)

−(𝑖𝑠∗0𝜕𝜇𝑠0 − 𝑖𝑠0𝜕𝜇𝑠∗0)
(
𝑖Υ( 1

𝑠0
𝜕𝜇𝑠0 −

1
𝑠∗0
𝜕𝜇𝑠∗0 −

1
3
𝐾𝐼 𝜕

𝜇𝑧𝐼 + 1
3
𝐾𝐼 𝜕

𝜇𝑧𝐼 )
)

−(𝑠∗0𝜕𝑠0 + 𝑠0𝜕𝑠∗0)
(
− 1
3
𝑒−𝐾/3(𝐾𝐼 𝜕𝑧𝐼 + 𝐾𝐼 𝜕𝑧𝐼 )

)]
0𝑓

+ · · · . (7.52)

The conventional superconformal gauge is de�ned by the choice

CΥ = Υ = 1, (7.53)

ZΥ = 0 =⇒ 𝑃𝐿𝜒
0 − 1

3
𝑒𝐾/6𝐾𝐼𝑃𝐿𝜒

𝐼 = 0, (7.54)

𝑏𝜇 = 0. (7.55)
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7.2.4 W2(𝐾) ≡ W𝛼 (𝐾)W𝛼 (𝐾) composite chiral multiplet:

(Weyl/Chiral) weights = (3, 3)

Let us de�ne

W2(𝐾) ≡ {C𝑊 ,Z𝑊 ,H𝑊 ,K𝑊 ,B𝑊𝜇 ,Λ𝑊 ,D𝑊 }, (7.56)

W̄2(𝐾) ≡ {C∗
𝑊 ,Z𝐶

𝑊 ,K
∗
𝑊 ,H ∗

𝑊 , (B𝑊𝜇 )∗,Λ𝐶𝑊 ,D
∗
𝑊 } (7.57)

where

C𝑊 = Λ̄𝐾𝑃𝐿Λ𝐾

= −2
[
𝐾𝐼 ′𝐽 ′𝜒

𝐼 ′
�𝜕𝑧

𝐽 ′𝐾𝐼 𝐽 �𝜕𝑧
𝐽 𝜒 𝐼 − 𝐾𝐼 ′𝐽 ′𝜒 𝐼

′
�𝜕𝑧
𝐽 ′𝐾𝐼 𝐽𝐹

𝐼 𝜒 𝐽

−𝐾𝐼 ′𝐽 ′𝐹 𝐼
′
𝜒 𝐽

′
𝐾𝐼 𝐽 �𝜕𝑧

𝐽 𝜒 𝐼 + 𝐾𝐼 ′𝐽 ′𝐹 𝐼
′
𝜒 𝐽

′
𝐾𝐼 𝐽𝐹

𝐼 𝜒 𝐽
] ���
2𝑓

+ · · · , (7.58)

Z𝑊 = −𝑖2𝑃𝐿 (−
1
2
𝛾 · 𝐹𝐾 + 𝑖D𝐾 )Λ𝐾 = −2

√
2𝑖F̃𝐾𝐼 𝐽𝑃𝐿 [�𝜕𝑧 𝐽 𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ]

���
1𝑓

+ · · · , (7.59)

H𝑊 = −2(2Λ̄𝐾𝑃𝐿��DΛ𝐾 + 𝐹−𝐾 · 𝐹−𝐾 − D2
𝐾 ) = 2F̃ 2 |0𝑓 + · · · ≡ −2𝐹𝑊 , (7.60)

K𝑊 = 0, (7.61)

B𝑊𝜇 = 𝑖D𝜇 (Λ̄𝐾𝑃𝐿Λ𝐾 ) = 𝑖𝜕𝜇 (Λ̄𝐾𝑃𝐿Λ𝐾 ) |2𝑓 + · · · , (7.62)

Λ𝑊 = 0, (7.63)

D𝑊 = 0. (7.64)

Note that C𝑊 = C𝑊 |2𝑓 + · · · ,Z𝑊 = Z𝑊 |1𝑓 + · · · ,H𝑊 = H𝑊 |0𝑓 + · · · ,K𝑊 = 0,B𝑊𝜇 = B𝑊𝜇 |2𝑓 +

· · · ,Λ𝑊 = D𝑊 = 0.
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and

C𝑊̄ = C∗
𝑊 = Λ̄𝐾𝑃𝑅Λ𝐾 , (7.65)

Z𝑊̄ = Z𝐶
𝑊 = 𝑖2𝑃𝑅 (−

1
2
𝛾 · 𝐹𝐾 − 𝑖D𝐾 )Λ𝐾 , (7.66)

H𝑊̄ = K∗
𝑊 = 0, (7.67)

K𝑊̄ = H ∗
𝑊 = −2(2Λ̄𝐾𝑃𝑅��DΛ𝐾 + 𝐹+𝐾 · 𝐹+𝐾 − D2

𝐾 ) ≡ −2𝐹𝑊̄ , (7.68)

B𝑄
𝜇 = (B𝑊𝜇 )∗ = −𝑖D𝜇 (Λ̄𝐾𝑃𝑅Λ𝐾 ), (7.69)

Λ𝑊̄ = Λ𝐶𝑊 = 0, (7.70)

D𝑊̄ = D∗
𝑊 = 0. (7.71)

We also de�ned:

𝐹𝐾
𝑎𝑏

≡ 𝑒𝜇𝑎𝑒𝜈𝑏 (2𝜕[𝜇B
𝐾
𝜈] +𝜓 [𝜇𝛾𝜈]Λ𝐾 ), (7.72)

˜̂
𝐹𝑎𝑏 ≡ −𝑖 1

2
𝜀𝑎𝑏𝑐𝑑𝐹

𝑐𝑑 , 𝐹±
𝑎𝑏

≡ 1
2
(𝐹𝑎𝑏 ± ˜̂

𝐹𝑎𝑏), (𝐹±
𝑎𝑏
)∗ = 𝐹∓

𝑎𝑏
(7.73)

��DΛ𝐾 ≡ 𝛾 · DΛ𝐾 , (7.74)

D𝜇Λ𝐾 ≡
(
𝜕𝜇 −

3
2
𝑏𝜇 +

1
4
𝜔𝑎𝑏𝜇 𝛾𝑎𝑏 −

3
2
𝑖𝛾∗A𝜇

)
Λ𝐾 −

(1
4
𝛾𝑎𝑏𝐹𝐾

𝑎𝑏
+ 1
2
𝑖𝛾∗D𝐾

)
𝜓𝜇 . (7.75)

Next, we shall consider a gauge �xing that is equivalent to the gauge condition given by

𝜂 = 0 in Ref. [71]. In fact, this can be obtained by imposing Λ𝐾 = 0. We will call this gauge

the “Liberated SUGRA gauge”. Then, the only non-vanishing superconformal components of

the multiplets W2(𝐾),W̄2(𝐾) in this gauge are given by H𝑊 = −2(𝐹−
𝐾
· 𝐹−

𝐾
− D2

𝐾
) and K𝑊̄ =

−2(𝐹+
𝐾
· 𝐹+

𝐾
− D2

𝐾
) = H ∗

𝑊
.
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Another representation of the chiral multiplet is

W2(𝐾) =

(
C𝑊 ,

𝑖
√
2
Z𝑊 ,−

1
2
H𝑊

)
=

(
Λ̄𝐾𝑃𝐿Λ𝐾 ,

√
2𝑃𝐿 (−𝛾 · 𝐹𝐾 + 2𝑖D𝐾 )Λ𝐾 , 2Λ̄𝐾𝑃𝐿��DΛ𝐾 + 𝐹−𝐾 · 𝐹−𝐾 − D2

𝐾

)
≡

(
𝑋𝑊 , 𝑃𝐿𝜒

𝑊 , 𝐹𝑊
)
, (7.76)

W̄2(𝐾) =

(
C∗
𝑊 ,−

𝑖
√
2
Z𝐶
𝑊 ,−

1
2
H ∗
𝑊

)
=

(
Λ̄𝐾𝑃𝑅Λ𝐾 ,

√
2𝑃𝑅 (−𝛾 · 𝐹𝐾 − 2𝑖D∗

𝐾 )Λ𝐶𝐾 , 2Λ̄𝐾𝑃𝑅��DΛ𝐾 + 𝐹+𝐾 · 𝐹+𝐾 − (D∗
𝐾 )2

)
≡

(
𝑋𝑊̄ , 𝑃𝑅𝜒

𝑊̄ , 𝐹𝑊̄
)

(7.77)

We will also need the following de�nitions:

𝑋𝑊 = Λ̄𝐾𝑃𝐿Λ𝐾 ≡𝑊 = −2𝐾𝐼 𝐽 [𝜒 𝐽 (��D𝑧𝐼 ) − 𝐹 𝐼 𝜒 𝐽 ]𝐾𝐼 ′𝐽 ′ [(��D𝑧𝐼
′)𝜒 𝐽 ′ − 𝐹 𝐽 ′𝜒 𝐼 ′]

−𝐾𝐼 𝐽 [𝜒 𝐽 (��D𝑧𝐼 ) − 𝐹 𝐼 𝜒 𝐽 ]𝐾𝐼 ′𝐽 ′𝐾 ′ [𝜒𝐾 ′
𝜒 𝐼

′
𝜒 𝐽

′]

−𝐾𝐼 𝐽𝐾 [𝜒 𝐽 𝜒 𝐼 𝜒𝐾 ]𝐾𝐼 ′𝐽 ′ [(��D𝑧𝐼
′)𝜒 𝐽 ′ − 𝐹 𝐽 ′𝜒 𝐼 ′]

−1
2
𝐾𝐼 𝐽𝐾 [𝜒 𝐽 𝜒 𝐼 𝜒𝐾 ]𝐾𝐼 ′𝐽 ′𝐾 ′ [𝜒𝐾 ′

𝜒 𝐼
′
𝜒 𝐽

′], (7.78)

𝑋𝑊̄ = Λ̄𝐾𝑃𝑅Λ𝐾 ≡ 𝑊̄ = (Λ̄𝐾𝑃𝐿Λ𝐾 )𝐶, (7.79)

and

D𝐾𝑃𝐿Λ𝐾 =

[
2𝐾𝐼 𝐽

(
− D𝜇𝑧

𝐼D𝜇𝑧 𝐽 − 1
2
𝜒 𝐼𝑃𝐿��D𝜒 𝐽 − 1

2
𝜒 𝐽𝑃𝑅��D𝜒 𝐼 + 𝐹 𝐼𝐹 𝐽

)
+𝐾𝐼 𝐽𝐾

(
− 𝜒 𝐼 𝜒 𝐽𝐹𝐾 + 𝜒 𝐼 (��D𝑧 𝐽 )𝜒𝐾

)
+ 𝐾𝐼 𝐽𝐾

(
− 𝜒 𝐼 𝜒 𝐽𝐹𝐾 + 𝜒 𝐼 (��D𝑧 𝐽 )𝜒𝐾

)
+1
2
𝐾𝐼 𝐽𝐾𝐿 (𝜒 𝐼𝑃𝐿𝜒 𝐽 ) (𝜒𝐾𝑃𝑅𝜒𝐿)

]
×
[
−
√
2𝑖𝐾𝐼 ′𝐽 ′ [(��D𝑧 𝐽

′)𝜒 𝐼 ′ − 𝐹 𝐼 ′𝜒 𝐽 ′] − 𝑖
√
2
𝐾𝐼 ′𝐽 ′𝐾 ′𝜒

𝐾 ′
𝜒 𝐼

′
𝜒 𝐽

′
]
. (7.80)
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D2
𝐾 =

[
2𝐾𝐼 𝐽

(
− D𝜇𝑧

𝐼D𝜇𝑧 𝐽 − 1
2
𝜒 𝐼𝑃𝐿��D𝜒 𝐽 − 1

2
𝜒 𝐽𝑃𝑅��D𝜒 𝐼 + 𝐹 𝐼𝐹 𝐽

)
+𝐾𝐼 𝐽𝐾

(
− 𝜒 𝐼 𝜒 𝐽𝐹𝐾 + 𝜒 𝐼 (��D𝑧 𝐽 )𝜒𝐾

)
+ 𝐾𝐼 𝐽𝐾

(
− 𝜒 𝐼 𝜒 𝐽𝐹𝐾 + 𝜒 𝐼 (��D𝑧 𝐽 )𝜒𝐾

)
+1
2
𝐾𝐼 𝐽𝐾𝐿 (𝜒 𝐼𝑃𝐿𝜒 𝐽 ) (𝜒𝐾𝑃𝑅𝜒𝐿)

]2
. (7.81)

𝑤2, 𝑤̄2 Composite Complex Multiplets: (Weyl/Chiral) weights = (−1,±3)

𝑤2 ≡ W2(𝐾)
Υ2

= {C𝑤 ,Z𝑤 ,H𝑤 ,K𝑤 ,B𝑤
𝜇 ,Λ𝑤 ,D𝑤 }, (7.82)

𝑤̄2 ≡ W̄2(𝐾)
Υ2

= {C𝑤̄ ,Z𝑤̄ ,H𝑤̄ ,K𝑤̄ ,B𝑤̄
𝜇 ,Λ𝑤̄ ,D𝑤̄ } (7.83)
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where

C𝑤 =
C𝑊
Υ2
, (7.84)

Z𝑤 =
1
Υ2

Z𝑊 − 2
C𝑊
Υ3

ZΥ, (7.85)

H𝑤 =
1
Υ2

H𝑊 − 2
C𝑊
Υ3

HΥ −
1
2

[
− 4

1
Υ3

(Z̄𝑊 𝑃𝐿ZΥ + Z̄Υ𝑃𝐿Z𝑊 ) + 6
C𝑊
Υ4

Z̄Υ𝑃𝐿ZΥ

]
, (7.86)

K𝑤 =
1
Υ2

K𝑊 − 2
C𝑊
Υ3

KΥ −
1
2

[
− 4

1
Υ3

(Z̄𝑊 𝑃𝑅ZΥ + Z̄Υ𝑃𝑅Z𝑊 ) + 6
C𝑊
Υ4

Z̄Υ𝑃𝑅ZΥ

]
, (7.87)

B𝑤
𝜇 =

1
Υ2

B𝑊𝜇 − 2
C𝑊
Υ3

BΥ
𝜇 +

1
2
𝑖

[
− 4

1
Υ3

(Z̄𝑊 𝑃𝐿𝛾𝜇ZΥ + Z̄Υ𝑃𝐿𝛾𝜇Z𝑊 ) + 6
C𝑊
Υ4

Z̄Υ𝑃𝐿𝛾𝜇ZΥ

]
, (7.88)

Λ𝑤 =
1
Υ2

Λ𝑊 − 2
C𝑊
Υ3

ΛΥ +
1
2

[
− 2
Υ3

(𝑖𝛾∗��B𝑊 + 𝑃𝐿K𝑊 + 𝑃𝑅H𝑊 −��DC𝑊 )ZΥ

− 2
Υ3

(𝑖𝛾∗��BΥ + 𝑃𝐿KΥ + 𝑃𝑅HΥ −��DCΥ)Z𝑊 + 6
C𝑊
Υ4

(𝑖𝛾∗��BΥ + 𝑃𝐿KΥ + 𝑃𝑅HΥ −��DCΥ)ZΥ

]
,

−1
4

[
6
Υ4

3!
2!
Z(𝑊 Z̄ΥZΥ) − 24

C𝑊
Υ5

ZΥZ̄ΥZΥ

]
, (7.89)

D𝑤 =
1
Υ2

D𝑊 − 2
C𝑊
Υ3

DΥ +
1
2

[
− 2
Υ3

2!(K(𝑊HΥ) − B(𝑊 · BΥ) − DC(𝑊 · DCΥ) − 2Λ̄(𝑊ZΥ) − Z̄(𝑊��DZΥ))

+6C𝑊
Υ4

(KΥHΥ − BΥ · BΥ − DCΥ · DCΥ − 2Λ̄ΥZΥ − Z̄Υ��DZΥ)
]

−1
4

[
6
Υ4

3!
2!
Z̄(𝑊 (𝑖𝛾∗��BΥ + 𝑃𝐿KΥ + 𝑃𝑅HΥ)ZΥ) − 24

C𝑊
Υ5

Z̄Υ (𝑖𝛾∗��BΥ + 𝑃𝐿KΥ + 𝑃𝑅HΥ)ZΥ

]
,

+1
8

[
− 24
Υ5

4!
3!
Z̄(𝑊 𝑃𝐿ZΥZ̄Υ𝑃𝑅ZΥ) + 120

C𝑊
Υ6

Z̄Υ𝑃𝐿ZΥZ̄Υ𝑃𝑅ZΥ

]
. (7.90)

Note that we have to insert K𝑊 = Λ𝑊 = D𝑊 = 0 and H𝑊̄ = Λ𝑊̄ = D𝑊̄ = 0 as given in Eqs.

(7.64) and (7.71). In addition, the complex conjugate multiplet 𝑤̄2 can be obtained by taking a

replacement 𝑄 → 𝑄 in the above expressions.
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In the Liberated SUGRA gauge (Λ𝐾 = 0), the non-vanishing components are given by

H𝑤 |Λ𝐾=0 =
H𝑊

Υ2
, K𝑤̄ |Λ𝐾=0 =

K𝑊̄

Υ2
(7.91)

Λ𝑤 |Λ𝐾=0 = − 1
Υ3
𝑃𝑅H𝑊ZΥ, Λ𝑤̄ |Λ𝐾=0 = − 1

Υ3
𝑃𝐿K𝑊̄ZΥ (7.92)

D𝑤 |Λ𝐾=0 = − 1
Υ3

KΥH𝑊 − 3
2Υ4

Z̄𝑃𝑅H𝑊ZΥ, D𝑤̄ |Λ𝐾=0 = − 1
Υ3

K𝑊̄HΥ −
3
2Υ4

Z̄𝑃𝐿K𝑊̄ZΥ .

(7.93)

Furthermore, with the superconformal gauge choice ZΥ = 0, the non-vanishing components

are

H𝑤 |Λ𝐾=0,ZΥ=0 =
H𝑊

Υ2
, K𝑤̄ |Λ𝐾=0,ZΥ=0 =

K𝑊̄

Υ2
(7.94)

D𝑤 |Λ𝐾=0,ZΥ=0 = − 1
Υ3

KΥH𝑊 , D𝑤̄ |Λ𝐾=0,ZΥ=0 = − 1
Υ3

K𝑊̄HΥ .

(7.95)

7.2.5 𝑇 (𝑤̄2),𝑇 (𝑤2) chiral projection multiplets: (Weyl/Chiral) weights

= (0, 0)

𝑇 (𝑤̄2) =

(
−1
2
K𝑤̄ ,−

1
2
√
2𝑖𝑃𝐿 (��DZ𝑤̄ + Λ𝑤̄ ),

1
2
(D𝑤̄ + �𝐶C𝑤̄ + 𝑖D𝑎B𝑎

𝑤̄ )
)
, (7.96)

𝑇 (𝑤2) =

(
−1
2
K∗
𝑤̄ ,

1
2
√
2𝑖𝑃𝑅 (��DZ𝐶

𝑤̄ + Λ𝐶𝑤̄ ),
1
2
(D∗

𝑤̄ + �𝐶C∗
𝑤̄ − 𝑖D𝑎 (B𝑎

𝑤̄ )∗)
)
. (7.97)

The superconformal setting for this and its complex conjugate are then given by

𝑇 ≡ 𝑇 (𝑤̄2) = {C𝑇 ,Z𝑇 ,H𝑇 ,K𝑇 ,B𝑇
𝜇 ,Λ𝑇 ,D𝑇 },

𝑇 ≡ 𝑇 (𝑤2) = {C𝑇 ,Z𝑇 ,H𝑇 ,K𝑇 ,B𝑇
𝜇 ,Λ𝑇 ,D𝑇 }, (7.98)
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where

C𝑇 = −1
2
K𝑤̄ = − 1

2Υ2
K𝑊̄ + C𝑊̄

Υ3
KΥ +

1
4

[
− 4

1
Υ3

(Z̄𝑊̄ 𝑃𝑅ZΥ + Z̄Υ𝑃𝑅Z𝑊̄ ) + 6
C𝑊̄
Υ4

Z̄Υ𝑃𝑅ZΥ

]
,

(7.99)

Z𝑇 = −𝑃𝐿 (��DZ𝑤̄ + Λ𝑤̄ ), (7.100)

H𝑇 = −(D𝑤̄ + �𝐶C𝑤̄ + 𝑖D𝑎B𝑎
𝑤̄ ), (7.101)

K𝑇 = 0, (7.102)

B𝑇
𝜇 = −1

2
𝑖D𝜇K𝑤̄ , (7.103)

Λ𝑇 = 0, (7.104)

D𝑇 = 0. (7.105)

and

C𝑇 = −1
2
K∗
𝑤̄ , (7.106)

Z𝑇 = −𝑃𝑅 (��DZ𝐶
𝑤̄ + Λ𝐶𝑤̄ ), (7.107)

H𝑇 = 0, (7.108)

K𝑇 = −(D∗
𝑤̄ + �𝐶C∗

𝑤̄ − 𝑖D𝑎 (B𝑎
𝑤̄ )∗), (7.109)

B𝑇
𝜇 =

1
2
𝑖D𝜇K∗

𝑤̄ , (7.110)

Λ𝑇 = 0, (7.111)

D𝑇 = 0. (7.112)
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In the Liberated SUGRA gauge, the non-vanishing components are given by

C𝑇 |Λ𝐾=0 = −1
2
K𝑤̄ , (7.113)

Z𝑇 |Λ𝐾=0 = −𝑃𝐿Λ𝑤̄ , (7.114)

H𝑇 |Λ𝐾=0 = −D𝑤̄ , (7.115)

B𝑇
𝜇 |Λ𝐾=0 = −1

2
𝑖D𝜇K𝑤̄ . (7.116)

With the superconformal gauge choiceZΥ = 0, we have

C𝑇 |Λ𝐾=0,ZΥ=0 = −1
2
K𝑤̄ , C𝑇 |Λ𝐾=0,ZΥ=0 = −1

2
H𝑤 = −1

2
K∗
𝑤̄ (7.117)

H𝑇 |Λ𝐾=0,ZΥ=0 = −D𝑤̄ , K𝑇 |Λ𝐾=0,ZΥ=0 = −D𝑤 = −D∗
𝑤̄ (7.118)

B𝑇
𝜇 |Λ𝐾=0,ZΥ=0 = −1

2
𝑖D𝜇K𝑤̄ , B𝑇

𝜇 |Λ𝐾=0,ZΥ=0 =
1
2
𝑖D𝜇H𝑤 =

1
2
𝑖D𝜇K∗

𝑤̄ . (7.119)

Final form of the composite multiplet of liberatedN = 1 supergravity To construct the

�nal composite multiplet which will give the new term in the action of liberated supergravity,

we �rst collect the following chiral multiplets:

(
𝑋 𝑖 ≡ {𝑆0, 𝑧𝐼 ,𝑇 (𝑤̄2),W2(𝐾)}, 𝜒𝑖 ≡ {𝜒0, 𝜒 𝐼 , 𝜒𝑇 , 𝜒𝑊 }, 𝐹 𝑖 ≡ {𝐹 0, 𝐹 𝐼 , 𝐹𝑇 , 𝐹𝑊 }

)
,

(7.120)

where

𝑆0 =
(
𝑠0, 𝑃𝐿𝜒

0, 𝐹 0
)
, 𝑆0 =

(
𝑠∗0, 𝑃𝑅𝜒

0, 𝐹 0∗
)
, (7.121)

𝑧𝐼 =

(
𝑧𝐼 , 𝑃𝐿𝜒

𝐼 , 𝐹 𝐼
)
, 𝑧𝐼 =

(
𝑧𝐼 , 𝑃𝑅𝜒

𝐼 , 𝐹 𝐼
)
, (7.122)
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W2(𝐾) =

(
Λ̄𝐾𝑃𝐿Λ𝐾 ,

√
2𝑃𝐿 (−𝛾 · 𝐹𝐾 + 2𝑖D𝐾 )Λ𝐾 , 2Λ̄𝐾𝑃𝐿��DΛ𝐾 + 𝐹−𝐾 · 𝐹−𝐾 − D2

𝐾

)
≡

(
𝑋𝑊 , 𝑃𝐿𝜒

𝑊 , 𝐹𝑊
)
, (7.123)

W̄2(𝐾) =

(
Λ̄𝐾𝑃𝑅Λ𝐾 ,

√
2𝑃𝑅 (−𝛾 · 𝐹𝐾 − 2𝑖D∗

𝐾 )Λ𝐶𝐾 , 2Λ̄𝐾𝑃𝑅��DΛ𝐾 + 𝐹+𝐾 · 𝐹+𝐾 − (D∗
𝐾 )2

)
≡

(
𝑋𝑊̄ , 𝑃𝑅𝜒

𝑊̄ , 𝐹𝑊̄
)
, (7.124)

𝑇 (𝑤̄2) =

(
−1
2
K𝑤̄ ,−

1
2
√
2𝑖𝑃𝐿 (��DZ𝑤̄ + Λ𝑤̄ ),

1
2
(D𝑤̄ + �𝐶C𝑤̄ + 𝑖D𝑎B𝑎

𝑤̄ )
)
≡

(
𝑋𝑇 , 𝑃𝐿𝜒

𝑇 , 𝐹𝑇
)
,

(7.125)

𝑇 (𝑤2) =

(
−1
2
K∗
𝑤̄ ,

1
2
√
2𝑖𝑃𝑅 (��DZ𝐶

𝑤̄ + Λ𝐶𝑤̄ ),
1
2
(D∗

𝑤̄ + �𝐶C∗
𝑤̄ − 𝑖D𝑎 (B𝑎

𝑤̄ )∗)
)
≡

(
𝑋𝑇 , 𝑃𝑅𝜒

𝑇 , 𝐹𝑇
)
.

(7.126)

7.3 Liberated Term

Then, the lowest component of the �nal composite real multiplet is

𝑁 ≡ Υ2
𝑤2𝑤̄2

𝑇 (𝑤̄2)𝑇 (𝑤2)
U = Υ−2

W2(𝐾)W̄2(𝐾)
𝑇 (𝑤2)𝑇 (𝑤̄2)

U

= (𝑋 0𝑋 0𝑒−𝐾 (𝑧
𝐼 ,𝑧𝐼 )/3)−2𝑋𝑊𝑋𝑊̄ (𝑋𝑇 )−1(𝑋𝑇 )−1U(𝑧𝐼 , 𝑧𝐼 ). (7.127)

Then, since 𝑁 is now expressed as a function of superconformal chiral multiplets, we can rep-

resent the full o�-shell expression of the superconformal Lagrangian of the liberated N = 1
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supergravity via Eq. (17.19) of Freedman and Van Proeyen [fvp] as follows:

L𝑁𝐸𝑊 ≡ [N]𝐷𝑒−1

=
1
2
D𝑁 − 1

4
𝜓 · 𝛾𝑖𝛾∗Λ𝑁 − 1

6
C𝑁𝑅(𝜔) +

1
12

(
C𝑁𝜓𝜇𝛾 𝜇𝜌𝜎 − 𝑖Z̄𝑁𝛾

𝜌𝜎𝛾∗
)
𝑅′𝜌𝜎 (𝑄)

+1
8
𝜀𝑎𝑏𝑐𝑑𝜓𝑎𝛾𝑏𝜓𝑐 (B𝑁

𝑑
− 1
2
𝜓𝑑Z𝑁 ), (7.128)

= 𝑁𝑖 𝑗

(
− D𝜇𝑋

𝑖D𝜇𝑋 𝑗 − 1
2
𝜒𝑖��D𝜒 𝑗 − 1

2
𝜒 𝑗��D𝜒𝑖 + 𝐹 𝑖𝐹 𝑗

)
+1
2

[
𝑁𝑖 𝑗𝑘

(
− 𝜒𝑖 𝜒 𝑗𝐹𝑘 + 𝜒𝑖 (��D𝑋 𝑗 )𝜒𝑘

)
+ ℎ.𝑐.

]
+ 1
4
𝑁𝑖 𝑗𝑘𝑙 𝜒

𝑖 𝜒 𝑗 𝜒𝑘 𝜒𝑙

+
[

1
2
√
2
𝜓 · 𝛾

(
𝑁𝑖 𝑗𝐹

𝑖 𝜒 𝑗 − 𝑁𝑖 𝑗��D𝑋 𝑗 𝜒𝑖 − 1
2
𝑁𝑖 𝑗𝑘 𝜒

𝑘 𝜒𝑖 𝜒 𝑗
)

+1
8
𝑖𝜀𝜇𝜈𝜌𝜎𝜓𝜇𝛾𝜈𝜓𝜌

(
𝑁𝑖D𝜎𝑋

𝑖 + 1
2
𝑁𝑖 𝑗 𝜒

𝑖𝛾𝜎 𝜒
𝑗 + 1

√
2
𝑁𝑖𝜓𝜎 𝜒

𝑖

)
+ ℎ.𝑐.

]
+1
6
𝑁

(
−𝑅(𝜔) + 1

2
𝜓𝜇𝛾

𝜇𝜈𝜌𝑅′𝜈𝜌 (𝑄)
)
− 1
6
√
2

(
𝑁𝑖 𝜒

𝑖 + 𝑁𝑖 𝜒𝑖
)
𝛾 𝜇𝜈𝑅′𝜇𝜈 (𝑄),

(7.129)

where 𝑖, 𝑗 = 0, 𝐼 ,𝑊 ,𝑇 and 𝑗, 𝑘, 𝑙 = 0̄, 𝐼 ,𝑊̄ ,𝑇 and

𝑅𝜇𝜈𝑎𝑏 (𝜔) ≡ 𝜕𝜇𝜔𝜈𝑎𝑏 − 𝜕𝜈𝜔𝜇𝑎𝑏 + 𝜔𝜇𝑎𝑐𝜔 𝑐
𝜈 𝑏

− 𝜔𝜈𝑎𝑐𝜔 𝑐
𝜇 𝑏
, (7.130)

𝑅′𝜇𝜈 (𝑄) ≡ 2
(
𝜕[𝜇 +

1
2
𝑏 [𝜇 −

3
2
𝐴[𝜇𝛾∗ +

1
4
𝜔𝑎𝑏[𝜇 (𝑒, 𝑏,𝜓 )𝛾𝑎𝑏

)
𝜓𝜈], (7.131)

𝜔𝑎𝑏𝜇 (𝑒, 𝑏,𝜓 ) = 𝜔𝑎𝑏𝜇 (𝑒, 𝑏) + 1
2
𝜓𝜇𝛾

[𝑎𝜓𝑏] + 1
4
𝜓𝑎𝛾𝜇𝜓

𝑏 . (7.132)

7.3.1 Bosonic lagrangians

The bosonic contribution to the scalar potential can be found from the term D𝑁 . Using the

above results and Eq. (7.129), we �nd the equivalent bosonic contribution to the scalar potential
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as follows:

L𝐵 ⊃ 𝑁𝑖 𝑗𝐹
𝑖𝐹 𝑗 ∼ 𝑁𝑊𝑊̄ 𝐹𝑊 𝐹𝑊̄ = Υ−2

1
C𝑇C𝑇

U𝐹𝑊 𝐹𝑊̄ . (7.133)

Since C𝑇 = −1
2K𝑤̄ ∼ −1

2
K𝑊̄
Υ2

= −1
2
(−2𝐹𝑊̄ )

Υ2
= 𝐹𝑊̄

Υ2
and C𝑇 = 𝐹𝑊

Υ2
, we have

L𝐵 ⊃ Υ−2
Υ2Υ2

𝐹𝑊̄ 𝐹𝑊
U𝐹𝑊 𝐹𝑊̄ = Υ2U . (7.134)

In the superconformal gauge Υ = 1, we get

𝑉𝑁𝐸𝑊 = U . (7.135)

7.3.2 Fermionic lagrangians

In this section, we investigate fermionic terms in the liberatedN = 1 supergravity Lagrangian.

We focus in particular on the matter-coupling and on the most divergent fermionic terms, in

order to explore interesting interactions and check the limits of validity of the liberated N = 1

supergravity as an e�ective theory.

First of all, let us recall that the �nal composite multiplet 𝑁 in terms of the superconformal

chiral multiplets {𝑆0, 𝑧𝐼 ,𝑊 ≡ W2(𝐾),𝑇 ≡ 𝑇 (𝑤̄2)} are:

𝑁 =

(
𝑠0𝑠

∗
0𝑒

−𝐾 (𝑧𝐼 ,𝑧𝐼 )/3
)−2𝑊𝑊̄

𝑇𝑇
U(𝑧𝐼 , 𝑧𝐼 ). (7.136)

We we also denote their lowest components as𝑊 ≡ Λ̄𝐾𝑃𝐿Λ𝐾 ,𝑊̄ ≡ Λ̄𝐾𝑃𝑅Λ𝐾 ,𝑇 ≡ C𝑇 , and𝑇 ≡ C𝑇 .

Note that the �nal composite multiplet consists of the four superconformal chiral multiplets only.

Remember that C𝑇 ∼ 𝐹𝑊̄

Υ2
and 𝐹𝑊 ∝ D2

𝐾
|boson ≡ F̃ 2.
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Generically, the matter couplings are found from the following contributions:

Lmatter
𝐹 |𝜓=0 = 𝑁𝑖 𝑗

(
− D𝜇𝑋

𝑖D𝜇𝑋 𝑗 − 1
2
𝜒𝑖��D𝜒 𝑗 − 1

2
𝜒 𝑗��D𝜒𝑖 + 𝐹 𝑖𝐹 𝑗

)
− 𝑁

6
𝑅(𝜔) |𝜓=0

+1
2

[
𝑁𝑖 𝑗𝑘

(
− 𝜒𝑖 𝜒 𝑗𝐹𝑘 + 𝜒𝑖 (��D𝑋 𝑗 )𝜒𝑘

)
+ ℎ.𝑐.

]
+ 1
4
𝑁𝑖 𝑗𝑘𝑙 𝜒

𝑖 𝜒 𝑗 𝜒𝑘 𝜒𝑙
����
𝜓=0

,

= L𝐹1 + L𝐹2 + L̄𝐹2 + L𝐹3 + (L𝐹4 + L𝐹5 + ℎ.𝑐.) + L𝐹6 + L𝐹7 (7.137)

where

D𝜇𝑋
𝑖 |𝜓=0 = (𝜕𝜇 −𝑤𝑖𝑏𝜇 −𝑤𝑖𝐴𝜇)𝑋 𝑖,

D𝜇𝑃𝐿𝜒
𝑖 |𝜓=0 =

(
𝜕𝜇 +

1
4
𝜔𝑎𝑏𝜇 𝛾𝑎𝑏 − (𝑤𝑖 + 1/2)𝑏𝜇 + (𝑤𝑖 − 3/2)𝑖𝐴𝜇

)
𝑃𝐿𝜒

𝑖 −
√
2𝑤𝑖𝑋 𝑖𝑃𝐿𝜙𝜇 .

Note that the matter couplings of fermions can be classi�ed into seven types:

L𝐹1 ≡ −𝑁𝑖 𝑗D𝜇𝑋
𝑖D𝜇𝑋 𝑗

���
𝜓=0

, (7.138)

L𝐹2 ≡ −1
2
𝑁𝑖 𝑗 𝜒

𝑖
��D𝜒 𝑗

���
𝜓=0

, (7.139)

L𝐹3 ≡ −𝑁𝑖 𝑗𝐹 𝑖𝐹 𝑗
���
𝜓=0

, (7.140)

L𝐹4 ≡ −1
2
𝑁𝑖 𝑗𝑘 𝜒

𝑖 𝜒 𝑗𝐹𝑘
���
𝜓=0

, (7.141)

L𝐹5 ≡ 1
2
𝑁𝑖 𝑗𝑘 𝜒

𝑖 (��D𝑋 𝑗 )𝜒𝑘
���
𝜓=0

, (7.142)

L𝐹6 ≡ 1
4
𝑁𝑖 𝑗𝑘𝑙 𝜒

𝑖 𝜒 𝑗 𝜒𝑘 𝜒𝑙
���
𝜓=0

, (7.143)

L𝐹7 ≡ −𝑁
6
𝑅(𝜔) |𝜓=0. (7.144)
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The derivatives of the 𝑁 are given in general by

𝑁
(𝑟=𝑞+𝑝+𝑚+𝑘)
𝑞,𝑝,𝑚,𝑘

= (𝜕𝑞0𝜕
𝑝

𝑊
𝜕𝑚𝑇 𝜕

𝑘
𝐼 𝑁 )

=

[
(𝜕𝑞0𝜕

(𝑘−𝑛)
𝐼

Υ−2)(𝑁 ) (Υ2)(C𝑇 ) (Υ2)(C𝑇 )

×(Υ2𝑚1)(𝜕𝑚1
𝑇

C𝑇 ) (Υ
2𝑚2)(𝜕𝑚2

𝑇
C𝑇 ) (𝑊 )1−𝑝1 (𝑊̄ )1−𝑝2U (𝑛)

]
/
[
(F̃ 2)(C𝑇 ) (F̃ 2)(C𝑇 ) (F̃

2𝑚1)(𝜕𝑚1
𝑇

C𝑇 ) (F̃
2𝑚2)(𝜕𝑚2

𝑇
C𝑇 )

]
.

= (𝜕𝑞0𝜕
(𝑘−𝑛)
𝐼

Υ−2)Υ4+2𝑚1+2𝑚2
U (𝑛)

F̃ 2+2+2𝑚1+2𝑚2
𝑊 1−𝑝1𝑊̄ 1−𝑝2

= (𝜕𝑞0𝜕
(𝑘−𝑛)
𝐼

Υ−2)Υ4+2𝑚 U (𝑛)

F̃ 4+2𝑚
𝑊 1−𝑝1𝑊̄ 1−𝑝2, (7.145)

where F̃ ≡ 2𝐾𝐼 𝚥
(
−𝜕𝜇𝑧𝐼 𝜕𝜇𝑧 𝚥 + 𝐹 𝐼𝐹 𝚥

)
; U (𝑛) (0 ≤ 𝑛 ≤ 4) is the 𝑛-th derivative of the function

U(𝑧𝐼 , 𝑧𝚤) with respect to 𝑧𝐼 , 𝑧𝐼 , which are the lowest component of the matter chiral multiplets;

𝑞 = 𝑞1 + 𝑞2 where 𝑞1 (𝑞2) is the order of the derivative with respect to the compensator scalar

𝑠0 (𝑠∗0); 𝑝 = 𝑝1 + 𝑝2 where 𝑝1 (𝑝2) is the order of the derivative with respect to the �eld strength

multiplet scalar𝑊 (𝑊̄ );𝑚 =𝑚1 +𝑚2 where𝑚1 (𝑚2) is the order of the derivative with respect to

the chiral projection multiplet scalar 𝑇 (𝑤̄2) (𝑇 (𝑤2)); 𝑘 is the order of the derivative with respect

to the matter multiplet scalar 𝑧𝐼 ; 𝑛 is the order of the derivative acting on the new term U with

respect to the matter multiplet; 𝑞 is the total order of derivative with respect to the compensator

scalars 𝑠0 and 𝑠∗0 . An explicit form of the derivatives of 𝑁 is given in Appendix A.

Themass dimension5 of the derivatives of the𝑁 is [𝑁 (𝑟=𝑞+𝑝+𝑚+𝑘)
𝑞,𝑝,𝑚,𝑘

] = −3𝑝−4𝑚−2. This implies

that the mass dimension of the operator coupled to 𝑁 (𝑟=𝑞+𝑝+𝑚+𝑘)
𝑞,𝑝,𝑚,𝑘

must be equal to 3𝑝 + 4𝑚 + 2.

Now, let us focus on the case such that𝑞 = 0 and𝑘 = 𝑛which gives themost singular fermionic

terms in the limit that the D-term vanishes. The most singular terms are those that contain the

highest power of the auxiliary �eld𝐷 in the denominator and therefore are the nonrenormalizable
5the mass dimensions of the multiplets’ lowest components are [𝑠0] = 1, [𝑧𝐼 ] = 0, [𝑊 ] = 3, [𝑇 ] = 0, which gives

[F̃ ] = 2.
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operators associated with the smallest UV cuto� mass scale. That is, we consider that the matter

scalar derivatives act only on the new term U and there are no the derivatives with respect to

the compensator scalar. Then, we have

𝑁
(𝑟=𝑝+𝑚+𝑛)
𝑝,𝑚,𝑛 = Υ2+2𝑚

U (𝑛)

F̃ 4+2𝑚
𝑊 1−𝑝1𝑊̄ 1−𝑝2 . (7.146)

In particular, since 𝑟 = 𝑝 +𝑚 + 𝑛 (0 ≤ 𝑟 ≤ 4), it reduces to

𝑁
(𝑟 )
𝑖 ...𝑙

= 𝑁
(𝑟 )
𝑝,𝑚,𝑛 = Υ2(1+𝑟−𝑛−𝑝)

U (𝑛)

F̃ 2(2+𝑟−𝑛−𝑝)
𝑊 1−𝑝1𝑊̄ 1−𝑝2 . (7.147)

Remember that we called 𝑟 the total order of the derivatives acting on the 𝑁 . Here 𝑛 is the

number of derivatives acting on the matter scalars in the new termU; they produceU (𝑛) . Finally,

𝑝 = 𝑝1 + 𝑝2 is the sum of the number of derivatives w.r.t the multiplets (𝑊,𝑊̄ ) acting onU.

Structure of the fermionic components Next, let us explore the detailed structure of the

chiral fermions of the superconformalmultiplets. First of all, the compensator andmatter fermions

are given by

𝜒0 = 𝑃𝐿𝜒
0, 𝜒 𝐼 = 𝑃𝐿𝜒

𝐼 . (7.148)

Note that 𝜒0 and 𝜒 𝐼 are fundamental fermions, and later in the 𝑆-gauge, the compensator chi-

ral fermions will be replaced by the matter ones according to: 𝑃𝐿𝜒0 = 1
3𝑠0𝐾𝐼𝑃𝐿𝜒

𝐼 and 𝑃𝑅𝜒0 =

1
3𝑠

∗
0𝐾𝐼𝑃𝑅𝜒

𝐼 .

On the contrary, the other fermions 𝜒𝑊 and 𝜒𝑇 are composite. Hence, we need to �nd their

speci�c structure.
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First, theW(𝐾)2-multiplet fermion, say 𝜒𝑊 , is found to be

𝜒𝑊 = 𝑃𝐿𝜒
𝑊 =

√
2𝑃𝐿 (−𝛾 · 𝐹𝐾 + 2𝑖D𝐾 )Λ𝐾

= −2
√
2𝑃𝐿𝛾 𝜇𝜈𝜕[𝜇B𝐾

𝜈]Λ𝐾 −
√
2𝑃𝐿𝛾 𝜇𝜈𝜓 [𝜇𝛾𝜈]Λ𝐾Λ𝐾 + 2

√
2𝑖𝑃𝐿D𝐾Λ𝐾

= −2
√
2𝑃𝐿𝛾 𝜇𝜈𝜕[𝜇 (𝑖𝐾𝐼D𝜈]𝑧

𝐼 − 𝑖𝐾𝐼D𝜈]𝑧
𝐼 + 𝑖𝐾𝐼 𝐽 𝜒 𝐼𝛾𝜈] 𝜒 𝐽 )Λ𝐾 + 2

√
2𝑖𝑃𝐿D𝐾Λ𝐾

= 2𝑖𝛾 𝜇𝜈𝜕[𝜇 (𝐾𝐼𝜓𝜈] 𝜒 𝐼 − 𝐾𝐼 𝜒 𝐼𝜓𝜈] −
√
2𝐾𝐼 𝐽 𝜒 𝐼𝛾𝜈] 𝜒 𝐽 )𝑃𝐿Λ𝐾

+2
√
2𝑖

[
2𝐾𝐼 𝐽

(
− D𝜇𝑧

𝐼D𝜇𝑧 𝐽 − 1
2
𝜒 𝐼𝑃𝐿��D𝜒 𝐽 − 1

2
𝜒 𝐽𝑃𝑅��D𝜒 𝐼 + 𝐹 𝐼𝐹 𝐽

)
+𝐾𝐼 𝐽𝐾

(
− 𝜒 𝐼 𝜒 𝐽𝐹𝐾 + 𝜒 𝐼 (��D𝑧 𝐽 )𝜒𝐾

)
+ 𝐾𝐼 𝐽𝐾

(
− 𝜒 𝐼 𝜒 𝐽𝐹𝐾 + 𝜒 𝐼 (��D𝑧 𝐽 )𝜒𝐾

)
+1
2
𝐾𝐼 𝐽𝐾𝐿 (𝜒 𝐼𝑃𝐿𝜒 𝐽 ) (𝜒𝐾𝑃𝑅𝜒𝐿)

]
𝑃𝐿Λ𝐾

= 2
√
2𝑖F̃ (𝑃𝐿Λ𝐾 )1𝑓 + · · · + 7 fermions

= 2
√
2𝑖F̃ (−

√
2𝑖𝐾𝐼 𝐽 [(��D𝑧 𝐽 )0𝑓 𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ]) + · · · + 7 fermions

= 4F̃𝐾𝐼 𝐽 [(�𝜕𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ] + · · · + 7 fermions, (7.149)

where 𝑃𝐿Λ𝐾 = −
√
2𝑖𝐾𝐼 𝐽 [(��D𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ] − 𝑖√

2
𝐾𝐼 𝐽𝐾 𝜒

𝐾 𝜒 𝐼 𝜒 𝐽 . Note that the composite fermion

𝜒𝑊 contains powers of the matter fermions ranging from one to seven, and it is nonvanishing

on-shell.
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Second, the chiral projection multiplet 𝑇 (𝑤̄2) fermions are found to be as follows:

𝜒𝑇 = 𝑃𝐿𝜒
𝑇 = − 𝑖

√
2
𝑃𝐿 (��DZ𝑤̄ + Λ𝑤̄ ) = − 𝑖

√
2

[
(��DZ𝑊̄ )

Υ2
− (��DΥ)Z𝑊̄

Υ3
− 2

C𝑊̄
Υ3
𝑃𝐿ΛΥ −

𝑖��BΥZ𝑊̄

Υ3

]
ZΥ=0

=
1
Υ2

[
��D𝜒𝑊̄ − (��DΥ)𝜒𝑊̄

Υ
− 2

Λ̄𝐾𝑃𝑅Λ𝐾
Υ

𝑃𝐿ΛΥ −
𝑖��BΥ𝜒

𝑊̄

Υ

]
ZΥ=0

=
1
Υ2

[
(��D𝜒𝑊̄ )1𝑓 −

[(��DΥ)0𝑓 + 𝑖 (��BΥ)0𝑓 ]
Υ

(𝜒𝑊̄ )1𝑓
]
+ · · · + 9 fermions, (7.150)

=
1
Υ2

[
4(�𝜕F̃ )𝐾𝐼 𝐽 [(�𝜕𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ]

−
( 2
𝑠∗0

�𝜕𝑠
∗
0 −

2
3
𝐾𝐾 �𝜕𝑧

𝐾 − 2𝛾 𝜇 (𝑏𝜇 + 𝑖𝐴𝜇)
)
4F̃𝐾𝐼 𝐽 [(�𝜕𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ]

]
1𝑓

+ · · · + 9 fermions,

=
4
Υ2

(�𝜕F̃ )𝐾𝐼 𝐽 [(�𝜕𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ] + (𝜒𝑇 )1𝑓 |F̃ 1 + · · · + 9 fermions, (7.151)

where F̃ ≡ 2𝐾𝐼 𝐽
(
−𝜕𝜇𝑧𝐼 𝜕𝜇𝑧 𝐽 + 𝐹 𝐼𝐹 𝐽

)
; “|F̃ 1” denotes the terms proportional to F̃ 1, and

�𝜕F̃ = 2(�𝜕𝐾𝐼 𝐽 )
(
−𝜕𝜇𝑧𝐼 𝜕𝜇𝑧 𝐽 + 𝐹 𝐼𝐹 𝐽

)
+2𝐾𝐼 𝐽

(
−(�𝜕𝜕𝜇𝑧𝐼 )𝜕𝜇𝑧 𝐽 − 𝜕𝜇𝑧𝐼 (�𝜕𝜕𝜇𝑧 𝐽 ) + (�𝜕𝐹 𝐼 )𝐹 𝐽 + 𝐹 𝐼 (�𝜕𝐹 𝐽 )

)
. (7.152)

Note that 𝜒𝑇 is also nonvanishing on-shell. In the above calculation we have used the formula:

D𝜇𝑃𝐿𝜒
𝑊 =

(
𝜕𝜇 +

1
4
𝜔𝑎𝑏𝜇 𝛾𝑎𝑏 −

7
2
𝑏𝜇 +

3
2
𝑖𝐴𝜇

)
𝑃𝐿𝜒

𝑊 − 1
√
2
𝑃𝐿 (��D𝑊 + 𝐹𝑊 )𝜓𝜇

−3
√
2𝑊𝑃𝐿𝜙𝜇 . (7.153)
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to �nd

(��D𝜒𝑊 )1𝑓 = (��D𝑃𝐿𝜒𝑊 )1𝑓

= 𝛾 𝜇
(
𝜕𝜇 +

1
4
𝜔𝑎𝑏𝜇 𝛾𝑎𝑏 −

7
2
𝑏𝜇 +

3
2
𝑖𝐴𝜇

)
(𝑃𝐿𝜒𝑊 )1𝑓 +

1
√
2
𝑃𝐿 (𝐹𝑊 )0𝑓𝛾 𝜇𝜓𝜇

= �𝜕(𝑃𝐿𝜒𝑊 )1𝑓 + 𝛾 𝜇
(
1
4
𝜔𝑎𝑏𝜇 𝛾𝑎𝑏 −

7
2
𝑏𝜇 +

3
2
𝑖𝐴𝜇

)
(𝑃𝐿𝜒𝑊 )1𝑓 +

1
√
2
𝑃𝐿F̃ 2𝛾 𝜇𝜓𝜇

= 4(�𝜕F̃ )𝐾𝐼 𝐽 [(�𝜕𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ] + 4F̃ (�𝜕𝐾𝐼 𝐽 ) [(�𝜕𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ]

+4F̃𝐾𝐼 𝐽 [(�𝑧 𝐽 )𝜒 𝐼 + �𝜕𝑧
𝐽
�𝜕𝜒

𝐼 − (�𝜕𝐹 𝐼 )𝜒 𝐽 − 𝐹 𝐼 (�𝜕𝜒 𝐽 )]

+𝛾 𝜇
(
1
4
𝜔𝑎𝑏𝜇 𝛾𝑎𝑏 −

7
2
𝑏𝜇 +

3
2
𝑖𝐴𝜇

)
(4F̃𝐾𝐼 𝐽 [(�𝜕𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ]) +

1
√
2
𝑃𝐿F̃ 2𝛾 𝜇𝜓𝜇

= 4(�𝜕F̃ )𝐾𝐼 𝐽 [(�𝜕𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ] + (��D𝜒𝑊 )1𝑓 |F̃ 1 + (��D𝜒𝑊 )1𝑓 |F̃ 2 . (7.154)

where 𝐹𝑊 = 2Λ̄𝐾𝑃𝐿��DΛ𝐾 + 𝐹−
𝐾
· 𝐹−

𝐾
− D2

𝐾
, (𝐹−

𝐾
)0𝑓 = 0, and (𝐹𝑊 )0𝑓 = −(D2

𝐾
)0𝑓 = −F̃ 2, and

(�𝜕𝜒𝑊 )1𝑓 = (�𝜕𝑃𝐿𝜒𝑊 )1𝑓 = 4(�𝜕F̃ )𝐾𝐼 𝐽 [(�𝜕𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ] + 4F̃ (�𝜕𝐾𝐼 𝐽 ) [(�𝜕𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ]

+4F̃𝐾𝐼 𝐽 [(�𝜕�𝜕𝑧 𝐽 )𝜒 𝐼 + �𝜕𝑧
𝐽
�𝜕𝜒

𝐼 − (�𝜕𝐹 𝐼 )𝜒 𝐽 − 𝐹 𝐼 (�𝜕𝜒 𝐽 )]

= 4(�𝜕F̃ )𝐾𝐼 𝐽 [(�𝜕𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ] + 4F̃ (�𝜕𝐾𝐼 𝐽 ) [(�𝜕𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ]

+4F̃𝐾𝐼 𝐽 [(�𝑧 𝐽 )𝜒 𝐼 + �𝜕𝑧
𝐽
�𝜕𝜒

𝐼 − (�𝜕𝐹 𝐼 )𝜒 𝐽 − 𝐹 𝐼 (�𝜕𝜒 𝐽 )]

≈ 4(�𝜕F̃ )𝐾𝐼 𝐽 [(�𝜕𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ] + 4F̃ (�𝜕𝐾𝐼 𝐽 ) [(�𝜕𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ]

−4F̃𝐾𝐼 𝐽 (�𝜕𝐹 𝐼 )𝜒 𝐽 . (7.155)

Here≈means equality up to terms proportional to the equations of motion of freemasslessmatter

�elds. Such terms produce only terms that contain additional factors of the matter �eld masses

in the numerator and therefore give rise to either renormalizable operators or nonrenormalizable

operators weighted by a mass scale higher than that associated to those terms that do not vanish
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on shell. Some details of the above calculation are as follows:

D𝜇𝑧
𝐼 = 𝜕𝜇𝑧

𝐼 − 1
√
2
𝜓𝜇 𝜒

𝐼 , (7.156)

C𝑊̄ ≡ 𝑊̄ = Λ̄𝐾𝑃𝑅Λ𝐾 = 2 fermions + 4 fermions + 6 fermions, (7.157)

𝑃𝐿Λ𝐾 = −
√
2𝑖𝐾𝐼 𝐽 [(��D𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ] −

𝑖
√
2
𝐾𝐼 𝐽𝐾 𝜒

𝐾 𝜒 𝐼 𝜒 𝐽 , (7.158)

(��D𝜒𝑊̄ )1𝑓 = 2
√
2𝑖 (��DF̃ )0𝑓 (𝑃𝐿Λ𝐾 )1𝑓 + 2

√
2𝑖F̃ (𝑃𝐿��DΛ𝐾 )1𝑓 , (7.159)

��DΛ𝐾 = 𝛾 · DΛ𝐾 , (7.160)

D𝜇Λ𝐾 =

(
𝜕𝜇 −

3
2
𝑏𝜇 +

1
4
𝜔𝑎𝑏𝜇 𝛾𝑎𝑏 −

3
2
𝑖𝛾∗A𝜇

)
Λ𝐾 −

(1
4
𝛾 · 𝐹𝐾 + 1

2
𝑖𝛾∗D𝐾

)
𝜓𝜇, (7.161)

(𝑃𝐿��DΛ𝐾 )1𝑓 = 𝛾 𝜇D𝜇 |𝜓=0(𝑃𝑅Λ𝐾 )1𝑓 +
𝑖

2
F̃𝛾 𝜇𝜓𝜇, (7.162)

(𝛾 · 𝐹𝐾 )0𝑓 = 0, D𝐾 |0𝑓 = F̃ (7.163)

(𝐹𝐾𝜇𝜈 )0𝑓 = (2𝜕[𝜇B𝐾
𝜈])0𝑓 = 2𝑖𝜕[𝜇 (𝐾𝐼 𝜕𝜈]𝑧𝐼 − 𝐾𝐼 𝜕𝜈]𝑧𝐼 ) = 2𝑖 (𝜕[𝜇𝐾𝐼 𝜕𝜈]𝑧𝐼 − 𝜕[𝜇𝐾𝐼 𝜕𝜈]𝑧𝐼 )

= 2𝑖 (𝐾𝐼 𝐽 𝜕[𝜇𝑧 (𝐽 𝜕𝜈]𝑧𝐼 ) − 𝐾𝐼 𝐽 𝜕[𝜇𝑧 (𝐽 𝜕𝜈]𝑧𝐼 )) = 0, (7.164)

(��DΥ)0𝑓 = (�𝜕 − 2𝛾 𝜇𝑏𝜇 − 2𝑖𝛾 𝜇𝐴𝜇)Υ

= (�𝜕𝑠0)𝑠∗0𝑒−𝐾/3 + 𝑠0(�𝜕𝑠∗0)𝑒−𝐾/3 + 𝑠0𝑠∗0𝑒−𝐾/3(−
1
3 �
𝜕𝐾) − 2𝛾 𝜇 (𝑏𝜇 + 𝑖𝐴𝜇)Υ

= Υ( 1
𝑠0

�𝜕𝑠0 +
1
𝑠∗0

�𝜕𝑠
∗
0 −

1
3
𝐾𝐼 �𝜕𝑧

𝐼 − 1
3
𝐾𝐼 �𝜕𝑧

𝐼 − 2𝛾 𝜇 (𝑏𝜇 + 𝑖𝐴𝜇)), (7.165)

𝑖 (��BΥ)0𝑓 = Υ(− 1
𝑠0

�𝜕𝑠0 +
1
𝑠∗0

�𝜕𝑠
∗
0 +

1
3
𝐾𝐼 �𝜕𝑧

𝐼 − 1
3
𝐾𝐼 �𝜕𝑧

𝐼 ),

(��DΥ)0𝑓 + 𝑖 (��BΥ)0𝑓
Υ

=
2
𝑠∗0

�𝜕𝑠
∗
0 −

2
3
𝐾𝐼 �𝜕𝑧

𝐼 − 2𝛾 𝜇 (𝑏𝜇 + 𝑖𝐴𝜇). (7.166)

Finally, we present here the chiral fermions of the superconformal multiplets up to multiple
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fermion terms.

𝜒𝑖 =



𝜒0,

𝜒 𝐼 ,

𝜒𝑊 = 4F̃𝐾𝐼 𝐽 [(�𝜕𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ] + · · · 7 fermions,

𝜒𝑇 = 1
Υ2

[
4(�𝜕F̃ )𝐾𝐼 𝐽 [(�𝜕𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ] −

(
2
𝑠∗0
�𝜕𝑠

∗
0 − 2

3𝐾𝐾 �𝜕𝑧
𝐾 − 2𝛾 𝜇 (𝑏𝜇 + 𝑖𝐴𝜇)

)
×4F̃𝐾𝐼 𝐽 [(�𝜕𝑧 𝐽 )𝜒 𝐼 − 𝐹 𝐼 𝜒 𝐽 ]

]
1𝑓

+ · · · + 9 fermions,

where

F̃ = 2𝐾𝐼 𝐽
(
−𝜕𝜇𝑧𝐼 𝜕𝜇𝑧 𝐽 + 𝐹 𝐼𝐹 𝐽

)
�𝜕F̃ = 2(�𝜕𝐾𝐼 𝐽 )

(
−𝜕𝜇𝑧𝐼 𝜕𝜇𝑧 𝐽 + 𝐹 𝐼𝐹 𝐽

)
+2𝐾𝐼 𝐽

(
−(�𝜕𝜕𝜇𝑧𝐼 )𝜕𝜇𝑧 𝐽 − 𝜕𝜇𝑧𝐼 (�𝜕𝜕𝜇𝑧 𝐽 ) + (�𝜕𝐹 𝐼 )𝐹 𝐽 + 𝐹 𝐼 (�𝜕𝐹 𝐽 )

)
.

Notice that none of the chiral fermions 𝜒𝑖 vanish on-shell, and that only 𝜒𝑇 dependens on F̃ and

includes the factor of Υ−2. All of these properties a�ect the mass dimension of the expansion

coe�cients of the nonrenormalizable Lagrangians.

We �nally expand𝑊 and 𝑊̄ as follows:

𝑊 = −2𝐾𝚤 𝐽 [𝜒 𝐽 (��D𝑧𝚤) − 𝐹 𝚤𝜒 𝐽 ]𝐾𝚤 ′𝐽 ′ [(��D𝑧𝚤
′)𝜒 𝐽 ′ − 𝐹 𝐽 ′𝜒𝚤 ′]

−𝐾𝚤 𝐽 [𝜒 𝐽 (��D𝑧𝚤) − 𝐹 𝚤𝜒 𝐽 ]𝐾𝚤 ′ 𝚥 ′𝐾 ′ [𝜒𝐾 ′
𝜒𝚤

′
𝜒 𝚥

′]

−𝐾𝚤 𝚥𝐾 [𝜒 𝚥𝜒𝚤𝜒𝐾 ]𝐾𝚤 ′𝐽 ′ [(��D𝑧𝚤
′)𝜒 𝐽 ′ − 𝐹 𝐽 ′𝜒𝚤 ′]

−1
2
𝐾𝚤 𝚥𝐾 [𝜒 𝚥𝜒𝚤𝜒𝐾 ]𝐾𝚤 ′ 𝚥 ′𝐾 ′ [𝜒𝐾 ′

𝜒𝚤
′
𝜒 𝚥

′], (7.167)

𝑊̄ = (𝑊 )∗. (7.168)
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Notice that𝑊 and 𝑊̄ can be represented by products of two, four, and six fundamental fermions.

7.3.3 Additional gauge fixing for physical theory in the liberated

supergravity

First of all, we consider the conventional superconformal gauge which is chosen by

CΥ = Υ = 1 ⇐⇒ 𝑠0𝑠0𝑒
−𝐾/3 = 1, (7.169)

ZΥ = 0 =⇒ 𝑃𝐿𝜒
0 − 1

3
𝑠0𝐾𝐼𝑃𝐿𝜒

𝐼 = 0 & 𝑃𝑅𝜒
0 − 1

3
𝑠∗0𝐾𝐼𝑃𝑅𝜒

𝐼 = 0, (7.170)

𝑠0 = 𝑠0 =⇒ 𝑠0 = 𝑠0 = 𝑒
𝐾/6, (7.171)

𝑏𝜇 = 0. (7.172)

Note that the �rst condition is the 𝐷-gauge �xing which gets us to the Einstein frame; the second

one is the improved 𝑆-gauge �xing; the third one is the𝐴-gauge �xing; the last one is the𝐾-gauge

�xing.

To compare our results with the formulation of liberated supergravity in [71], we choose a

gauge given by

Λ𝐾 = 0 ⇐⇒ 𝜒𝑊 = 𝜒𝑇 = 0. (7.173)

In both the conventional superconformal gauge (7.170,7.171,7.172) and in (7.173), the relevant
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multiplets are

𝑆0 =

(
𝑒𝐾/6,

1
3
𝑒𝐾/6𝐾𝐼𝑃𝐿𝜒

𝐼 , 𝐹 0
)
, 𝑆0 =

(
𝑒𝐾/6,

1
3
𝑒𝐾/6𝐾𝐼𝑃𝑅𝜒

𝐼 , 𝐹 0∗
)
, (7.174)

𝑧𝐼 =

(
𝑧𝐼 , 𝑃𝐿𝜒

𝐼 , 𝐹 𝐼
)
, 𝑧𝐼 =

(
𝑧𝐼 , 𝑃𝑅𝜒

𝐼 , 𝐹 𝐼
)
, (7.175)

W2(𝐾) =

(
𝑊, 𝑃𝐿𝜒

𝑊 , 𝐹𝑊
)
=

(
0, 0, 𝐹−𝐾 · 𝐹−𝐾 − D2

𝐾

)
, (7.176)

W̄2(𝐾) =

(
𝑊̄ , 𝑃𝑅𝜒

𝑊̄ , 𝐹𝑊̄
)
=

(
0, 0, 𝐹+𝐾 · 𝐹+𝐾 − (D∗

𝐾 )2
)
, (7.177)

𝑇 (𝑤̄2) =

(
𝑇, 𝑃𝐿𝜒

𝑇 , 𝐹𝑇
)
=

(
−1
2
K𝑤̄ , 0,

1
2
D𝑤̄

)
, (7.178)

𝑇 (𝑤2) =

(
𝑋𝑇 , 𝑃𝑅𝜒

𝑇 , 𝐹𝑇
)
=

(
−1
2
K∗
𝑤̄ , 0,

1
2
D∗
𝑤̄

)
. (7.179)

Let us further observe that all the terms coupled to 𝑁 and its derivatives with respect to 0, 𝐼 ,𝑇

vanish because 𝑁 contains the product of𝑊𝑊̄ , which is zero in the liberated gauge, i.e. 𝑊 =

𝑊̄ = 0. We see that all the fermionic terms coupled to the derivatives of 𝑁 with respect to𝑊 or

𝑇 vanish as well, because these terms always couple to the fermions 𝜒𝑊 and 𝜒𝑇 which vanish in

the gauge. The only non-vanishing contribution is given by only the bosonic term, 𝑁𝑊𝑊̄ 𝐹𝑊 𝐹𝑊̄

which gives us the new term U to the scalar potential. Therefore, in both gauges, the liberated

supergravity Lagrangian is speci�ed by

L𝐿𝑖𝑏 = L𝑆𝑈𝐺𝑅𝐴 + L𝑁𝐸𝑊 , (7.180)

where L𝑆𝑈𝐺𝑅𝐴 is the standard supergravity Lagrangian which contains the auxiliary �elds 𝐹 0, 𝐹 𝐼

and L𝑁𝐸𝑊 = U(𝑧𝐼 , 𝑧𝐼 ). Then, with this Lagrangian, after solving the equations of motion for the

auxiliary �elds, we can obtain the usual supergravity action in addition to the new term.
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7.4 Spectroscophy for Non-renormalizable Interactions

in the Liberated N = 1 Supergravity

In this section, we investigate the suppression of the nonrenormalizable fermionic terms in

the liberated N = 1 supergravity in the superconformal formalism. To do this, we need to recall

the EFT expansion reviewed in Sec. 3.4, and consider the structure of EFT expansion in Eq. (3.18)

and constraint given in Eq. (3.19). Hence, we have

L𝐸𝐹𝑇 ⊃
Finite N∑︁
𝛿≥0

𝐶𝛿

𝑀𝛿−𝑑 O
(𝛿) ∼

Finite N∑︁
𝛿≥0

1
Λ𝛿−𝑑𝑐𝑢𝑡

O (𝛿) =⇒ 𝐶𝛿

𝑀𝛿−𝑑 .
1

Λ𝛿−𝑑𝑐𝑢𝑡

where Λ𝑐𝑢𝑡 is a cuto� scale; 𝑀 is a characteristic mass scale of a theory; 𝐶𝛿 is a dimensionless

Wilson coe�cient, andO (𝛿) is an e�ective �eld operator with themass dimension 𝛿 . In ourmodel,

the dimensionless Wilson coe�cient will be dependent on the liberated term U, and the mass

scale𝑀 will depend on F . Hence, the key result we will �nd in this section is given by

U (𝑛) .


F 2(4−𝑛)

(
𝑀𝑝𝑙

Λ𝑐𝑢𝑡

)2(4−𝑛)
where 0 ≤ 𝑛 ≤ 2 for 𝑁𝑚𝑎𝑡 = 1,

F 2(6−𝑛)
(
𝑀𝑝𝑙

Λ𝑐𝑢𝑡

)2(6−𝑛)
where 0 ≤ 𝑛 ≤ 4 for 𝑁𝑚𝑎𝑡 ≥ 2,

(7.181)

where 𝑛 is the total number of derivatives with respect to the chiral matter multiplets 𝑧𝐼 ; F ≡〈
𝐾𝐼 𝐽𝐹

𝐼𝐹 𝐽
〉
is the dimensionless vacuum expectation value of F̃ ;U(𝑧, 𝑧) is called “liberated term”

de�ned as a dimensionless, gauge-invariant, general real functon of the matter scalars 𝑧𝐼 ’s, and

U (𝑛) is the 𝑛-th derivative of the liberated term.
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7.4.1 Fermionic terms in liberated N = 1 supergravity

The component Lagrangians of the liberated supergravity is given by

L𝑁𝐸𝑊 ≡ [N]𝐷𝑒−1

= 𝑁𝑖 𝚥

(
− D𝜇𝑧

𝑖D𝜇𝑧 𝚥 − 1
2
𝜒𝑖��D𝜒 𝚥 − 1

2
𝜒 𝚥��D𝜒𝑖 + 𝐹 𝑖𝐹 𝚥

)
+ 1
2

[
𝑁𝑖 𝑗𝑘

(
− 𝜒𝑖 𝜒 𝑗𝐹𝑘 + 𝜒𝑖 (��D𝑧 𝑗 )𝜒𝑘

)
+ ℎ.𝑐.

]
+1
4
𝑁𝑖 𝑗𝑘𝑙 𝜒

𝑖 𝜒 𝑗 𝜒𝑘 𝜒𝑙

+
[

1
2
√
2
𝜓 · 𝛾

(
𝑁𝑖 𝚥𝐹

𝑖 𝜒 𝚥 − 𝑁𝑖 𝚥��D𝑧 𝚥𝜒𝑖 −
1
2
𝑁𝑖 𝑗𝑘 𝜒

𝑘 𝜒𝑖 𝜒 𝑗
)
+ 1
8
𝑖𝜀𝜇𝜈𝜌𝜎𝜓𝜇𝛾𝜈𝜓𝜌

(
𝑁𝑖D𝜎𝑧

𝑖 + 1
2
𝑁𝑖 𝚥𝜒

𝑖𝛾𝜎 𝜒
𝚥

+ 1
√
2
𝑁𝑖𝜓𝜎 𝜒

𝑖

)
+ ℎ.𝑐.

]
+ 1
6
𝑁

(
−𝑅(𝜔) + 1

2
𝜓𝜇𝛾

𝜇𝜈𝜌𝑅′𝜈𝜌 (𝑄)
)
− 1
6
√
2

(
𝑁𝑖 𝜒

𝑖 + 𝑁𝚤𝜒𝚤
)
𝛾 𝜇𝜈𝑅′𝜇𝜈 (𝑄),(7.182)

First of all, focusing only on matter couplings, i.e. looking at terms independent of 𝜓 , we read

the following terms from Eq. (7.182)

L𝐹1 ≡ −𝑁𝑖 𝚥D𝜇𝑧
𝑖D𝜇𝑧 𝚥

���
𝜓=0

, L𝐹2 ≡ −1
2
𝑁𝑖 𝚥𝜒

𝑖
��D𝜒 𝚥

���
𝜓=0

,

L𝐹3 ≡ −𝑁𝑖 𝚥𝐹 𝑖𝐹 𝚥
���
𝜓=0

, L𝐹4 ≡ −1
2
𝑁𝑖 𝑗𝑘 𝜒

𝑖 𝜒 𝑗𝐹𝑘
���
𝜓=0

,

L𝐹5 ≡ 1
2
𝑁𝑖 𝑗𝑘 𝜒

𝑖 (��D𝑧 𝑗 )𝜒𝑘
���
𝜓=0

,

L𝐹6 ≡ 1
4
𝑁𝑖 𝑗𝑘𝑙 𝜒

𝑖 𝜒 𝑗 𝜒𝑘 𝜒𝑙
���
𝜓=0

, L𝐹7 ≡ −𝑁
6
𝑅(𝜔) |𝜓=0. (7.183)

Here, we observe that the fermionic terms in the e�ective Lagrangian contain couplings to the

functionU and its derivatives since 𝑁 ∝ U.

The general structure of the fermionic terms can be found as a power series in derivatives

of the composite multiplet 𝑁 (i.e. 𝑁𝑖, 𝑁𝑖 𝚥, 𝑁𝑖 𝑗𝑘 and 𝑁𝑖 𝑗𝑘𝑙 ). The 𝑟 -th derivative of 𝑁 , denoted with

150



𝑁
(𝑟 )
𝑖 ...𝑙

has the following generic form

𝑁
(𝑟 )
𝑖 ...𝑙

= 𝑁
(𝑟=𝑞+𝑝+𝑚+𝑘)
𝑞,𝑝,𝑚,𝑘

= (𝜕𝑞0𝜕
(𝑘−𝑛)
𝐼

Υ−2)Υ4+2𝑚 U (𝑛)

F̃ 4+2𝑚
𝑊 1−𝑝1𝑊̄ 1−𝑝2

=

(
(−1)𝑞1+𝑞2 (𝑞1 + 1)!(𝑞2 + 1)!𝑠−(2+𝑞1)0 𝑠∗0

−(2+𝑞2) (𝜕(𝑘−𝑛)
𝐼

𝑒2𝐾/3)
)
Υ4+2𝑚

U (𝑛)

F̃ 4+2𝑚
𝑊 1−𝑝1𝑊̄ 1−𝑝2 .

(7.184)

where

𝑊 = −2𝐾𝚤 𝐽 [𝜒 𝐽 (��D𝑧𝚤) − 𝐹 𝚤𝜒 𝐽 ]𝐾𝚤 ′𝐽 ′ [(��D𝑧𝚤
′)𝜒 𝐽 ′ − 𝐹 𝐽 ′𝜒𝚤 ′] − 𝐾𝚤 𝐽 [𝜒 𝐽 (��D𝑧𝚤) − 𝐹 𝚤𝜒 𝐽 ]𝐾𝚤 ′ 𝚥 ′𝐾 ′ [𝜒𝐾 ′

𝜒𝚤
′
𝜒 𝚥

′]

−𝐾𝚤 𝚥𝐾 [𝜒 𝚥𝜒𝚤𝜒𝐾 ]𝐾𝚤 ′𝐽 ′ [(��D𝑧𝚤
′)𝜒 𝐽 ′ − 𝐹 𝐽 ′𝜒𝚤 ′] − 1

2
𝐾𝚤 𝚥𝐾 [𝜒 𝚥𝜒𝚤𝜒𝐾 ]𝐾𝚤 ′ 𝚥 ′𝐾 ′ [𝜒𝐾 ′

𝜒𝚤
′
𝜒 𝚥

′], (7.185)

𝑊̄ = (𝑊 )∗, (7.186)

F̃ ≡ 2𝐾𝐼 𝚥
(
−𝜕𝜇𝑧𝐼 𝜕𝜇𝑧 𝚥 + 𝐹 𝐼𝐹 𝚥

)
; U (𝑛) (0 ≤ 𝑛 ≤ 4) is the 𝑛-th derivative of the function U(𝑧𝐼 , 𝑧𝚤)

with respect to 𝑧𝐼 , 𝑧𝐼 , which are the lowest component of the matter chiral multiplets; 𝑞 = 𝑞1 +𝑞2

where 𝑞1 (𝑞2) is the order of the derivative w.r.t. the compensator scalar 𝑠0 (𝑠∗0); 𝑝 = 𝑝1 + 𝑝2 where

𝑝1 (𝑝2) is the order of the derivative w.r.t. the �eld strength multiplet scalar𝑊 (𝑊̄ );𝑚 =𝑚1 +𝑚2

where 𝑚1 (𝑚2) is the order of the derivative w.r.t. the chiral projection multiplet scalar 𝑇 (𝑤̄2)

(𝑇 (𝑤2)); 𝑘 is the order of the derivative w.r.t. the matter multiplet scalar 𝑧𝐼 ; 𝑛 is the order of the

derivative acting on the new termU w.r.t. the matter multiplet; 𝑞 is the total order of derivative

w.r.t. the compensator scalars 𝑠0 and 𝑠∗0 .

To �nd restrictions on 𝑉𝑁𝐸𝑊 coming from fermionic terms, we have to identify the most

singular terms in the Lagrangian. These terms can be found using the fact that powers of F̃ in

the denominator may lead to a singularity which gets stronger when𝑚 increases by taking more

derivatives with respect to the lowest component of the multiplet𝑇 (𝑤̄2) as seen from Eq. (7.184).

Hence, we will investigate the fermionic terms containing only derivatives with respect to the

chiral projection and matter scalar indices, i.e. 𝑇 and 𝐼 , in order to �nd the terms coupled toU (𝑛)
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that contain the maximal inverse powers of F̃ . They are those with 𝑞 = 𝑝 = 0 and 𝑘 = 𝑛. We

note in particular that if our theory has a single chiral matter multiplet then the most singular

terms are found to be the couplings to the derivatives proportional to 𝑁𝑇𝑇 , 𝑁𝑊𝑇𝑇 , 𝑁𝑊𝑊̄𝑇𝑇 while

for two or more chiral matter multiplets they are 𝑁𝑇𝑇𝑇𝑇 . The latter terms vanish identically for a

single multiplet because of Fermi statistics.

First of all, let us examine the single matter chiral multiplet case. Due to Fermi statistics,

the possible fermionic terms are proportional only to three tems, U (0) , U (1) , and U (2) , so that

the maximal order of the derivative with respect to the chiral projection that can appear in the

Lagrangians scalar is two and appears in the terms proportional to 𝑁𝑇𝑇 , 𝑁𝑊𝑇𝑇 , and 𝑁𝑊𝑊̄𝑇𝑇 . To

show that such terms do not vanish consider

L𝐹2 |𝑞=𝑝=0,𝑘=𝑛 ⊃ Υ2+2𝑚
U (𝑛)

F̃ 4+2𝑚
𝑊𝑊̄

[
− 1
2

(
(𝜒 𝐼 )𝑛1 (Υ−24(�𝜕F̃ )𝐾𝚤 𝐽 (�𝜕𝑧 𝐽 )𝜒𝚤𝑃𝑅)𝑚1

)
×
(
(��D𝜒 𝐼 )𝑛2 (��D(Υ−24(�𝜕F̃ )𝐾𝚤 𝐽 (�𝜕𝑧 𝐽 )𝑃𝑅𝜒𝚤))𝑚2

)]
𝜓=0

, (7.187)

where𝑚 = 𝑚1 +𝑚2, 𝑛 = 𝑛1 + 𝑛2, and 2 = 𝑚 + 𝑛. Restoring the mass dimensions by �xing the

super-Weyl gauge6 (i.e. Υ = 𝑀2
𝑝𝑙
, 𝑠0 = 𝑠∗0 = 𝑀𝑝𝑙𝑒

𝐾/6, 𝑃𝐿𝜒0 = 1
3𝑠0𝐾𝐼𝑃𝐿𝜒

𝐼 = 1
3𝑀𝑝𝑙𝑒

𝐾/6𝐾𝐼𝑃𝐿𝜒 𝐼 , and

𝑏𝜇 = 0), we obtain

L𝐹2 |𝑞=𝑝=0,𝑘=𝑛 ⊃ 𝑀
2(2+2𝑚)
𝑝𝑙

U (𝑛)

F̃ 4+2𝑚
𝑊𝑊̄

[
− 1
2

(
(𝜒 𝐼 )𝑛1 (𝑀−4

𝑝𝑙
4(�𝜕F̃ )𝐾𝚤 𝐽 (�𝜕𝑧 𝐽 )𝜒𝚤𝑃𝑅)𝑚1

)
×
(
(��D𝜒 𝐼 )𝑛2 (𝑀−4

𝑝𝑙
(4��D(�𝜕F̃ )𝐾𝚤 𝐽 (�𝜕𝑧 𝐽 )𝑃𝑅𝜒𝚤))𝑚2

)]
𝜓=0

≈ 𝑀4
𝑝𝑙

U (𝑛)

F̃ 4+2𝑚
O (𝛿)
𝐹
, (7.188)

where we require𝑚𝑎 + 𝑛𝑎 = 1 for 𝑎 = 1, 2 since we are studying the second derivative term 𝑁𝑖 𝚥

6Here, we use the convention of the superconformal formalism that all physical bosonic and fermionic matter
�elds have dimensions 0 and 1/2 respectively and F has dimension 2 while the compensator 𝑠0 has dimension 1 [8].
Through dimensional analysis, we �nd [D𝜇] = 1, [𝑧𝑖 ] ≡ 0 + [𝑖], [𝜒𝑖 ] ≡ 1

2 + [𝑖], [𝐹 𝑖 ] ≡ 1 + [𝑖] where 𝑖 = 0, 𝐼 ,𝑊 ,𝑇 and
[0] = 1, [𝐼 ] = 0, [𝑊 ] = 3, [𝑇 ] = 0.
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coupled to 𝜒𝑖 and��D𝜒 𝚥 . Rede�ning F̃ to be dimensionless by F̃ → 𝑀2
𝑝𝑙
F̃ , we obtain

L𝐹2 |𝑞=𝑝=0,𝑘=𝑛 ⊃ 𝑀−4−2𝑚
𝑝𝑙

U (𝑛)

F̃ 4+2𝑚
O′(𝛿)
𝐹

. (7.189)

We then �nd 𝛿 = 8+ 4𝑚 by trivial dimensional analysis because the Lagrangian has mass dimen-

sion 4. Then, since 2 =𝑚 + 𝑛, we �nd that the most singular term is

L𝐹2 |𝑞=𝑝=0,𝑘=𝑛 ⊃ 𝑀
2(𝑛−4)
𝑝𝑙

U (𝑛)

F̃ 2(4−𝑛)
O′(2(6−𝑛))
𝐹

. (7.190)

Next we consider the general case with several multiplets. We shall focus on the fourth deriva-

tive term denoted by 𝑁𝑖 𝑗𝑘𝑙 , which gives a four-fermion term. Also, we have to consider the four-

fermion product made only of the chiral fermions with 𝑖 = 0, 𝐼 ,𝑇 because they do not contribute

one power of the F-term F̃ in the numerator, which would reduce the number of inverse power

of the F-term F̃ . This is because the overall factor of 𝜒𝑊 contains such linear dependence. The

e�ective fermionic Lagrangian (7.183) reads then as follows:

L𝐹6 |𝑞=𝑝=0,𝑘=𝑛 ⊃ Υ2+2𝑚
U (𝑛)

F̃ 4+2𝑚
𝑊𝑊̄

(1
4
(𝜒 𝐼 )𝑛 (4Υ−2(�𝜕F̃ )𝐾𝚤 𝐽 (�𝜕𝑧 𝐽 )𝑃𝑅𝜒𝚤)𝑚

)
. (7.191)

After the super-Weyl gauge �xing we obtain

L𝐹6 |𝑞=𝑝=0,𝑘=𝑛 ⊃ 𝑀
2(2+2𝑚)
𝑝𝑙

U (𝑛)

F̃ 4+2𝑚
𝑊𝑊̄

(1
4
(𝜒 𝐼 )𝑛 (4𝑀−4

𝑝𝑙
(�𝜕F̃ )𝐾𝚤 𝐽 (�𝜕𝑧 𝐽 )𝑃𝑅𝜒𝚤)𝑚

)
≈ 𝑐𝑀4

𝑝𝑙

U (𝑛)

F̃ 4+2𝑚
O (𝛿)
𝐹
.

(7.192)

where O(1) . 𝑐 . O(103). After doing the same dimensional analysis as in the single-multiplet
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case, we obtain 𝛿 = 8 + 4𝑚 and

L𝐹6 |𝑞=𝑝=0,𝑘=𝑛 ⊃ 𝑐𝑀−4−2𝑚
𝑝𝑙

U (𝑛)

F̃ 4+2𝑚
O′(8+2𝑚)
𝐹

. (7.193)

Then, since 4 =𝑚 + 𝑛, we can write the most singular terms as

L𝐹6 |𝑞=𝑝=0,𝑘=𝑛 ⊃ 𝑐𝑀2(𝑛−6)
𝑝𝑙

U (𝑛)

F̃ 2(6−𝑛)
O′(2(8−𝑛))
𝐹

, (7.194)

Since we are going to use liberated supergravity to describe time-dependent backgrounds

such as slow-roll in�ation we need to look more closely at the structure of F̃ . From its de�nition

F̃ ≡ 2𝐾𝐼 𝚥
(
−𝜕𝜇𝑧𝐼 𝜕𝜇𝑧 𝚥 + 𝐹 𝐼𝐹 𝚥

)
, we �nd F̃ ≡ 2𝐾𝐼 𝚥

(
¤𝑧𝐼 ¤̄𝑧 𝚥 + 𝐹 𝐼𝐹 𝚥

)
> 0 whenever spatial gradients can

be neglected. We see that the most singular behaviors of the fermionic terms arises when ¤𝑧𝐼 = 0.

By expanding 𝐹 around a static vacuum and reserving the notation F for the expectation value〈
𝐾𝐼 𝚥𝐹

𝐼𝐹 𝚥
〉
, the e�ective Lagrangian can �nally be rewritten as

• For the single chiral matter multiplet case,

L𝐹2 |𝑞=𝑝=0,𝑘=𝑛 ⊃ 𝑀
2(𝑛−4)
𝑝𝑙

U (𝑛)

F 2(4−𝑛)O
′(2(6−𝑛))
𝐹

. (7.195)

• For two or more chiral matter multiplets,

L𝐹6 |𝑞=𝑝=0,𝑘=𝑛 ⊃ 𝑐′𝑀2(𝑛−6)
𝑝𝑙

U (𝑛)

F 2(6−𝑛)O
′(2(8−𝑛))
𝐹

. (7.196)

where O(10−2) . 𝑐′ . O(1).

The e�ective operators we obtained are generically nonzero even after considering possible

cancellations due to Fermi statistics or nonlinear �eld rede�nitions. As an example we can take

terms containing 𝜒𝑖 . They are made of two composite chiral multiplets 𝜒𝑊 and 𝜒𝑇 and these

produce terms that do not vanish on shell (i.e. imposing �𝜕𝑃𝐿𝜒
𝐼 ≈ 0 for matter fermions). For in-
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stance, in a theory with only one matter chiral multiplet (𝑧, 𝑃𝐿𝜒, 𝐹 ), we have𝑊 = −2𝐾𝑧𝑧 [{(�𝜕𝑧)2−

𝐹 ∗�𝜕𝑧}(𝜒𝑃𝑅𝜒) + {𝐹 ∗2 − 𝐹 ∗�𝜕𝑧}(𝜒𝑃𝐿𝜒)] + 2𝐾𝑧𝑧𝐾𝑧𝑧𝑧 (�𝜕𝑧 − 𝐹 ∗) (𝜒𝑃𝐿𝜒) (𝜒𝑃𝑅𝜒), and 𝑊̄ = (𝑊 )∗, so that

𝑊𝑊̄ = 4𝐾4
𝑧𝑧 ( |�𝜕𝑧 |2+ |𝐹 |2) | |�𝜕𝑧−𝐹 ∗ |2(𝜒𝑃𝐿𝜒) (𝜒𝑃𝑅𝜒). Hence, looking at the possible fermionic terms

from L𝐹1, when 𝑖 = 𝑧, 𝚥 = 𝑧 (i.e. 𝑞 = 𝑝 =𝑚 = 0, 𝑘 = 𝑛 = 2), we get

L𝐹1 ⊃ Υ2
U (2)

F̃ 4
𝑊𝑊̄ (𝜕𝜇𝑧𝜕𝜇𝑧) = Υ2

U (2)

F̃ 4
4𝐾4

𝑧𝑧 ( |�𝜕𝑧 |2 + |𝐹 |2) | |�𝜕𝑧 − 𝐹 ∗ |2(𝜕𝜇𝑧𝜕𝜇𝑧) (𝜒𝑃𝐿𝜒) (𝜒𝑃𝑅𝜒).

(7.197)

It is easy to see that this operator does not vanish on the mass shell of the matter scalars, �𝑧 ≈ 0.

As another example, from L𝐹2 we get terms containing up to three matter fermions when we

consider 𝑞 =𝑚 = 𝑝1 = 0, 𝑘 = 𝑛 = 1, 𝑝2 = 𝑝 = 1

L𝐹2 ⊃ Υ2
U (1)

F̃ 4

1
2
𝑊 𝜒�𝜕𝑃𝑅𝜒

𝑊̄ ≈ Υ2
U (1)

F̃ 4
4𝐾2

𝑧𝑧 (�𝜕F̃ )(�𝜕𝑧) (𝜒𝑃𝑅𝜒)𝑃𝐿 (�𝜕𝑧 − 𝐹 ∗)2𝜒 |3-fermion terms + · · · .

(7.198)

Back to the results in Eqs. (7.195) and (7.196), the general e�ective Lagrangians can be cast in

the form

L𝐹 = Λ4−𝛿
𝑐𝑢𝑡 O

′(𝛿)
𝐹

=


𝑀

2(𝑛−4)
𝑝𝑙

U (𝑛)

F 2(4−𝑛)O
′(𝛿=2(6−𝑛))
𝐹

for 𝑁𝑚𝑎𝑡 = 1,

𝑐′𝑀2(𝑛−6)
𝑝𝑙

U (𝑛)

F 2(6−𝑛)O
′(𝛿=2(8−𝑛))
𝐹

for 𝑁𝑚𝑎𝑡 ≥ 2.
(7.199)

where O(10−2) . 𝑐′ . O(1); 𝑁𝑚𝑎𝑡 and Λ𝑐𝑢𝑡 are de�ned to be the number of chiral multiplets of

matter, and the cuto� scale of our e�ective theory, respectively.

If we demand that our e�ective theory describe physics up to the energy scale Λ𝑐𝑢𝑡 we obtain
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the following inequalities:

U (𝑛) .


F 2(4−𝑛)

(
𝑀𝑝𝑙

Λ𝑐𝑢𝑡

)2(4−𝑛)
where 0 ≤ 𝑛 ≤ 2 for 𝑁𝑚𝑎𝑡 = 1,

F 2(6−𝑛)
(
𝑀𝑝𝑙

Λ𝑐𝑢𝑡

)2(6−𝑛)
where 0 ≤ 𝑛 ≤ 4 for 𝑁𝑚𝑎𝑡 ≥ 2.

(7.200)

A conventional de�nition of the supersymmetry breaking scale 𝑀𝑆 is in terms of F-term ex-

pectation value so we de�ne𝑀4
𝑆
= 𝑀4

𝑝𝑙
F , so the constraints onU (𝑛) become

U (𝑛) .


(
𝑀𝑆

𝑀𝑝𝑙

)8(4−𝑛) (
𝑀𝑝𝑙

Λ𝑐𝑢𝑡

)2(4−𝑛)
where 0 ≤ 𝑛 ≤ 2 for 𝑁𝑚𝑎𝑡 = 1,(

𝑀𝑆

𝑀𝑝𝑙

)8(6−𝑛) (
𝑀𝑝𝑙

Λ𝑐𝑢𝑡

)2(6−𝑛)
where 0 ≤ 𝑛 ≤ 4 for 𝑁𝑚𝑎𝑡 ≥ 2.

(7.201)

Equation (7.201) is the crucial one in our paper, as it constrains precisely the new function U

introduced by liberatedN = 1 supergravity. The constraint depends on the reduced Planck scale

𝑀𝑝𝑙 , the supersymmetry breaking scale𝑀𝑆 , Λ𝑐𝑢𝑡 and the number of chiral multiplets of matter in

the theory. Of course, when we push both the cuto� and supersymmetry breaking scales to the

reduced Planck scale, i.e. Λ𝑐𝑢𝑡 ∼ 𝑀𝑆 ∼ 𝑀𝑝𝑙 , we obtain a model-independent universal constraint

∀𝑛 : U (𝑛) . 1. (7.202)

A model where supersymmetry is broken at the Planck scale is hardly the most interesting.

In the more interesting case that𝑀𝑆 � 𝑀𝑝𝑙 we need the constraints (7.201) again, so we need to

�rst determine how many matter chiral multiplets we have in our theory. The constraints will

then depend only on our choice of Λ𝑐𝑢𝑡 and𝑀𝑆 .

In the rest of this section we will examine the constraints in two cases. The �rst is the true,

post-in�ationary vacuum of the theory. To make a supergravity theory meaningful we want it to

be valid at least up to energies Λ𝑐𝑢𝑡 & 𝑀𝑆 . The second is slow-roll in�ation. In this case we must
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have Λ𝑐𝑢𝑡 & 𝐻 , with 𝐻 the Hubble constant during in�ation.

For the post-in�ationary vacuum the interesting regime is when 𝑀𝑆 is relatively small, say

𝑀𝑆 ∼ 10 TeV ≈ 10−15𝑀𝑝𝑙 and the e�ective theory is valid up to an energy scale not smaller

than 𝑀𝑆 , i.e. Λ𝑐𝑢𝑡 & 𝑀𝑆 . If Λ𝑐𝑢𝑡 < 𝑀𝑆 liberated supergravity would be a useless complication,

since in its domain of validity supersymmetry would be always nonlinearly realized. In the post-

in�ationary vacuum, for the single matter chiral multiplet case, the constraints (7.201) thus give

for

U (0) .

(
𝑀𝑆

𝑀𝑝𝑙

)32 (
𝑀𝑝𝑙

𝑀𝑆

)8
=⇒ U (0) ∼ 10−360, (7.203)

U (1) .

(
𝑀𝑆

𝑀𝑝𝑙

)24 (
𝑀𝑝𝑙

𝑀𝑆

)6
=⇒ U (1) ∼ 10−270, (7.204)

U (2) .

(
𝑀𝑆

𝑀𝑝𝑙

)16 (
𝑀𝑝𝑙

𝑀𝑆

)4
=⇒ U (2) ∼ 10−180. (7.205)

Notice thatU (3),U (4) are not restricted. For two or more matter chiral multiplets, the constraints

are given by

U (0) .

(
𝑀𝑆

𝑀𝑝𝑙

)48 (
𝑀𝑝𝑙

𝑀𝑆

)12
=⇒ U (0) ∼ 10−540, (7.206)

U (1) .

(
𝑀𝑆

𝑀𝑝𝑙

)40 (
𝑀𝑝𝑙

𝑀𝑆

)10
=⇒ U (1) ∼ 10−450, (7.207)

U (2) .

(
𝑀𝑆

𝑀𝑝𝑙

)32 (
𝑀𝑝𝑙

𝑀𝑆

)8
=⇒ U (2) ∼ 10−360. (7.208)

From the constraints on U (0) and U (2) , we �nd that the liberated scalar potential contributes

only a negligibly small cosmological constant and negligibly small corrections to the mass terms

of the chiral multiplet scalars. For the single chiral multiplet case, restoring dimensions we get a

vacuum energy density

U (0) . 10−360𝑀4
𝑝𝑙

(7.209)
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and scalar masses

𝑀𝑧 . 𝑀𝑝𝑙

√︃
|U (2) | = 10−90𝑀𝑝𝑙 . (7.210)

These constraints become even tighter if the theory contains more than one chiral multiplet,

but the ones we obtained are already so stringent as to rule out any observable contribution

to the cosmological constant and scalar masses from the new terms made possible by liberated

supergravity. We can say that Eqs. (7.209) and (7.210) already send liberated supergravity back to

prison after the end of in�ation.

The constraints during in�ation instead can be easily satis�ed if during in�ation the super-

symmetry breaking scale is very high, say 𝑀𝑆 = 𝑀𝑝𝑙 . In that case, U (0) . O(1). After in�ation

the “worst case scenario” constraints coming from Eq. (7.201) with 𝑁𝑚𝑎𝑡 ≥ 2 and 𝑀𝑆 = 10−15𝑀𝑝𝑙

are

∀𝑛 : U (𝑛) . 10−120(6−𝑛) . (7.211)

A simple way to satisfy all these constraints is to choose a no scale structure for the super-

symmetric part of the scalar potential. This ensures the vanishing of the F-term contribution to

the potential independently of the magnitude of the F-terms.

𝑉𝐹 = 𝑒𝐺 (𝐺𝐼𝐺 𝐼 𝚥𝐺 𝚥 − 3) = 0, (7.212)

The total scalar potential is then given by 𝑉 = 𝑉𝐷 +𝑉𝑁𝐸𝑊 . Thanks to the no-scale structure, we

can have both𝑀𝑆 ∼ 𝑀𝑝𝑙 andU (0) ∼ 𝐻 2 ∼ 10−10 during in�ation.

Our scenario has 𝑀𝑆 = 𝑀𝑝𝑙 during in�ation and 𝑀𝑆 = 10−15𝑀𝑝𝑙 at the true vacuum in the

post-in�ation phase, so we see that to satisfy all constraints a transition between the two di�er-

ent epochs must occur, for which the scale of the composite F-term F changes from O(𝑀𝑝𝑙 ) to

O(10−15𝑀𝑝𝑙 ).
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8 | Revisiting New Kähler-Invariant

Fayet-Iliopoulos Terms in the

Superconformal Formalism

This chapter is based on the author’s original work in Ref. [67].

8.1 Component Action of New FI Term in Superconformal

Tensor Calculus

In this chapter, we review the component action of a new, Kähler invariant Fayet-Iliopoulos

term proposed by Antoniadis, Chatrabhuti, Isono, and Knoops [54], using again the superconfor-

mal tensor calculus. The full Lagrangian with the new FI terms is given by

L = −3[𝑆0𝑆0𝑒−𝐾 (𝑧,𝑧)]𝐷 + ([𝑆30𝑊 (𝑧)]𝐹 −
1
4
[𝜆𝑃𝐿𝜆]𝐹 + ℎ.𝑐.)

−𝜉
[
(𝑆0𝑆0𝑒−𝐾 (𝑧,𝑧))−3

(𝜆𝑃𝐿𝜆) (𝜆𝑃𝑅𝜆)
𝑇 (𝑤̄ ′2)𝑇 (𝑤 ′2)

(𝑉 )𝐷
]
𝐷

, (8.1)

where the last term coupled to the parameter 𝜉 corresponds to the new FI terms.
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We consider matter chiral multiplets 𝑍 𝑖 , the chiral compensator 𝑆0, a real multiplet 𝑉 , and

another real multiplet (𝑉 )𝐷 , whose lowest component is the auxiliary D term of the real multiplet

𝑉 . Their superconformal multiplets are given as follows:

𝑉 = {0, 0, 0, 0, 𝐴𝜇, 𝜆, 𝐷} in the Wess-Zumino gauge, i.e. 𝑣 = 𝜁 = H = 0, (8.2)

𝑍 𝑖 = (𝑧𝑖,−𝑖
√
2𝑃𝐿𝜒𝑖,−2𝐹 𝑖, 0, +𝑖D𝜇𝑧

𝑖, 0, 0) = {𝑧𝑖, 𝑃𝐿𝜒𝑖, 𝐹 𝑖}, (8.3)

𝑍 𝑖 = (𝑧𝑖, +𝑖
√
2𝑃𝑅𝜒𝑖, 0,−2𝐹 𝑖,−𝑖D𝜇𝑧

𝑖, 0, 0) = {𝑧𝑖, 𝑃𝑅𝜒𝑖, 𝐹 𝑖}, (8.4)

𝑆0 = (𝑠0,−𝑖
√
2𝑃𝐿𝜒0,−2𝐹0, 0, +𝑖D𝜇𝑠0, 0, 0) = {𝑠0, 𝑃𝐿𝜒0, 𝐹0}, (8.5)

𝑆0 = (𝑠0, +𝑖
√
2𝑃𝑅𝜒0, 0,−2𝐹0,−𝑖D𝜇𝑠0, 0, 0) = {𝑠0, 𝑃𝑅𝜒0, 𝐹0}, (8.6)

𝜆𝑃𝐿𝜆 = (𝜆𝑃𝐿𝜆,−𝑖
√
2𝑃𝐿Λ, 2𝐷2

−, 0, +𝑖D𝜇 (𝜆𝑃𝐿𝜆), 0, 0) = {𝜆𝑃𝐿𝜆, 𝑃𝐿Λ,−𝐷2
−}, (8.7)

𝜆𝑃𝑅𝜆 = (𝜆𝑃𝑅𝜆, +𝑖
√
2𝑃𝑅Λ, 0, 2𝐷2

+,−𝑖D𝜇 (𝜆𝑃𝑅𝜆), 0, 0) = {𝜆𝑃𝑅𝜆, 𝑃𝑅Λ,−𝐷2
+}, (8.8)

(𝑉 )𝐷 = (𝐷,��D𝜆, 0, 0,D𝑏𝐹𝑎𝑏,−��D��D𝜆,−�𝐶𝐷), (8.9)

where

𝑃𝐿Λ ≡
√
2𝑃𝐿 (−

1
2
𝛾 · 𝐹 + 𝑖𝐷)𝜆, 𝑃𝑅Λ ≡

√
2𝑃𝑅 (−

1
2
𝛾 · 𝐹 − 𝑖𝐷)𝜆, (8.10)

𝐷2
− ≡ 𝐷2 − 𝐹− · 𝐹− − 2𝜆𝑃𝐿��D𝜆, 𝐷2

+ ≡ 𝐷2 − 𝐹+ · 𝐹+ − 2𝜆𝑃𝑅��D𝜆, (8.11)

D𝜇𝜆 ≡
(
𝜕𝜇 −

3
2
𝑏𝜇 +

1
4
𝑤𝑎𝑏
𝜇 𝛾𝑎𝑏 −

3
2
𝑖𝛾∗A𝜇

)
𝜆 −

(
1
4
𝛾𝑎𝑏𝐹𝑎𝑏 +

1
2
𝑖𝛾∗𝐷

)
𝜓𝜇 (8.12)

𝐹𝑎𝑏 ≡ 𝐹𝑎𝑏 + 𝑒 𝜇𝑎 𝑒 𝜈𝑏 𝜓 [𝜇𝛾𝜈]𝜆, 𝐹𝑎𝑏 ≡ 𝑒 𝜇𝑎 𝑒 𝜈𝑏 (2𝜕[𝜇𝐴𝜈]), (8.13)

𝐹±𝜇𝜈 ≡
1
2
(𝐹𝜇𝜈 ± ˜̂

𝐹𝜇𝜈 ), ˜̂
𝐹𝜇𝜈 ≡ −1

2
𝑖𝜖𝜇𝜈𝜌𝜎𝐹

𝜌𝜎 . (8.14)
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8.1.1 𝑤 ′2, 𝑤̄ ′2 Composite complex multiplets: (Weyl/Chiral) weights

= (−1, 3) and (−1,−3)

We show here the components of the �rst superconformal composite complex multiplets 𝑤 ′2

and 𝑤̄ ′2 with Weyl/chiral weights (−1, 3) and (−1,−3) respectively. These composite multiplets

are de�ned to be

𝑤 ′2 ≡ 𝜆𝑃𝐿𝜆

(𝑆0𝑆0𝑒−𝐾/3)2
= {C𝑤 ,Z𝑤 ,H𝑤 ,K𝑤 ,B𝑤

𝜇 ,Λ𝑤 ,D𝑤 } (8.15)

𝑤̄ ′2 ≡ 𝜆𝑃𝑅𝜆

(𝑆0𝑆0𝑒−𝐾/3)2
= {C𝑤̄ ,Z𝑤̄ ,H𝑤̄ ,K𝑤̄ ,B𝑤̄

𝜇 ,Λ𝑤̄ ,D𝑤̄ }. (8.16)

where

C𝑤 = ℎ ≡ 𝜆𝑃𝐿𝜆

(𝑠0𝑠0𝑒−𝐾 (𝑧,𝑧)/3)2
, (8.17)

Z𝑤 = 𝑖
√
2(−ℎ𝑎Ω𝑎 + ℎ𝑎Ω𝑎), (8.18)

H𝑤 = −2ℎ𝑎𝐹𝑎 + ℎ𝑎𝑏 Ω̄𝑎Ω𝑏, (8.19)

K𝑤 = −2ℎ𝑎𝐹𝑎 + ℎ𝑎𝑏 Ω̄𝑎Ω𝑏, (8.20)

B𝑤
𝜇 = 𝑖ℎ𝑎D𝜇𝑋

𝑎 − 𝑖ℎ𝑎D𝜇𝑋
𝑎 + 𝑖ℎ𝑎𝑏 Ω̄𝑎𝛾𝜇Ω𝑏, (8.21)

𝑃𝐿Λ𝑤 = −
√
2𝑖ℎ𝑎𝑏 [(��D𝑋𝑏)Ω𝑎 − 𝐹𝑎Ω𝑏] −

𝑖
√
2
ℎ𝑎𝑏𝑐Ω

𝑐 Ω̄𝑎Ω𝑏, (8.22)

𝑃𝑅Λ𝑤 =
√
2𝑖ℎ𝑎𝑏 [(��D𝑋𝑏)Ω𝑎 − 𝐹𝑎Ω𝑏] +

𝑖
√
2
ℎ𝑎𝑏𝑐Ω

𝑐 Ω̄𝑎Ω𝑏, (8.23)

D𝑤 = 2ℎ𝑎𝑏
(
− D𝜇𝑋

𝑎D𝜇𝑋𝑏 − 1
2
Ω̄𝑎𝑃𝐿��DΩ𝑏 − 1

2
Ω̄𝑏𝑃𝑅��DΩ𝑎 + 𝐹𝑎𝐹𝑏

)
+ℎ𝑎𝑏𝑐 (−Ω̄𝑎Ω𝑏𝐹 𝑐 + Ω̄𝑎 (��D𝑋𝑏)Ω𝑐) + ℎ𝑎𝑏𝑐 (−Ω̄𝑎Ω𝑏𝐹 𝑐 + Ω̄𝑎 (��D𝑋𝑏)Ω𝑐)

+1
2
ℎ𝑎𝑏𝑐𝑑 (Ω̄𝑎𝑃𝐿Ω𝑏) (Ω̄𝑐𝑃𝑅Ω𝑑). (8.24)

Notice that when �nding the multiplet 𝑤̄ ′2, we can just replace ℎ by its complex conjugate ℎ∗.
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8.1.2 𝑇 (𝑤̄ ′2),𝑇 (𝑤 ′2) chiral projection multiplets: (Weyl/Chiral)

weights = (0, 0)

The second superconformal multiplets that we need are the composite chiral projection mul-

tiplets𝑇 (𝑤̄ ′2) and𝑇 (𝑤 ′2) with Weyl/chiral weights (0, 0). From their component supermultiplets

de�ned by

𝑇 (𝑤̄ ′2) =

(
−1
2
K𝑤̄ ,−

1
2
√
2𝑖𝑃𝐿 (��DZ𝑤̄ + Λ𝑤̄ ),

1
2
(D𝑤̄ + �𝐶C𝑤̄ + 𝑖D𝑎B𝑎

𝑤̄ )
)
, (8.25)

𝑇 (𝑤 ′2) =

(
−1
2
K∗
𝑤̄ ,

1
2
√
2𝑖𝑃𝑅 (��DZ𝐶

𝑤̄ + Λ𝐶𝑤̄ ),
1
2
(D∗

𝑤̄ + �𝐶C∗
𝑤̄ − 𝑖D𝑎 (B𝑎

𝑤̄ )∗)
)

(8.26)

we �nd the corresponding superconformal multiplets and their complex conjugates as follows:

𝑇 ≡ 𝑇 (𝑤̄ ′2) = {C𝑇 ,Z𝑇 ,H𝑇 ,K𝑇 ,B𝑇
𝜇 ,Λ𝑇 ,D𝑇 }

𝑇 ≡ 𝑇 (𝑤 ′2) = {C𝑇 ,Z𝑇 ,H𝑇 ,K𝑇 ,B𝑇
𝜇 ,Λ𝑇 ,D𝑇 }, (8.27)
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whose superconformal components are given by

C𝑇 = −1
2
K𝑤̄ = ℎ∗𝑎𝐹

𝑎 − 1
2
ℎ∗
𝑎𝑏
Ω̄𝑎Ω𝑏 ≡ 𝐶𝑇 (8.28)

Z𝑇 = −
√
2𝑖𝑃𝐿

[
��D(−ℎ∗𝑎Ω𝑎 + ℎ∗𝑎Ω𝑎) − ℎ∗𝑎𝑏 [(��D𝑋

𝑏)Ω𝑎 − 𝐹𝑎Ω𝑏] − 1
2
ℎ∗
𝑎𝑏𝑐

Ω𝑐 Ω̄𝑎Ω𝑏

+ℎ∗
𝑎𝑏
[(��D𝑋𝑏)Ω𝑎 − 𝐹𝑎Ω𝑏] +

1
2
ℎ∗
𝑎𝑏𝑐

Ω𝑐 Ω̄𝑎Ω𝑏
]
≡ −

√
2𝑖𝑃𝐿Ω𝑇 , (8.29)

H𝑇 = −2
[
ℎ∗
𝑎𝑏

(
− D𝜇𝑋

𝑎D𝜇𝑋𝑏 − 1
2
Ω̄𝑎𝑃𝐿��DΩ𝑏 − 1

2
Ω̄𝑏𝑃𝑅��DΩ𝑎 + 𝐹𝑎𝐹𝑏

)
+1
2
ℎ∗
𝑎𝑏𝑐

(−Ω̄𝑎Ω𝑏𝐹 𝑐 + Ω̄𝑎 (��D𝑋𝑏)Ω𝑐) +
1
2
ℎ∗
𝑎𝑏𝑐

(−Ω̄𝑎Ω𝑏𝐹 𝑐 + Ω̄𝑎 (��D𝑋𝑏)Ω𝑐)

+1
4
ℎ∗
𝑎𝑏𝑐𝑑

(Ω̄𝑎𝑃𝐿Ω𝑏) (Ω̄𝑐𝑃𝑅Ω𝑑) +
1
2
�𝐶ℎ∗ + 1

2
𝑖D𝜇 (𝑖ℎ∗𝑎D𝜇𝑋

𝑎 − 𝑖ℎ∗𝑎D𝜇𝑋
𝑎 + 𝑖ℎ∗

𝑎𝑏
Ω̄𝑎𝛾𝜇Ω

𝑏)
]

≡ −2𝐹𝑇 , (8.30)

K𝑇 = 0, (8.31)

B𝑇
𝜇 = −𝑖D𝜇C𝑇 , (8.32)

Λ𝑇 = 0, (8.33)

D𝑇 = 0, (8.34)

where we used 𝑎, 𝑏, 𝑐, 𝑑 = 0, 𝑖 (≡ 𝑧𝑖),𝑊 (≡ 𝜆𝑃𝐿𝜆). This gives the super�eld components of the

chiral projection multiplet 𝑇 :

𝑇 (𝑤̄ ′2) = (𝐶𝑇 , 𝑃𝐿Ω𝑇 , 𝐹𝑇 ) (8.35)
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where

𝐶𝑇 = ℎ∗𝑎𝐹
𝑎 − 1

2
ℎ∗
𝑎𝑏
Ω̄𝑎Ω𝑏, (8.36)

𝑃𝐿Ω𝑇 = ��D(−ℎ∗𝑎Ω𝑎 + ℎ∗𝑎Ω𝑎) − ℎ∗𝑎𝑏 [(��D𝑋
𝑏)Ω𝑎 − 𝐹𝑎Ω𝑏] − 1

2
ℎ∗
𝑎𝑏𝑐

Ω𝑐 Ω̄𝑎Ω𝑏

+ℎ∗
𝑎𝑏
[(��D𝑋𝑏)Ω𝑎 − 𝐹𝑎Ω𝑏] +

1
2
ℎ∗
𝑎𝑏𝑐

Ω𝑐 Ω̄𝑎Ω𝑏, (8.37)

𝐹𝑇 = ℎ∗
𝑎𝑏

(
− D𝜇𝑋

𝑎D𝜇𝑋𝑏 − 1
2
Ω̄𝑎𝑃𝐿��DΩ𝑏 − 1

2
Ω̄𝑏𝑃𝑅��DΩ𝑎 + 𝐹𝑎𝐹𝑏

)
+1
2
ℎ∗
𝑎𝑏𝑐

(−Ω̄𝑎Ω𝑏𝐹 𝑐 + Ω̄𝑎 (��D𝑋𝑏)Ω𝑐) +
1
2
ℎ∗
𝑎𝑏𝑐

(−Ω̄𝑎Ω𝑏𝐹 𝑐 + Ω̄𝑎 (��D𝑋𝑏)Ω𝑐)

+1
4
ℎ∗
𝑎𝑏𝑐𝑑

(Ω̄𝑎𝑃𝐿Ω𝑏) (Ω̄𝑐𝑃𝑅Ω𝑑) +
1
2
�𝐶ℎ∗ − 1

2
D𝜇 (ℎ∗𝑎D𝜇𝑋

𝑎 − ℎ∗𝑎D𝜇𝑋
𝑎 + ℎ∗

𝑎𝑏
Ω̄𝑎𝛾𝜇Ω

𝑏).

(8.38)

Morever,

𝑇 (𝑤 ′2) = {𝐶∗
𝑇 , 𝑃𝑅Ω𝑇 , 𝐹

∗
𝑇 } (8.39)

where

𝐶∗
𝑇 = ℎ𝑎𝐹

𝑎 − 1
2
ℎ𝑎𝑏 Ω̄

𝑎Ω𝑏, (8.40)

𝑃𝑅Ω𝑇 = ��D(−ℎ𝑎Ω𝑎 + ℎ𝑎Ω𝑎) − ℎ𝑎𝑏 [(��D𝑋𝑏)Ω𝑎 − 𝐹𝑎Ω𝑏] −
1
2
ℎ𝑎𝑏𝑐Ω

𝑐 Ω̄𝑎Ω𝑏

+ℎ𝑎𝑏 [(��D𝑋𝑏)Ω𝑎 − 𝐹𝑎Ω𝑏] +
1
2
ℎ𝑎𝑏𝑐Ω

𝑐 Ω̄𝑎Ω𝑏, (8.41)

𝐹 ∗𝑇 = ℎ𝑎𝑏

(
− D𝜇𝑋

𝑎D𝜇𝑋𝑏 − 1
2
Ω̄𝑎𝑃𝐿��DΩ𝑏 − 1

2
Ω̄𝑏𝑃𝑅��DΩ𝑎 + 𝐹𝑎𝐹𝑏

)
+1
2
ℎ𝑎𝑏𝑐 (−Ω̄𝑎Ω𝑏𝐹 𝑐 + Ω̄𝑎 (��D𝑋𝑏)Ω𝑐) +

1
2
ℎ𝑎𝑏𝑐 (−Ω̄𝑎Ω𝑏𝐹 𝑐 + Ω̄𝑎 (��D𝑋𝑏)Ω𝑐)

+1
4
ℎ𝑎𝑏𝑐𝑑 (Ω̄𝑎𝑃𝐿Ω𝑏) (Ω̄𝑐𝑃𝑅Ω𝑑) +

1
2
�𝐶ℎ − 1

2
D𝜇 (ℎ𝑎D𝜇𝑋

𝑎 − ℎ𝑎D𝜇𝑋
𝑎 + ℎ𝑎𝑏 Ω̄𝑏𝛾𝜇Ω𝑎).

(8.42)
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8.1.3 Composite real multiplet R: (Weyl/Chiral) weights = (0, 0)

We present here a superconformal composite real multiplet R withWeyl/chiral weights (0, 0).

De�ning some chiral multiplets X𝐴 ≡ {𝑋𝐴, 𝑃𝐿Ω𝐴, 𝐹𝐴} where 𝐴 = {𝑆0, 𝑍 𝑖, 𝜆𝑃𝐿𝜆,𝑇 (𝑤̄ ′2)} and their

conjugates, we represent the composite one R as

R ≡ (𝑆0𝑆0𝑒−𝐾/3)−3
(𝜆𝑃𝐿𝜆) (𝜆𝑃𝑅𝜆)
𝑇 (𝑤̄ ′2)𝑇 (𝑤 ′2)

(8.43)

whose lowest component is

CR ≡ (𝑠0𝑠0𝑒−𝐾/3)−3
(𝜆𝑃𝐿𝜆) (𝜆𝑃𝑅𝜆)

𝐶𝑇𝐶𝑇
≡ 𝑓 (𝑋𝐴, 𝑋𝐴) (8.44)

where 𝐶𝑇 = −𝐷2
+Δ

−2; 𝐶𝑇 = −𝐷2
−Δ

−2, and Δ ≡ 𝑠0𝑠0𝑒
−𝐾/3. Then, the superconformal multiplet of

the new Fayet-Iliopoulos term can be written by using

R · (𝑉 )𝐷 = {C̃, Z̃, H̃ , K̃, B̃𝜇, Λ̃, D̃}, (8.45)
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whose superconformal multiplet components are as follows:

C̃ = 𝐷𝑓 , (8.46)

Z̃ = 𝑓��D𝜆 + 𝐷𝑖
√
2(−𝑓𝐴Ω𝐴 + 𝑓𝐴Ω𝐴), (8.47)

H̃ = 𝐷 (−2𝑓𝐴𝐹𝐴 + 𝑓𝐴𝐵 Ω̄𝐴Ω𝐵) − 𝑖
√
2(−𝑓𝐴Ω̄𝐴 + 𝑓𝐴Ω̄𝐴)𝑃𝐿��D𝜆, (8.48)

K̃ = 𝐷 (−2𝑓𝐴𝐹𝐴 + 𝑓𝐴𝐵 Ω̄𝐴Ω𝐵) − 𝑖
√
2(−𝑓𝐴Ω̄𝐴 + 𝑓𝐴Ω̄𝐴)𝑃𝑅��D𝜆, (8.49)

B̃ = (D𝜈𝐹𝜇𝜈 ) 𝑓 + 𝐷 (𝑖 𝑓𝐴D𝜇𝑋
𝐴 − 𝑖 𝑓𝐴D𝜇𝑋

𝐴 + 𝑖 𝑓𝐴𝐵 Ω̄𝐴𝛾𝜇Ω𝐵), (8.50)

Λ̃ = −𝑓��D��D𝜆 + 𝐷 (𝑃𝐿Λ𝑓 + 𝑃𝑅Λ𝑓 ) +
1
2

(
𝛾∗(−𝑓𝐴��D𝑋𝐴 + 𝑓𝐴��D𝑋𝐴 − 𝑓𝐴𝐵 Ω̄𝐴��𝛾Ω

𝐵)

+𝑃𝐿 (−2𝑓𝐴𝐹𝐴 + 𝑓𝐴𝐵 Ω̄𝐴Ω𝐵) + 𝑃𝑅 (−2𝑓𝐴𝐹𝐴 + 𝑓𝐴𝐵 Ω̄𝐴Ω𝐵) −��D 𝑓

)
��D𝜆

+1
2

(
𝑖𝛾∗𝛾

𝜇D𝜈𝐹𝜇𝜈 −��D𝐷
)
𝑖
√
2(−𝑓𝐴Ω𝐴 + 𝑓𝐴Ω𝐴), (8.51)

D̃ = −𝑓 �𝐶𝐷 + 𝐷
{
2𝑓𝐴𝐵 (−D𝜇𝑋

𝐴D𝜇𝑋𝐵 − 1
2
Ω̄𝐴𝑃𝐿��DΩ𝐵 − 1

2��
Ω𝐵𝑃𝑅��DΩ𝐴 + 𝐹𝐴𝐹𝐵)

+𝑓𝐴𝐵𝐶 (−Ω̄𝐴Ω𝐵𝐹𝐶 + Ω̄𝐴 (��D𝑋𝐵)Ω𝐶) + 𝑓𝐴𝐵𝐶 (−Ω̄𝐴Ω𝐵𝐹𝐶 + Ω̄𝐴 (��D𝑋𝐵)Ω𝐶)

+1
2
𝑓𝐴𝐵𝐶𝐷̄ (Ω̄𝐴𝑃𝐿Ω𝐵) (Ω̄𝐶𝑃𝑅Ω𝐷̄)

}
−(D𝜈𝐹

𝜇𝜈 ) (𝑖 𝑓𝐴D𝜇𝑋
𝐴 − 𝑖 𝑓𝐴D𝜇𝑋

𝐴 + 𝑖 𝑓𝐴𝐵 Ω̄𝐴𝛾𝜇Ω𝐵)

+
(√

2𝑖 𝑓𝐴𝐵 [(��D𝑋𝐵)Ω𝐴 − 𝐹𝐴Ω𝐵] + 𝑖
√
2
𝑓𝐴𝐵𝐶Ω

𝐶 Ω̄𝐴Ω𝐵

)
��D𝜆

−
(√

2𝑖 𝑓𝐴𝐵 [(��D𝑋𝐵)Ω𝐴 − 𝐹𝐴Ω𝐵] + 𝑖
√
2
𝑓𝐴𝐵𝐶Ω

𝐶 Ω̄𝐴Ω𝐵

)
��D𝜆

−(D𝜇 𝑓 ) (D𝜇𝐷) − 1
2�
�D[𝑖

√
2(−𝑓𝐴Ω𝐴 + 𝑓𝐴Ω𝐴)] (��D𝜆) +

1
2
𝑖
√
2(−𝑓𝐴Ω𝐴 + 𝑓𝐴Ω𝐴) (��D��D𝜆),

(8.52)
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where the indices 𝐴, 𝐵,𝐶, 𝐷 run over 0, 𝑖,𝑊 ,𝑇 . The component action of the new FI term is then

given by the D-term density formula

L𝑁𝐸𝑊 ≡ −[𝜉R · (𝑉 )𝐷]𝐷 = −𝜉
4

∫
𝑑4𝑥𝑒

[
D̃ − 1

2
𝜓 · 𝛾𝑖𝛾∗Λ̃ − 1

3
C̃𝑅(𝜔)

+1
6

(
C̃𝜓𝜇𝛾 𝜇𝜌𝜎 − 𝑖 ¯̃Z𝛾𝜌𝜎𝛾∗

)
𝑅′𝜌𝜎 (𝑄)

+1
4
𝜀𝑎𝑏𝑐𝑑𝜓𝑎𝛾𝑏𝜓𝑐

(
B̃𝑑 −

1
2
𝜓𝑑Z̃

)]
+ h.c.. (8.53)

8.1.4 Bosonic term of the new FI term

The new FI term is obtained from the term 𝐷2𝑓𝑊𝑊̄ 𝐹
𝑊 𝐹𝑊̄ inside the D-term D̃. Thus, we get

L𝑁𝐸𝑊 ⊃ −𝜉𝐷𝑓𝑊𝑊̄ 𝐹𝑊 𝐹𝑊̄ = −𝜉𝐷 (𝑠0𝑠0𝑒−𝐾/3)−3
𝐶𝑇𝐶

∗
𝑇

𝐹𝑊 𝐹𝑊̄ ⊃ −𝜉𝐷 (𝑠0𝑠0𝑒−𝐾/3)−3

(ℎ𝑊 𝐹𝑊 ) (ℎ∗
𝑊̄
𝐹𝑊̄ )

𝐹𝑊 𝐹𝑊̄

= −𝜉𝐷 (𝑠0𝑠0𝑒−𝐾/3)−3

(𝑠0𝑠0𝑒−𝐾/3)−4𝐹𝑊 𝐹𝑊̄
𝐹𝑊 𝐹𝑊̄ = −𝜉𝐷 (𝑠0𝑠0𝑒−𝐾/3). (8.54)

Hence, in the superconformal gauge (𝑠0𝑠0𝑒−𝐾/3 = 𝑀2
𝑝𝑙
= 1), we obtain

Lnew FI/𝑒 = −𝜉𝐷, (8.55)

or

Lnew FI/𝑒 = −𝑀2
𝑝𝑙
𝜉𝐷. (8.56)
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8.2 Spectroscophy for Non-renormalizable Interactions

in the New FI Terms

In this section, we carefully analyze suppression of the nonrenormalizable fermionic interac-

tions from the new FI term from the perspective of e�ective �eld theory. To do this, as we did

in the previous section of the liberated supergravity, we also need to recall the EFT expansion

reviewed in Sec. 3.4, and consider the structure of EFT expansion in Eq. (3.18) and constraint

given in Eq. (3.19). Hence, we have

L𝐸𝐹𝑇 ⊃
Finite N∑︁
𝛿≥0

𝐶𝛿

𝑀𝛿−𝑑 O
(𝛿) ∼

Finite N∑︁
𝛿≥0

1
Λ𝛿−𝑑𝑐𝑢𝑡

O (𝛿) =⇒ 𝐶𝛿

𝑀𝛿−𝑑 .
1

Λ𝛿−𝑑𝑐𝑢𝑡

, (8.57)

where Λ𝑐𝑢𝑡 is a cuto� scale; 𝑀 is a characteristic mass scale of a theory; 𝐶𝛿 is a dimensionless

Wilson coe�cient, and O (𝛿) is an e�ective �eld operator with the mass dimension 𝛿 . In the case

of the new FI terms, we will see that the constraint depends on the nw FI terms 𝜉 and thus the

auxiliary �eld 𝐷 of the vector multiplet. The key equation we will see in this section is given by

Λ𝑐𝑢𝑡 . 𝐻
𝛼 ,

where 𝐻 is the Hubble scale, and 𝛼 is a parameter that depends on the mass dimension of the

e�ective �eld operator. Since Λ𝑐𝑢𝑡 , 𝐻 ∼ 10−5𝑀𝑝𝑙 < 𝑀𝑝𝑙 = 1, we explore whether 𝛼 < 1 holds.

After all, we will �nd that the maximum of 𝛼 is 2/3.

In particular, for the later use, we generalize the new FI constant 𝜉 into a real gauge-invariant

functionU(𝑧, 𝑧) of matter �elds. Thus, for ACIK FI term, we can just putU(𝑧, 𝑧) ≡ 𝜉 . First, after

solving the equations of motion for the auxiliary �elds and �xing the superconformal gauge, the
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component multiplets “on-shell” are given by

𝑍 𝑖 = {𝑧𝑖, 𝑃𝐿Ω𝑖, 𝐹 𝑖}, (8.58)

𝑆0 = {𝑠0,
1
3
𝑒𝐾/6𝐾𝑖𝑃𝐿Ω

𝑖, 𝐹0}, (8.59)

𝑊 ≡ 𝜆𝑃𝐿𝜆 =

{
𝜆𝑃𝐿𝜆,

√
2𝑃𝐿 (−

1
2
𝛾 · 𝐹 + 𝑖𝐷)𝜆, −𝐷2 + 𝐹− · 𝐹−

}
, (8.60)

where

𝐹𝑎𝑏 ≡ 𝐹𝑎𝑏 + 𝑒 𝜇𝑎 𝑒 𝜈𝑏 𝜓 [𝜇𝛾𝜈]𝜆, 𝐹𝑎𝑏 ≡ 𝑒 𝜇𝑎 𝑒 𝜈𝑏 (2𝜕[𝜇𝐴𝜈]), (8.61)

𝐹±𝜇𝜈 ≡
1
2
(𝐹𝜇𝜈 ± ˜̂

𝐹𝜇𝜈 ), ˜̂
𝐹𝜇𝜈 ≡ −1

2
𝑖𝜖𝜇𝜈𝜌𝜎𝐹

𝜌𝜎 , (8.62)

and the solutions for the auxiliary �elds are identi�ed as

𝐷 = U + 1
U2

[(
− 𝐹 0U𝑒−𝐾/6 + U𝐼𝐹

𝐼 + 1
3
U𝐾𝐼𝐹

𝐼

)
(𝜆𝑃𝐿𝜆) − 𝑖

U𝐼√
2
(Ω̄𝐼𝑃𝐿𝜆) + ℎ.𝑐.

]
+higher order terms, (8.63)

𝐹 0 = 𝑒2𝐾/3𝑊̄ − 1
3
𝑒𝐾/6(𝜆𝑃𝑅𝜆), (8.64)

𝐹 𝐽 = −3𝑒𝐾/2𝐺 𝐼 𝐽∇𝐼𝑊 −𝐺 𝐼 𝐽
(
9
U𝐼

U + 3𝐾𝐼
)
(𝜆𝑃𝐿𝜆) (8.65)
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Plus, the relevant chiral projection multiplet 𝑇 (𝑤̄ ′2) is given by

𝑇 (𝑤̄ ′2) = (𝐶𝑇 , 𝑃𝐿Ω𝑇 , 𝐹𝑇 ), (8.66)

𝐶𝑇 = ℎ∗𝑎𝐹
𝑎 − 1

2
ℎ∗
𝑎𝑏
Ω̄𝑎Ω𝑏, (8.67)

𝑃𝐿Ω𝑇 = ��D(−ℎ∗𝑎Ω𝑎 + ℎ∗𝑎Ω𝑎) − ℎ∗𝑎𝑏 [(��D𝑋
𝑏)Ω𝑎 − 𝐹𝑎Ω𝑏] − 1

2
ℎ∗
𝑎𝑏𝑐

Ω𝑐 Ω̄𝑎Ω𝑏

+ℎ∗
𝑎𝑏
[(��D𝑋𝑏)Ω𝑎 − 𝐹𝑎Ω𝑏] +

1
2
ℎ∗
𝑎𝑏𝑐

Ω𝑐 Ω̄𝑎Ω𝑏, (8.68)

𝐹𝑇 = ℎ∗
𝑎𝑏

(
− D𝜇𝑋

𝑎D𝜇𝑋𝑏 − 1
2
Ω̄𝑎𝑃𝐿��DΩ𝑏 − 1

2
Ω̄𝑏𝑃𝑅��DΩ𝑎 + 𝐹𝑎𝐹𝑏

)
+1
2
ℎ∗
𝑎𝑏𝑐

(−Ω̄𝑎Ω𝑏𝐹 𝑐 + Ω̄𝑎 (��D𝑋𝑏)Ω𝑐) +
1
2
ℎ∗
𝑎𝑏𝑐

(−Ω̄𝑎Ω𝑏𝐹 𝑐 + Ω̄𝑎 (��D𝑋𝑏)Ω𝑐)

+1
4
ℎ∗
𝑎𝑏𝑐𝑑

(Ω̄𝑎𝑃𝐿Ω𝑏) (Ω̄𝑐𝑃𝑅Ω𝑑) +
1
2
�𝐶ℎ∗ − 1

2
D𝜇 (ℎ∗𝑎D𝜇𝑋

𝑎 − ℎ∗𝑎D𝜇𝑋
𝑎 + ℎ∗

𝑎𝑏
Ω̄𝑎𝛾𝜇Ω

𝑏),

(8.69)

where 𝐶𝑇 ,𝐶𝑇 = −𝐷2Δ−2 + fermions including 𝜆; Δ ≡ 𝑠0𝑠0𝑒−𝐾/3; 𝑎 = 0, 𝑖,𝑊 (= 𝜆𝑃𝐿𝜆), and

ℎ∗ ≡ 𝜆𝑃𝑅𝜆

(𝑠0𝑠0𝑒−𝐾 (𝑧,𝑧)/3)2
. (8.70)

We note that in this chiral projection multiplet, the terms “ℎ∗
𝑊̄
𝐹𝑊̄ of𝐶𝑇 ,” “ℎ∗𝑊̄ 𝑘

𝐹𝑊̄Ω𝑘 of 𝑃𝐿Ω𝑇 ,” and

“𝐹𝑘𝐹𝑊̄ and ℎ∗
𝑗𝑘𝑊̄

𝐹𝑊̄ Ω̄ 𝑗Ω𝑘 of 𝐹𝑇 ” (where 𝑗, 𝑘 = 0, 𝑖) have no 𝜆, while the other terms must have at

least one 𝜆.
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In summary, the components of the multiplets can be found to be

𝑆0 : 𝑠0 ∼ 𝑒𝐾/6, ��D𝑠0 ∼ 𝐾𝑖O (2)
𝑖

+ O (1) + 𝐾𝑖O (4)
𝑖𝜓
,

𝑃𝐿Ω
0 ∼ 𝐾𝑖𝑒𝐾/6O (3/2)

𝑖
, 𝐹 0 ∼𝑊𝑒2𝐾/3, (8.71)

𝑍 𝑖 : 𝑧𝑖 ∼ 𝑧𝑖, ��D𝑧𝑖 ∼ O (2) + O (4)
𝜓
, 𝑃𝐿Ω

𝑖 ∼ O (3/2)
𝑖

, 𝐹 𝑖 ∼ 𝐹 𝑖, (8.72)

𝑊 : (𝜆𝑃𝐿𝜆) ∼ O (3)
𝜆𝜆
, ��D(𝜆𝑃𝐿𝜆) ∼ O (4)

𝜆𝜆
+ O (5)

𝜓𝜆
+ 𝐷O (3)

𝜓𝜆
,

Ω𝑊 ∼ O (7/2)
𝜆

+ 𝐷O3/2
𝜆
, 𝐹𝑊 ∼ 𝐷2 + O (4)

(8.73)

𝑇 : 𝐶𝑇 ⊃ ℎ∗
𝑊̄
𝐹𝑊̄ |lowest ∼ 𝐷2 + 𝐷𝐾𝑖O (3)

𝑖𝜆
+ 𝐾𝑖O (5)

𝑖𝜆
, (8.74)

��D𝐶𝑇 ∼ �𝜕𝐶𝑇 ∼ 𝐷𝐷𝑖O (2)
𝑖

+ 𝐷𝑖𝐾 𝑗O (5)
𝑖 𝑗𝜆

+ 𝐷𝐾𝑖 𝑗O (5)
𝑖 𝑗𝜆

+ 𝐾𝑖 𝑗O (7)
𝑖 𝑗𝜆

(8.75)

𝑃𝐿Ω𝑇 ⊃ 𝑃𝐿��DZ𝑤̄ + ℎ∗
𝑊̄ 𝑘
𝐹𝑊̄Ω𝑘 |lowest ∼ 𝐷2𝐾𝑖O (3/2)

𝑖
+ 𝐷O (5/2)

𝜆
+ 𝐾𝑖O (11/2)

𝑖𝜆
, (8.76)

𝐹𝑇 ⊃ 𝐹𝑘𝐹𝑊̄ + ℎ∗
𝑗𝑘𝑊̄

𝐹𝑊̄ Ω̄ 𝑗Ω𝑘 |lowest ∼ 𝐷2𝐹𝑘 + 𝐷2(𝐾′2 + 𝐾′′)O (3) (8.77)

where we used the following superconformal covariant derivatives of the lowest component

scalar C with the weights (𝑤, 𝑐) and the �rst fermionZ in a superconformal multiplet:

D𝜇C = (𝜕𝜇 −𝑤𝑏𝜇 − 𝑖𝑐𝐴𝜇)C − 𝑖

2
𝜓𝜇𝛾∗Z, (8.78)

𝑃𝐿D𝜇Z =

(
𝜕𝜇 − (𝑤 + 1/2)𝑏𝜇 − 𝑖 (𝑐 − 3/2)𝐴𝜇 +

1
4
𝜔𝑎𝑏𝜇 𝛾𝑎𝑏

)
Z

−1
2
𝑃𝐿 (𝑖H − 𝛾𝑎B𝑎 − 𝑖𝛾𝑎D𝑎C)𝜓𝜇 − 𝑖 (𝑤 + 𝑐)𝑃𝐿𝜙𝜇C (8.79)

The full action of the new FI term “on-shell” (i.e. D𝜈𝐹𝜇𝜈 = 0, ��D𝜆 = 0) is given by

Lnew FI ≡ −[R · (𝑉 )𝐷]𝐷 = −1
4

∫
𝑑4𝑥𝑒

[
D̃ − 1

2
𝜓 · 𝛾𝑖𝛾∗Λ̃ − 1

3
C̃𝑅(𝜔)

+1
6

(
C̃𝜓𝜇𝛾 𝜇𝜌𝜎 − 𝑖 ¯̃Z𝛾𝜌𝜎𝛾∗

)
𝑅′𝜌𝜎 (𝑄)

+1
4
𝜀𝑎𝑏𝑐𝑑𝜓𝑎𝛾𝑏𝜓𝑐

(
B̃𝑑 −

1
2
𝜓𝑑Z̃

)]
+ h.c., (8.80)
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where the relevant components are given, for 𝑓 ≡ (𝑠0𝑠0𝑒−𝐾 (𝑧
𝑖 ,𝑧𝑖 )/3)−3 (𝜆𝑃𝐿𝜆) (𝜆𝑃𝑅𝜆)

𝐶𝑇𝐶𝑇
U(𝑧𝑖, 𝑧𝑖) (where

𝐶𝑇 ,𝐶𝑇 = −𝐷2Δ−2 + fermions including 𝜆; Δ ≡ 𝑠0𝑠0𝑒−𝐾/3), as follows

C̃ = 𝐷𝑓 , (8.81)

Z̃ = 𝐷𝑖
√
2(−𝑓𝐴Ω𝐴 + 𝑓𝐴Ω𝐴), (8.82)

H̃ = 𝐷 (−2𝑓𝐴𝐹𝐴 + 𝑓𝐴𝐵 Ω̄𝐴Ω𝐵), (8.83)

K̃ = 𝐷 (−2𝑓𝐴𝐹𝐴 + 𝑓𝐴𝐵 Ω̄𝐴Ω𝐵), (8.84)

B̃ = 𝐷 (𝑖 𝑓𝐴D𝜇𝑋
𝐴 − 𝑖 𝑓𝐴D𝜇𝑋

𝐴 + 𝑖 𝑓𝐴𝐵 Ω̄𝐴𝛾𝜇Ω𝐵), (8.85)

Λ̃ = 𝐷

(
−
√
2𝑖 𝑓𝐴𝐵 [(��D𝑋𝐵)Ω𝐴 − 𝐹𝐴Ω𝐵] − 𝑖

√
2
𝑓𝐴𝐵𝐶Ω

𝐶 Ω̄𝐴Ω𝐵

+
√
2𝑖 𝑓𝐴𝐵 [(��D𝑋𝐵)Ω𝐴 − 𝐹𝐴Ω𝐵] + 𝑖

√
2
𝑓𝐴𝐵𝐶Ω

𝐶 Ω̄𝐴Ω𝐵

)
+1
2

(
−��D𝐷

)
𝑖
√
2(−𝑓𝐴Ω𝐴 + 𝑓𝐴Ω𝐴), (8.86)

D̃ = −𝑓 �𝐶𝐷 + 𝐷
{
2𝑓𝐴𝐵 (−D𝜇𝑋

𝐴D𝜇𝑋𝐵 − 1
2
Ω̄𝐴𝑃𝐿��DΩ𝐵 − 1

2��
Ω𝐵𝑃𝑅��DΩ𝐴 + 𝐹𝐴𝐹𝐵)

+𝑓𝐴𝐵𝐶 (−Ω̄𝐴Ω𝐵𝐹𝐶 + Ω̄𝐴 (��D𝑋𝐵)Ω𝐶) + 𝑓𝐴𝐵𝐶 (−Ω̄𝐴Ω𝐵𝐹𝐶 + Ω̄𝐴 (��D𝑋𝐵)Ω𝐶)

+1
2
𝑓𝐴𝐵𝐶𝐷̄ (Ω̄𝐴𝑃𝐿Ω𝐵) (Ω̄𝐶𝑃𝑅Ω𝐷̄)

}
− (D𝜇 𝑓 ) (D𝜇𝐷), (8.87)

where the indices 𝐴, 𝐵,𝐶, 𝐷 run over 0, 𝑖,𝑊 ,𝑇 . Plus, we have

�𝐶𝐷 = 𝑒𝑎𝜇 [𝜕𝜇D𝑎𝐷 − 3𝑏𝜇D𝑎𝐷 + 𝜔𝜇𝑎𝑏D𝑏𝐷 + 4𝑓𝜇𝑎𝐷],

D𝑎𝐷 |𝑜𝑛−𝑠ℎ𝑒𝑙𝑙 = 𝑒𝜇𝑎 (𝜕𝜇 − 2𝑏𝜇)𝐷, 𝛿𝐷 = 2𝜆𝐷𝐷,

D𝑎𝐷 |𝑏=0 = U𝑖𝜕𝜇𝑧
𝑖 ∼ U𝑖O (2) and 𝐷𝑒𝑎𝜇 𝑓𝜇𝑎 = −𝐷 𝑅

12
∼ 𝐷O (2) . (8.88)

Since we consider 𝐷 |𝑏𝑜𝑠 = U as a quadratic function of matter �elds, we can assume thatU𝑖 ∼ 0
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at the minimum of the potential. Then, the components reduce to

C̃ = 𝐷𝑓 , (8.89)

Z̃ = 𝐷𝑖
√
2(−𝑓𝐴Ω𝐴 + 𝑓𝐴Ω𝐴), (8.90)

H̃ = 𝐷 (−2𝑓𝐴𝐹𝐴 + 𝑓𝐴𝐵 Ω̄𝐴Ω𝐵), (8.91)

K̃ = 𝐷 (−2𝑓𝐴𝐹𝐴 + 𝑓𝐴𝐵 Ω̄𝐴Ω𝐵), (8.92)

B̃ = 𝐷 (𝑖 𝑓𝐴D𝜇𝑋
𝐴 − 𝑖 𝑓𝐴D𝜇𝑋

𝐴 + 𝑖 𝑓𝐴𝐵 Ω̄𝐴𝛾𝜇Ω𝐵), (8.93)

Λ̃ = 𝐷

(
−
√
2𝑖 𝑓𝐴𝐵 [(��D𝑋𝐵)Ω𝐴 − 𝐹𝐴Ω𝐵] − 𝑖

√
2
𝑓𝐴𝐵𝐶Ω

𝐶 Ω̄𝐴Ω𝐵

+
√
2𝑖 𝑓𝐴𝐵 [(��D𝑋𝐵)Ω𝐴 − 𝐹𝐴Ω𝐵] + 𝑖

√
2
𝑓𝐴𝐵𝐶Ω

𝐶 Ω̄𝐴Ω𝐵

)
, (8.94)

D̃ =
𝐷𝑅𝑓

3
+ 𝐷

{
2𝑓𝐴𝐵 (−D𝜇𝑋

𝐴D𝜇𝑋𝐵 − 1
2
Ω̄𝐴𝑃𝐿��DΩ𝐵 − 1

2��
Ω𝐵𝑃𝑅��DΩ𝐴 + 𝐹𝐴𝐹𝐵)

+𝑓𝐴𝐵𝐶 (−Ω̄𝐴Ω𝐵𝐹𝐶 + Ω̄𝐴 (��D𝑋𝐵)Ω𝐶) + 𝑓𝐴𝐵𝐶 (−Ω̄𝐴Ω𝐵𝐹𝐶 + Ω̄𝐴 (��D𝑋𝐵)Ω𝐶)

+1
2
𝑓𝐴𝐵𝐶𝐷̄ (Ω̄𝐴𝑃𝐿Ω𝐵) (Ω̄𝐶𝑃𝑅Ω𝐷̄)

}
, (8.95)

Now we represent the possible interaction terms using the following expression

Lnew FI ⊃ 𝜕𝑚𝑖 𝜕
𝑐
0𝜕
𝑏
𝑊 𝜕

𝑝

𝑇

[
𝑊𝑊̄

𝑇𝑇
𝑌

]
· 𝐷 · Ô (D0;Λ𝜓3/2;C𝑅 (𝜔)2;C𝜓𝑅′ (𝑄)4;Z𝑅′ (𝑄)5/2;B𝜓𝜓3;Z𝜓𝜓𝜓9/2)

×{(��𝐷𝑆0)𝑐1 (Ω0)𝑐2 (𝐹 0)𝑐3}{(��𝐷𝑧𝑖)𝑚1 (Ω𝑖)𝑚2 (𝐹 𝑖)𝑚3}

×{(��𝐷𝑊 )𝑏1 (Ω𝑊 )𝑏2 (𝐹𝑊 )𝑏3}{(��𝐷𝑇 )𝑝1 (Ω𝑇 )𝑝2 (𝐹𝑇 )𝑝3}, (8.96)

where Δ ≡ 𝑠0𝑠0𝑒
−𝐾/3; 𝑌 ≡ Δ−3U(𝑧, 𝑧), and several parameters are de�ned as the number of

derivatives with respect to the corresponding variable, such as 𝑐 = 𝑐1 + 𝑐2 + 𝑐3,𝑚 =𝑚1 +𝑚2 +𝑚3,

𝑏 = 𝑏1 + 𝑏2 + 𝑏3 ≤ 2 (Here, the number 𝑏 must be constrained by “2” because each of the bilinear

terms𝑊 and𝑊̄ appears only once in the numerator.), and 𝑝 = 𝑝1+𝑝2+𝑝3. Also, Γ ≡𝑚+𝑐+𝑏+𝑝 ≤ 4

since we can take the four �eld-derivatives at most. The notation Λ𝜓3/2 means that the operator

Ô is given by the dimension-(3/2) operator𝜓 which couples to the Λ̃ of the new FI term.
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Plus, the operator Ô denotes the additional contribution to the e�ective operator from the

couplings to gravitino 𝜓𝜇 or curvatures 𝑅(𝜔) and 𝑅′(𝑄) in the �nal action of new FI term in

Eq. (8.80).

Then, taking the derivatives and inserting 𝑇 ∼ 𝐷2, we obtain

Lnew FI |with no numerical factors ⊃ 𝐷−3−2𝑝 (𝜕𝑚+𝑐𝑌 )O (2𝛿Γ,0)
𝑅

O (64𝜆−32𝜆𝑏) · Ô

×{(��𝐷𝑆0)𝑐1 (Ω0)𝑐2 (𝐹 0)𝑐3}{(��𝐷𝑧𝑖)𝑚1 (Ω𝑖)𝑚2 (𝐹 𝑖)𝑚3}

×{(��𝐷𝑊 )𝑏1 (Ω𝑊 )𝑏2 (𝐹𝑊 )𝑏3}{(��𝐷𝑇 )𝑝1 (Ω𝑇 )𝑝2 (𝐹𝑇 )𝑝3}, (8.97)

where we de�ne 𝛿Γ,0 = 1 if Γ = 0, and𝑊 1−𝑏2𝜆𝑊̄ 1−𝑏2𝜆 ≡ O (32𝜆 (1−𝑏2𝜆)+32𝜆 (1−𝑏2𝜆)) ≡ O (64𝜆−32𝜆𝑏) ; that is,

64𝜆 means that the dimension “6” comes from the four 𝜆-fermions. Next, we introduce particular

parameters that constitute the powers of the terms like 𝑐1, 𝑐2, 𝑐3 in detail. Since the component

actions depend only on��D𝑧𝑖 , 𝑃𝐿Ω𝑖 , and 𝐹 𝑖 , we de�ne 𝑑𝑖, 𝑓𝑖, 𝑎𝑖 as the powers of “each term” (like

O (7/2)
𝜆

and 𝐷O3/2
𝜆

of Ω𝑊 ) within the expression of ��D𝑧𝑖 (“d”erivative), 𝑃𝐿Ω𝑖 (“f”ermion), and 𝐹 𝑖

(“a”uxiliary �eld). Equivalently, we de�ne the correponding parameters as 𝑑𝑠, 𝑓𝑠, 𝑎𝑠 , 𝑑𝑊 , 𝑓𝑊 , 𝑎𝑊 ,

and 𝑑𝑇 , 𝑓𝑇 , 𝑎𝑇 . Then, we �nd

{(��𝐷𝑆0)𝑐1 (Ω0)𝑐2 (𝐹 0)𝑐3} ∼ 𝐾′𝑑𝑠1+𝑑𝜓𝑠3+𝑓𝑠1𝐹 0
𝑎𝑠1O (2𝑑𝑠1+𝑑𝑠2+4𝑑𝜓𝑠3+

3
2 𝑓𝑠1), (8.98)

where 𝑑𝑠1 + 𝑑𝑠2 + 𝑑𝜓𝑠3 + 𝑓𝑠1 + 𝑎𝑠1 = 𝑐1 + 𝑐2 + 𝑐3 = 𝑐 ≤ 4. For example, if 𝑑𝜓
𝑠3 = 2 in the e�ective

operator O, then it means that there are two gravitinos in the operator. The next one is

{(��𝐷𝑧𝑖)𝑚1 (Ω𝑖)𝑚2 (𝐹 𝑖)𝑚3} ∼ 𝐹 𝑖𝑎𝑧1O (2𝑑𝑧1+4𝑑𝜓𝑧2+
3
2 𝑓𝑧1), (8.99)

where 𝑑𝑧1 + 𝑑𝜓𝑧2 + 𝑓𝑧1 + 𝑎𝑧1 =𝑚1 +𝑚2 +𝑚3 =𝑚 ≤ 4. The𝑊 case is

{(��𝐷𝑊 )𝑏1 (Ω𝑊 )𝑏2 (𝐹𝑊 )𝑏3} ∼ 𝐷𝑑
𝜓𝜆

𝑊 3+𝑓
𝜆
𝑊 2+2𝑎𝑊 1O (4𝑑𝜆𝜆

𝑊 1+5𝑑
𝜓𝜆

𝑊 2+3𝑑
𝜓𝜆

𝑊 3+
7
2 𝑓

𝜆
𝑊 1+

3
2 𝑓

𝜆
𝑊 2+4𝑎𝑊 2), (8.100)
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where 𝑑𝜆𝜆
𝑊 1 + 𝑑

𝜓𝜆

𝑊 2 + 𝑑
𝜓𝜆

𝑊 3 + 𝑓
𝜆
𝑊 1 + 𝑓

𝜆
𝑊 2 + 𝑎𝑊 1 + 𝑎𝑊 2 = 𝑏1 + 𝑏2 + 𝑏3 = 𝑏 ≤ 2. As an example, also,

if 𝑑𝜆𝜆
𝑊 1 = 2 in O, then it means that there are four 𝜆 fermions in the e�ective operator. Next, the

chiral projection multiplet 𝑇 case is given by

{(��𝐷𝑇 )𝑝1 (Ω𝑇 )𝑝2 (𝐹𝑇 )𝑝3} ∼ 𝐷𝑑𝑇 1+𝑑
𝜆
𝑇 3+2𝑓𝑇 1+𝑓

𝜆
𝑇 2+2𝑎𝑇 1+2𝑎𝑇 2𝐷

𝑑𝑇 1+𝑑𝜆𝑇 2
𝑖

×𝐾′𝑑𝜆
𝑇 2+𝑓𝑇 1+𝑓

𝜆
𝑇 3+2𝑎𝑇 2𝐾′′𝑑𝜆

𝑇 3+𝑑
𝜆
𝑇 4+𝑎𝑇 2𝐹 𝑖

𝑎𝑇 1

×O (2𝑑𝑇 1+5𝑑𝜆𝑇 2+5𝑑
𝜆
𝑇 3+7𝑑

𝜆
𝑇 4+

3
2 𝑓𝑇 1+

5
2 𝑓

𝜆
𝑇 2+

11
2 𝑓

𝜆
𝑇 3+3𝑎𝑇 2), (8.101)

where 𝑑𝑇 1 +𝑑𝜆𝑇 2 +𝑑
𝜆
𝑇 3 +𝑑

𝜆
𝑇 4 + 𝑓𝑇 1 + 𝑓

𝜆
𝑇 2 + 𝑓

𝜆
𝑇 3 + 𝑎𝑇 1 + 𝑎𝑇 2 = 𝑝1 + 𝑝2 + 𝑝3 = 𝑝 ≤ 4. In addition, we can

also get

𝜕𝑚+𝑐𝑌 = 𝜕𝑚+𝑐
(
Δ−3U(𝑧, 𝑧)

)
= 𝜕𝑠

(
(𝑠0𝑠)−3

)
𝜕𝑚 (𝑒𝐾U)

∼ (𝐾′)𝑘1 (𝐾′′)𝑘2 (𝐾′′′)𝑘3 (𝐾′′′′)𝑘1 (U)𝑢0 (U (1))𝑢1 (U (2))𝑢2 (U (3))𝑢3 (U (4))𝑢4, (8.102)

where 𝑘1 + 𝑘2 + 𝑘3 + 𝑘4 + 𝑢1 + 𝑢2 + 𝑢3 + 𝑢4 = 𝑚 (here, we de�ne 𝑘𝑖, 𝑢𝑖 to be present only when

𝑖 ≤ 𝑚 and 0 ≤ 𝑘𝑖 ≤ 𝑚, 0 ≤ 𝑢𝑖 ≤ 1) and 𝑢0 = 𝛿𝑚,𝑘𝑡𝑜𝑡 (which is de�ned as a Kronecker delta) for

𝑘𝑡𝑜𝑡 ≡ 𝑘1 + 𝑘2 + 𝑘3 + 𝑘4. In particular, we can consider U ∼ 𝐷 . Combining these results, we can
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rewrite the terms as

Lnew FI ⊃ (𝐾′)𝑘1 (𝐾′′)𝑘2 (𝐾′′′)𝑘3 (𝐾′′′′)𝑘1 (U)𝑢0 (U (1))𝑢1 (U (2))𝑢2 (U (3))𝑢3 (U (4))𝑢4

×𝐷−3−2𝑝 (𝜕𝑚+𝑐𝑌 )O (2𝑛𝑅)
𝑅

O (64𝜆−32𝜆𝑏) · Ô

×𝐾′𝑑𝑠1+𝑑𝜓𝑠3+𝑓𝑠1𝐹 0
𝑎𝑠1O (2𝑑𝑠1+𝑑𝑠2+4𝑑𝜓𝑠3+

3
2 𝑓𝑠1)

×𝐹 𝑖𝑎𝑧1O (2𝑑𝑧1+4𝑑𝜓𝑧2+
3
2 𝑓𝑧1)

×𝐷𝑑
𝜓𝜆

𝑊 3+𝑓
𝜆
𝑊 2+2𝑎𝑊 1O (4𝑑𝜆𝜆

𝑊 1+5𝑑
𝜓𝜆

𝑊 2+3𝑑
𝜓𝜆

𝑊 3+
7
2 𝑓

𝜆
𝑊 1+

3
2 𝑓

𝜆
𝑊 2+4𝑎𝑊 2)

×𝐷𝑑𝑇 1+𝑑𝜆𝑇 3+2𝑓𝑇 1+𝑓 𝜆𝑇 2+2𝑎𝑇 1+2𝑎𝑇 2𝐷𝑑𝑇 1+𝑑
𝜆
𝑇 2

𝑖

×𝐾′𝑑𝜆
𝑇 2+𝑓𝑇 1+𝑓

𝜆
𝑇 3+2𝑎𝑇 2𝐾′′𝑑𝜆

𝑇 3+𝑑
𝜆
𝑇 4+𝑎𝑇 2𝐹 𝑖

𝑎𝑇 1

×O (2𝑑𝑇 1+5𝑑𝜆𝑇 2+5𝑑
𝜆
𝑇 3+7𝑑

𝜆
𝑇 4+

3
2 𝑓𝑇 1+

5
2 𝑓

𝜆
𝑇 2+

11
2 𝑓

𝜆
𝑇 3+3𝑎𝑇 2) . (8.103)

The simpli�ed expression can be given by

Lnew FI ⊃ (𝐾′′′)𝑘3 (𝐾′′′′)𝑘1 (U (1))𝛼 (U (2))𝑢2 (U (3))𝑢3 (U (4))𝑢4

×(𝐷)−𝑛 (𝐹 )𝑟 (𝐾′)𝛽 (𝐾′′)𝛾O (𝛿𝑝𝑟𝑒 )Ô (𝛿𝑎𝑑𝑑 ), (8.104)

where

𝑛 = −𝑢0 + 3 + 2𝑝 − (𝑑𝜓𝜆
𝑊 3 + 𝑓

𝜆
𝑊 2 + 2𝑎𝑊 1 + 𝑑𝑇 1 + 𝑑𝜆𝑇 3 + 2𝑓𝑇 1 + 𝑓 𝜆𝑇 2 + 2𝑎𝑇 1 + 2𝑎𝑇 2)

= −𝑢0 + 3 + 2(𝑑𝑇 1 + 𝑑𝜆𝑇 2 + 𝑑
𝜆
𝑇 3 + 𝑑

𝜆
𝑇 4 + 𝑓𝑇 1 + 𝑓

𝜆
𝑇 2 + 𝑓

𝜆
𝑇 3 + 𝑎𝑇 1 + 𝑎𝑇 2)

−(𝑑𝜓𝜆
𝑊 3 + 𝑓

𝜆
𝑊 2 + 2𝑎𝑊 1 + 𝑑𝑇 1 + 𝑑𝜆𝑇 3 + 2𝑓𝑇 1 + 𝑓 𝜆𝑇 2 + 2𝑎𝑇 1 + 2𝑎𝑇 2)

= −𝑢0 + 3 + 𝑑𝑇 1 + 2𝑑𝜆𝑇 2 + 𝑑
𝜆
𝑇 3 + 2𝑑𝜆𝑇 4 − 𝑑

𝜓𝜆

𝑊 3 + 𝑓
𝜆
𝑇 2 + 2𝑓 𝜆𝑇 3 − 𝑓

𝜆
𝑊 2 − 2𝑎𝑊 1, (8.105)

𝑟 = 𝑎𝑠1 + 𝑎𝑧1 + 𝑎𝑇 1. (8.106)
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𝛼 = 𝑢1 + 𝑑𝑇 1 + 𝑑𝜆𝑇 2, (8.107)

𝛽 = 𝑘1 + 𝑑𝑠1 + 𝑑𝜓𝑠3 + 𝑓𝑠1 + 𝑑
𝜆
𝑇 2 + 𝑓𝑇 1 + 𝑓

𝜆
𝑇 3 + 2𝑎𝑇 2, (8.108)

𝛾 = 𝑘2 + 𝑑𝜆𝑇 3 + 𝑑
𝜆
𝑇 4 + 𝑎𝑇 2 (8.109)

𝛿𝑝𝑟𝑒 = 2𝛿Γ,0 + 64𝜆 − 32𝜆𝑏 + 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 +

3
2
𝑓𝑠1 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2 +
3
2
𝑓𝑧1

+4𝑑𝜆𝜆𝑊 1 + 5𝑑𝜓𝜆
𝑊 2 + 3𝑑𝜓𝜆

𝑊 3 +
7
2
𝑓 𝜆𝑊 1 +

3
2
𝑓 𝜆𝑊 2 + 4𝑎𝑊 2

+2𝑑𝑇 1 + 5𝑑𝜆𝑇 2 + 5𝑑𝜆𝑇 3 + 7𝑑𝜆𝑇 4 +
3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 + 3𝑎𝑇 2 (8.110)

𝛿𝑎𝑑𝑑 = one of D0;Λ𝜓3/2;C𝑅(𝜔)2;C𝜓𝑅′(𝑄)4;Z𝑅′(𝑄)5/2;B𝜓𝜓3;Z𝜓𝜓𝜓9/2. (8.111)

Plus, we de�ne a parameter Γ as the number of derivatives among 𝜕𝑚𝑖 , 𝜕
𝑐
0, 𝜕

𝑏
𝑊
, and 𝜕𝑝

𝑇
as follows:

Γ ≡ 𝑐 +𝑚 + 𝑏 + 𝑝 = 𝑑𝑠1 + 𝑑𝑠2 + 𝑑𝜓𝑠3 + 𝑓𝑠1 + 𝑎𝑠1 + 𝑑𝑧1 + 𝑑
𝜓

𝑧2 + 𝑓𝑧1 + 𝑎𝑧1

+𝑑𝜆𝜆𝑊 1 + 𝑑
𝜓𝜆

𝑊 2 + 𝑑
𝜓𝜆

𝑊 3 + 𝑓
𝜆
𝑊 1 + 𝑓

𝜆
𝑊 2 + 𝑎𝑊 1 + 𝑎𝑊 2

+𝑑𝑇 1 + 𝑑𝜆𝑇 2 + 𝑑
𝜆
𝑇 3 + 𝑑

𝜆
𝑇 4 + 𝑓𝑇 1 + 𝑓

𝜆
𝑇 2 + 𝑓

𝜆
𝑇 3 + 𝑎𝑇 1 + 𝑎𝑇 2 ≤ 4. (8.112)

Furthermore, we de�ne selection rules for the parameter set {(𝑑, 𝑓 , 𝑎)} such that Γ =
∑
𝑎𝑙𝑙 (𝑑 + 𝑓 +
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𝑎):

For (𝑑, 𝑓 , 𝑎), C̃ : (0, 0, 0) =⇒ Γ(C̃) = 0 𝛿𝑎𝑑𝑑 = 2, 4,

Z̃ : (0, 1, 0) =⇒ Γ(Z̃) = 1 𝛿𝑎𝑑𝑑 = 5/2, 9/2,

B̃𝑎 : (1, 0, 0), (0, 2, 0) =⇒ Γ(B̃𝑎) = 1, 2 𝛿𝑎𝑑𝑑 = 3,

Λ̃ : (1, 1, 0), (1, 1, 1), (0, 3, 0) =⇒ Γ(Λ̃) = 2, 3 𝛿𝑎𝑑𝑑 = 3/2,

D̃ : (0, 0, 0), (2, 0, 0), (0, 2, 0), (0, 0, 2),

(0, 2, 1), (1, 2, 0), (0, 4, 0) =⇒ Γ(D̃) = 0, 2, 3, 4 𝛿𝑎𝑑𝑑 = 0.

For example, when we consider the case Γ = 1 (which means that we look at the terms coupling

to 𝑓𝐴 in the action (8.80).), then we can only consider the following selections (1, 0, 0) (i.e. only

one 𝑑 and others are zero.) from B̃𝑎 or (0, 1, 0) (i.e. only one 𝑓 and others are zero.) from Z̃, and

the couplings to 𝑅′𝜌𝜎 (𝑄) and𝜓𝜓 in the action (8.80).

Since we are interested inU as a quadratic function of matter �elds, we have 𝑢3 = 𝑢4 = 0, so

that

Lnew FI ⊃ (𝐾′′′)𝑘3 (𝐾′′′′)𝑘1 (U (1))𝛼 (U (2))𝑢2

×(𝐷)−𝑛 (𝐹 )𝑟 (𝐾′)𝛽 (𝐾′′)𝛾O (𝛿𝑝𝑟𝑒 )Ô (𝛿𝑎𝑑𝑑 ) . (8.113)

Since we consider the case of 𝐷 ∼ 𝐹 , it reduces to

Lnew FI ⊃ (𝐾′′′)𝑘3 (𝐾′′′′)𝑘1 (U (1))𝛼 (U (2))𝑢2

×(𝐷)−𝑛+𝑟 (𝐾′)𝛽 (𝐾′′)𝛾O (𝛿𝑝𝑟𝑒 )Ô (𝛿𝑎𝑑𝑑 ) . (8.114)

In particular, we can make these terms to be small due to U (1) ∼ 𝑧𝑖 ∼ 0 along the in�ationary

trajectory, we can set 𝛼 = 𝑢1 + 𝑑𝑇 1 + 𝑑𝜆𝑇 2 = 0, which means 𝑢1 = 𝑑𝑇 1 = 𝑑𝜆
𝑇 2 = 0. Moreover,
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the derivatives of the Kähler potential with respect to the matter �elds can be small as well if it

includes the quadratic function of some matter �elds. Of course, the second derivative cannot be

neglected like the case ofU (2) . However, themoduli �elds will not be small due to the logarithmic

dependence in the Kähler potential. Nevertheless, it is not a problem to ignore the derivatives

here because they will be suppressed for large in�aton �eld, while they will be of order of O(1)

in Planck unit after in�ation. In any case, we can drop the dependence of the derivatives of the

Kähler potential but the second derivatives. Furthermore, the second derivatives of the Kähler

potential with respect to the moduli �elds can be of order of O(1) after in�ation, so that ignoring

the factor of 𝐾′′, we get

Lnew FI ⊃ (U (2))𝑢2 (𝐷)−𝑁O (𝛿𝑝𝑟𝑒 )Ô (𝛿𝑎𝑑𝑑 ) ≡ (U (2))𝑢2 (𝐷)−𝑁O (𝛿𝑡𝑜𝑡 ), (8.115)

where 𝑁 ≡ 𝑛 − 𝑟 and

𝑁 = 3 + 𝑑𝜆𝑇 3 + 2𝑑𝜆𝑇 4 + 𝑓
𝜆
𝑇 2 + 2𝑓 𝜆𝑇 3

−𝑑𝜓𝜆
𝑊 3 − 𝑓

𝜆
𝑊 2 − 2𝑎𝑊 1 − 𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1 − 𝑢0, (8.116)

𝛿𝑝𝑟𝑒 = 2𝛿Γ,0 + 64𝜆 − 32𝜆𝑏 + 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 +

3
2
𝑓𝑠1 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2 +
3
2
𝑓𝑧1

+4𝑑𝜆𝜆𝑊 1 + 5𝑑𝜓𝜆
𝑊 2 + 3𝑑𝜓𝜆

𝑊 3 +
7
2
𝑓 𝜆𝑊 1 +

3
2
𝑓 𝜆𝑊 2 + 4𝑎𝑊 2

+5𝑑𝜆𝑇 3 + 7𝑑𝜆𝑇 4 +
3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 + 3𝑎𝑇 2, (8.117)

𝛿𝑎𝑑𝑑 = one of D0;Λ𝜓3/2;C𝑅(𝜔)2;C𝜓𝑅′(𝑄)4;Z𝑅′(𝑄)5/2;B𝜓𝜓3;Z𝜓𝜓𝜓9/2, (8.118)

𝛿𝑡𝑜𝑡 ≡ 𝛿𝑝𝑟𝑒 + 𝛿𝑎𝑑𝑑 . (8.119)

In the meantime, we had 𝑘1 + 𝑘2 + 𝑘3 + 𝑘4 + 𝑢1 + 𝑢2 + 𝑢3 + 𝑢4 = 𝑚 and 𝑑𝑧1 + 𝑑𝜓𝑧2 + 𝑓𝑧1 + 𝑎𝑧1 =

𝑚1 +𝑚2 +𝑚3 =𝑚 ≤ 4. Since we now have 𝑢1 = 𝑢3 = 𝑢4 = 0, we get

𝑢2 = 𝑑𝑧1 + 𝑑𝜓𝑧2 + 𝑓𝑧1 + 𝑎𝑧1 − 𝑘𝑡𝑜𝑡 , (8.120)
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where we de�ne 𝑘𝑡𝑜𝑡 ≡ 𝑘1 +𝑘2 +𝑘3 +𝑘4. Here, we point out that if the mass-squared fromU (2) is

of order of the electroweak scale, then the non-renormalizable terms can be suppressed strongly.

If not, we have to keep it.

Looking at the above terms, we observe that the non-renormalizable terms will have the fol-

lowing form

Lnew FI ⊃
(U (2))𝑢2
𝐷𝑁

O (𝛿𝑡𝑜𝑡 ) =⇒ (U (2))𝑢2
𝐷𝑁

.
1

Λ𝛿𝑡𝑜𝑡−4𝑐𝑢𝑡

=⇒ Λ𝑐𝑢𝑡 .

(
𝐷𝑁

(U (2))𝑢2

)1/(𝛿𝑡𝑜𝑡−4)
(8.121)

where we set𝑀𝑝𝑙 = 1 for simplicity. Since we are interested in 𝐷 ∼ U (2) ∼ 𝐻 where 𝐻 ∼ 10−5 is

the Hubble scale, the constraint can be given by

Λ𝑐𝑢𝑡 . 𝐻
(𝑁−𝑢2)/(𝛿𝑡𝑜𝑡−4) = 𝐻𝛼 . (8.122)

We note that in order for the non-renormalizable terms to well-suppressed for 𝐻 < 1, we have to

require that

𝛼 ≡ 𝑁 − 𝑢2
𝛿𝑡𝑜𝑡 − 4

≤ 1, (8.123)

where 𝛿𝑡𝑜𝑡 − 4 > 0 for nonrenormalizable operators. In particular, the restrictions on the cuto�

will come from the �rst condition only since the upperbound of the second condition exceeds

O(1) ∼ 𝑀𝑝𝑙 = 1. In the meantime, since we consider the non-renormalizable operators, we

always have 𝛿𝑡𝑜𝑡 > 4. That is, if there exists a combination of the parameters satisfying the above

condition with maximal value 1, then the cuto� must be constrained as Λ𝑐𝑢𝑡 . 𝐻 , which will be

out of our interest.
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Inserting 𝑢0 = 𝛿𝑚,𝑘𝑡𝑜𝑡 and the value of 𝑢2 in Eq. (8.120), the relevant parameters are as follow:

𝑁 − 𝑢2 = 3 + 𝑑𝜆𝑇 3 + 2𝑑𝜆𝑇 4 + 𝑓
𝜆
𝑇 2 + 2𝑓 𝜆𝑇 3

−𝑑𝜓𝜆
𝑊 3 − 𝑓

𝜆
𝑊 2 − 2𝑎𝑊 1 − 𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1 − 𝑢0 − 𝑢2, (8.124)

𝛿𝑡𝑜𝑡 − 4 = 2𝛿Γ,0 + 64𝜆 − 32𝜆𝑏 + 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 +

3
2
𝑓𝑠1 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2 +
3
2
𝑓𝑧1

+4𝑑𝜆𝜆𝑊 1 + 5𝑑𝜓𝜆
𝑊 2 + 3𝑑𝜓𝜆

𝑊 3 +
7
2
𝑓 𝜆𝑊 1 +

3
2
𝑓 𝜆𝑊 2 + 4𝑎𝑊 2

+5𝑑𝜆𝑇 3 + 7𝑑𝜆𝑇 4 +
3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 + 3𝑎𝑇 2

+𝛿𝑎𝑑𝑑 − 4. (8.125)

Here is a remark. Since the derivatives of U but U (2) can give us the small number from the

vacuum expectation values of matter �elds, we consider the case of either𝑚 = 𝑘𝑡𝑜𝑡 = 𝑑𝑧1 + 𝑓𝑧1 +

𝑎𝑧1 +𝑑𝜓𝑧2 (which implies that 𝑢𝑖 = 0 for 𝑖 = 1, 2, 3, 4 and 𝑢0 = 𝛿𝑚,𝑘𝑡𝑜𝑡 = 1) or 𝑢2 = 1. Thus, it reduces

to

𝑁 − 𝑢2 = 2 + 𝑑𝜆𝑇 3 + 2𝑑𝜆𝑇 4 + 𝑓
𝜆
𝑇 2 + 2𝑓 𝜆𝑇 3 − 𝑑

𝜓𝜆

𝑊 3 − 𝑓
𝜆
𝑊 2 − 2𝑎𝑊 1 − 𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1. (8.126)

Speci�cally, we obtain the following di�erent cases.

• Case of 𝑏 = 0 (with no derivatives):

(𝑁 − 𝑢2)𝑏=0 = 2 − 𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1, (8.127)

(𝛿𝑡𝑜𝑡 − 4)𝑏=0 = 2 + 64𝜆 + 𝛿𝑎𝑑𝑑 − 4 (8.128)
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• Case of 𝑏 = 0 (with derivatives):

(𝑁 − 𝑢2)𝑏=0 = 2 − 𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1, (8.129)

(𝛿𝑡𝑜𝑡 − 4)𝑏=0 = 64𝜆 + 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 +

3
2
𝑓𝑠1 + 2𝑑𝑧1

+4𝑑𝜓
𝑧2 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 + 3𝑎𝑇 2 + 𝛿𝑎𝑑𝑑 − 4 (8.130)

• Case of 𝑏 = 1:

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 1

= 2 + 𝑑𝜆𝑇 3 + 2𝑑𝜆𝑇 4 + 𝑓
𝜆
𝑇 2 + 2𝑓 𝜆𝑇 3 − 𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1, (8.131)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 1

= 32𝜆 + 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 +

3
2
𝑓𝑠1 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2 +
3
2
𝑓𝑧1

+5𝑑𝜆𝑇 3 + 7𝑑𝜆𝑇 4 +
3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 + 3𝑎𝑇 2 + 𝛿𝑎𝑑𝑑 −

1
2
, (8.132)

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 2

= 1 + 𝑑𝜆𝑇 3 + 2𝑑𝜆𝑇 4 + 𝑓
𝜆
𝑇 2 + 2𝑓 𝜆𝑇 3 − 𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1, (8.133)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 2

= 32𝜆 + 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 +

3
2
𝑓𝑠1 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2 +
3
2
𝑓𝑧1

+5𝑑𝜆𝑇 3 + 7𝑑𝜆𝑇 4 +
3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 + 3𝑎𝑇 2 + 𝛿𝑎𝑑𝑑 −

5
2
, (8.134)

• Case of 𝑏 = 2:

(𝑁 − 𝑢2)𝑏=2=𝑓 𝜆
𝑊 1

= 2 + 𝑑𝜆𝑇 3 + 2𝑑𝜆𝑇 4 + 𝑓
𝜆
𝑇 2 + 2𝑓 𝜆𝑇 3 − 𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1, (8.135)

(𝛿𝑡𝑜𝑡 − 4)𝑏=2=𝑓 𝜆
𝑊 1

= 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 +

3
2
𝑓𝑠1 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2 +
3
2
𝑓𝑧1

+5𝑑𝜆𝑇 3 + 7𝑑𝜆𝑇 4 +
3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 + 3𝑎𝑇 2 + 𝛿𝑎𝑑𝑑 + 3, (8.136)
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(𝑁 − 𝑢2)𝑏=2=𝑓 𝜆
𝑊 2

= 𝑑𝜆𝑇 3 + 2𝑑𝜆𝑇 4 + 𝑓
𝜆
𝑇 2 + 2𝑓 𝜆𝑇 3 − 𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1, (8.137)

(𝛿𝑡𝑜𝑡 − 4)𝑏=2=𝑓 𝜆
𝑊 2

= 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 +

3
2
𝑓𝑠1 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2 +
3
2
𝑓𝑧1

+5𝑑𝜆𝑇 3 + 7𝑑𝜆𝑇 4 +
3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 + 3𝑎𝑇 2 + 𝛿𝑎𝑑𝑑 − 1, (8.138)

(𝑁 − 𝑢2)𝑏=2,𝑓 𝜆
𝑊 1=𝑓

𝜆
𝑊 2=1

= 1 + 𝑑𝜆𝑇 3 + 2𝑑𝜆𝑇 4 + 𝑓
𝜆
𝑇 2 + 2𝑓 𝜆𝑇 3 − 𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1, (8.139)

(𝛿𝑡𝑜𝑡 − 4)𝑏=2,𝑓 𝜆
𝑊 1=𝑓

𝜆
𝑊 2=1

= 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 +

3
2
𝑓𝑠1 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2 +
3
2
𝑓𝑧1

+5𝑑𝜆𝑇 3 + 7𝑑𝜆𝑇 4 +
3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 + 3𝑎𝑇 2 + 𝛿𝑎𝑑𝑑 + 1.

(8.140)

The following parameter condition must be satis�ed

Γ ≡ 𝑐 +𝑚 + 𝑏 + 𝑝 = 𝑑𝑠1 + 𝑑𝑠2 + 𝑑𝜓𝑠3 + 𝑓𝑠1 + 𝑎𝑠1 + 𝑑𝑧1 + 𝑑
𝜓

𝑧2 + 𝑓𝑧1 + 𝑎𝑧1︸                  ︷︷                  ︸
=𝑘𝑡𝑜𝑡+𝑢0+𝑢2

+𝑑𝜆𝜆𝑊 1 + 𝑑
𝜓𝜆

𝑊 2 + 𝑑
𝜓𝜆

𝑊 3 + 𝑓
𝜆
𝑊 1 + 𝑓

𝜆
𝑊 2 + 𝑎𝑊 1 + 𝑎𝑊 2︸                                                  ︷︷                                                  ︸

= 𝑏≤2

+𝑑𝜆𝑇 3 + 𝑑
𝜆
𝑇 4 + 𝑓𝑇 1 + 𝑓

𝜆
𝑇 2 + 𝑓

𝜆
𝑇 3 + 𝑎𝑇 1 + 𝑎𝑇 2 ≤ 4. (8.141)

Again, Γ is de�ned as the number of derivatives among 𝜕𝑚𝑖 , 𝜕
𝑐
0, 𝜕

𝑏
𝑊
, and 𝜕𝑝

𝑇
. In the appendix D, the

largest value of 𝛼 is found by 𝛼 = 2/3, so that

Λ𝑐𝑢𝑡 . 𝐻
2/3 ∼ 10−5(2/3) = 10−2.66 < 𝑀𝑆 ∼ 10−2.5. (8.142)

Hence, the theory of new FI terms is basically an e�ective �eld theory with broken supersymme-

try.
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9 | Relaxed Supergravity

This chapter is based on the author’s original work in Ref. [73].

In this chapter, the key result we will see is given by

𝑉 = 𝑉𝐷 +𝑉𝐹 −U,
1
U .

1
Λ4
𝑐𝑢𝑡

, (9.1)

where 𝑉𝐷 ,𝑉𝐹 are the supergravity D- and F-term scalar potentials and U is de�ned as a gauge-

invariant generl real function of matter scalars 𝑧’s. In particular, we will discuss how to relax the

scalar potential 𝑉 that can satisfy the constraint above.

9.1 Introduction

The application of supergravity to in�ationary cosmology has recently been of great interest

and studied by many authors as discussed in Ch. 6. However, it remains still challenging to

build viable models of a certain phenomenology in the context of supergravity. For instance, it is

not straightforward to realize both in�ationary dynamics and minimal supersymmetric standard

model (MSSM) at the same time in a uni�ed setup. The �rst reason for the di�culty is due to the

large hierarchy between Hubble scale 𝐻 ∼ 10−5𝑀𝑝𝑙 for in�ation and electroweak (TeV) scale of

order 10−15𝑀𝑝𝑙 for the observable-sector dynamics of standard model (SM). The second is because
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standard supergravity predicts the complicated structure of the F-term scalar potential, i.e. 𝑉𝐹 =

𝑒𝐺 (𝐺𝐼𝐺 𝐼 𝐽𝐺 𝐽 − 3) where 𝐺 is the supergravity G-function de�ned by 𝐺 ≡ 𝐾 + ln𝑊 + ln𝑊̄ which

consists of Kähler potential 𝐾 and superpotential𝑊 . This implies that one must always explore

a proper choice of the supergravity G-function, which is unfortunately nontrivial in general. For

these reasons, it is very demanding to construct phenomenologically-desirable scalar potentials

within standard supergravity.

The 𝜂 problem [18] is an example of such a di�culty1. No-scale supergravity [17] may be

a solution to the 𝜂 problem because the corresponding F-term potential can exactly vanish, i.e.

𝑉𝐹 = 0. This is established by a clever choice of the supergravity G-function. In fact, the gravitino

mass term “−3𝑒𝐺” plays a critical role in the no-scale cancellation. Interestingly, one can easily

have such no-scale structure through a logarithmic Kähler potential of the volume modulus �elds

and constant superpotential in string theory [17, 19, 20]. However, certain choice of superpoten-

tial may spoil the “exact” cancellation of the F-term potential yielding a remnant as shown in

Eq. (14) of Ref. [74]. Hence, no-scale supergravity is very sensitive to the given form of both

Kähler potential and superpotential. Moreover, no-scale supergravity may cause a vast number

of moduli, which correspond to degenerate vacua being along �at directions in scalar potential.

This turns out that moduli stabilization, which is necessary to obtain a unique vacuum, is still

required in no-scale supergravity. Thus, current no-scale supergravity is not a complete strategy

for model building.

Recent developments in modi�cation of the supergraivty scalar potential have beenmade, e.g.

liberated supergravity recently proposed by Farakos, Kehagias, and Riotto [71] and various types

of new Fayet-Iliopoulos (FI) terms proposed by many authors [54–59]. In particular, liberated

supergravity was the �rst attempt to allows us to have a general scalar potential. In fact, inspired

by liberated supergravity, we investigate such a general scalar potential in the other fashion
1This issue gives rise to a hardship for obtaining a very small slow-roll parameter 𝜂 such that 𝜂 � 1 due to the

exponentially growing behavior of the F-term potential.
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in this work. However, it has recently been found that liberated supergravity is not liberated

literally due to strong constraints on the general function [66, 67]. On the contrary, new FI terms

can modify only D-term potentials, which still have non-trivial �eld dependence and can give

us only the non-negative-de�nite contribution to the scalar potential. Consequently, the recent

studies do not have full generality of scalar potential.

Obviously, it has very long been thought of that a negative-de�nite term in scalar potential

can be given only by the gravitino-mass term “−3𝑒𝐺” in the standard N = 1 supergravity, and

is not present in global supersymmetry (SUSY) [8]. It is thus inevitable to acquire another type

of cancellation in scalar potential through a new negative term so that we have a general scalar

potential being beyond no-scale supergravity and the recent works. In that sense, it remains very

intriguing to answer the following open questions: How can we obtain a new negative-de�nite

potential term in supergravity? To what extent can we reform the supergravity scalar potential

in a general fashion? We a�rmatively answer these questions throughout this letter.

Our work is organized as follows. In Sec. 9.2, we revisit the higher order corrections in

the minimal supergravity models of in�ation constructed by Ferrara, Kallosh, Linde, and Porrati

(FKLP) [75]. We �rstly identify a no-go theorem for the higher order corrections. The no-go

theorem is supported by the fact that canonical kinetic term of the gauge �eld in the vector mul-

tiplet must be present in the supergravity lagrangian. In Sec. 9.3, we propose how to relax the

strongly-constrained standard form of the scalar potential by adding a special choice of higher

order correction to the standard supergravity. Here we discover a new negative-de�nite scalar

potential as a general function. In addition, we �nd essential constraints on the new negative

term by inspecting the suppression of nonrenormalizable lagrangians to ensure that our theory

is self-consistent as an e�ective �eld theory. This leads to a cuto� which is identi�ed with the

high-scale SUSY breaking mass 𝑀𝑆 [76]. Next, using the new negative term, we present a relax-

ing procedure for generating a general scalar potential2. Plus, we compare our theory with the
2In this sense, our proposal reserves the name “Relaxed supergravity.”
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liberated supergravity by Farakos, Kehagias, and Riotto. Next, we brie�y discuss the global SUSY

limit of relaxed supergravity. Finally, in Sec. 9.4, we summarize our �ndings and give outlook on

this work.

9.2 No-go Theorem for Higher Order Corrections in FKLP

Model

In this section, we revisit higher order corrections in the minimal supergravity models of in�a-

tion proposed by Ferrara, Kallosh, Linde, and Porrati (FKLP) [75]. First, we start with considering

a vector multiplet𝑉 , its �eld strength multiplet 𝜆𝑃𝐿𝜆, and real linear multiplet (𝑉 )𝐷 whose lowest

component is given by the auxiliary �eld 𝐷 of the vector multiplet 𝑉 as follows:

𝑉 = {0, 0, 0, 0, 𝐴𝜇, 𝜆, 𝐷} in the Wess-Zumino gauge, i.e. 𝑣 = 𝜁 = H = 0, (9.2)

𝜆𝑃𝐿𝜆 = (𝜆𝑃𝐿𝜆,−𝑖
√
2𝑃𝐿Λ, 2𝐷2

−, 0, +𝑖D𝜇 (𝜆𝑃𝐿𝜆), 0, 0) = {𝜆𝑃𝐿𝜆, 𝑃𝐿Λ,−𝐷2
−}, (9.3)

𝜆𝑃𝑅𝜆 = (𝜆𝑃𝑅𝜆, +𝑖
√
2𝑃𝑅Λ, 0, 2𝐷2

+,−𝑖D𝜇 (𝜆𝑃𝑅𝜆), 0, 0) = {𝜆𝑃𝑅𝜆, 𝑃𝑅Λ,−𝐷2
+}, (9.4)

(𝑉 )𝐷 = (𝐷,��D𝜆, 0, 0,D𝑏𝐹𝑎𝑏,−��D��D𝜆,−�𝐶𝐷), (9.5)

where we have used the following notations3

𝑃𝐿Λ ≡
√
2𝑃𝐿 (−

1
2
𝛾 · 𝐹 + 𝑖𝐷)𝜆, 𝑃𝑅Λ ≡

√
2𝑃𝑅 (−

1
2
𝛾 · 𝐹 − 𝑖𝐷)𝜆, (9.6)

𝐷2
− ≡ 𝐷2 − 𝐹− · 𝐹− − 2𝜆𝑃𝐿��D𝜆, 𝐷2

+ ≡ 𝐷2 − 𝐹+ · 𝐹+ − 2𝜆𝑃𝑅��D𝜆. (9.7)
3We follow the sign convention (−, +, · · · , +) for spacetime metric, and notations used in Ref. [8]:

D𝜇𝜆 ≡
(
𝜕𝜇 −

3
2
𝑏𝜇 +

1
4
𝑤𝑎𝑏𝜇 𝛾𝑎𝑏 −

3
2
𝑖𝛾∗A𝜇

)
𝜆 −

(
1
4
𝛾𝑎𝑏𝐹𝑎𝑏 +

1
2
𝑖𝛾∗𝐷

)
𝜓𝜇

𝐹𝑎𝑏 ≡ 𝐹𝑎𝑏 + 𝑒 𝜇𝑎 𝑒 𝜈𝑏 𝜓 [𝜇𝛾𝜈 ]𝜆, 𝐹𝑎𝑏 ≡ 𝑒 𝜇𝑎 𝑒 𝜈𝑏 (2𝜕[𝜇𝐴𝜈 ]),

𝐹±𝜇𝜈 ≡
1
2
(𝐹𝜇𝜈 ± ˜̂

𝐹𝜇𝜈 ), ˜̂
𝐹𝜇𝜈 ≡ −1

2
𝑖𝜖𝜇𝜈𝜌𝜎𝐹

𝜌𝜎 .
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Then, after making the corrections to be generic as Kähler-invariant and �eld-dependent form,

the higher order corrections to the standard supergravity action, which is given by Eq. (3.17) of

Ref. [75], can be rewritten as

L𝑛 ⊃ (𝜆𝑃𝐿𝜆)2(𝜆𝑃𝑅𝜆)2

(𝑆0𝑆0𝑒−𝐾/3)2
𝑇 𝑘

( (𝜆𝑃𝑅𝜆)2

(𝑆0𝑆0𝑒−𝐾/3)2
)
𝑇 𝑙

( (𝜆𝑃𝐿𝜆)2

(𝑆0𝑆0𝑒−𝐾/3)2
) ( (𝑉 )𝐷

(𝑆0𝑆0𝑒−𝐾/3)

)𝑝
Ψ𝑛 (𝑍, 𝑍 ) |𝐷 , (9.8)

where 𝐾 (𝑍, 𝑍 ) is a Kähler potential;𝑇 is the chiral projection; 𝑛 = 4 + 2𝑘 + 2𝑙 + 𝑝 with 𝑛 ≥ 4, and

Ψ𝑛 (𝑍, 𝑍 ) is a general real function of matter �elds 𝑍 ’s:

𝑍 𝑖 = (𝑧𝑖,−𝑖
√
2𝑃𝐿𝜒𝑖,−2𝐹 𝑖, 0, +𝑖D𝜇𝑧

𝑖, 0, 0) = {𝑧𝑖, 𝑃𝐿𝜒𝑖, 𝐹 𝑖}, (9.9)

𝑍 𝑖 = (𝑧𝑖, +𝑖
√
2𝑃𝑅𝜒𝑖, 0,−2𝐹 𝑖,−𝑖D𝜇𝑧

𝑖, 0, 0) = {𝑧𝑖, 𝑃𝑅𝜒𝑖, 𝐹 𝑖}. (9.10)

We also use the superconformal compensator multiplet 𝑆0:

𝑆0 = (𝑠0,−𝑖
√
2𝑃𝐿𝜒0,−2𝐹0, 0, +𝑖D𝜇𝑠0, 0, 0) = {𝑠0, 𝑃𝐿𝜒0, 𝐹0}, (9.11)

𝑆0 = (𝑠0, +𝑖
√
2𝑃𝑅𝜒0, 0,−2𝐹0,−𝑖D𝜇𝑠0, 0, 0) = {𝑠0, 𝑃𝑅𝜒0, 𝐹0}. (9.12)

Using the superconformal tensor calculus [31, 70] in the appendix B, we �nd the correspond-

ing bosonic lagrangian as

L𝑛 |𝐵 ⊃ (𝐹+2 − 𝐷2)1+𝑘 (𝐹−2 − 𝐷2)1+𝑙𝐷𝑝Ψ𝑛 (𝑧, 𝑧) |𝐷 =

(𝐹 2
2

− 𝐷2
) (𝑛−𝑝)/2

𝐷𝑝Ψ𝑛 (𝑧, 𝑧) |𝐷 , (9.13)

where 𝐹 2 ≡ 𝐹𝜇𝜈𝐹
𝜇𝜈 is the square of Maxwell tensor; 𝐹±𝜇𝜈 ≡ 1

2 (𝐹𝜇𝜈 ± 𝐹𝜇𝜈 ), and 𝐹𝜇𝜈 ≡ − 𝑖
2𝜀𝜇𝜈𝜌𝜎𝐹

𝜌𝜎 is

the dual tensor. In the last line of Eq. (9.13), we have used 𝐹±2 = 1
2𝐹

2 and (𝑛 − 𝑝)/2 = 2 + 𝑘 + 𝑙 .

We note that the lagrangian of many higher order corrections can be given by a polynomial of

the terms with various powers of 𝑛, 𝑝 .

Now, let us consider the case when 𝑝 = 0. Then, de�ning 𝐷̂ ≡ 𝐹 2

2 − 𝐷2 and Ψ𝑛 ≡ Ψ𝑛 (𝑧, 𝑧) |𝐷 ,
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we rewrite the bosonic lagrangian as

L (𝑝=0)
higher order |𝐵 =

𝑁∑︁
𝑛=4

𝐷̂𝑛/2Ψ𝑛 = 𝐷̂
2Ψ4 + 𝐷̂5/2Ψ5 + 𝐷̂3Ψ6 + · · · . (9.14)

The standard supergravity is speci�ed by the following superconformal action

L𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 = −3[𝑆0𝑆0𝑒−𝐾 (𝑍
𝐴,𝑍𝐴)/3]𝐷 + [𝑆30𝑊 (𝑍𝐴)]𝐹 − 𝛽 [𝜆𝑃𝐿𝜆]𝐹 + ℎ.𝑐., (9.15)

where we have used 𝛽 as a general normalization of the kinetic term of the vector �eld. The

corresponding D-term lagrangian is then found to be

L𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 |𝐵 = 2𝛽𝐷2 − 𝛽 (𝐹+2 + 𝐹−2) = −2𝛽
(𝐹 2
2

− 𝐷2
)
≡ −2𝛽𝐷̂. (9.16)

Taking both the standard and higher order terms, we �nd the general D-term lagrangian as

L𝑡𝑜𝑡 |𝐵 = −2𝛽𝐷̂ + 𝐷̂2Ψ4 + 𝐷̂5/2Ψ5 + 𝐷̂3Ψ6 + · · · ≡ 𝑃 (𝐷̂) . (9.17)

Notice that this lagrangian is a polynomial of 𝐷̂ . When solving the equation of motion for 𝐷 , we

gain

𝜕L𝑡𝑜𝑡 |𝐵
𝜕𝐷

=
𝜕𝐷̂

𝜕𝐷

𝜕L𝑡𝑜𝑡 |𝐵
𝜕𝐷̂

= 0 =⇒ 𝐷 = 0 or
𝜕L𝑡𝑜𝑡 |𝐵
𝜕𝐷̂

=
𝜕𝑃 (𝐷̂)
𝜕𝐷̂

= 0. (9.18)

If the trivial solution 𝐷 = 0 is unstable or supersymmetry is broken, we have to consider the

non-vanishing solution for 𝐷 . The non-trivial solution for 𝐷̂ can be found by

𝐷̂ = 𝐷̂ (Ψ4,Ψ5,Ψ6, · · · ) . (9.19)

Notice that there is no any dependence on Maxwell tensor term in the solution for 𝐷̂! After inte-
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grating out 𝐷 , we face the unphysical situation that the kinetic term of the vector �eld is always

absent in the lagrangian for any 𝑁 . We point out that this case must be physically excluded.

So, we propose a no-go theorem for the higher order corrections in FKLP supergravity model of

in�ation as follows:

Theorem 9.1 (No-go theorem for higher order corrections in FKLP model).

An arbitrary combination of the standard term and higher order corrections without any power of the

real linear multiplet (𝑉 )𝐷 , i.e. 𝑝 , cannot produce the gauge kinetic term, and thus must be excluded

in a physical theory.

Based on this no-go theorem for the higher order corrections, we speculate that one has to

include some non-vanishing powers of (𝑉 )𝐷 , i.e. 𝑝 , in the higher order corrections in order to

generate the correct kinetic term.

9.3 Novel Class of N = 1 Supergravity: “Relaxed

Supergravity”

In this section, we propose a novel class ofN = 1 supergravity, called “Relaxed Supergravity,”

that enlarges the space of scalar potentials by considering the higher order correction in FKLP

minimal supergravity models of in�ation [75].

9.3.1 Discovery of a new negative-definite term of scalar potential in

supergravity

For the vector multiplet 𝑉 , as a setup, we suppose three “NO” things when constructing a

superconformal action of supergravity containing some higher order corrections as follows:

• No Fayet-Iliopoulos term. There is no term linear in the auxiliary �eld 𝐷 , i.e. no any

Fayet-Iliopoulos 𝐷 term.
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• No gauging. The vector multiplet 𝑉 is not gauged.

• No-go theorem. There must be some powers of the real linear multiplet (𝑉 )𝐷 in the higher

order corrections in order to satisfy the no-go theorem (9.1).

These three assumptions will play a role in �nding a new contribution to the scalar potential.

Notice that the three conditions are not applicable for the other vector multiplets associated with

conventional gauge groups.

Now, we are ready to consider a superconformal action of a certain higher order correction.

We de�ne

L𝑅𝑆 ≡
[
− 1
4
(𝑆0𝑆0𝑒−𝐾/3)−4(𝜆𝑃𝐿𝜆) (𝜆𝑃𝑅𝜆) ((𝑉 )𝐷)2

1
U(𝑍, 𝑍 )2

]
𝐷

, (9.20)

where 𝑆0 is the conformal compensator; 𝐾 (𝑍 𝐼 , 𝑍 𝚤) is the supergravity Kähler potential of the mat-

ter chiral multiplets 𝑍 𝐼 ’s; 𝜆𝑃𝐿𝜆 is the �eld strength multiplet corresponding to a vector multiplet

𝑉 whose fermionic superpartner is given by 𝜆; (𝑉 )𝐷 is a real multiplet whose lowest component

is given by the auxiliary �eld 𝐷 of the vector multiplet 𝑉 , and U is de�ned as a general gauge-

invariant real function of the matter multiplets. Therefore, including the standard supergravity

terms, we reach the total superconformal action of our supergravity as

L = −3[𝑆0𝑆0𝑒−𝐾 (𝑍
𝐴,𝑍𝐴)/3]𝐷 +

[
− 1
4
(𝑆0𝑆0𝑒−𝐾/3)−4(𝜆𝑃𝐿𝜆) (𝜆𝑃𝑅𝜆) ((𝑉 )𝐷)2

1
U(𝑍, 𝑍 )2

]
𝐷

+[𝑆30𝑊 (𝑍𝐴)]𝐹 −
3
4
[𝜆𝑃𝐿𝜆]𝐹 + ℎ.𝑐. (9.21)

Notice that the numerical factor of the kinetic term for the vector multiplet 𝑉 is not 1/4 but 3/4.

This di�erent factor is set to yield the canonically normalized kinetic term of the vector �eld. The
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bosonic lagrangian of the auxiliary �eld 𝐷 is then found by

L𝐷 = −3
4

(
− 𝐷2 + 𝐹

2

2
− 𝐷2 + 𝐹

2

2

)
− 1
2U2

(
− 𝐷2 + 𝐹

2

2

) (
− 𝐷2 + 𝐹

2

2

)
𝐷2

=
3
2
𝐷2 − 3

4
𝐹 2 +

(
− 𝐷6

2U2 +
𝐷4𝐹 2

2U2 − 𝐷2𝐹 4

8U2

)
, (9.22)

where 𝐹 2 ≡ 𝐹𝜇𝜈𝐹 𝜇𝜈 . This gives the potential in 𝐷

𝑉 (𝐷) = 3
4
𝐹 2 − 3

2
𝐷2 +

(
𝐷2𝐹 4

8U2 − 𝐷4𝐹 2

2U2 + 𝐷6

2U2

)
. (9.23)

Here is a crucial remark. We should be careful about presence of the kinetic term for the

auxiliary �eld𝐷 . Let us look at the composite superconformal multipletV ≡ ((𝑉 )𝐷)2. Its highest

component DV contains the second derivative term of the �eld 𝐷 with respect to the spacetime

coordinates, i.e. DV ⊃ −2𝐷�𝐶𝐷 ∼ (𝜕𝐷)2 + total derivative. We �nd that since L𝑅𝑆 ≡ −[R · V]

where R is de�ned to be the remaining parts except for V ≡ ((𝑉 )𝐷)2 and a minus sign, the

relaxed supergravity action gives us a kinetic term of the �eld 𝐷 with the canonical sign, i.e.

L𝑅𝑆 ⊃ −(𝜕𝐷)2 in the spacetime-metric convention (−, +, · · · , +). That is, 𝐷 is not a ghost but a

physical �eld. From Eq. (9.23), we see that the canonically normalized �eld “𝐷̃” such that 𝐷̃ ≡

𝐷/𝑀𝑝𝑙 has a mass of Planck scale as follows:

𝜕2𝑉 (𝐷)
𝜕𝐷2

����
𝐷∼

√
U

= −3 + 15
𝐷4

U2

����
𝐷∼

√
U

= −3 + 15 ≡
𝑚2
𝐷̃

𝑀2
𝑝𝑙

. (9.24)

Accordingly, we are able to integrate out the 𝐷 degree of freedom with the Planck mass in the

�rst place.

After solving the equation of motion for 𝐷 , we obtain the following solutions

𝐷 = 0, 𝐷2 = U
√︂
1 + 𝐹 4

36U2 +
𝐹 2

3
, (9.25)
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where the �rst corresponds to the supersymmetric case, while the latter corresponds to the non-

supersymmetric case. Looking at the potential for 𝐷 in Eq. (9.23), we observe that the point at

𝐷 = 0 is unstable, and the vacua is located at 𝐷 ≠ 0. Therefore, in our model, supersymmetry is

spontanesously broken like the Higgs mechanism.

We point out that since𝐷2 > 0, the general functionmust be non-negative-de�nite, i.e. U > 0.

Next, integrating out the �eld 𝐷 , we obtain the bosonic lagrangian as

L𝐷 = −1
4
𝐹 2 + U

√︂
1 + 𝐹 4

36U2 +
𝐹 4

36U

√︂
1 + 𝐹 4

36U2 +
𝐹 6

24U2 . (9.26)

Then, expanding Eq. (9.26), we have the following

L𝐷 = −1
4
𝐹 2 + U + 𝐹 4

24U + 𝐹 6

24U2 +
𝐹 8

2592U3 + higher order terms in 𝐹 2. (9.27)

Notice that the lagrangian produces the correct kinetic term for the vector𝑉 , and a new negative

contribution to the scalar potential

𝑉𝑅𝑆 ≡ −U, (9.28)

where U > 0. Hence, the total scalar potential can be written in general by

𝑉𝑡𝑜𝑡 = 𝑉𝐷 +𝑉𝐹 −U, (9.29)

where 𝑉𝐷 and 𝑉𝐹 are the standard D- and F-term potentials. Again,U is a positive generic func-

tion, so that 𝑉𝑅𝑆 is a purely negative-de�nite.
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9.3.2 Constraints on the new negative term

In this section, by inspecting the most singular nonrenormalizable lagrangians, we �nd con-

straints onU. We use the same analysis already done in our previous study [66, 67]. We identify

the most singular terms by checking four fermions (i.e. ∼ (𝜒𝑃𝐿𝜒) (𝜒𝑃𝑅𝜒)) and derivative terms:

Lon U
𝐹 ⊃

{
(U (1))4
U5 ,

(U (1))2U (2)

U5 ,
(U (2))2
U3 ,

U (1)U (3)

U3 ,
U (4)

U2

}
O (𝑑=12)
𝐹

,

Lon U
𝐹 ⊃

{
(U (1))4
U6 ,

(U (1))2U (2)

U6 ,
(U (2))2
U4 ,

U (1)U (3)

U4 ,
U (4)

U3

}
[O (𝑑=12)

𝐹
𝐹 2] (𝑑=16),

Lon K
𝐹 ⊃

{
(𝐾 (1))4

U𝑀4
𝑝𝑙

,
(𝐾 (1))2𝐾 (2)

U𝑀2
𝑝𝑙

,
(𝐾 (2))2
U ,

𝐾 (1)𝐾 (3)

U ,
𝐾 (4)

U 𝑀2
𝑝𝑙

}
O (𝑑=12)
𝐹

,

Lon K
𝐹 ⊃

{
(𝐾 (1))4

U2𝑀8
𝑝𝑙

,
(𝐾 (1))2𝐾 (2)

U2𝑀6
𝑝𝑙

,
(𝐾 (2))2

U2𝑀4
𝑝𝑙

,
𝐾 (1)𝐾 (3)

U2𝑀4
𝑝𝑙

,
𝐾 (4)

U2𝑀2
𝑝𝑙

}
[O (𝑑=12)

𝐹
𝐹 2] (𝑑=16),

Lon S
𝐹 ⊃ 1

U𝑀−4
𝑝𝑙
O (𝑑=12)
𝐹

,

Lon S
𝐹 ⊃ 1

U2𝑀
−4
𝑝𝑙
[O (𝑑=12)

𝐹
𝐹 2] (𝑑=16),

L𝐷 = −1
4
𝐹 2 + U + 𝐹 4

24U + 𝐹 6

24U2 +
𝐹 8

2592U3 + higher order terms in 𝐹 2.

where 𝐾 is the Kähler potential; U is the general function; O (𝑑=12)
𝐹

only includes fermions, and

𝐹 2 ≡ 𝐹𝜇𝜈𝐹
𝜇𝜈 . We denote Lon U/K

𝐹
by the lagrangians of the derivatives of U and 𝐾 with respect

to the matter �elds, while Lon S
𝐹

by those of the derivatives of 𝑠0𝑠0 with respect to the conformal

compensator �eld. We observe that the strongest constraint comes from the D-term lagrangian

L𝐷 ⊃ 𝐹 4

24U =⇒ 1
U .

1
Λ4
𝑐𝑢𝑡

=⇒ Λ𝑐𝑢𝑡 ∼ U1/4 = 𝑀𝑆 . 𝑀𝑝𝑙 , (9.30)

where the last inequality is given by the fact that Λ𝑐𝑢𝑡 . 𝑀𝑝𝑙 . This means that relaxed supergrav-

ity has a cuto� exactly at the SUSY breaking scale, and supersymmetry may be broken at high

scale [76] according to the cuto�. Therefore, our model is basically an e�ective �eld theory with
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broken SUSY valid up to the low energies below the SUSY breaking scale𝑀𝑆 .

9.3.3 Relaxation of scalar potential beyond no-scale supergravity

In the previous section 3.2, we have seen that the total scalar potential in our theory is given

by Eq. (9.29)

𝑉𝑡𝑜𝑡 (𝑧𝐼 , 𝑧𝐼 ) = 𝑉𝐷 (𝑧𝐼 , 𝑧𝐼 ) +𝑉𝐹 (𝑧𝐼 , 𝑧𝐼 ) − U(𝑧𝐼 , 𝑧𝐼 ),

where the potentials are functions of matter �elds 𝑧𝐼 ’s, and the new term is moderately con-

strained by Eq. (9.30). To analyze the new potential term, let us begin with a decomposition of

matter multiplets as follows:

𝑍 𝐼 ≡ (𝑍 𝑠, 𝑍 𝑖), (9.31)

where 𝑍 𝑠 is supposed to control the SUSY breaking scale 𝑀𝑆 in a hidden sector, while 𝑍 𝑖 are the

normal matter ones that may belong to an observable sector. Next, we de�ne

U(𝑧𝐼 , 𝑧𝐼 ) ≡ 𝑉 �𝑆
U (𝑧𝐼 , 𝑧𝐼 ) −

∑︁
𝑎≠�𝑆

𝑉 𝑎U (𝑧𝐼 , 𝑧𝐼 ) > 0, (9.32)

𝑉𝐷 (𝑧𝐼 , 𝑧𝐼 ) ≡ 𝑉 �𝑆
𝐷 (𝑧

𝐼 , 𝑧𝐼 ) +
∑︁
𝐴≠�𝑆

𝑉𝐴𝐷 (𝑧𝐼 , 𝑧𝐼 ) > 0, (9.33)

where each potential 𝑉 𝑎U can be either negative or positive de�nite, and has a di�erent energy

scale such that |𝑉 �𝑆
U | > |∑𝑎=1𝑉

𝑎
U |. On the other hand, each D-term potential is positive semi-

de�nite. Then, the total scalar potential is rewritten as

𝑉𝑡𝑜𝑡 = 𝑉 �𝑆
𝐷 +

(∑︁
𝐴≠�𝑆

𝑉𝐴𝐷 +𝑉𝐹
)
+

∑︁
𝑎

𝑉 𝑎U −𝑉 �𝑆
U . (9.34)
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In order to have a maximally relaxed scalar potential, we may take the following choice

𝑉 �𝑆
U

!
= 𝑉 �𝑆

𝐷 +
(∑︁
𝐴≠�𝑆

𝑉𝐴𝐷 +𝑉𝐹
)
, (9.35)

which provides us the most general function form of the scalar potential

𝑉𝑡𝑜𝑡 =
∑︁
𝑎≠�𝑆

𝑉 𝑎U (𝑧𝐼 , 𝑧𝐼 ) < |𝑉 �𝑆
U |, (9.36)

and the SUSY breaking scale𝑀𝑆 such that

𝑀4
𝑆 = U ≡ 𝑉 �𝑆

𝐷 +
(∑︁
𝐴≠�𝑆

𝑉𝐴𝐷 +𝑉𝐹
)
−𝑉𝑡𝑜𝑡 . (9.37)

Now, we have to explore under which conditions the general scalar potential can be well

established. We may consider the following four suppositions:

• Partitioned gauge symmetries. All𝑍 𝑖 ’s must be neutral under any gauge group in which

𝑍 𝑠 is charged, and vice versa:

𝐺�𝑆 : 𝑍 𝑠 → 𝑍 𝑠𝑒𝑞𝑠Σ, 𝑍 𝑖 → 𝑍 𝑖,

𝐺𝑖 : 𝑍 𝑠 → 𝑍 𝑠, 𝑍 𝑖 → 𝑍 𝑖𝑒𝑞𝑖Ω (9.38)

where Σ and Ω are chiral multiplets as gauge parameters of the gauge groups 𝐺�𝑆 and 𝐺𝑖 ,

respectively.

• SUSY-breaking-scale cuto� dominance. The scale of 𝑉 �𝑆
𝐷
far exceeds the magnitude of

any combination of the other potentials𝑉𝐴
𝐷
,𝑉𝐹 ,𝑉𝑡𝑜𝑡 , so that the combination cannot cancel
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out 𝑉 �𝑆
𝐷
and this solely controls the SUSY breaking scale𝑀𝑆 , i.e.

|𝑉 �𝑆
𝐷 | �

���(∑︁
𝐴≠�𝑆

𝑉𝐴𝐷 +𝑉𝐹
)
−𝑉𝑡𝑜𝑡

��� =⇒ Λ𝑐𝑢𝑡 = 𝑀𝑆 = U1/4 ≈ |𝑉 �𝑆
𝐷 |

1/4 ≠ 0. (9.39)

• Broken supersymmetry. We must have proper values of 𝑧𝑠 and 𝑧𝑖 such that 𝑉 �𝑆
𝐷
≠ 0 to

protect broken SUSY all the times.

• Decomposition of scalar potential for moduli stabilization. The total scalar potential

must be decomposed into 𝑧𝑠-dependent and 𝑧𝑠-independent sectors in order to perform

moduli stabilization for the �elds 𝑧𝑠 in the simplest way, i.e.

𝑉𝑡𝑜𝑡 = 𝑉
𝑠−𝑑𝑒𝑝𝑒𝑛
U (𝑧𝑠, 𝑧𝑠) +𝑉 𝑠−𝑖𝑛𝑑𝑒𝑝𝑒𝑛U (𝑧𝑖, 𝑧𝑖). (9.40)

If𝑉 𝑠−𝑑𝑒𝑝𝑒𝑛U (𝑧𝑠, 𝑧𝑠) = 0, then we can choose any value of 𝑧𝑠 such that𝑉 �𝑆
𝐷
≠ 0, and 𝑧𝑠 becomes

massless.

As long as the above conditions are satis�ed, we are able to have the maximally relaxed scalar

potential

𝑉𝑡𝑜𝑡 =
∑︁
𝑎≠�𝑆

𝑉 𝑎U (𝑧𝐼 , 𝑧𝐼 ) = 𝑉 𝑠−𝑑𝑒𝑝𝑒𝑛U (𝑧𝑠, 𝑧𝑠) +
∑︁

𝑎≠�𝑆,𝑠−𝑑𝑒𝑝𝑒𝑛

𝑉 𝑎U (𝑧𝑖, 𝑧𝑖) < |𝑉 �𝑆
𝐷 +

(∑︁
𝐴≠�𝑆

𝑉𝐴𝐷 +𝑉𝐹
)

︸                   ︷︷                   ︸
=𝑉 �𝑆U

|, (9.41)

where the inequality comes from the condition U > 0. In the meantime, the corresponding

constraint is given by

Λ4
𝑐𝑢𝑡 = 𝑀

4
𝑆 = 𝑉 �𝑆

𝐷 +
(∑︁
𝐴≠�𝑆

𝑉𝐴𝐷 +𝑉𝐹
)

︸                   ︷︷                   ︸
=𝑉 �𝑆U

−𝑉𝑡𝑜𝑡 . 𝑀4
𝑝𝑙

=⇒ 𝑀4
𝑆 ∼ 𝑉 �𝑆

𝐷 . 𝑀
4
𝑝𝑙
, (9.42)
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where the last inequality is due to the dominance condition in Eq. (9.39). Notice that 𝑉 �𝑆
𝐷
is para-

metrically free up to the Planck scale 𝑀𝑝𝑙 , while the total scalar potential is parametrically free

up to the SUSY breaking scale𝑀𝑆 .

Of course, one may wish to utilize the normal structures of the D- and F-term potentials

in supergravity for some reasons. In this case, one can recover them by respecting the above

assumptions in the following way:

𝑉 𝑎U (𝑧𝑖) ⊃ 𝑉 ′
𝐹 ≡ 𝐴 ·𝑉𝐹 (𝑧𝑠 = 0) = 𝐴 · 𝑒𝐺 (𝐺𝐼𝐺 𝐼 𝐽𝐺 𝐽 − 3) |𝑧𝑠=0, (9.43)

𝑉 𝑎U (𝑧𝑖) ⊃ 𝑉 ′
𝐷 ≡ 𝐵 ·𝑉𝐷 (𝑧𝑠 = 0), (9.44)

in which we have put 𝑧𝑠 = 0 in the usual D- and F-term potentials, and multiplied them by some

arbitrary constants𝐴, 𝐵 for generality. Thus, we have extra freedom in adjusting the scales of the

D- and F-term potentials.

For example, the simplest toymodel of relaxed supergravity can be given by the following. Let

us consider an abelian𝑈𝑠 (1) gauge symmetry. Assume that only a single matter �eld 𝑧𝑠 is charged

under the𝑈𝑠 (1), say 𝑧𝑠 → 𝑒𝑖𝑞𝑠𝜃𝑧𝑠 . Then, for a Kähler potential 𝐾 = −3 ln[𝑇 +𝑇 − |𝑧𝑠 |2+𝛿𝑖 𝑗𝑧𝑖𝑧 𝑗
3 ] and

a superpotential𝑊 (𝑇, 𝑧𝑖), a corresponding D-term potential is given by

𝑉 �𝑆
𝐷 =

1
2
𝑔2𝑞2𝑠

(𝑧𝑠𝑧𝑠)2

(𝑇 +𝑇 )2
, (9.45)

and the total scalar potential is given by

𝑉𝑡𝑜𝑡 = 𝜎 ( |𝑧𝑠 |2 − 𝜌2)2︸           ︷︷           ︸
s-dependent part

+
∑︁
𝑎

𝑉 𝑎U (𝑇, 𝑧𝑖)︸          ︷︷          ︸
s-independent part

< 𝑉 �𝑆
𝐷 (𝑧

𝑠,𝑇 ), (9.46)

where 𝜎, 𝜌 are some constants, and we have used a potential 𝑉 𝑎U ⊃ 𝜎 ( |𝑧𝑠 |2 − 𝜌2)2 for producing

a mass of 𝑧𝑠 in general. For this potential, we observe that 〈𝑧𝑠〉 = 𝜌 ≠ 0. Of course, it is straight-
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forward for Eq. (9.45) to obey the dominance condition in Eq. (9.39) by choosing a large value of

𝜌 . We see that SUSY breaking scale is determined by Eq. (9.45) while we have generic potentials

in Eq. (9.46).

In this section, using a special choice in Eq. (9.35), we have treated a particular mechanism to

derive a general scalar potential. However, there can be other mechanisms. These possibilities

deserve further investigation in the future.

9.3.4 “Relaxed” supergravity versus “Liberated” supergravity

Here we compare our relaxed supergraivity (RS) with the liberated supergravity (LS). First,

let us recall the main result of the constraints on the liberated supergravity [66]. The liberated

termU that is added to the supergravity scalar potential as a general function of the matter �elds

is severely constrained by

U (𝑛) .


(
𝑀𝑆

𝑀𝑝𝑙

)8(4−𝑛) (𝑀𝑝𝑙

Λ𝑐𝑢𝑡

)2(4−𝑛)
where 0 ≤ 𝑛 ≤ 2 for 𝑁𝑚𝑎𝑡 = 1,(

𝑀𝑆

𝑀𝑝𝑙

)8(6−𝑛) (𝑀𝑝𝑙

Λ𝑐𝑢𝑡

)2(6−𝑛)
where 0 ≤ 𝑛 ≤ 4 for 𝑁𝑚𝑎𝑡 ≥ 2,

(9.47)

where 𝑛 is the order of the derivative with respect to the matter �eld, and 𝑁𝑚𝑎𝑡 is the number of

matter multiplets involved in a liberated supergravity theory of interest. The constraints corre-

spond to the case when the matter �elds are at their vacua. The scalar potential in the liberated

supergravity must obey

𝑉𝐿𝑆 ≡ U .


(
𝑀𝑆

𝑀𝑝𝑙

)32 (
𝑀𝑝𝑙

Λ𝑐𝑢𝑡

)8
for 𝑁𝑚𝑎𝑡 = 1,(

𝑀𝑆

𝑀𝑝𝑙

)48 (
𝑀𝑝𝑙

Λ𝑐𝑢𝑡

)12
for 𝑁𝑚𝑎𝑡 ≥ 2,

(9.48)
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On the other hand, in relaxed supergravity, we found that

𝑉𝑅𝑆 =
∑︁
𝑎≠�𝑆

𝑉 𝑎U < 𝑉 �𝑆
U ∼ 𝑉 �𝑆

𝐷 ∼ 𝑀4
𝑆 . 𝑀

4
𝑝𝑙
. (9.49)

For instance, when we consider Λ𝑐𝑢𝑡 = 10−2𝑀𝑝𝑙 , we obtain

𝑉𝑅𝑆 < 10−8𝑀4
𝑝𝑙
, 𝑉𝐿𝑆 . 10−64𝑀4

𝑝𝑙
for 𝑁𝑚𝑎𝑡 = 1, 𝑉𝐿𝑆 . 10−96𝑀4

𝑝𝑙
for 𝑁𝑚𝑎𝑡 ≥ 2. (9.50)

Note that𝑉𝑅𝑆 can describe the in�ation scale O(𝐻 2𝑀2
𝑝𝑙
) since it is bounded by parametrically free

𝑉 �𝑆
U up to the Planck scale 𝑀𝑝𝑙 , while any of 𝑉𝐿𝑆 ’s cannot. This shows that relaxed supergravity

excels the liberated one in de�ning a scalar potential at a desired energy level.

9.3.5 The first negative term of scalar potential in global

supersymmetry

We brie�y discuss an intriguing physical implication on our �ndings in relaxed supergravity.

It is well known that when supergravity is turned o� (i.e. 𝑀𝑝𝑙 → ∞), the scalar potential of

the standard supergravity reduces to that of global SUSY. This is because in the limit we have

𝑀4
𝑝𝑙
𝑒𝐺 → 0 and𝑀4

𝑝𝑙
𝑒𝐺 (𝐺𝐼𝐺 𝐼 𝐽𝐺 𝐽 ) →𝑊𝐼𝐾

𝐼 𝐽𝑊𝐽 in the F-term potential𝑉𝐹 where𝐺 ≡ 𝐾

𝑀2
𝑝𝑙

+ ln 𝑊

𝑀3
𝑝𝑙

+

ln 𝑊̄

𝑀3
𝑝𝑙

after recovering the Planck mass dimension 𝑀𝑝𝑙 . In particular, the relaxing term U can

be alive in global SUSY since the bosonic lagrangians in Eqs. (9.26) and (9.27) are independent of

Planck mass𝑀𝑝𝑙 . Of course, the general functionU changes the total scalar potential in the same

way as follows:

𝑉𝑡𝑜𝑡 =
1
2
|𝐷𝑎 |2 + |𝑊𝐼 |2︸            ︷︷            ︸

standard global SUSY

− U, (9.51)
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where 𝐷𝑎 is the D-term solution with respect to some gauge killing vector �elds 𝑘𝑎 (𝑧), and𝑊𝐼 ≡

𝜕𝑊 /𝜕𝑧𝐼 is the �eld derivative of superpotential. The result in Eq. (9.51) is surprising in that it gives

us the �rst negative contribution to the scalar potential in global supersymmery, allowing us to

have any of Minkowski and (Anti) de Sitter spacetimes. Surely, it has long been regarded that

there is only positive potentials in global SUSY, and thus either Minkowski or de Sitter spacetime

is possible to exist. We expect that this new aspect may alter some known arguments led by the

fact that the global SUSY scalar potential is always semi-positive, i.e. 𝑉𝑡𝑜𝑡 = 1
2 |𝐷

𝑎 |2 + |𝐹 𝐼 |2 ≥ 0.

We do not explore this here since it is beyond the scope of our purpose in this letter.

9.4 Conclusion and Outlook

We have presented a relaxing procedure of the scalar potential by requiring four conditions.

The �rst is that 𝑧𝑠 (𝑧𝑖 ) is charged but 𝑧𝑖 (𝑧𝑠 ) is neutral under a gauge group 𝐺�𝑆 (𝐺𝑖 ). The second

is that the scale of 𝑉 �𝑆
𝐷
governing the SUSY-breaking scale 𝑀𝑆 rather exceeds those of the other

potentials 𝑉𝐴
𝐷
,𝑉𝐹 ,𝑉𝑡𝑜𝑡 satisfying Eq. (9.39). The third is that values of 𝑧𝑠 and 𝑧𝑖 must hold non-

vanishing 𝑉 �𝑆
𝐷
. The last is that the total scalar potential is decomposed into 𝑧𝑠-dependent and

independent sectors to do moduli stabilization for the �elds 𝑧𝑠 in the simplest way.

Lastly, we discuss outlook on relaxed supergravity. First, one may wish to explain some phe-

nomenologies from particle physics to cosmology in the context of either locally or globally su-

persymmetric theory. We suggest that our proposal can be utilized for constructing both su-

pergravity and globally supersymmetric models of particle and cosmological phenomenologies.

This is based on the fact that our supergravity predicts a general scalar potential up to the Planck

energy 𝑀𝑝𝑙 , and the relaxing term can emerge in both theories in a consistent fashion. Second,

we remark that the string realization of the superconformal action of the relaxing term deserves

future investigation like the work of Ref. [77]. Third, it would be worth studying to explore if

other relaxing mechanisms can possibly exist in di�erent setups beyond this work. Fourth, since
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our model has a cuto� Λ𝑐𝑢𝑡 equal to the SUSY breaking scale 𝑀𝑆 , one may study improved ver-

sions of relaxed supergravity which has a su�ciently large hierarchy between cuto� and SUSY

breaking scale in order to recover the naturalness in the future. The last is that one may explore

physical implications which are deduced by the �rst negative scalar potential in global SUSY.
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10 | Inflationary Model 1: A minimal

model of single-field and

slow-roll inflation in liberated

N = 1 supergravity

This chapter is based on the author’s original work in Ref. [66].

In Ch. 8, we have argued that liberated N = 1 supergravity can be an e�ective �eld theory

for describing the in�ationary dynamics while at the same time satisfying all the constraints if

a transition that changes the supersymmetry breaking scale at the end of in�ation is allowed.

Note that due to the no-scale structure, the scalar potential is given only by an eventual D-term

supersymmetric potential 𝑉𝐷 and the “liberated” term U. In this chapter, we present an explicit

minimal model of single-�eld, slow-roll in�ation in liberated N = 1 supergravity which obeys

the inequality 𝐻 � Λ𝑐𝑢𝑡 = 𝑀𝑝𝑙 = 1.

To begin with, let us consider a chiral multiplet𝑇 with Kähler potential𝐾 (𝑇,𝑇 ) = −3 ln[𝑇 +𝑇 ]

and a constant superpotential𝑊0. Then, the supergravity G-function [68] is given by

𝐺 ≡ 𝐾 + ln |𝑊 |2 = −3 ln[𝑇 +𝑇 ] + ln𝑊0 + ln𝑊̄0. (10.1)
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It automatically produces a no-scale structure in which the F-term potential vanishes identically:

𝑉𝐹 = 0.

Next, let us �nd the canonically normalized degrees of freedom of the theory. From the kinetic

term corresponding to the G function (10.1), we read

L𝐾 =
3

(𝑇 +𝑇 )2
𝜕𝑇 𝜕𝑇

=
3

4(Re𝑇 )2 (𝜕Re𝑇 )
2 + 3

4(Re𝑇 )2 (𝜕Im𝑇 )
2

=
1
2
(𝜕𝜒)2 + 1

2
𝑒−2

√
2/3𝜒 (𝜕𝜙)2, (10.2)

where we have used the following �eld rede�nition

𝑇 = Re𝑇 + 𝑖Im𝑇 =
1
2
𝑒

√
2/3𝜒 + 𝑖 𝜙√

6
. (10.3)

Note that the Z2 symmetry 𝜒 → −𝜒 is already explicitly broken by the kinetic Lagrangian,

while the symmetry 𝜙 → −𝜙 is unbroken. However, even the latter symmetry will be broken by

the in�ationary potential. The �eld 𝜒 is always canonically normalized while 𝜙 has a canonical

kinetic term only at 𝜒 = 0.

The composite F-term is given by F = 𝑒𝐺𝐺𝑇𝐺
𝑇𝑇𝐺𝑇 after solving the equation of motion

for the auxiliary �elds 𝐹 𝐼 . For our G function we obtain an exponentially decreasing function

F = 3|𝑊0 |2/(𝑇 + 𝑇 )3 = 3|𝑊0 |2𝑒−3
√
2/3𝜒 . This is what we want to get a viable supersymmetry

breaking mechanism. The reason is that we look for a supersymmetry breaking scale during

in�ation𝑀𝑖
𝑆
∼ 𝑀𝑝𝑙 = 1, while the �nal scale should be parametrically lower than the Planck scale

–for instance 𝑀 𝑓

𝑆
= 10−15𝑀𝑝𝑙 . To achieve this large di�erence of scales, the vacuum expectation

value of the �eld 𝜒 should change during the phase transition. On the other hand, the cuto� scale

of our model can remain O(𝑀𝑝𝑙 ) both before and after the phase transition.

We will achieve this with a potential that changes from (𝜙 ≠ 0, 𝜒 = 0) during in�ation to
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𝜒 ≠ 0, 𝜙 = 0 after in�ation. We will also choose 𝜙 as the in�aton �eld and 𝜒 as the �eld that

controls the supersymmetry breaking scale.

A functionU producing a correct in�ationary dynamics is

U ≡ 𝛼 (1 − 𝑒−
√
2/3𝜙 )2(1 + 1

2
𝜎𝜒2), (10.4)

where 𝛼, 𝛽,𝛾, 𝜎 are arbitrary positive constants. This is a key result in this section.

Next, we assume that the mass𝑚𝜒 of 𝜒 is greater than the Hubble scale 𝐻 during in�ation;

this is necessary to describe a single-�eld slow-roll in�ation governed only by the in�aton �eld

𝜙 . Hence, we impose that during in�ation𝑚2
𝜒 = 𝛼𝜎 � 𝐻 2. Since 𝛼 ∼ 𝐻 2 ∼ 10−10, the condition

reduces to 𝜎 � 1.

Wemust also analyze the vacuum structure of the potential. First of all, we explore theminima

with respect to 𝜒 . By computing 𝜕U
𝜕𝜒

= 0 and de�ning 𝑉inf ≡ 𝛼 (1 − 𝑒−
√
2/3𝜙 )2 we �nd that during

in�ation (where 𝜙 ≠ 0) the equation of motion for 𝜒 is given by 𝜎𝜒𝑉inf = 0 so it gives a unique

minimum at 𝜒 = 0. On the other hand after in�ationwe have𝜙 = 0 and𝑉inf = 0, so the equation of

motion gives a �at potential in 𝜒 . The �nal position of the �eld 𝜒 is then determined either by the

initial conditions on 𝜒 or by small corrections to the either the liberated supergravity potential

U or to 𝑉𝐹 . Here we content ourselves with pointing out that the simple potential (10.4) already

achieves the goal of making the �nal supersymmetry breaking scale di�erent from𝑀𝑖
𝑆
.

Before studying supersymmetry breaking we notice that a deformation of the scalar potential

such asU was obtained using an o�-shell linear realization of supersymmetry in [70]. Therefore,

for the new term to be consistent, supersymmetry must be broken as usual by some nonvanishing

auxiliary �eld belonging to the standard chiral multiplets and moreover the Kähler metric of the

scalar manifold must be positive [70]. So, in spite of the presence of the new termU, the analysis

of supersymmetry breaking is completely standard. Since the supersymmetry breaking scale

𝑀𝑆 comes from the positive potential part 𝑉+, as shown in the Goldstino SUSY transformation
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𝛿𝜖𝑃𝐿𝑣 = 1
2𝑉+𝑃𝐿𝜖 that is constructed with the fermion shifts with respect to the auxiliary scalar

contributions [8], we have

𝑉+ = 𝑒𝐺𝐺𝑇𝐺
𝑇𝑇𝐺𝑇 =

3|𝑊0 |2

(𝑇 +𝑇 )3
= 3|𝑊0 |2𝑒−3

√
2/3𝜒 .

(10.5)

During in�ation we demand that the initial supersymmetry breaking scale is𝑀𝑝𝑙 , so we iden-

tify𝑊0 ≡
(𝑀𝑖

𝑆
)2

√
3

and therefore 𝑉+ = (𝑀𝑖
𝑆
)4𝑒−3

√
2/3𝜒 . Because 𝜒 = 0 during in�ation we indeed

have 𝑉+ |𝜒=0,𝜙≠0 = (𝑀𝑖
𝑆
)4 = 1 � 𝐻 2 = O(10−10𝑀2

𝑝𝑙
).

On the other hand, we want to get a much smaller SUSY breaking scale𝑀 𝑓

𝑆
≈ 10−15𝑀𝑝𝑙 around

the true vacuum at the end of in�ation. Thus, at the true vacuum (i.e. 𝜒 = 𝐶 and 𝜙 = 0) where

U = 0, we get 𝑉+ |𝜒=𝐶,𝜙=0 ≈ (𝑀𝑖
𝑆
)4𝑒−3

√
2/3𝐶 ≡ (𝑀 𝑓

𝑆
)4. From this, we �nd where the location of the

true vacuum in the 𝜒 direction should be (recall that 𝜒 is a �at direction after in�ation)

𝐶 =

√︂
8
3
ln
𝑀𝑖
𝑆

𝑀
𝑓

𝑆

, (10.6)

where𝑀 𝑓

𝑆
is a free parameter, which we set to be approximately 10−15 in Planck units.

The proposed potential U vanishes after in�ation hence it already trivially satis�es the con-

straints (9.48). So all we need to do is to check that it also satis�es (7.202). Using F = 𝑒−3
√
2/3𝜒 ,

which gives𝑀𝑖
𝑆
= 𝑀𝑝𝑙 = 1 during in�ation (𝜒 = 0), we �rst haveU (𝑛) |𝜒=0 � 𝑒−3𝑚

√
2/3𝜒O(1) |𝜒=0 =

O(1). Using Eq. (10.3), we �nd 𝜕𝑇 =
√
6(−𝑖𝜕𝜙 + 𝑒−

√
2/3𝜒𝜕𝜒 ) and 𝜕𝑇 =

√
6(𝑖𝜕𝜙 + 𝑒−

√
2/3𝜒𝜕𝜒 ). Note

that U (𝑛) |𝜒=0 ≡ 𝜕𝑘
𝑇
𝜕𝑙
𝑇
U(𝑇,𝑇 ) |𝜒=0 where 𝑛 = 𝑘 + 𝑙 . In particular, since the functional dependence

on 𝜒 does not produce any singularity at 𝜒 = 0, it is su�cient to check that 𝜕𝑛
𝜙
U � O(1).

Thus, because the dependence on 𝜙 is solely given by the Starobinsky in�ationary potential, i.e.

𝑉 ∼ 𝛼 (1 − 𝑒−
√
2/3𝜙 ), we will get that its derivatives are always less than the coe�cient 𝛼 , thanks

to the decreasing exponential factor 𝑒−
√
2/3𝜙 . This implies that the constraint is automatically
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satis�ed since 𝛼 ∼ 10−10 < O(1). So, all consistency conditions can be satis�ed by a liberated

supergravity potential.
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11 | Inflationary Model 2: Inflation,

Gravity-Mediated Supersymmetry

Breaking, and de Sitter Vacua in

Supergravity with a

Kähler-Invariant Fayet-Iliopoulos

Term

This chapter is based on the author’s original work in Ref. [60].

11.1 Introduction

It is rather challenging to describe in�ation, supersymmetry (SUSY) breaking, and de Sitter

(dS) vacua in simple supergravity models and even more so in string theory. In string theory, the

Kachru-Kallosh-Linde-Trivedi (KKLT) model [19] is a prototype that can give de Sitter (dS) vacua,

under certain assumptions aboutmoduli stabilization. The e�ective �eld theory description of the
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KKLT model is a supergravity with a no-scale Kähler potential for its volume modulus and with

a superpotential that di�ers from its constant no-scale form because of two non-perturbative

corrections1. The superpotential produces a supersymmetric Anti-de-Sitter (AdS) vacuum. In

ref. [19], a mechanism was proposed for generating dS vacua through the addition of anti-D3

brane contributions to the superpotential, that uplifts the AdS vacuum to dS. While the additional

correction by anti-D3 branes creates dS vacua, it also deforms the shape of the scalar potential

creating a “bump” which gives rise to a moduli stabilization problem [19]. As an attempt to im-

prove on KKLT, Kachru, Kallosh, Linde, Maldacena, McAllister and Trivedi (KKLMMT) proposed

a model that modi�es KKLT by introducing a contribution arising from the anti-D3 tension in a

highly warped compacti�cations [20].

Both models, KKLT and the KKLMMT, contain anti-D3 branes, whose known e�ective �eld

theory description uses nonlinear realizations of supersymmetry. The presence of nonlinearly

realized supersymmetry means that if supersymmetry is restored at energies below the string

scale, 𝑀𝑠𝑡𝑟𝑖𝑛𝑔, then the known description of KKLT cannot accurately describe the whole energy

range 𝐸 . 𝑀𝑠𝑡𝑟𝑖𝑛𝑔
2. On the other hand, nothing in principle forbids the existence of some ef-

fective �eld theory description even in that energy range, but such description must employ a

linear realization of supersymmetry, which would necessarily employ only whole multiplets. A

natural question to ask from an e�ective �eld theory point of view is whether such a description

is possible. Said di�erently: does a supergravity with the same Kähler potential and superpoten-

tial as KKLT exists, that breaks supersymmetry, gives rise to an in�ationary potential and a dS

post-in�ationary vacuum, and is valid even at energy scales where supersymmetry is restored?

We answer a�rmatively to this question by adding to the KKLT e�ective theory a new Fayet-

Iliopoulos (FI) term, in the form proposed by Antoniadis, Chatrabhuti, Isono and Knoops [54].

We will show that this FI term also generates irrelevant operators that introduce a cuto� scale for
1The corrections come from either Euclidean D3 branes in type IIB compacti�cations or from gaugino conden-

sation due to D7 branes.
2We assume𝑀𝑠𝑡𝑟𝑖𝑛𝑔 < 𝑀𝑝𝑙 , with𝑀𝑝𝑙 the Planck scale.
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the e�ective theory. We will also show that di�erently from nonlinear realizations, this cuto� can

be made larger than the supersymmetry breaking scale –and in fact even larger than the Planck

scale.

Our construction begins with the observation that, in the absence of anti-D3 branes, the su-

pergravity scalar potential of the KKLT model has a supersymmetric AdS vacuum and it becomes

�at for large values of the volume modulus �eld. The �at direction could be used for construct-

ing a viable model of in�ation without eta problem, if the scalar potential minimum 𝑉0 could be

simply translated upward by a constant, 𝑉0 → 𝑉0 + constant. This could happen if a constant

positive FI term existed. This term was long thought to be forbidden in supergravity, since the

only possible FI terms were thought to arise from gauging the R-symmetry [61–63], require an

R-invariant superpotential [64] and be subject to quantization conditions when the gauged R-

symmetry is compact [65]. On the other hand, recently FI terms not associated with R-symmetry

were proposed, starting with ref. [55]. We use here the Kähler-invariant FI term proposed in [54]

and we call it “ACIK-FI” to distinguish it from many other new FI terms suggested in the liter-

ature (for instance in [55–57, 59]). To �nd an approximately �at potential for in�ation and a dS

post-in�ationary vacuum, we add an ACKI-FI term to the N = 1 supergravity describing the

KKLT model without anti-D3 branes. We must remark that a �eld-dependent generalization of

the new Kähler-invariant FI term has been introduced recently in ref. [58], which also studies the

cosmological consequences of such a term.

In our model supersymmetry is spontaneously broken in a hidden sector at a very high but

still sub-Planckian scale 𝑀𝑝𝑙 � 𝑀𝑆 � 10−15𝑀𝑝𝑙 . We employ gravity mediation (see e.g. the

review [78]) to communicate the SUSY breaking to the observable sector, where supersymmetry

breakingmanifests itself through the existence of explicit soft SUSY breaking terms, characterized

by an energy scale𝑀𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑏𝑙𝑒 � 𝑀𝑆 . The reason for a high𝑀𝑆 is that𝑀𝑆 controls the magnitude

of non-renormalizable fermionic terms that determine the cuto� of the e�ective theory. This is a

feature that the ACIK-FI term shares with liberated supergravity (see e.g. [66, 71]).
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The purpose of our work is to �nd an e�ective �eld theory of in�ation, de-Sitter moduli

stabilization, and supersymmetry breaking as a cosmological application to the e�ective theory of

KKLT of the ACIK-FI term proposed in [54]. The string theory origin of one particular type of the

new FI terms has recently been investigated through a supersymmetric Born-Infeld action [79],

so it would be of clear interest to study a possible string-theoretical origin of the ACIK-FI term.

This work is organized as follows. In Sec. 11.2 we show how to add an ACIK-FI term to

the N = 1 supergravity e�ective theory of the KKLT model. Next we add matter, which we

divide into a hidden sector and an observable sector. Supersymmetry is broken in the hidden

sector and the SUSY breaking is communicated to the observable sector via gravity mediation.

In Secs. 11.3 and 11.4 we probe the hidden-sector dynamics of our model. In Sec. 11.3, we

construct a minimal supergravity model of plateau-potential in�ation –sometimes called in the

literature “Starobinsky” or “Higgs” in�ation– with high scale SUSY breaking and dS vacua, using

the results from Sec. 11.2. In Sec. 11.4, we explore the gravitino mass, which is very high, being

well above the EeV-scale. We also study possible constraints on the ACIK-FI term by investigating

the nonrenormalizable fermionic terms in the Lagrangian based on Ch. 8.2. In Sec. 11.5 we study

the observable-sector dynamics of our model by computing its soft SUSY breaking terms. A few

�nal observations are collected in Sec. ??.

11.2 Adding a Kähler-Invariant Fayet-Iliopoulous Term to

KKLT-type N = 1 Supergravity

In this section, we propose an N = 1 supergravity model that can describe the low energy

e�ective �eld theory of in�ation and moduli stabilization in KKLT-type backgrounds [19]. To do

so, we �rst add an ACIK-FI term to an N = 1 supergravity that is compatible with the KKLT

model.

In general, an ACIK-FI term can be introduced into anN = 1 supergravity without requiring
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a gauged R-symmetry [54, 58]. In our proposal, we will introduce instead only an ordinary U(1)

symmetry (under which the superpotential is invariant) which will be gauged by a vector multi-

plet 𝑉 . In�ation will come from the same potential as in the KKLT scenario. KKLT [19] argues

that in string theory some moduli can develop a non-perturbative superpotential of the form

𝑊 =𝑊0 +𝐴𝑒−𝑎𝑇 , (11.1)

where𝑇 is a “volume” modulus �eld, which is a chiral super�eld, and𝑊0, 𝐴 are constants. For our

construction it is su�cient to compute the component action ofN = 1 supergravity characterized

by the superpotential (11.1) and by an ACIK-FI term. Notice that Antoniadis and Rondeau have

recently studied cosmological applications of generalized ACIK-FI terms by considering no-scale

models with a constant superpotential𝑊 =𝑊0 [58]. Di�erently from that model, ours uses the

KKLT-type superpotential (11.1).

The key assumption that we will use is that both the volume modulus𝑇 and the other matter

�elds that may exist in the superpotential are gauge-invariant under the U(1) that is used to

introduce the ACIK-FI term. In this paper, we use superconformal tensor calculus [68] to calculate

the action.

The goal of this work is to �nd a modestly realistic minimal supergravity model of in�ation

with realistic moduli stabilization and supersymmetry breaking pattern. The study of irrelevant

operators generated by the ACIK-FI term will show that a low energy supersymmetry breaking is

incompatible with demanding that the cuto� for the e�ective �eld theory is higher than the Hub-

ble constant during in�ation. So, we take an alternative approach and break supersymmetry at a

high scale in the hidden sector (as in e.g. [80] ) while keeping some of the scales of supersymmetry

breaking interactions in the observable sector low [81].

To do so, we �rst decompose matter into a hidden sector and an observable sector. We will
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discuss them separately in Sections 3, 4 and 5. So we separate the �eld coordinates 𝑦𝐴 into

𝑦𝐴 ≡ (𝑇, 𝑧𝐼 ) ≡ ({𝑇, 𝑧𝐼 }ℎ, {𝑧𝑖}𝑜), (11.2)

where 𝐼 ≡ (𝐼 , 𝑖) and {𝑇, 𝑧𝐼 }ℎ are hidden-sector �elds, while {𝑧𝑖}𝑜 are the observable-sector ones.

In addition to this, we write a generic superpotential𝑊 as a sum of a hidden-sector term𝑊 ℎ and

observable-sector term𝑊 𝑜 :

𝑊 (𝑦𝐴) ≡𝑊 ℎ (𝑇, 𝑧𝐼 ) +𝑊 𝑜 (𝑧𝑖). (11.3)

We further assume that the hidden-sector superpotential carries a high energy scale compared

to the observable-sector one. This implies that we decompose the F-term scalar potential into

two di�erent parts: a hidden sector F-term potential characterized by a high energy scale and

observable-sector F-term potential containing only low scale SUSY-breaking soft terms.

Next, to introduce an ACIK-FI term into our theory we suppose that the volume modulus

multiplet 𝑇 and all observable-sector chiral matter multiplets 𝑍 𝑖 are neutral under an ordinary

(non-R) U(1) gauge symmetry, while the hidden-sector chiral matter multiplets 𝑧𝐼 are charged,

i.e. they transform as

𝑍 𝑖 → 𝑍 𝑖, 𝑇 → 𝑇, 𝑍 𝐼 → 𝑒−𝑞𝐼Ω𝑍 𝐼 . (11.4)

Here 𝑞𝐼 denote the U(1) gauge charges of the hidden-sector chiral multiplets 𝑍 𝐼 and Ω is the

chiral multiplet containing in its lowest component the ordinary gauge parameter. Wemake these

choices because we will introduce both a new FI term generated by a gauge vector multiplet and

a KKLT superpotential, which depends on the volume modulus 𝑇 and must be gauge invariant

under all gauge symmetries.
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The superconformal action of the ACIK-FI term [54, 58] is de�ned by

LNEW FI ≡ −𝜉
[
(𝑆0𝑆0𝑒−𝐾 (𝑍𝑒

𝑞𝑉 ,𝑍 ))−3 (W𝛼 (𝑉 )W𝛼 (𝑉 )) (W̄¤𝛼 (𝑉 )W̄ ¤𝛼 (𝑉 ))
𝑇 (𝑤̄2)𝑇 (𝑤2)

(𝑉 )𝐷
]
𝐷

, (11.5)

and the corresponding superconformal action of N = 1 supergravity with superpotential (11.1)

and the new the FI term is

L = −3[𝑆0𝑆0𝑒−𝐾 (𝑍𝑒
𝑞𝑉 ,𝑍 )/3]𝐷 + [𝑆30𝑊 (𝑍, 𝑍 ′)]𝐹 +

1
2𝑔2

[W𝛼 (𝑉 )W𝛼 (𝑉 )]𝐹 + 𝑐.𝑐 .

−𝜉
[
(𝑆0𝑆0𝑒−𝐾 (𝑍𝑒

𝑞𝑉 ,𝑍 ))−3 (W𝛼 (𝑉 )W𝛼 (𝑉 )) (W̄¤𝛼 (𝑉 )W̄ ¤𝛼 (𝑉 ))
𝑇 (𝑤̄2)𝑇 (𝑤2)

(𝑉 )𝐷
]
𝐷

. (11.6)

In Eqs. (12.8,12.1) 𝑆0 is the conformal compensator withWeyl/chiral weights (1,1);𝑍𝐴 = (𝑇, 𝑍 𝐼 ;𝑍 𝑖)

and𝑉 are chiral matter and vector multiplets with weights (0, 0); 𝐾 (𝑍𝑒𝑞𝑉 , 𝑍 ) is a Kähler potential

gauged by a vector multiplet 𝑉 ; 𝑊 (𝑍, 𝑍 ′) is a superpotential; W𝛼 (𝑉 ) is the �eld strength of

the vector multiplet 𝑉 ; 𝜉 is the constant coe�cient of ACIK-FI term; 𝑤2 ≡ W𝛼 (𝑉 )W𝛼 (𝑉 )
(𝑆0𝑆0𝑒−𝐾 (𝑍,𝑍 ) )2 and

𝑤̄2 ≡ W̄¤𝛼 (𝑉 )W̄ ¤𝛼 (𝑉 )
(𝑆0𝑆0𝑒−𝐾 (𝑍,𝑍 ) )2 are composite multiplets, 𝑇 (𝑋 ),𝑇 (𝑋 ) are chiral projectors, and (𝑉 )𝐷 is a real

multiplet, whose lowest component is the auxiliary �eld 𝐷 of the vector multiplet 𝑉 .

Next, we write the following Kähler potential, invariant under the same U(1) that generates

the ACIK-FI term

𝐾 (𝑍𝐴𝑒𝑞𝑉 , 𝑍𝐴) ≡ −3 ln[𝑇 +𝑇 − Φ(𝑍 𝐼𝑒𝑞𝑉 , 𝑍 𝐼 ;𝑍 𝑖, 𝑍 𝑖)/3], (11.7)

where Φ is a real function of the matter multiplets 𝑍 𝑖, 𝑍 𝐼 and the two terms in the superpotential

𝑊 ≡𝑊 ℎ +𝑊 𝑜 are the hidden-sector term

𝑊 ℎ (𝑇 ) ≡𝑊0 +𝐴𝑒−𝑎𝑇 (11.8)
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and the observable-sector superpotential

𝑊 𝑜 (𝑍 𝑖) ≡ 𝐵0 + 𝑆𝑖𝑍 𝑖 +𝑀𝑖 𝑗𝑍
𝑖𝑍 𝑗 + 𝑌𝑖 𝑗𝑘𝑍 𝑖𝑍 𝑗𝑍𝑘 + · · · , (11.9)

where 𝐵0, 𝑆𝑖, 𝑀𝑖 𝑗 , 𝑌𝑖 𝑗𝑘 are constant coe�cients. We will choose Φ to be sum of a term containing

only hidden-sector �elds and one containing only those of the observable sector

Φ = Φℎ (𝑍 𝐼𝑒𝑞𝑉 , 𝑍 𝐼 ) + Φ𝑜 (𝑍 𝑖, 𝑍 𝑖). (11.10)

The supergravity G-function corresponding to our model is then

𝐺 (𝑦𝐴, 𝑦𝐴) ≡ 𝐾 (𝑦𝐴, 𝑦𝐴) + ln |𝑊 (𝑦𝐴) |2 = −3 ln[𝑇 +𝑇 − Φ(𝑧𝐼 , 𝑧
¯̂
𝐼 )

3
] + ln |𝑊 ℎ (𝑇, 𝑧𝐼 ) +𝑊 𝑜 (𝑧𝑖) |2.(11.11)

The F-term supergravity scalar potential is given by the formula 𝑉𝐹 ≡ 𝑒𝐺 (𝐺𝐴𝐺𝐴𝐵𝐺𝐵 − 3), which

in our case reads

𝑉𝐹 = − 1
𝑋 2 [(𝑊

ℎ +𝑊 𝑜)𝑊̄ ℎ

𝑇
+ (𝑊̄ ℎ + 𝑊̄ 𝑜)𝑊 ℎ

𝑇 ]

+1
3
|𝑊 ℎ

𝑇
|2

𝑋 2 + 1
9
|𝑊 ℎ

𝑇
|2

𝑋 2 [Φ𝐼Φ𝐼 𝐽Φ𝐽 + Φ𝑖Φ
𝑖 𝑗Φ 𝑗 ]

+1
3
1
𝑋 2 [𝑊

ℎ
𝑇 (Φ𝐼Φ

𝐼 𝐽𝑊̄ ℎ

𝐽
+ Φ𝑖Φ

𝑖 𝑗𝑊̄ 𝑜
𝑗
) + 𝑊̄ ℎ

𝑇
(𝑊 ℎ

𝐼 Φ
𝐼 𝐽Φ𝐽 +𝑊 𝑜

𝑖 Φ
𝑖 𝑗Φ 𝑗 )]

+ 1
𝑋 2 [𝑊

ℎ
𝐼 Φ

𝐼 𝐽𝑊̄ ℎ

𝐽
+𝑊 𝑜

𝑖 Φ
𝑖 𝑗𝑊̄ 𝑜

𝑗
] . (11.12)

When matter scalars are charged under a gauge group there exists also a D-term contribution

to the scalar potential, 𝑉𝐷 . In our model, we �nd it to be

𝑉𝐷 =
1
2
𝑔2

(
𝜉 +

∑︁
𝐼

(𝑞𝐼𝑧𝐼𝐺𝐼 + 𝑞𝐼𝑧𝐼𝐺𝐼 )
)2

=
1
2
𝑔2

(
𝜉 + 𝑞𝐼𝑧

𝐼Φ𝐼 + 𝑞𝐼𝑧𝐼Φ𝐼
𝑋

)2
, (11.13)

where𝑋 ≡ 𝑇 +𝑇 −Φ/3, 𝑔 is the gauge coupling constant and 𝜉 is the ACIK-FI constant. Remember
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that only hidden-sector chiral matter multiplets are charged under the U(1). The scalar potential

is the sum of two terms. One,𝑉ℎ contains the D-term contribution and the F-term potential of the

hidden sector, depends on the high mass scale 𝑀𝑆 and is 𝑂 (𝐻 2𝑀2
𝑝𝑙
) during in�ation; the other,

𝑉𝑠𝑜 𝑓 𝑡 contains the observable sector scalars and depends only on low mass scales:

𝑉 = 𝑉ℎ +𝑉𝑠𝑜 𝑓 𝑡 , (11.14)

where

𝑉ℎ ≡ 𝑉𝐷 −
𝑊 ℎ
𝑇
𝑊̄ ℎ + 𝑊̄ ℎ

𝑇
𝑊 ℎ

𝑋 2 +
|𝑊 ℎ

𝑇
|2

3𝑋 2

(
𝑋 + 1

3
Φ𝐼Φ

𝐼 𝐽Φ𝐽

)
+1
3
1
𝑋 2 [𝑊

ℎ
𝑇 Φ𝐼Φ

𝐼 𝐽𝑊̄ ℎ

𝐽
+ 𝑊̄ ℎ

𝑇
𝑊 ℎ
𝐼 Φ

𝐼 𝐽Φ𝐽 ] +
1
𝑋 2𝑊

ℎ
𝐼 Φ

𝐼 𝐽𝑊̄ ℎ

𝐽
, (11.15)

𝑉𝑠𝑜 𝑓 𝑡 ≡ − 1
𝑋 2 [𝑊

𝑜𝑊̄ ℎ

𝑇
+ 𝑊̄ 𝑜𝑊 ℎ

𝑇 ] +
1
9
|𝑊 ℎ

𝑇
|2

𝑋 2 Φ𝑖Φ
𝑖 𝑗Φ 𝑗

+1
3
1
𝑋 2 [𝑊

ℎ
𝑇 Φ𝑖Φ

𝑖 𝑗𝑊̄ 𝑜
𝑗
+ 𝑊̄ ℎ

𝑇
𝑊 𝑜
𝑖 Φ

𝑖 𝑗Φ 𝑗 ] +
1
𝑋 2𝑊

𝑜
𝑖 Φ

𝑖 𝑗𝑊̄ 𝑜
𝑗
. (11.16)

11.3 Hidden Sector Dynamics 1: A Minimal Supergravity

Model of Inflation, High-Scale Supersymmetry

Breaking, and de Sitter Vacua

In this section, we explore a minimal supergravity model of high-scale supersymmetry break-

ing and plateau-potential in�ation through gravity mediation and no-scale Kähler potential. We

investigate �rst the hidden sector dynamics. We have assumed that the hidden-sector potential

depends on a high energy scale and dominates over the observable-sector one. Hence, it is rea-

sonable to minimize the hidden-sector potential �rst. Let us compute now the F-term potential
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in the hidden sector. Recalling that the KKLT superpotential is

𝑊 ℎ (𝑇 ) ≡𝑊0 +𝐴𝑒−𝑎𝑇 , (11.17)

and rede�ning𝑊0 ≡ −𝑐𝐴, we rewrite it as

𝑊 ℎ (𝑇 ) = 𝐴(𝑒−𝑎𝑇 − 𝑐), (11.18)

where 𝑎, 𝑐, 𝐴 are positive constants. Note that𝑊 ℎ
𝐼
= 𝜕𝑊 ℎ/𝜕𝑧𝐼 = 0.

Since we de�ned 𝑋 ≡ 𝑇 +𝑇 − Φ/3, the KKLT superpotential gives

𝑊 ℎ
𝑇 = −𝑎𝐴𝑒−𝑎𝑇 , |𝑊 ℎ

𝑇 |
2 = 𝑎2𝐴2𝑒−𝑎(𝑇+𝑇 ) = 𝑎2𝐴2𝑒−𝑎(𝑋+Φ/3), (11.19)

𝑊 ℎ
𝑇 𝑊̄

ℎ + 𝑊̄ ℎ

𝑇
𝑊 ℎ = −𝑎𝐴2𝑒−𝑎𝑇 (𝑒−𝑎𝑇 − 𝑐) − 𝑎𝐴2𝑒−𝑎𝑇 (𝑒−𝑎𝑇 − 𝑐)

= −2𝑎𝐴2𝑒−𝑎(𝑇+𝑇 ) + 𝑎𝐴2𝑐 (𝑒−𝑎𝑇 + 𝑒−𝑎𝑇 )

= −2𝑎𝐴2𝑒−𝑎(𝑋+Φ/3) + 𝑎𝐴2𝑐 (𝑒−𝑎(Re𝑇+𝑖Im𝑇 ) + 𝑒−𝑎(Re𝑇−𝑖Im𝑇 ))

= −2𝑎𝐴2𝑒−𝑎(𝑋+Φ/3) + 2𝑎𝐴2𝑐𝑒−𝑎Re𝑇 cos(𝑎Im𝑇 )

= −2𝑎𝐴2𝑒−𝑎(𝑋+Φ/3) + 2𝑎𝑐𝐴2𝑒−𝑎(𝑋+Φ/3)/2 cos(𝑎Im𝑇 ) (11.20)

|𝑊 ℎ |2 = 𝐴2 |𝑒−𝑎𝑇 − 𝑐 |2 = 𝐴2(𝑒−𝑎𝑇 − 𝑐) (𝑒−𝑎𝑇 − 𝑐) = 𝐴2(𝑒−𝑎(𝑇+𝑇 ) − 𝑐 (𝑒−𝑎𝑇 + 𝑒−𝑎𝑇 ) + 𝑐2)

= 𝐴2(𝑒−𝑎(𝑋+Φ/3) − 2𝑐𝑒−𝑎(𝑋+Φ/3)/2 cos(𝑎Im𝑇 ) + 𝑐2). (11.21)

Here we have used the following transformation from the complex coordinate 𝑇 to two real
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coordinates 𝑋, Im𝑇 :

𝑇 = Re𝑇 + 𝑖Im𝑇 =
1
2

(
𝑋 + Φ

3

)
+ 𝑖Im𝑇, (11.22)

which gives 𝑒−𝑎𝑇 = 𝑒−
𝑎
2 (𝑋+

Φ
3 )𝑒−𝑎𝑖Im𝑇 . Remember that 𝑋 ≡ 𝑇 +𝑇 − Φ/3.

Then, since𝑊 ℎ
𝐼
= 0, the corresponding hidden-sector F-term scalar potential is given by

𝑉 ℎ𝐹 = −
𝑊 ℎ
𝑇
𝑊̄ ℎ + 𝑊̄ ℎ

𝑇
𝑊 ℎ

𝑋 2 +
|𝑊 ℎ

𝑇
|2

3𝑋 2

(
𝑋 + 1

3
Φ𝐼Φ

𝐼 𝐽Φ𝐽

)
= − 1

𝑋 2

(
− 2𝑎𝐴2𝑒−𝑎(𝑋+Φ/3) + 2𝑎𝑐𝐴2𝑒−𝑎(𝑋+Φ/3)/2 cos(𝑎Im𝑇 )

)
+ 1
3𝑋 2

(
𝑋 + 1

3
Φ𝐼Φ

𝐼 𝐽Φ𝐽

)
𝑎2𝐴2𝑒−𝑎(𝑋+Φ/3) . (11.23)

Since we assume that the D-term potential belongs to the hidden sector, the hidden-sector

total scalar potential can be written as

𝑉ℎ = 𝑉𝐷 +𝑉 ℎ𝐹

=
1
2
𝑔2

(
𝜉 + 𝑞𝐼𝑧

𝐼Φ𝐼 + 𝑞𝐼𝑧𝐼Φ𝐼
𝑋

)2
− 1
𝑋 2

(
− 2𝑎𝐴2𝑒−𝑎(𝑋+Φ/3) + 2𝑎𝑐𝐴2𝑒−𝑎(𝑋+Φ/3)/2 cos(𝑎Im𝑇 )

)
+ 1
3𝑋 2

(
𝑋 + 1

3
Φ𝐼Φ

𝐼 𝐽Φ𝐽

)
𝑎2𝐴2𝑒−𝑎(𝑋+Φ/3) . (11.24)

We de�ne the SUSY breaking scale 𝑀𝑆 in terms of the scalar potential 𝑉ℎ and the gravitino mass

𝑚3/2 as

𝑉+ ≡ 𝑀4
𝑆 = 𝑉ℎ + 3𝑚2

3/2 = 𝑉ℎ +
3
𝑋 3𝐴

2(𝑒−𝑎(𝑋+Φ/3) − 2𝑐𝑒−𝑎(𝑋+Φ/3)/2 cos(𝑎Im𝑇 ) + 𝑐2). (11.25)

To investigate the moduli stabilization, we identify the canonically normalized �elds by in-

218



spection of the kinetic terms, which are given by

L𝐾 =
Φ
𝐼
¯̂
𝐽

𝑋
𝑔𝜇𝜈𝐷𝜇𝑧

𝐼𝐷𝜈𝑧
¯̂
𝐽 + 3

4𝑋 2𝑔𝜇𝜈𝜕𝜇𝑋𝜕𝜈𝑋

+ 3
𝑋 2𝑔𝜇𝜈 [𝜕𝜇Im𝑇 − (Im𝐷𝜇𝑧𝐼Φ𝐼/3)] [𝜕𝜈 Im𝑇 − (Im𝐷𝜈𝑧𝐼Φ𝐼/3)], (11.26)

where𝐷𝜇 ≡ 𝜕𝜇−𝑖𝑞𝐼𝐴𝜇 is the U(1) gauge covariant derivative for the matter multiplets 𝑧𝐼 = (𝑧𝐼 , 𝑧𝑖)

with gauge charge 𝑞𝐼 = (𝑞𝐼 ≠ 0, 𝑞𝑖 = 0), and 𝐴𝜇 is the corresponding gauge �eld.

After performing another �eld rede�nition 𝑋 ≡ 𝑒
√
2/3𝜙 , we �nd

L𝐾 = Φ𝐼 𝐽𝑒
−
√
2/3𝜙𝑔𝜇𝜈𝐷𝜇𝑧

𝐼𝐷𝜈𝑧 𝐽 + 1
2
𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙

+3𝑒−2
√
2/3𝜙𝑔𝜇𝜈 [𝜕𝜇Im𝑇 − (Im𝐷𝜇𝑧𝐼Φ𝐼/3)] [𝜕𝜈 Im𝑇 − (Im𝐷𝜈𝑧𝐼Φ𝐼/3)] . (11.27)

Notice that 𝜙 is canonically normalized, while the other �elds 𝑧𝐼 , Im𝑇 are so only when 𝜙 is small.

Now, let us investigate the scalar potential vacuum. First of all, we �nd the minimum with

respect to the matter scalars 𝑧𝐼 ,

𝜕𝑉

𝜕𝑧𝐼
= 0 =⇒ Φ𝐼 = 0. (11.28)

If we choose a real function such that Φ𝐼 = 0 implies Φ = 0 together with 𝑧𝐼 = 0 then at this

vacuum the scalar potential becomes 3

𝑉ℎ =
1
2
𝑔2𝜉2 − 1

𝑋 2

(
− 2𝑎𝐴2𝑒−𝑎𝑋 + 2𝑎𝑐𝐴2𝑒−𝑎𝑋/2 cos(𝑎Im𝑇 )

)
+ 1
3𝑋
𝑎2𝐴2𝑒−𝑎𝑋 . (11.29)

Next, we consider the vacuum with respect to the Im𝑇 �eld. We �nd the vacuum at 𝑎Im𝑇 = 𝑛𝜋 ,
3The observable-sector superpotential𝑊 𝑜 can shift the VEVs of the scalars in the observable sector 𝑧𝑖 , but since

those VEVs must be in any case small compared to 𝐻 and𝑀𝑝𝑙 we can approximately set 𝑧𝑖 = 0. Moreover, in our toy
example in Section 5 we will choose a superpotential that indeedgives a minimum at 𝑧𝑖 = 0.
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where 𝑛 is an even integer, leading to cos(𝑎Im𝑇 ) = 14 and

𝑉ℎ =
1
2
𝑔2𝜉2 + 2𝑎𝐴2

𝑋 2 𝑒−𝑎𝑋 − 2𝑎𝑐𝐴2

𝑋 2 𝑒−𝑎𝑋/2 + 𝑎
2𝐴2

3𝑋
𝑒−𝑎𝑋 . (11.30)

Next, let us �nd the vacuum with respect to the 𝜙 �eld. Recalling that 𝑋 = 𝑒
√
2/3𝜙 , calling

〈𝜙〉 the vacuum expectation value of 𝜙 and setting 𝜙 = 〈𝜙〉 =

√︃
3
2 ln 〈𝑋 〉 =

√︃
3
2 ln𝑥 , where

𝑋 = 〈𝑋 〉 ≡ 𝑥 , we have

𝜕𝑉ℎ

𝜕𝜙

����
𝜙=〈𝜙〉

=
𝜕𝑉ℎ

𝜕𝑋

����
𝑋=𝑥

𝜕𝑋

𝜕𝜙

����
𝜙=〈𝜙〉

= 0 =⇒ 𝜕𝑉ℎ

𝜕𝑋

����
𝑋=𝑥

= 0, (11.31)

which gives

𝜕𝑉ℎ

𝜕𝑋

����
𝑋=𝑥

= −4𝑎𝐴
2

𝑥3
𝑒−𝑎𝑥 − 2𝑎2𝐴2

𝑥2
𝑒−𝑎𝑥 + 4𝑎𝑐𝐴2

𝑥3
𝑒−𝑎𝑥/2 + 𝑎

2𝑐𝐴2

𝑥2
𝑒−𝑎𝑥/2 − 𝑎2𝐴2

3𝑥2
𝑒−𝑎𝑥 − 𝑎3𝐴2

3𝑥
𝑒−𝑎𝑥 = 0.

(11.32)

At �rst glance, this equation seems a little complicated, but after a short calculation, we can obtain

the following simple relation

𝜕𝑉ℎ

𝜕𝑋

����
𝑋=𝑥

= 0 =⇒ 𝑐 =

(
1 + 𝑎𝑥

3

)
𝑒−𝑎𝑥/2. (11.33)

Inserting the value of 𝑐 into 𝑉ℎ , we obtain the following equation

𝑉ℎ =
1
2
𝑔2𝜉2 + 2𝑎𝐴2

𝑋 2 𝑒−𝑎𝑋 − 2𝑎𝐴2

𝑋 2

(
1 + 𝑎𝑥

3

)
𝑒−𝑎𝑥/2𝑒−𝑎𝑋/2 + 𝑎

2𝐴2

3𝑋
𝑒−𝑎𝑋 , (11.34)

where 𝑋 = 𝑒
√
2/3𝜙 .

4When cos(𝑎Im𝑇 ) = 1, the second derivative of the potential can be positive, which means that the stationary
point is a minimum.
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Then, the vacuum energy at 𝑋 = 𝑥 is given by

𝑉ℎ |𝑋=𝑥 =
1
2
𝑔2𝜉2 − 𝑎2𝐴2𝑒−𝑎𝑥

3𝑥
≡ Λ, (11.35)

whereΛ is de�ned to be the post-in�ationary cosmological constant, and the SUSY breaking scale

is given by

𝑉+ |𝑋=𝑥 = 𝑉ℎ |𝑋=𝑥 +
3
𝑋 3𝐴

2(𝑒−𝑎𝑋 − 2𝑐𝑒−𝑎𝑋/2 + 𝑐2)
����
𝑋=𝑥

= Λ + 3
𝑥3
𝐴2(𝑒−𝑎𝑥/2 − 𝑐)2 = Λ + 3𝐴2

𝑥3
𝑎2𝑥2𝑒−𝑎𝑥

9

= Λ + 𝑎
2𝐴2𝑒−𝑎𝑥

3𝑥
=
1
2
𝑔2𝜉2 ≡ 𝑀4

𝑆 , (11.36)

where𝑀𝑆 is by de�nition the SUSY breaking scale. We can set Λ to any value we wish, in partic-

ular we can choose it to be Λ ∼ 10−120.

Here, we point out that the term 1
2𝑔

2𝜉2 governs the magnitude of the total scalar potential,

and simultaneously controls the scale of spontaneously supersymmetry breaking. Hence, if we

want that the scalar potential describes in�ation, we need to impose

𝑀4
𝑆 =

1
2
𝑔2𝜉2

!
= 𝐻 2𝑀2

𝑝𝑙
≡ 𝑀4

𝐼 , (11.37)

where 𝐻 is the Hubble parameter, and𝑀𝐼 is de�ned to be the mass scale of in�ation.

We then identify

𝐴 =

√︄
3𝑥 (𝑀4

𝐼
− Λ)𝑒𝑎𝑥

𝑎2
, 𝑊0 = −𝑐𝐴 = −

(
1 + 𝑎𝑥

3

)√︄3𝑥 (𝑀4
𝐼
− Λ)

𝑎2
. (11.38)

Substituting the above parameters𝐴,𝑊0, 𝑀𝐼 into the hidden-sector potential, we can obtain a
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plateau in�ation potential

𝑉ℎ = 𝑀
4
𝐼 − (𝑀4

𝐼 − Λ)𝑥
[
6𝑒−𝑎(𝑋−𝑥)/2

𝑎𝑋 2

(
1 − 𝑒−𝑎(𝑋−𝑥)/2 + 𝑎𝑥

3

)
− 𝑒−𝑎(𝑋−𝑥)

𝑋

]
, (11.39)

where 𝑋 = 𝑒
√
2/3𝜙 and 𝜙 is de�ned to be the in�aton. Notice that the in�aton mass after in�ation

is of order of the Hubble scale, i.e.𝑚2
𝜙
∼ 𝐻 2 = 10−10𝑀2

𝑝𝑙
.

We note that the hidden-sector scalar potential 𝑉ℎ has a plateau, so it is of HI type (in the

notations of ref. [53]). Furthermore, it depends only on four parameters, which are: the vacuum

expectation value of 𝑋 (i.e. 𝑥 ≡ 〈𝑋 〉); the KKLT parameter 𝑎 in the superpotential, which will be

determined according to the type of the nonperturbative correctionwe choose5; the in�ation scale

𝑀𝐼 , and the post-in�ationary cosmological constant Λ. At 𝑋 = 𝑥 , the potential indeed reduces to

the post-in�ationary cosmological constant. As an additional remark, we observe that for �xed

𝑥,𝑀𝐼 ,Λ in�ation ends earlier when 𝑎 is smaller. When the nonperturbative corrections to the

KKLT superportential come from gaugino condensation [19], a smaller parameter 𝑎 corresponds

to more D7 branes being stacked.

11.4 Hidden Sector Dynamics 2: Super-EeV Gravitino Mass

In this section, we investigate some physical implications that can be obtained fromourmodel.

The SUSY breaking scale is identi�edwith𝑀4
𝑆
∼ 𝐻 2𝑀2

𝑝𝑙
. We �nd the gravitinomass after in�ation,

5For example, if we consider a nonperturbative correction due to gaugino condensation, then we �nd 𝑎 = 2𝜋
𝑁𝑐

for
a non-abelian gauge group 𝑆𝑈 (𝑁𝑐 ) where 𝑁𝑐 is interpreted as the number of coincident D7 branes being stacked
[19].
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which is generated by the high-scale SUSY breaking in the hidden sector. It is given by

𝑚2
3/2 = 𝑒𝐺 =

|𝑊 ℎ |2
𝑋 3 =

𝐴2

𝑋 3 (𝑒
−𝑎(𝑋+Φ/3) − 2𝑐𝑒−𝑎(𝑋+Φ/3)/2 cos(𝑎Im𝑇 ) + 𝑐2)

����
𝑧𝐼=0,𝑎Im𝑇=0,𝑋=𝑥

=
3𝑥 (𝑀4

𝐼
− Λ)𝑒𝑎𝑥

𝑎2𝑥3
(𝑒−𝑎𝑥 − 2𝑐𝑒−𝑎𝑥/2 + 𝑐2) =

3𝑥 (𝑀4
𝐼
− Λ)𝑒𝑎𝑥

𝑎2𝑥3
(𝑐 − 𝑒−𝑎𝑥/2)2

=
(𝑀4

𝐼
− Λ)
3

=⇒ 𝑚3/2 ≈
𝐻
√
3
= 10−6𝑀𝑝𝑙 ∼ 1012 GeV = 103 EeV, (11.40)

which is compatible with the case of EeV-scale gravitino cold dark matter candidates. This is

not surprising because we are considering the same high-scale supersymmetry breaking scale

as in [82–85], where that scenario was proposed. The possibility of direct detection for such

heavy dark matter candidates has recently been studied in ref. [86]. Notice that in our model the

gravitino mass is always O(𝐻 ), irrespective of the ultraviolet cuto�.

11.5 Observable Sector Dynamics: Low Scale Soft

Supersymmetry Breaking Interactions

In this section we investigate the mass scales of the soft supersymmetry-breaking interac-

tions in the observable sector. We need to �nd under which conditions our model could be phe-

nomenologically realistic. A full investigation of the detailed structure of the soft interactions in

the observable sector requires a study that goes beyond the scope of this work, so here we will

limit ourselves to general remarks and a coarse-grained analysis of necessary conditions for the

viability of our model. We focus our analysis on the soft masses.

Restoring the mass dimension (so that the 𝑇, 𝑧𝑖 have canonical mass dimension 1), the soft-
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term potential becomes

𝑉𝑠𝑜 𝑓 𝑡 ≡ − 1
𝑀𝑝𝑙𝑋

2 [𝑊
𝑜𝑊̄ ℎ

𝑇
+ 𝑊̄ 𝑜𝑊 ℎ

𝑇 ] +
1
9
|𝑊 ℎ

𝑇
|2

𝑀2
𝑝𝑙
𝑋 2Φ𝑖Φ

𝑖 𝑗Φ 𝑗

+1
3

1
𝑀𝑝𝑙𝑋

2 [𝑊
ℎ
𝑇 Φ𝑖Φ

𝑖 𝑗𝑊̄ 𝑜
𝑗
+ 𝑊̄ ℎ

𝑇
𝑊 𝑜
𝑖 Φ

𝑖 𝑗Φ 𝑗 ] +
1
𝑋 2𝑊

𝑜
𝑖 Φ

𝑖 𝑗𝑊̄ 𝑜
𝑗
. (11.41)

This formula is obtained by taking the following low-energy limit: 𝐹ℎ, 𝑀𝑝𝑙 → ∞ (where 𝐹ℎ are

the hidden-sector auxiliary F-term �elds) while𝑚3/2=constant [78]. Elegant examples of gravity

mediation and soft SUSY breaking are simply explained in e.g. [8].

In addition, the hidden-sector superpotential can be written as

𝑊 ℎ = 𝐴(𝑒−𝑎𝑇 /𝑀𝑝𝑙 − 𝑐) = 𝑀𝑝𝑙

√︄
3𝑥 (𝑀4

𝐼
− Λ)𝑒𝑎𝑥

𝑎2
(𝑒−𝑎𝑇 /𝑀𝑝𝑙 − (1 + 𝑎𝑥/3)𝑒−𝑎/2)

= 𝑀𝑝𝑙

√︄
3𝑥 (𝑀4

𝐼
− Λ)𝑒𝑎𝑥

𝑎2
(𝑒−𝑎(𝑋+Φ/3𝑀

2
𝑝𝑙
)/2
𝑒−𝑖𝑎Im𝑇 /𝑀𝑝𝑙 − (1 + 𝑎𝑥/3)𝑒−𝑎𝑥/2), (11.42)

where we have used 𝑒−𝑎𝑇 = 𝑒
−𝑎2 (𝑋+Φ/3𝑀

2
𝑝𝑙
)
𝑒−𝑎𝑖Im𝑇 /𝑀𝑝𝑙 .

Then, using

𝑊 ℎ
𝑇 = − 1

𝑀𝑝𝑙

𝑎𝐴𝑒
−𝑎(𝑋+Φ/3𝑀2

𝑝𝑙
)/2
𝑒−𝑖𝑎Im𝑇 /𝑀𝑝𝑙 , |𝑊 ℎ

𝑇 |
2 =

1
𝑀2
𝑝𝑙

𝑎2𝐴2𝑒
−𝑎(𝑋+Φ/3𝑀2

𝑝𝑙
)
, (11.43)

we obtain

𝑉𝑠𝑜 𝑓 𝑡 ≡ 𝑎𝐴𝑒
−𝑎(𝑋+Φ/3𝑀2

𝑝𝑙
)/2

𝑀2
𝑝𝑙
𝑋 2 [𝑊 𝑜𝑒𝑖𝑎Im𝑇 /𝑀𝑝𝑙 + 𝑊̄ 𝑜𝑒−𝑖𝑎Im𝑇 /𝑀𝑝𝑙 ] + 1

9
𝑎2𝐴2𝑒

−𝑎(𝑋+Φ/3𝑀2
𝑝𝑙
)

𝑀4
𝑝𝑙
𝑋 2 Φ𝑖Φ

𝑖 𝑗Φ 𝑗

−1
3
𝑎𝐴𝑒

−𝑎(𝑋+Φ/3𝑀2
𝑝𝑙
)/2

𝑀2
𝑝𝑙
𝑋 2 [𝑒−𝑖𝑎Im𝑇 /𝑀𝑝𝑙Φ𝑖Φ𝑖 𝑗𝑊̄ 𝑜

𝑗
+ 𝑒𝑖𝑎Im𝑇 /𝑀𝑝𝑙𝑊 𝑜

𝑖 Φ
𝑖 𝑗Φ 𝑗 ] +

1
𝑋 2𝑊

𝑜
𝑖 Φ

𝑖 𝑗𝑊̄ 𝑜
𝑗
.

(11.44)

At the true vacuum we have 𝑎Im𝑇 /𝑀𝑝𝑙 = 𝑛𝜋, 𝑋 = 𝑥, 𝑧𝐼 = 0 where 𝑛 is an even integer, so the
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soft terms become

𝑉𝑠𝑜 𝑓 𝑡 ≡ 𝑎𝐴𝑒−𝑎𝑥/2

𝑀2
𝑝𝑙
𝑥2

[𝑊 𝑜 + 𝑊̄ 𝑜] + 1
9
𝑎2𝐴2𝑒−𝑎𝑥

𝑀4
𝑝𝑙
𝑥2

Φ𝑖Φ
𝑖 𝑗Φ 𝑗

−1
3
𝑎𝐴𝑒−𝑎𝑥/2

𝑀2
𝑝𝑙
𝑥2

[Φ𝑖Φ𝑖 𝑗𝑊̄ 𝑜
𝑗
+𝑊 𝑜

𝑖 Φ
𝑖 𝑗Φ 𝑗 ] +

1
𝑥2
𝑊 𝑜
𝑖 Φ

𝑖 𝑗𝑊̄ 𝑜
𝑗
. (11.45)

From 𝐴 =

√︃
3𝑥 (𝑀4

𝐼
−Λ)𝑒𝑎𝑥
𝑎2

𝑀𝑝𝑙 ≈
√
3
𝑎
𝑥1/2𝑒𝑎𝑥/2𝑀2

𝐼
𝑀𝑝𝑙 , we �nd 𝑎𝐴𝑒−𝑎𝑥/2 =

√
3𝑥1/2𝑀2

𝐼
𝑀𝑝𝑙 . Inserting this

expression into the soft-terms potential, we get

𝑉𝑠𝑜 𝑓 𝑡 ≡
√
3𝑥1/2𝑀2

𝐼
𝑀𝑝𝑙

𝑀2
𝑝𝑙
𝑥2

[𝑊 𝑜 + 𝑊̄ 𝑜] + 1
9
(
√
3𝑥1/2𝑀2

𝐼
𝑀𝑝𝑙 )2

𝑀4
𝑝𝑙
𝑥2

Φ𝑖Φ
𝑖 𝑗Φ 𝑗

−1
3

√
3𝑥1/2𝑀2

𝐼
𝑀𝑝𝑙

𝑀2
𝑝𝑙
𝑥2

[Φ𝑖Φ𝑖 𝑗𝑊̄ 𝑜
𝑗
+𝑊 𝑜

𝑖 Φ
𝑖 𝑗Φ 𝑗 ] +

1
𝑥2
𝑊 𝑜
𝑖 Φ

𝑖 𝑗𝑊̄ 𝑜
𝑗
. (11.46)

The soft-terms potential thus reduces to

𝑉𝑠𝑜 𝑓 𝑡 ≡
√
3𝑥−3/2𝑀2

𝐼

𝑀𝑝𝑙

[𝑊 𝑜 + 𝑊̄ 𝑜] + 1
3
𝑀4
𝐼

𝑀2
𝑝𝑙
𝑥
Φ𝑖Φ

𝑖 𝑗Φ 𝑗

− 1
√
3

𝑥−3/2𝑀2
𝐼

𝑀𝑝𝑙

[Φ𝑖Φ𝑖 𝑗𝑊̄ 𝑜
𝑗
+𝑊 𝑜

𝑖 Φ
𝑖 𝑗Φ 𝑗 ] +

1
𝑥2
𝑊 𝑜
𝑖 Φ

𝑖 𝑗𝑊̄ 𝑜
𝑗
. (11.47)

Next, let us consider a general expansion of the observable-sector superpotential𝑊 𝑜

𝑊 𝑜 (𝑧𝑖) =
∑︁
𝑛=0

𝑊 𝑜
𝑖 ···𝑘
𝑛!

𝑧𝑖 · · · 𝑧𝑘 = 𝐵0 + 𝑆𝑖𝑧𝑖 +𝑀𝑖 𝑗𝑧
𝑖𝑧 𝑗 + 𝑌𝑖 𝑗𝑘𝑧𝑖𝑧 𝑗𝑧𝑘 + · · · , (11.48)

where𝑊 𝑜
𝑖 ···𝑘 ≡ 𝜕𝑛𝑊 𝑜 (𝑧𝑖)/𝜕𝑧𝑖 · · · 𝜕𝑧𝑘 and𝐵0, 𝑆𝑖, 𝑀𝑖 𝑗 , 𝑌𝑖 𝑗𝑘 are constant parameters determiningmasses

and interactions.

Wewon’t perform a full analysis of all possible ranges of values for 𝐵0, 𝑆𝑖 ,𝑀𝑖 𝑗 and𝑌𝑖 𝑗𝑘 ; instead,

we will simplify out analysis by setting 𝑆𝑖 = 0, so that the vacuum of the observable sector is at

𝑧𝑖 = 0, assume that for all 𝑖, 𝑗, 𝑘 all𝑀𝑖 𝑗 and𝑌𝑖 𝑗𝑘 are of the same order, and set 𝐵0 = 0. The soft terms
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in the scalar potential are then generated only by following terms in the expansion of𝑊 𝑜 [81].

𝑊 𝑜 (𝑧𝑖) = 𝑀𝑖 𝑗𝑧
𝑖𝑧 𝑗 + 𝑌𝑖 𝑗𝑘𝑧𝑖𝑧 𝑗𝑧𝑘 , (11.49)

where the𝑀𝑖 𝑗 have mass dimension one and the 𝑌𝑖 𝑗𝑘 are dimensionless.

This choice also implies that such superpotential does not signi�cantly change the cosmo-

logical constant because all the minima of the 𝑧𝑖 are located at zero. We will choose the U(1)

gauge-invariant Kähler function of matter �elds as follows

Φ = 𝛿𝐼 𝐽𝑧
𝐼𝑧 𝐽 + 𝛿𝑖 𝑗𝑧𝑖𝑧 𝑗 , (11.50)

where the �rst (second) term corresponds to hidden (observable) sector.

With our simplifying assumptions we obtain

𝑉𝑠𝑜 𝑓 𝑡 =
2
√
3

3
𝑥−3/2𝑀2

𝐼

𝑀𝑝𝑙

[
(𝑀𝑖 𝑗𝑧

𝑖𝑧 𝑗 + 𝑌𝑖 𝑗𝑘𝑧𝑖𝑧 𝑗𝑧𝑘) + 𝑐.𝑐 .
]
+
𝑀4
𝐼
𝑥−1

3𝑀2
𝑝𝑙

𝛿𝑖 𝑗𝑧
𝑖𝑧 𝑗

+𝑥−2 [𝑀𝑖 𝑗𝑧
𝑗 + 𝑌𝑖 𝑗𝑘𝑧 𝑗𝑧𝑘]𝛿𝑖 𝑗 [𝑀̄𝑖 𝑗𝑧

𝑖 + 𝑌𝑖 𝑗𝑘𝑧𝑖𝑧𝑘] . (11.51)

We also �nd the magnitude of the corresponding soft parameters from Eq. (11.51) as

2
√
3

3
𝑀2
𝐼

𝑀𝑝𝑙

𝑥−3/2 |𝑀𝑖 𝑗 | ≡𝑚2
𝑠1,

2
√
3

3
𝑀2
𝐼

𝑀𝑝𝑙

𝑥−3/2 |𝑌𝑖 𝑗𝑘 | ≡𝑚𝑠2,
1
3
𝑀4
𝐼

𝑀2
𝑝𝑙

𝑥−1 ≡𝑚2
𝑠3,

|𝑀𝑖 𝑗 |2𝑥−2 ≡𝑚2
𝑠4, |𝑌𝑖 𝑗𝑘 |2𝑥−2 ≡

𝑚𝑠5

𝑀𝑝𝑙

, |𝑀𝑖 𝑗 | |𝑌𝑖 𝑗𝑘 |𝑥−2 ≡𝑚𝑠6. (11.52)

We observe that during in�ation (for large 𝑋 or 𝜙) all the soft mass parameters are very small.
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Also, the above result give us the following relations

𝑥 =
𝑀4
𝐼

3𝑚2
𝑠3𝑀

2
𝑝𝑙

=
𝐻 2

3𝑚2
𝑠3
, |𝑀𝑖 𝑗 | =

1
6
𝑀4
𝐼

𝑀2
𝑝𝑙

𝑚2
𝑠1

𝑚3
𝑠3

=
1
6
𝐻 2𝑚

2
𝑠1

𝑚3
𝑠3

=

√
3
2
𝑚2
𝑠1
𝐻
𝑥3/2, |𝑌𝑖 𝑗𝑘 | =

1
6
𝑀4
𝐼

𝑀2
𝑝𝑙

𝑚𝑠2

𝑚3
𝑠3
,

𝑚𝑠4 =
1
4
𝑚2
𝑠1

𝑚𝑠3
, 𝑚𝑠5 =

1
4

(
𝑚𝑠2

𝑚𝑠3

)2
𝑀𝑝𝑙 , 𝑚𝑠6 =

1
4

(
𝑚𝑠1

𝑚𝑠3

)2
𝑚𝑠2. (11.53)

We note that only𝑚𝑠1,𝑚𝑠2,𝑚𝑠3 are free parameters. However, when we examine the kinetic term

in Eq. (11.27) we observe that at 𝑥 = 1 the kinetic terms of the matter multiplets are canonically

normalized. The condition 𝑥 = 1 then gives𝑚𝑠3 =
𝐻√
3
= 10−6𝑀𝑝𝑙 ∼ 𝑚3/2. So in this case, the free

parameters reduce to𝑚1 and𝑚2 only. Notice that in the regime𝑚𝑠3 ∼ 𝑚3/2, the parameter𝑚𝑠1

determines the magnitude of |𝑀𝑖 𝑗 | and𝑚𝑠4, while𝑚𝑠2 determines that of |𝑌𝑖 𝑗𝑘 |,𝑚𝑠5, and𝑚𝑠6.

Finally, let us investigate further the physical masses of matter scalars in the observable sector.

Here, we are going to look only at the matter scalar masses and leave a detailed study of fermion

masses and interactions to a future work, since the purpose of this section is to demonstrate the

existence of light scalars in the observable sector, whose masses can be smaller than that of the

gravitino. Because of the soft mass parameters we found, we expect that some scalars will be as

heavy as the gravitino, while other scalars could be much lighter.

To compute the scalar masses we must remember to include contributions coming from the

expansion of the hidden-sector potential to second order in the observable-sector scalars 𝑧𝑖 :

𝑉ℎ (𝑧𝐼 , 𝑧𝑖) = 𝑉ℎ (0.0) +𝑉ℎ 𝑖 𝑗𝑧𝑖𝑧 𝑗 . We thus consider the general expression for the total scalar poten-
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tial, which is written with the canonical mass dimensions by

𝑉 = 𝑉𝐷 +𝑉 ℎ𝐹 +𝑉𝑠𝑜 𝑓 𝑡

=
1
2
𝑔2𝑀4

𝑝𝑙

(
𝜉 + 𝑞𝐼𝑧

𝐼Φ𝐼 + 𝑞𝐼𝑧𝐼Φ𝐼
𝑋𝑀2

𝑝𝑙

)2
− 1
𝑋 2𝑀2

𝑝𝑙

(
− 2𝑎𝐴2𝑒

−𝑎(𝑋+Φ/3𝑀2
𝑝𝑙
) + 2𝑎𝑐𝐴2𝑒

−𝑎(𝑋+Φ/3𝑀2
𝑝𝑙
)/2 cos(𝑎Im𝑇 /𝑀𝑝𝑙 )

)
+ 1
3𝑋 2𝑀2

𝑝𝑙

(
𝑋 + 1

3𝑀2
𝑝𝑙

Φ𝐼Φ
𝐼 𝐽Φ𝐽

)
𝑎2𝐴2𝑒

−𝑎(𝑋+Φ/3𝑀2
𝑝𝑙
)

+𝑎𝐴𝑒
−𝑎(𝑋+Φ/3𝑀2

𝑝𝑙
)/2

𝑀2
𝑝𝑙
𝑋 2 [𝑊 𝑜𝑒𝑖𝑎Im𝑇 /𝑀𝑝𝑙 + 𝑊̄ 𝑜𝑒−𝑖𝑎Im𝑇 /𝑀𝑝𝑙 ] + 1

9
𝑎2𝐴2𝑒

−𝑎(𝑋+Φ/3𝑀2
𝑝𝑙
)

𝑀4
𝑝𝑙
𝑋 2 Φ𝑖Φ

𝑖 𝑗Φ 𝑗

−1
3
𝑎𝐴𝑒

−𝑎(𝑋+Φ/3𝑀2
𝑝𝑙
)/2

𝑀2
𝑝𝑙
𝑋 2 [𝑒−𝑖𝑎Im𝑇 /𝑀𝑝𝑙Φ𝑖Φ𝑖 𝑗𝑊̄ 𝑜

𝑗
+ 𝑒𝑖𝑎Im𝑇 /𝑀𝑝𝑙𝑊 𝑜

𝑖 Φ
𝑖 𝑗Φ 𝑗 ] +

1
𝑋 2𝑊

𝑜
𝑖 Φ

𝑖 𝑗𝑊̄ 𝑜
𝑗
.(11.54)

First, we �nd that masses of the hidden-sector matter scalars 𝑧𝐼 and Im𝑇 can be independently

de�ned by tuning the magnitude of the U(1) gauge charge ∀𝐼 : 𝑞𝐼 ≡ 𝑞 and the parameter 𝑎

respectively such that they are positive de�nite. This implies that the hidden-sector �elds can

be heavy as much as we wish. Thus, to get an e�ective single-�eld slow-roll in�ation we should

make the hidden-sector matter scalars much heavier than the Hubble scale during slow roll. Their

masses can be lighter than the Hubble scale before the onset of the slow-roll period, that is for

very large values of 𝑋 . Second, it is obvious that the in�aton mass is of the same order as the

Hubble scale, i.e.𝑚𝜙 ∼ 𝐻 , since the scalar potential is of “HI” or “Starobinsky”form and has a de

Sitter vacuum, as we have seen in the previous sections.

Next, we investigatemasses of the observable-sector �elds. We can simplify further our analy-

sis to make our point clearer by assuming that the quadratic term in the superpotential is diagonal

𝑀𝑖 𝑗 = 𝛿𝑖 𝑗𝑀 . From the total scalar potential, we �nd the observable-sector squared mass matrix
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𝑀2
𝑜𝑏𝑠

at the vacuum speci�ed by the conditions that 𝑎Im𝑇 = 𝑛𝜋 , 𝑧𝐼 = 0, and 𝑧𝑖 = 0

𝑀2
𝑜𝑏𝑠

≡
©­­«
𝑉𝑖 𝑗 𝑉𝑖 𝑗

𝑉𝑖 𝑗 𝑉𝑖 𝑗

ª®®¬ (11.55)

where

𝑉𝑖 𝑗 = −2𝑎
2𝐴2

3𝑋 2 𝛿𝑖 𝑗𝑒
−𝑎𝑋 + 𝑐𝑎

2𝐴2

3𝑋 2 𝛿𝑖 𝑗𝑒
−𝑎𝑋/2 − 𝑎3𝐴2

9𝑋
𝑒−𝑎𝑋𝛿𝑖 𝑗 +

𝑎2𝐴2

9𝑋 2 𝑒
−𝑎𝑋𝛿𝑖 𝑗 +

1
𝑋 2𝑊

𝑜
𝑖𝑙
Φ𝑙𝑛𝑊̄ 𝑜

𝑛 𝑗

=
1
𝑋 2𝑊

𝑜
𝑖𝑙
Φ𝑙𝑛𝑊̄ 𝑜

𝑛 𝑗
− 2𝑎2𝐴2

9𝑋 2 𝑒
−𝑎𝑋𝛿𝑖 𝑗 =

(𝑀2

𝑋 2 − 2𝑎2𝐴2

9𝑋 2 𝑒
−𝑎𝑋

)
𝛿𝑖 𝑗 ,

𝑉𝑖 𝑗 =
𝑎𝐴

3𝑋 2𝑒
−𝑎𝑋/2𝑊 𝑜

𝑖 𝑗 =
𝑎𝐴

3𝑋 2𝑒
−𝑎𝑋/2𝑀𝛿𝑖 𝑗 . (11.56)

Restoring the mass dimension, the mass eigenvalues are

𝑚2
± ≡

(𝑀2

𝑋 2 − 2𝑎2𝐴2

9𝑋 2𝑀4
𝑝𝑙

𝑒−𝑎𝑋
)
± 𝑎𝐴

3𝑋 2𝑀2
𝑝𝑙

𝑒−𝑎𝑋/2𝑀

=
1
𝑋 2

(
𝑀 ± 𝑎𝐴

6𝑀2
𝑝𝑙

𝑒−𝑎𝑋/2
)2

− 𝑎2𝐴2

4𝑋 2𝑀4
𝑝𝑙

𝑒−𝑎𝑋 . (11.57)

We observe that if 𝑀 ∼ 𝑎𝐴/𝑀2
𝑝𝑙
(which is equivalent to the condition that𝑚𝑠1 ∼ 𝐻 ), then both

masses𝑚± are positive de�nite for all𝑋 = 𝑒
√
2/3𝜙 > 0 (or all𝜙), which means that during in�ation

the matter scalar masses are well de�ned (and become very light for large values of 𝑋 or 𝜙). This

will be con�rmed in the following.

Let us check the values of the scalar masses on the post-in�ationary vacuum. Using the

relations 𝐴 = 𝑀𝑝𝑙

√︃
3𝑥 (𝑀4

𝐼
−Λ)𝑒𝑎𝑥
𝑎2

, 𝑐 = (1 + 𝑎𝑥
3 )𝑒

−𝑎𝑥/2, and 𝑀 =
√
3
2
𝑚2
𝑠1
𝐻
𝑥3/2 in Eq. (11.53) and setting

Λ ≈ 0 at 𝑋 = 𝑥 = 1, where the kinetic terms of the matter scalars are canonically normalized, we

obtain

𝑚2
± =

3
4

𝑀2
𝑝𝑙

𝑀4
𝐼

𝑚4
𝑠1 −

2
3
𝑀4
𝐼

𝑀2
𝑝𝑙

± 1
2
𝑚2
𝑠1 =

(3
4
𝑘2 ± 𝑘 − 2

3

)
𝐻 2, (11.58)
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in which we de�ne𝑚2
𝑠1 ≡ 𝑘𝐻 2 (where 𝑘 > 0 and𝑀2

𝐼
/𝑀𝑝𝑙 = 𝐻 ). We notice that physical masses of

scalars are determined only by the “free” parameter𝑚𝑠1 (or 𝑘) and the Hubble mass 𝐻 . Positivity

of the physical masses “𝑚±” imposes the inequality

𝑚+ : − 2
3
+ 2
3
√
3 < 𝑘, 𝑚− :

2
3
+ 2
3
√
3 < 𝑘 =⇒ 2

3
+ 2
3
√
3 < 𝑘 (11.59)

Then, with this inequality, we can choose an arbitrary value of 𝑘 such that

2
3
+ 2
3
√
3 < 𝑘 =

2
3
+ 2
3

√︃
3(1 +𝑚2

−/𝐻 2) = −2
3
+ 2
3

√︃
3(1 +𝑚2

+/𝐻 2) (11.60)

allowing one physical mass𝑚− to be parametrically lighter than the other physical mass𝑚+ as

𝑚2
+ =

4𝐻 2
(
1 +

√︁
3(1 +𝑚2

−/𝐻 2)
)
+ 3𝑚2

−

3
. (11.61)

We note that𝑚𝑠1 =
√
𝑘𝐻 ∼ 𝐻 when𝑚− � 𝐻 , implying that𝑚2

± > 0 is indeed satis�ed. In this

limit, we �nd that one physical mass𝑚− can be much smaller than the Hubble scale, while the

other physical mass are of the order of the Hubble scale:

𝑚− � 𝐻, 𝑚+ & 𝐻. (11.62)

From this we note that in the observable sector after in�ation (that is at 𝑥 = 1) one physical

mass𝑚− can be lighter than that of the gravitino, while the other physical mass𝑚+ becomes of

the same order of the gravitino mass. We also note that the matter scalar with masses of order of

the super-EeV gravitino mass (∼ 10−6𝑀𝑝𝑙 ) may be a candidate for heavy dark matter candidate,

because it is in the mass range 10−8𝑀𝑝𝑙 ≤ 𝑚𝜒 ≤ 𝑀𝑝𝑙 , which is outside the excluded region shown

in Figs. 2, 3, and 4 of ref. [86]. To summarize, we found the following constraints on soft masses.

First,𝑚𝑠1 must satisfy Eq. (11.59) to allow for some light scalars while𝑚𝑠3 is of the same order as
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the gravitino mass𝑚3/2 and𝑚𝑠4 is determined by the chosen value of𝑚𝑠1. Notice that all these

mass parameters are subject to strict constraints such as Eq. (11.59). Furthermore,𝑚𝑠2,𝑚𝑠5, and

𝑚𝑠6 can be arbitrarily small,𝑚𝑠5 and𝑚𝑠6 are proportional to𝑚2
𝑠2 and𝑚𝑠2 respectively, and𝑚𝑠2 is

a free parameter.

It is worth noticing that the observable sector masses 𝑚− are compatible with the “Case 1”

reheating-scenario condition of ref. [53], for which single-�eld plateau-potential in�ation is ro-

bust under the introduction of light scalars. The parameters characterizing the reheating scenario

are

Γ𝜙 < Γ𝑧𝑖 < 𝑚𝑧𝑖 ∼𝑚− < 𝐻,

〈
𝑧𝑖

〉
𝑀𝑝𝑙

� 1, (11.63)

where Γ𝜙 , Γ𝑧𝑖 are the decay rates of𝜙 and 𝑧𝑖 during the reheating phase and
〈
𝑧𝑖

〉
are the expectation

values of matter scalars 𝑧𝑖 after in�ation. We note that 〈𝑧
𝑖〉

𝑀𝑝𝑙
� 1 implies that the slow-roll in�ation

should begin around theminima ofmatter scalars, so that at the end of in�ation the corresponding

vacuum expectation values will be much smaller than the Planck scale𝑀𝑝𝑙 . Hence, as long as the

above “Case 1” reheating-scenario condition is satis�ed, the slow-roll in�ation in our model will

e�ectively be driven by a single in�aton �eld 𝜙 along the minima of the matter scalars.
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12 | Inflationary Model 3: Single-Field

Slow-Roll Inflation, Minimal

Supersymmetric Standard Model

(MSSM), and de Sitter Vacua from

Minimal Supergravity with New

Fayet-Iliopoulos Terms

This chapter is based on the author’s original work in Ref. [87].

The main goal of this work is to propose a string-inspired supergravity model that can de-

scribe both an e�ective single-�eld slow-roll in�ation with dS vacua and the low energy MSSM

phenomenology at once in a single model in the context of 4D N = 1 supergravity. To do this,

we consider generalized (i.e. �eld-dependent) Kähler invariant Fayet-Iliopoulos terms1 proposed

by Aldabergenova, Ketov, and Knoops (AKK) [59] (say AKK-FI term) and KKLT string super-
1This is also constructed without gauging R-symmetry.
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potential [19]. We point out that the new FI term will play a role in making the extra scalars

su�ciently heavier than the Hubble scale in order to integrate them out in the end. This is a key

to make MSSM induced by supergravity models be phenomenologically reliable. We then take

advantage of gravity-mediated supersymmetry breaking [78] to reproduce the soft lagrangians

[81] and masses of MSSM. In addition, putting the naturalness issue away, we consider super-

symmetry breaking at high scale [76, 83] via D-term, which is the order of 𝑀𝑆 ∼
√︁
𝐻𝑀𝑝𝑙 where

𝐻 is the Hubble scale at O(10−5)𝑀𝑝𝑙 (instead of the low scale 𝑀𝑆 ∼ O(10−15)𝑀𝑝𝑙 ) in order that

the scale of in�ation in our model is ensured.

Of course, one may ask the string theoretical origin of the new FI terms. Regarding this,

Cribiori, Farakos, and Tournoy have presented a possible string-theoretical construction of new

FI terms by treating supersymmetric Born-Infeld actions that have a second non-linear super-

symmetry [79]. We moderately mention that the AKK-FI term we used in this work may be

conjectured to be originated from a similar construction as shown in Ref. [79], but a precise

investigation on it is still required in the future. What we would like to emphasize here is that

if a string realization of the new FI terms is discovered, then our proposal can be a low energy

e�ective supergravity description of realistic superstring thoery as a promising bridge between

infrared physics and its UV completion. This motivates us to explore a fully string theoretical

construction of our model.

12.1 4𝐷 N = 1 Supergravity with Generalized

Kähler-Invariant Fayet-Iliopoulos Terms and KKLT

String Background

In this section, we construct a superconformal action of N = 1 supergravity equipped with

generalized Kähler invariant Fayet-Iliopoulos (FI) terms [59] to explore possible dynamics that
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the action may possess in superconformal tensor calculus [8, 70]. To do this, we start with a

combination of standardN = 1 supergravity action and certain new FI terms studied in Ref. [60].

We write the superconformal action as

L = −3[𝑆0𝑆0𝑒−𝐾 (𝑍
𝐴,𝑍𝐴)/3]𝐷 + [𝑆30𝑊 (𝑍𝐴)]𝐹 +

1
2
[W𝛼 (𝑉 )W𝛼 (𝑉 )]𝐹 + 𝑐.𝑐 . + L𝑛𝑒𝑤 𝐹𝐼 (12.1)

where 𝑆0 is the conformal compensator with Weyl/chiral weights (1,1); 𝑍𝐴 and 𝑉 are chiral mat-

ter and vector multiplets with weights (0, 0); 𝐾 (𝑍, 𝑍 ) is a Kähler potential gauged by a vector

multiplet𝑉 ,𝑊 (𝑍 ) is a superpotential, andW𝛼 (𝑉 ) is the �eld strength of the vector multiplet𝑉 .

Then, we decompose matter multiplets 𝑍𝐴’s into hidden and observable sectors, denoting 𝑇

as the volumemodulus multiplet, and𝑍 𝑖 as observable sector matter multiplets. We then consider

the corresponding decomposition of superpotential as

𝑊 (𝑇 ) ≡𝑊 ℎ (𝑇 ) +𝑊 𝑜 (𝑍 𝑖), (12.2)

where

𝑊 ℎ (𝑇 ) ≡ 𝑊0 +𝐴𝑒−𝑎𝑇 , (12.3)

𝑊 𝑜 (𝑍 𝑖) ≡ 𝑊MSSM +𝑊𝐵𝑆𝑀 ′, (12.4)

𝑊𝑀𝑆𝑆𝑀 ≡ −𝑌𝑢𝑈𝑅𝐻̂𝑢 · 𝑄̂ + 𝑌𝑑𝐷̂𝑅𝐻̂𝑑 · 𝑄̂ + 𝑌𝑒𝐸𝑅𝐻̂𝑢 · 𝐿̂ + 𝜇𝐻̂𝑢 · 𝐻̂𝑑

= −𝑌𝑢𝑢̃𝑅 (𝐻+
𝑢𝑑𝐿 − 𝐻 0

𝑢𝑢̃𝐿) + 𝑌𝑑𝑑𝑅 (𝐻 0
𝑑
𝑑𝐿 − 𝐻−

𝑑
𝑢̃𝐿)

+𝑌𝑒𝑒𝑅 (𝐻+
𝑢 𝜈𝐿 − 𝐻 0

𝑢𝑒
−
𝐿 ) + 𝜇 (𝐻+

𝑢𝐻
−
𝑑
− 𝐻 0

𝑢𝐻
0
𝑑
), (12.5)

where𝑊0, 𝐴, 𝑎, 𝑌𝑢, 𝑌𝑑 , 𝑌𝑒, 𝜇 are constants; 𝐴 · 𝐵̂ ≡ 𝜖𝑎𝑏𝐴𝑎𝐵𝑏 is the product between 𝑆𝑈 (2)𝐿 doublets

in which 𝜖12 = 1 = −𝜖21 and 𝑎, 𝑏 are 𝑆𝑈 (2)𝐿 indices; 𝑢̃, 𝑑, 𝑒, 𝜈 are the component �elds of the

super�eld 𝑆𝑈 (2)𝐿 doublets 𝑄̂, 𝐿̂ as superpartners correponding to the SM quarks and leptons. In
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particular,𝑊𝐵𝑆𝑀 ′ may be added in the observable sector, but in this work, we will not treat it.

In our setup, we de�ne the hidden sector superpotential𝑊 ℎ using the nonperturbative correc-

tions which are obtained by either Euclidean D3 branes in type IIB compacti�cations or gaugino

condensation due to D7 branes [19]. We then de�ne the observable sector superpotential by

the one for the minimal supersymmetric standard model (MSSM)2 consisting of supermultiplets

of quarks, leptons, and Higgs �elds. Meanwhile, we consider a Kähler potential of the volume

modulus 𝑇 , the same as in KKLT string background [19], given by

𝐾 = −3 ln[𝑇 +𝑇 − Φ(𝑍 𝑖, 𝑍 𝑖)/3], (12.6)

where Φ(𝑍 𝑖, 𝑍 𝑖) is a real function of the observable-sector matter multiplets 𝑍 𝑖 ’s. In terms of the

real function Φ, we suppose that

Φ(𝑍 𝑖, 𝑍 𝑖) = 𝛿𝑖 𝑗𝑍 𝑖𝑍 𝑗 , (12.7)

in which Φ𝑖Φ
𝑖 𝑗Φ 𝑗 = Φ where Φ𝑖 ≡ 𝜕Φ/𝜕𝑧𝑖 and Φ𝑖 𝑗Φ

𝑙 𝑗 = 𝛿𝑙𝑖 .

The next step we need to do is going to determine which type of new FI terms we are going

to use. In this work, we employ “�eld-dependent” Kähler-invariant Fayet-Iliopoulos (FI) terms

proposed by Aldabergenova, Ketov, and Knoops (AKK) [59]. We refer to this FI term as AKK-FI

term to distinguish it from many other FI terms. The AKK-FI terms are written as

L1 ≡ −
[
(𝑆0𝑆0𝑒−𝐾/3)−3

(W𝛼 (𝑉 )W𝛼 (𝑉 )) (W̄¤𝛼 (𝑉 )W̄ ¤𝛼 (𝑉 ))
𝑇 (𝑤̄2)𝑇 (𝑤2)

(𝑉 )𝐷 (𝜉1 +𝑈1(Φ, Φ̄, 𝐻, 𝐻,𝑉 ))
]
𝐷

,(12.8)

and

L2 ≡ −1
4

[
𝑆0𝑒

−𝐾̂/3𝑆0
(W𝛼 (𝑉 )W𝛼 (𝑉 )) (W̄¤𝛼 (𝑉 )W̄ ¤𝛼 (𝑉 ))

((𝑉 )𝐷)3
(
𝜉2 +𝑈2(Φ, Φ̄, 𝐻, 𝐻,𝑉 )

) ]
𝐷

(12.9)

2We follow the conventions used in Ref. [88].
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where 𝑤2 ≡ W𝛼 (𝑉 )W𝛼 (𝑉 )
(𝑆0𝑆0𝑒−𝐾 (𝑍,𝑍 ) )2 and 𝑤̄

2 ≡ W̄¤𝛼 (𝑉 )W̄ ¤𝛼 (𝑉 )
(𝑆0𝑆0𝑒−𝐾 (𝑍,𝑍 ) )2 are composite multiplets, 𝑇 (𝑋 ),𝑇 (𝑋 ) are chiral

projectors, and (𝑉 )𝐷 is a real multiplet, whose lowest component is the auxiliary �eld 𝐷 of the

vector multiplet𝑉 ; 𝜉1, 𝜉2 are non-vanishing constants such that 𝜉2/(𝜉1 + 𝜉2) < 1/4 which ensures

the positivity of kinetic term of the vector multipelt 𝑉 , and 𝑈1,𝑈2 are chosen such that 〈𝑈1〉 = 0

and 〈𝑈2〉 = 0 only if 𝜉1, 𝜉2 are true vacuum expectation values out of 𝑈1,𝑈2. We note that we

may rewrite 𝜉𝑖 + 𝑈𝑖 as a simple decomposition 𝜉𝑖 + 𝑈𝑖 such that 𝜉𝑖 + 𝑈𝑖 > 0 everywhere and

〈𝜉𝑖 +𝑈𝑖〉 = 𝜉′𝑖 ≠ 𝜉𝑖 since 〈𝑈𝑖〉 ≠ 0. Hence, the condition can also be rewritten as

𝜉′2/(𝜉′1 + 𝜉′2) < 1/4. (12.10)

Keeping this in mind, with both terms, we �nd the solution for the auxiliary �eld 𝐷 for the

vector multiplet as

𝐷/𝑔2 = 𝜉1 + 𝜉2 +𝑈1 +𝑈2 ≡ 𝜉 +𝑈 , (12.11)

where 𝜉 ≡ 𝜉1 + 𝜉2 and𝑈 ≡ 𝑈1 +𝑈2. Of course, if we identify the vector𝑉𝑅 with a gauge multiplet

for some R or non-R 𝑈 (1) gauge symmetry, we may include the corresponding contribution to

the D-term, so that

𝐷/𝑔2 = 𝜉 + 𝜉′ +𝑈 , (12.12)

where 𝜉′ ≡ 𝑘 𝐼
𝐴
(𝑧)𝐺𝐼 + 𝑐.𝑐 ., and 𝑔, 𝑘 𝐼𝐴 (𝑧) are the corresponding gauge coupling and killing vector

�eld for the �eld 𝑧𝐼 , and 𝐺𝐼 ≡ 𝜕𝐺/𝜕𝑧𝐼 for some scalar 𝑧𝐼 . Since we are interested in the situation

without gauged R-symmetry, we can only consider the conventional non-R gauge symmetry in

this work.
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Then, the 𝐷-term scalar potential is given by

𝑉𝐷 =
1
2
𝑔2𝐷2 =

1
2
𝑔2(𝜉 +𝑈 )2 = 1

2
𝑔2𝜉2 + 𝑔2𝜉𝑈 + 1

2
𝑔2𝑈 2. (12.13)

Besides, the corresponding Lagrangian of the new FI term can be rewritten as

LnewFI ≡ −
[
(𝑆0𝑆0𝑒−𝐾/3)−3

(W𝛼 (𝑉𝑅)W𝛼 (𝑉𝑅)) (W̄¤𝛼 (𝑉𝑅)W̄ ¤𝛼 (𝑉𝑅))
𝑇 (𝑤̄2

𝑅
)𝑇 (𝑤2

𝑅
)

(𝑉𝑅)𝐷U
]
𝐷

, (12.14)

where we de�ned U ≡ 𝜉 + 𝑈 and rescaled the vector multiplet 𝑉 into 𝑉𝑅 ≡ 𝛾𝑉 in order to

introduce additional parameter 𝛾 for generality, and𝑤2
𝑅
≡ W𝛼 (𝑉𝑅)W𝛼 (𝑉𝑅)

(𝑆0𝑆0𝑒−𝐾/3)2
.

Moreover, we may extend the form of 𝐷 by taking into account two di�erent contributions

to the generic function𝑈 as

𝑈 ≡ 𝑈 ℎ +𝑈 𝑜 =⇒ 𝐷/𝑔2 = U = 𝜉 +𝑈 = 𝜉 +𝑈 ℎ +𝑈 𝑜 , (12.15)

where 𝑈 ℎ,𝑈 𝑜 are the generic functions that are involved in the hidden and observable sectors

respectively.

Basically, we are able to consider both L1 and L2. However, we are going to take L1 for

simplicity of ourmodel. Hence, we automatically satisfy the condition on the vacuum expectation

values 𝜉′1, 𝜉
′
2, i.e. 𝜉

′
2/(𝜉′1 + 𝜉′2) < 1/4 found in Ref. [59], because we have 𝜉′2/(𝜉′1 + 𝜉′2) = 0 < 1/4

with the assumption 𝜉2 = 𝑈2 = 0 (i.e. 𝜉′2 = 0).

In the meantime, we may take into account additional D-term potentials from independent

vectormultiplets corresponding to some gauge symmetries of interest. That is, for di�erent vector

multiplets 𝑉𝐴, we may have

𝑉 ′
𝐷 ≡

∑︁
𝐴

𝑉𝐴𝐷 =
∑︁
𝐴

𝑔2
𝐴

2
(𝑘 𝐼𝐴 (𝑧)𝐺𝐼 + 𝑐.𝑐 .)

2, (12.16)
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In the end, we will consider the gauge groups 𝑈 (1)𝑌 , 𝑆𝑈 (2)𝐿, 𝑆𝑈 (3)𝐶 for 𝑉 ′
𝐷
in the observable

sector.

Since the total supergravity scalar potential is given by the sum of F- and D-term potentials

(𝑉𝐷 and 𝑉𝐹 = 𝑒𝐺 (𝐺𝐴𝐺𝐴𝐵𝐺𝐵 − 3)), we �nd

𝑉 = 𝑉𝐷 +𝑉𝐹 =

(𝑔2
2
(𝜉 +𝑈 ℎ +𝑈 𝑜)2 +𝑉 ′

𝐷

)
+𝑉𝐹 ≡ 𝑉ℎ +𝑉𝑠𝑜 𝑓 𝑡 . (12.17)

where we decompose the scalar potential into hidden-sector and soft contributions according

to the separation of the superpotential𝑊 = 𝑊 ℎ +𝑊 𝑜 , and thus the most dominant terms with

∼ |𝑊 ℎ |2 are classi�ed into the hidden sector potential 𝑉 ℎ:

𝑉ℎ ≡ 𝑔2

2
(𝜉 +𝑈 ℎ)2 −

𝑊 ℎ
𝑇
𝑊̄ ℎ + 𝑊̄ ℎ

𝑇
𝑊 ℎ

𝑋 2 +
|𝑊 ℎ

𝑇
|2

3𝑋 2

(
𝑋 + 1

3
Φ𝑖Φ

𝑖 𝑗Φ 𝑗

)
+1
3
1
𝑋 2 [𝑊

ℎ
𝑇 Φ𝑖Φ

𝑖 𝑗𝑊̄ ℎ
𝑗
+ 𝑊̄ ℎ

𝑇
𝑊 ℎ
𝑖 Φ

𝑖 𝑗Φ 𝑗 ] +
1
𝑋 2𝑊

ℎ
𝑖 Φ

𝑖 𝑗𝑊̄ ℎ
𝑗
, (12.18)

𝑉𝑠𝑜 𝑓 𝑡 ≡ 𝑔2(𝜉 +𝑈 ℎ) (𝑈 𝑜) + 𝑔
2

2
(𝑈 𝑜)2 +𝑉 ′

𝐷 − 1
𝑋 2 [𝑊

𝑜𝑊̄ ℎ

𝑇
+ 𝑊̄ 𝑜𝑊 ℎ

𝑇 ]

+1
3
1
𝑋 2 [𝑊

ℎ
𝑇 Φ𝑖Φ

𝑖 𝑗𝑊̄ 𝑜
𝑗
+ 𝑊̄ ℎ

𝑇
𝑊 𝑜
𝑖 Φ

𝑖 𝑗Φ 𝑗 ] +
1
𝑋 2𝑊

𝑜
𝑖 Φ

𝑖 𝑗𝑊̄ 𝑜
𝑗
, (12.19)

where 𝑋 ≡ 𝑇 +𝑇 − Φ(𝑧, 𝑧)/3 and𝑊𝐼 ≡ 𝜕𝑊 /𝜕𝑧𝐼 for 𝐼 = 𝑇, 𝑖 . Inserting the hidden sector superpo-

tentials, i.e.𝑊 =𝑊 ℎ (𝑇 ) +𝑊 𝑜 (𝑧) where𝑊 ℎ (𝑇 ) =𝑊0+𝐴𝑒−𝑎𝑇 and𝑊 𝑜 (𝑧), into the above, similarly

to Ref. [60], we obtain

𝑉ℎ =

(1
2
𝑔2𝜉2 + 𝑔2𝜉𝑈 ℎ + 1

2
𝑔2𝑈 ℎ2

)
− 1
𝑋 2

(
− 2𝑎𝐴2𝑒−𝑎(𝑋+Φ/3) + 2𝑎𝑐𝐴2𝑒−𝑎(𝑋+Φ/3)/2 cos(𝑎Im𝑇 )

)
+ 1
3𝑋 2

(
𝑋 + 1

3
Φ𝑖Φ

𝑖 𝑗Φ 𝑗

)
𝑎2𝐴2𝑒−𝑎(𝑋+Φ/3), (12.20)

𝑉𝑠𝑜 𝑓 𝑡 ≡ 𝑔2(𝜉 +𝑈 ℎ) (𝑈 𝑜) + 𝑔
2

2
(𝑈 𝑜)2 +

∑︁
𝐴

𝑔2
𝐴

2
(𝑘 𝐼𝐴 (𝑉𝐴)𝐺𝐼 + 𝑐.𝑐 .)

2

+𝑎𝐴𝑒
−𝑎(𝑋+Φ/3)/2

𝑋 2 [𝑊 𝑜𝑒𝑖𝑎Im𝑇 + 𝑊̄ 𝑜𝑒−𝑖𝑎Im𝑇 ] + 1
9
𝑎2𝐴2𝑒−𝑎(𝑋+Φ/3)

𝑋 2 Φ𝑖Φ
𝑖 𝑗Φ 𝑗

−1
3
𝑎𝐴𝑒−𝑎(𝑋+Φ/3)/2

𝑋 2 [𝑒−𝑖𝑎Im𝑇Φ𝑖Φ𝑖 𝑗𝑊̄ 𝑜
𝑗
+ 𝑒𝑖𝑎Im𝑇𝑊 𝑜

𝑖 Φ
𝑖 𝑗Φ 𝑗 ] +

1
𝑋 2𝑊

𝑜
𝑖 Φ

𝑖 𝑗𝑊̄ 𝑜
𝑗
, (12.21)

238



in which we use a rede�nition of the constant,𝑊0 ≡ −𝑐𝐴 where 𝑐 is a constant.

12.2 Hidden-Sector Dynamics: Starobinsky-type Inflation

and de Sitter Vacua

In this section, we derive an in�ationary potential and explore its hidden-sector dynamics.

Let us begin with the general potential 𝑉 = 𝑉ℎ +𝑉𝑠𝑜 𝑓 𝑡 , which is given by

𝑉 =

(1
2
𝑔2𝜉2 + 𝑔2𝜉𝑈 ℎ + 1

2
𝑔2𝑈 ℎ2

)
− 1
𝑋 2

(
− 2𝑎𝐴2𝑒−𝑎(𝑋+Φ/3) + 2𝑎𝑐𝐴2𝑒−𝑎(𝑋+Φ/3)/2 cos(𝑎Im𝑇 )

)
+ 1
3𝑋 2

(
𝑋 + 1

3
Φ𝑖Φ

𝑖 𝑗Φ 𝑗

)
𝑎2𝐴2𝑒−𝑎(𝑋+Φ/3) +𝑉𝑠𝑜 𝑓 𝑡 . (12.22)

Now we assume that the hidden-sector part of the real function, say𝑈 ℎ , is de�ned by

𝑈 ℎ ≡ 𝐶𝑖𝑧𝑖𝑧𝑖, (12.23)

where 𝑧𝑖 ’s are the matter scalars (except for Higgs �elds) involved in our supergravity model

and 𝐶𝑖 ’s are coupling constants. It is easy to see that the minima of the total scalar potential

𝑉 = 𝑉ℎ +𝑉𝑠𝑜 𝑓 𝑡 with respect to the matter scalars 𝑧𝑖 ’s without Higgs ones are placed at 𝑧𝑖 = 0.

To explore the in�ationary trajectory in the direction of in�aton �eld 𝜙 (or 𝑋 ≡ 𝑒
√
2/3𝜙 ), we

focus on the path along the minima at 𝑧𝑖 = 0 where 𝑖 ≠ Higgs; Im𝑇 = 0, and 𝐻+
𝑢 = 𝐻−

𝑑
= 0, 𝐻 0

𝑢 =

𝑣𝑢/
√
2, 𝐻 0

𝑑
= 𝑣𝑑/

√
2 where 𝑣𝑢, 𝑣𝑑 are non-zero constants. Then, along the path, the total scalar

potential can be written as

𝑉 |𝑚𝑖𝑛𝑖𝑚𝑎 =
1
2
𝑔2𝜉2 − 1

𝑋 2

(
− 2𝑎𝐴2𝑒−𝑎(𝑋+𝑣

2/6) + 2𝑎𝑐𝐴2𝑒−𝑎(𝑋+𝑣
2/6)/2

)
+ 1
3𝑋 2

(
𝑋 + 𝑣

2

6

)
𝑎2𝐴2𝑒−𝑎(𝑋+𝑣

2/6) +𝑉𝑠𝑜 𝑓 𝑡 |𝑚𝑖𝑛𝑖𝑚𝑎, (12.24)
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where we de�ned 𝑣2 ≡ 𝑣2𝑢 + 𝑣2𝑑 . Basically, we can further simplify the form of this potential using

the fact that 𝑣 = 246GeV ∼ 10−16𝑀𝑝𝑙 � 𝑋 ∼ O(𝑀𝑝𝑙 ) all the time during and after in�ation. That

is, we can take some limits 𝑋 � 𝑣2/6 and 𝑉 ℎ � 𝑉𝑠𝑜 𝑓 𝑡 during and after in�ation, which produces

𝑉 |𝑚𝑖𝑛𝑖𝑚𝑎 ≈
1
2
𝑔2𝜉2 − 1

𝑋 2

(
− 2𝑎𝐴2𝑒−𝑎𝑋 + 2𝑎𝑐𝐴2𝑒−𝑎𝑋/2

)
+ 1
3𝑋
𝑎2𝐴2𝑒−𝑎𝑋 . (12.25)

The vacuum with respect to the direction 𝑋 can be found at 𝑋 = 𝑥 such that 𝑐 = (1 +𝑎𝑥/3)𝑒−𝑎𝑥/2

(see Ref. [60] for the derivation of 𝑐). In fact, the scale of 𝑔2𝜉2 must be of order of the in�ation

energy since we want to describe in�ation using that potential in the end. That is, we must

require that

1
2
𝑔2𝜉2

!
= 𝑀4

𝐼 ≡ 𝐻 2𝑀2
𝑝𝑙
, (12.26)

where 𝑀𝐼 and 𝐻 are denoted by the in�ation and Hubble scale respectively. Using 𝑋 = 𝑒
√
2/3𝜙 ,

we rewrite the potential as

𝑉 |𝑚𝑖𝑛𝑖𝑚𝑎 ≈ 𝑀4
𝐼 − 𝑒

−2
√
2/3𝜙

(
− 2𝑎𝐴2𝑒−𝑎𝑒

√
2/3𝜙 + 2𝑎𝑐𝐴2𝑒−𝑎𝑒

√
2/3𝜙/2

)
+ 1
3
𝑎2𝐴2𝑒−

√
2/3𝜙𝑒−𝑎𝑒

√
2/3𝜙
. (12.27)

It is worth noticing that this result exactly coincides with that of Ref. [60]. Also notice that this

potential resembles the Starobinsky potential in feature.

What we need to do next is to �nd the de Sitter vacua in our theory because we wish to obtain

the observed cosmological constant Λ ∼ 10−120𝑀𝑝𝑙 . Now considering an exact value of the soft

potential at the vacua when 𝑋 = 𝑥 , 𝑖 ≠ Higgs; Im𝑇 = 0, and 𝐻+
𝑢 = 𝐻−

𝑑
= 0, 𝐻 0

𝑢 = 𝑣𝑢/
√
2, 𝐻 0

𝑑
=

𝑣𝑑/
√
2, we can determine what the constant𝑔2𝜉2/2 must be. At the vacua, if we de�ne the vacuum

with respect to 𝑋 (or 𝜙) at 𝑥 = 1 (or 𝜙 = 0), the potential is given by

𝑉 |𝑣𝑎𝑐𝑢𝑎 =
1
2
𝑔2𝜉2 − 𝑎2𝐴2𝑒−𝑎

3
+ Λ𝑠𝑜 𝑓 𝑡 ≡ Λ, (12.28)
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where we de�ne Λ𝑠𝑜 𝑓 𝑡 =
〈
𝑉𝑠𝑜 𝑓 𝑡

〉
and impose that the VEV of the potential is equal to the cosmo-

logical constant Λ. Hence, we determine 𝑔2𝜉2/2 as

1
2
𝑔2𝜉2 =

𝑎2𝐴2𝑒−𝑎

3
+ Λ − Λ𝑠𝑜 𝑓 𝑡 . (12.29)

Now let us investigate supersymmetry (SUSY) breaking of our model. The SUSY breaking

scale, say𝑀𝑆 , can be found by the positive contributions to both D and F terms

𝑉+ |𝑣𝑎𝑐𝑢𝑎 = (𝑉 + 3𝑒𝐺 ) |𝑣𝑎𝑐𝑢𝑎 = Λ + 𝑎
2𝐴2𝑒−𝑎

3
≡ 𝑀4

𝑆 , (12.30)

which gives

𝑎2𝐴2𝑒−𝑎

3
= 𝑀4

𝑆 − Λ =⇒ 1
2
𝑔2𝜉2 = 𝑀4

𝑆 − Λ𝑠𝑜 𝑓 𝑡 = 𝑀
4
𝐼 =⇒ 𝑀4

𝑆 = 𝑀4
𝐼 + Λ𝑠𝑜 𝑓 𝑡 . (12.31)

This means that putting the naturalness issue away, we have to require a high-scale supersym-

metry breaking [76] because the SUSY breaking mass𝑀𝑆 is at high scale as given by

𝑀𝑆 = (𝐻 2𝑀2
𝑝𝑙
+ Λ𝑠𝑜 𝑓 𝑡 )1/4 ∼ O(

√︃
𝐻𝑀𝑝𝑙 ) = 10−2.5𝑀𝑝𝑙 , (12.32)

where we note that 𝐻 2𝑀2
𝑝𝑙
� Λ𝑠𝑜 𝑓 𝑡 . Consequently, we have seen that the �nal form we obtained

is identi�ed as an in�ationary potential of the Hubble scale order.

12.3 Observable-Sector Dynamics: Minimal Supersymmetric

Standard Model (MSSM)

In this section, we embed minimal supersymmetric standard model (MSSM) into the observ-

able sector of our supergravity, which describes both in�ation and de Sitter vacua in the hidden
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sector as shown in the previous section. To do so, we explore a supersymmetric Higgs potential

to �nd the observed Higgs mass of electroweak scale in MSSM.

12.3.1 Supersymmetric Higgs potential using new Fayet-Iliopoulos

terms

Here we focus on �nding a supersymmetric Higgs potential to realize MSSM phenomenology

in our supergravity model of in�ation. To generate both Higgs and matter masses which are

phenomenologically favored, we assume that the generic function𝑈 = 𝑈 ℎ +𝑈 𝑜 is de�ned by

𝑈 ℎ = 𝐶𝑖 |𝑧𝑖 |2 for non-Higgs matters, (12.33)

𝑈 𝑜 = 𝑏 [( |𝐻+
𝑢 |2 + |𝐻 0

𝑢 |2) − (|𝐻 0
𝑑
|2 + |𝐻−

𝑑
|2)] for Higgs, (12.34)

where𝑏 is a free parameter. Notice that these are gauge invariant under the SM gauge groups. We

can then identify the supersymmetric Higgs potential from the soft potential, which is speci�ed

with

𝑉𝑠𝑜 𝑓 𝑡 = 𝜉𝑔2𝑈 𝑜 + 𝑔
2

2
𝑈 𝑜2 +𝑉𝑈 (1)𝑌 +𝑉𝑆𝑈 (2)𝐿 +𝑉𝑆𝑈 (3)𝑐

+2
3
𝑎𝐴𝑒−𝑎(𝑋+Φ/3)/2

𝑋 2 (𝑊 𝑜 + 𝑊̄ 𝑜) + 1
9
𝑎2𝐴2𝑒−𝑎(𝑋+Φ/3)

𝑋 2 Φ +
𝑊 𝑜
𝑖 𝛿

𝑖 𝑗𝑊̄ 𝑜
𝑗

𝑋 2 . (12.35)

Since the Higgs doublets do not transform under 𝑈 (1)′, 𝑈 (1)𝑌 , and 𝑆𝑈 (2)𝐿 , the parts of the
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Higgs potential are given by

𝑔2𝜉𝑈 𝑜 = 𝑔2𝜉𝑏 ( |𝐻+
𝑢 |2 + |𝐻 0

𝑢 |2 − |𝐻 0
𝑑
|2 − |𝐻−

𝑑
|2), (12.36)

𝑔2

2
𝑈 𝑜2 =

𝑔2𝑏2

2
( |𝐻+

𝑢 |2 + |𝐻 0
𝑢 |2 − |𝐻 0

𝑑
|2 − |𝐻−

𝑑
|2)2, (12.37)

𝑉𝑈 (1)𝑌 ⊃
𝑔21
8𝑋 2 ( |𝐻

+
𝑢 |2 + |𝐻 0

𝑢 |2 − |𝐻 0
𝑑
|2 − |𝐻−

𝑑
|2)2, (12.38)

𝑉𝑆𝑈 (2)𝐿 ⊃
𝑔22
2𝑋 2 |𝐻

0
𝑢𝐻

+
𝑢 + 𝐻−

𝑑
𝐻 0
𝑑
|2 +

𝑔22
8𝑋 2 ( |𝐻

+
𝑢 |2 + |𝐻 0

𝑢 |2 − |𝐻 0
𝑑
|2 − |𝐻−

𝑑
|2)2. (12.39)

In addition, we can �nd the other part of the Higgs potential from the F-term part of the soft

potential 𝑉𝑠𝑜 𝑓 𝑡 |𝐹 , which provides

𝑉𝑠𝑜 𝑓 𝑡 |𝐹 ⊃ 2
3
𝑎𝐴𝑒−𝑎(𝑋+Φ/3)/2

𝑋 2 (𝑊 𝑜 + 𝑊̄ 𝑜) + 1
9
𝑎2𝐴2𝑒−𝑎(𝑋+Φ/3)

𝑋 2 Φ +
𝑊 𝑜
𝑖 𝛿

𝑖 𝑗𝑊̄ 𝑜
𝑗

𝑋 2

=
2
3
𝑎𝐴𝑒−𝑎(𝑋+Φ/3)/2

𝑋 2 𝜇 (𝐻+
𝑢𝐻

−
𝑑
− 𝐻 0

𝑢𝐻
0
𝑑
+ ℎ.𝑐.)

+
(
1
9
𝑎2𝐴2𝑒−𝑎(𝑋+Φ/3)

𝑋 2 + |𝜇 |2
𝑋 2

)
( |𝐻+

𝑢 |2 + |𝐻 0
𝑢 |2 + |𝐻 0

𝑑
|2 + |𝐻−

𝑑
|2) (12.40)

Therefore, the �nal form of the Higgs potential at the non-Higgs matter minima 𝑧𝑖 = 0 (where

𝑖 ≠ Higgs) is given by

𝑉𝐻 =
𝑔22
2𝑋 2 |𝐻

0
𝑢𝐻

+
𝑢 + 𝐻−

𝑑
𝐻 0
𝑑
|2 +

(𝑔21 + 𝑔22
8𝑋 2 + 𝑔

2𝑏2

2

)
( |𝐻+

𝑢 |2 + |𝐻 0
𝑢 |2 − |𝐻 0

𝑑
|2 − |𝐻−

𝑑
|2)2

+4
3
𝑎𝐴𝑒−𝑎(𝑋+(|𝐻

+
𝑢 |2+|𝐻 0

𝑢 |2+|𝐻 0
𝑑
|2+|𝐻−

𝑑
|2)/3)/2

𝑋 2 𝜇Re(𝐻+
𝑢𝐻

−
𝑑
− 𝐻 0

𝑢𝐻
0
𝑑
)

+
(
1
9
𝑎2𝐴2𝑒−𝑎(𝑋+(|𝐻

+
𝑢 |2+|𝐻 0

𝑢 |2+|𝐻 0
𝑑
|2+|𝐻−

𝑑
|2)/3)

𝑋 2 + |𝜇 |2
𝑋 2 + 𝑔2𝜉𝑏

)
( |𝐻+

𝑢 |2 + |𝐻 0
𝑢 |2)

+
(
1
9
𝑎2𝐴2𝑒−𝑎(𝑋+(|𝐻

+
𝑢 |2+|𝐻 0

𝑢 |2+|𝐻 0
𝑑
|2+|𝐻−

𝑑
|2)/3)

𝑋 2 + |𝜇 |2
𝑋 2 − 𝑔2𝜉𝑏

)
( |𝐻 0

𝑑
|2 + |𝐻−

𝑑
|2) (12.41)
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If we take an assumption that 𝑋 � 𝐻
±,0
𝑢,𝑑

, then the potential can be approximated into

𝑉𝐻 =
𝑔22
2𝑋 2 |𝐻

0
𝑢𝐻

+
𝑢 + 𝐻−

𝑑
𝐻 0
𝑑
|2 +

(𝑔21 + 𝑔22
8𝑋 2 + 𝑔

2𝑏2

2

)
( |𝐻+

𝑢 |2 + |𝐻 0
𝑢 |2 − |𝐻 0

𝑑
|2 − |𝐻−

𝑑
|2)2

+4
3
𝑎𝐴𝑒−𝑎𝑋/2

𝑋 2 𝜇Re(𝐻+
𝑢𝐻

−
𝑑
− 𝐻 0

𝑢𝐻
0
𝑑
)

+
(
1
9
𝑎2𝐴2𝑒−𝑎𝑋

𝑋 2 + |𝜇 |2
𝑋 2 + 𝑔2𝜉𝑏

)
( |𝐻+

𝑢 |2 + |𝐻 0
𝑢 |2)

+
(
1
9
𝑎2𝐴2𝑒−𝑎𝑋

𝑋 2 + |𝜇 |2
𝑋 2 − 𝑔2𝜉𝑏

)
( |𝐻 0

𝑑
|2 + |𝐻−

𝑑
|2) (12.42)

We then �nd the minima at 𝐻+
𝑢 = 𝐻−

𝑑
= 0, which gives

𝑉𝐻 =

(𝑔21 + 𝑔22
8𝑋 2 + 𝑔

2𝑏2

2

)
( |𝐻 0

𝑢 |2 − |𝐻 0
𝑑
|2)2 − 4

3
𝑎𝐴𝑒−𝑎𝑋/2

𝑋 2 𝜇Re(𝐻 0
𝑢𝐻

0
𝑑
)

+
(
1
9
𝑎2𝐴2𝑒−𝑎𝑋

𝑋 2 + |𝜇 |2
𝑋 2 + 𝑔2𝜉𝑏

)
|𝐻 0
𝑢 |2 +

(
1
9
𝑎2𝐴2𝑒−𝑎𝑋

𝑋 2 + |𝜇 |2
𝑋 2 − 𝑔2𝜉𝑏

)
|𝐻 0
𝑑
|2. (12.43)

In terms of the approximated potential, the vacuum solutions can be found as those of the MSSM.

That is,

〈
𝐻 0
𝑢

〉
=
𝑣𝑢√
2
(= 𝑣2),

〈
𝐻 0
𝑑

〉
=
𝑣𝑑√
2
(= 𝑣1),

〈
𝐻+
𝑢

〉
=

〈
𝐻−
𝑑

〉
= 0 =⇒ 𝐻 0

𝑖 ≈
〈
𝐻 0
𝑖

〉
+ 𝜑𝑖, (12.44)

where 𝜑𝑖 are �uctuations of the Higgs �elds 𝐻 0
𝑖 around the vacuum (𝑖 = 𝑢,𝑑). We take here the

same de�nitions used in the MSSM

𝑣2 ≡ 𝑣2𝑢 + 𝑣2𝑑 = (246 GeV)2, tan 𝛽 = 𝑣2/𝑣1 = 𝑣𝑢/𝑣𝑑 , (12.45)

where 𝛽 is a free parameter such that 0 ≤ 𝛽 ≤ 𝜋/2. Hence, we can merely recall the MSSM results

when we compute scalar masses.
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Recalling some results of Sec. 28.5 in Ref. [89], we can identify the following correspondences

𝑔2 + 𝑔′2
8

→
𝑔21 + 𝑔22
8𝑋 2 + 𝑔

2𝑏2

2
, 𝑚2

1 →
1
9
𝑎2𝐴2𝑒−𝑎𝑋

𝑋 2 − 𝑔2𝜉𝑏, 𝑚2
2 →

1
9
𝑎2𝐴2𝑒−𝑎𝑋

𝑋 2 + 𝑔2𝜉𝑏,

(12.46)

|𝜇 |2 → |𝜇 |2
𝑋 2 , 𝐵𝜇 → 4

3
𝑎𝐴𝑒−𝑎𝑋/2

𝑋 2 𝜇, (12.47)

𝑚2
𝑍 =

1
2
(𝑔2 + 𝑔′2) (𝑣21 + 𝑣22) →𝑚′2

𝑍 =

(
𝑔21 + 𝑔22
2𝑋 2 + 2𝑔2𝑏2

)
(𝑣21 + 𝑣22) =

(
𝑋−2 + 4𝑔2𝑏2

𝑔21 + 𝑔22

)
𝑚2
𝑍 ,

(12.48)

𝑚2
𝐴 = 2|𝜇 |2 +𝑚2

1 +𝑚2
2 →𝑚′2

𝐴 =
2
9
𝑎2𝐴2𝑒−𝑎𝑋

𝑋 2 + 2|𝜇 |2
𝑋 2 , (12.49)

and the vacuum solutions produces the following relations

𝐵𝜇 =𝑚′2
𝐴 sin 2𝛽, 𝑚2

1 −𝑚2
2 = −(𝑚′2

𝐴 +𝑚′2
𝑍 ) cos 2𝛽 = −2𝑔2𝜉𝑏, tan 𝛽 = 𝑣2/𝑣1. (12.50)

12.3.2 Soft supersymmetry breaking masses of scalars comparable with

single-field inflation

The scalar masses are determined as follows. The normal matter masses are found to be

𝑚2
𝑧 |𝑣𝑎𝑐 = 𝑉𝑧𝑧 |𝑧=0 =

(
𝑔2𝜉𝑈𝑧𝑧 + 𝑔2(𝑈𝑧𝑈𝑧 +𝑈𝑈𝑧𝑧) + (𝑉𝐹 +𝑉 ′

𝐷)𝑧𝑧
)���
𝑧=0

= (𝑔2𝜉𝑈𝑧𝑧 + (𝑉𝐹 +𝑉 ′
𝐷)𝑧𝑧) |𝑧=0 � 𝐻 2

=⇒ 𝑔2𝜉𝑈𝑧𝑧 |𝑧=0 � 𝐻 2 (12.51)

along the vacua when 𝑧 = 0, 𝑎Im𝑇 = 0. Now we may suppose the form of the general function𝑈

as

𝑈 ⊃ 𝐶𝑖𝑧𝑖𝑧𝑖, (12.52)
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where 𝑧𝑖 ’s are the matter �elds without the Higgs �elds. This leads to in the end

𝑔2𝜉𝑈𝑧𝑧 = 𝑔
2𝜉𝐶𝑖 � 𝐻 2 =⇒ 𝐶𝑖 �

𝐻 2

𝑔2𝜉
> 0. (12.53)

Notice that 𝑈 is positive de�nite, so that 𝐷 = 𝜉 +𝑈 > 0 is nowhere vanishing. Here the point is

that the matter scalars can be as mush heavy as we want during and after in�ation, enabling us

to integrate out them easily.

Next, let us identify the Higgs masses. Let us recall the W and Z gauge boson masses

𝑚2
𝑊 =

𝑔22𝑣
2

4
, 𝑚2

𝑍 =
𝑔21 + 𝑔22

4
𝑣2 (12.54)

The eigenvalues of the Higgs �elds in the previous two models are

𝑚2
𝐻 =

1
2
(𝑚′2

𝐴 +𝑚′2
𝑍 +

√︃
(𝑚′2

𝐴
+𝑚′2

𝑍
)2 − 4𝑚′2

𝐴
𝑚′2

𝑍
cos2 2𝛽), (12.55)

𝑚2
ℎ

=
1
2
(𝑚′2

𝐴 +𝑚′2
𝑍 −

√︃
(𝑚′2

𝐴
+𝑚′2

𝑍
)2 − 4𝑚′2

𝐴
𝑚′2

𝑍
cos2 2𝛽) ≈

𝑚′2
𝐴𝑚

′2
𝑍 cos

2 2𝛽
𝑚′2

𝐴
+𝑚′2

𝑍

≈
(𝑚2

1 −𝑚2
2)2

𝑚′2
𝐴
𝑚′2

𝑍

if 𝑚′
𝐴 �𝑚′

𝑍 =⇒ 𝑚′2
𝐴 ≈

(𝑚2
1 −𝑚2

2)2

𝑚2
ℎ
𝑚′2

𝑍

(12.56)

where 𝜇, 𝐵,𝑚2
1,𝑚

2
2 are the MSSM soft parameters. We note that now the MSSM soft parameters

are functions of the in�aton �eld 𝜙 via 𝑋 ≡ 𝑒
√
2/3𝜙 whose vacuum is at 𝜙 = 0 (or 𝑋 = 1).

First, let us check the Higgs masses after in�ation at 𝑋 = 1. Then, the above relation implies

that

𝑚′2
𝐴 =

2𝑎2𝐴2𝑒−𝑎

9
+ 2|𝜇 |2 ≈

(𝑚2
1 −𝑚2

2)2

𝑚2
ℎ
𝑚′2

𝑍

, (12.57)
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so that we can determine the parameter 𝜇 as

|𝜇 |2 ≈
(𝑚2

1 −𝑚2
2)2

2𝑚2
ℎ
𝑚′2

𝑍

− 1
3
(𝑀4

𝐼 − Λ) (12.58)

since 3(𝑀4
𝐼
− Λ) = 𝑎2𝐴2𝑒−𝑎 = 3𝑚2

3/2. Since we have

𝑚2
1 −𝑚2

2 = −2𝑔2𝜉𝑏 ≈ −2𝑔2𝑏
√
2𝑀2

𝐼

𝑔
∼ 2

√
2𝑏𝑔𝑀2

𝐼 , (12.59)

we obtain

|𝜇 |2 ∼
(

4𝑏2𝑔2

𝑚2
ℎ
𝑚2
𝑍

(
1 + 4𝑔2𝑏2

𝑔21+𝑔22

) − 1
3

)
𝑀4
𝐼 > 0. (12.60)

We remark that it is necessary to consider the new FI term in this model since it helps us to acquire

di�erent values of𝑚2
1 and𝑚

2
2, which determines non-vanishing of the light Higgs scalar mass𝑚ℎ .

Furthermore, we observe that we can integrate out the degree of freedom for the heavy Higgs

scalar with 𝑚2
𝐻
because this is of order of Hubble scale, while the light Higgs scalar can be set

up as the observed Higgs degree of freedom using the cancellation between the �rst and second

terms in the mass formula. Next, let us inspect the Higgs masses during in�ation for 𝑋 � 1. In

this phase, we have

𝑚′2
𝐴 → 0, 𝑚′2

𝑍 → 4𝑔2𝑏2

𝑔21 + 𝑔22
𝑚2
𝑍 =⇒ 𝑚2

𝐻 → 4𝑔2𝑏2

𝑔21 + 𝑔22
𝑚2
𝑍 , 𝑚2

ℎ
→ 0. (12.61)

We thus need to impose

4𝑔2𝑏2

𝑔21 + 𝑔22
𝑚2
𝑍 =

𝑔2𝑏2

𝑣2
� 𝐻 2 =⇒ 𝑔 � 𝑣𝐻

𝑏
. (12.62)
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Since we have 𝑔 ∼ 𝑀−2
𝑆

and𝑀2
𝑆
∼ 𝐻 ∼ 10−5, it reduces to

𝑏 � 𝑣𝐻𝑀2
𝑆 ∼ 10−26, (12.63)

We observe that the parameter 𝑏 indeed corresponds to the scale of the low energy observable

sector if the parameter 𝑏 is in 𝜉 ∼ 𝑀4
𝑆
= 𝑀4

𝐼
= 𝐻 2 ∼ 10−10 � 𝑏 � 𝑣𝐻𝑀2

𝑆
∼ 10−26. In the limit, the

𝜇 term becomes

|𝜇 |2 ∼
(
4𝑣2

𝑚2
ℎ

− 1
3

)
𝑀4
𝐼 > 0 =⇒ 𝜇 ∼ O(𝐻 ). (12.64)

Hence, we need to obey a constraint

𝑣 >
𝑚ℎ

2
√
3
, (12.65)

which can be satis�ed since we already have 𝑣 > 𝑚ℎ with the observed values, 𝑣 = 246 GeV and

𝑚ℎ = 125 GeV. Meanwhile, regarding Higgs mass, the impact of quantum loop corrections to the

Higgs mass must be evaluated. However, we leave this issue for future investigation since this is

out of scope of this work.

We now summarize spectra of the scalar masses. We �nd that only the light Higgs scalar

mass𝑚ℎ varies from almost zero during in�ation to the observed Higgs mass𝑚ℎ ∼ 125 GeV at

the true vacua after in�ation. On the other hand, the other scalar masses in this model can be

much heavier than the Hubble scale during and after in�ation, so that they do not occur extra

slow-roll in�ation along the directions of those scalar �elds.

As for the light Higgs mass during in�ation, at �rst glance, this seems to be against the e�ec-

tive single �eld slow roll in�ation. However, according to Ref. [53], it is possible to have a robust

slow-roll in�ation under the introduction of extra scalars when some reheating scenario condi-

tions are satis�ed. We �nd that our model may be allowed to carry either “Case-5” or “Case-8”
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reheating scenario, which are strongly favoured according to Ref. [53]. The corresponding con-

ditions are found as follows:

Case-5 : Γℎ < Γ𝜙 < 𝑚ℎ < 𝐻,

(
Γℎ
Γ𝜙

)1/4
� 〈ℎ〉

𝑀𝑝𝑙

∼ 𝑣

𝑀𝑝𝑙

� 1, (12.66)

Case-8 : Γℎ < 𝑚ℎ < Γ𝜙 < 𝐻,

(
Γℎ
𝑚ℎ

)1/4
� 〈ℎ〉

𝑀𝑝𝑙

∼ 𝑣

𝑀𝑝𝑙

� 1, (12.67)

where Γ𝜙 , Γℎ are the decay rates of in�aton 𝜙 and light Higgs ℎ during the reheating phase, and 𝑣

is the VEV of the Higgs after in�ation. Note that the decay rate of Higgs has to be the smallest.

We also note that unlike our previousmodel in Ref. [60], we can specify the reheating scenario

conditions using the observed values3 and make them to be a problem of determination of the

decay rates. Therefore, it is worthwhile to investigate how big the decay rates are and which

scenario will win. So, we leave this as another further study.

12.3.3 Fermion mass matrix comparable with light SM fermions

In this section, we compute fermionic masses in our supergravity model. First, we recall the

superpotential in our model

𝑊 (𝑇 ) ≡𝑊 ℎ (𝑇 ) +𝑊 𝑜 (𝑍 𝑖), (12.68)

where

𝑊 ℎ (𝑇 ) ≡ 𝑊0 +𝐴𝑒−𝑎𝑇 , (12.69)

𝑊 𝑜 (𝑍 𝑖) ≡ 𝑊𝑀𝑆𝑆𝑀 = −𝑌𝑢𝑈𝑅𝐻̂𝑢 · 𝑄̂ + 𝑌𝑑𝐷̂𝑅𝐻̂𝑑 · 𝑄̂ + 𝑌𝑒𝐸𝑅𝐻̂𝑢 · 𝐿̂ + 𝜇𝐻̂𝑢 · 𝐻̂𝑑

= −𝑌𝑢𝑢̃𝑅 (𝐻+
𝑢𝑑𝐿 − 𝐻 0

𝑢𝑢̃𝐿) + 𝑌𝑑𝑑𝑅 (𝐻 0
𝑑
𝑑𝐿 − 𝐻−

𝑑
𝑢̃𝐿)

+𝑌𝑒𝑒𝑅 (𝐻+
𝑢 𝜈𝐿 − 𝐻 0

𝑢𝑒
−
𝐿 ) + 𝜇 (𝐻+

𝑢𝐻
−
𝑑
− 𝐻 0

𝑢𝐻
0
𝑑
). (12.70)

3i.e. 𝑣 = 246 GeV ∼ 10−16𝑀𝑝𝑙 and𝑚ℎ = 125 GeV ∼ 10−16𝑀𝑝𝑙 while 𝐻 ∼ 10−5𝑀𝑝𝑙
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The most general fermion masses𝑚(𝑔) are given by all the contributions from the standard su-

pergravity, new FI terms, and the super-Higgs e�ects to the fermion mass, which are written as

(C.89). Here, we point out that if the gauge kinetic function is purely a constant, then the gaug-

ino masses almost vanish at the vacuum. In particular, when a gauged R-symmetry is imposed,

gauginos can get massive enough thanks to the 𝑈𝑅 (1) anomaly cancellation between one-loop

quantum correction to the Lagrangian and the shift of Green-Schwarz term by the presence of

a linear term in some charged moduli in the gauge kinetic function. However, in our model, we

consider a model without gauging a R-symmetry. Thus, we can just take advantage of adding a

linear term in the gauge kinetic function as follows:

𝑓𝐴𝐵 (𝑇 ) = 𝛿𝐴𝐵
( 1
√
𝑔𝐴𝑔𝐵

+
√︁
𝛽𝐴𝛽𝐵𝑇

)
, (12.71)

where 𝑇 is the modulus �eld and 𝛿𝐴𝐵 is the Kronecker delta. We also assume that the coe�cient

𝛽𝐴 can be su�ciently small such that

𝑔−2𝐴 � 𝛽𝐴𝑇 =⇒ 𝑔−2𝐴 � 𝛽𝐴 at the vacuum where 𝑇 ∼ 1, (12.72)

so that the gauge kinetic Lagrangians can be considered as canonically normalized. We note that

in any case we can consider the scale of 𝛽𝑔2

𝑔 ≡ 10−𝑛, 𝛽 ≡ 10𝑚 =⇒ 𝛽𝑔2 = 10𝑚−2𝑛 � 1 =⇒ 𝑚 < 2𝑛. (12.73)

which will be used for estimating the gaugino masses. Especially, for example, when the gauge

coupling can already be su�ciently small, i.e. 𝑔 = 10−𝑛 � 1, we may consider the order of the

constant 𝛽 like 𝛽 ∼ O(10𝑚) where 0 < 𝑚 < 2𝑛. This will contribute to the fermion masses as a

big number in our model. The weaker 𝑔 gets, the larger 𝛽 can get.
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Then, the correspondimg fermion mass expressions reduce to the following

𝑚3/2 = 𝑊𝑒𝐾/2, (12.74)

𝑚
(𝑔)
𝐼 𝐽

= 𝑒𝐾/2(𝑊𝐼 𝐽 + 𝐾𝐼 𝐽𝑊 + 𝐾𝐽𝑊𝐼 + 𝐾𝐼𝑊𝐽 + 𝐾𝐼𝐾𝐽𝑊 )

−𝑒𝐾/2𝐺𝐾𝐿𝜕𝐼𝐺 𝐽𝐿 (𝑊𝐾 + 𝐾𝐾𝑊 ) − 2
3
(𝑊𝐼 + 𝐾𝐼𝑊 ) (𝑊𝐽 + 𝐾𝐽𝑊 ),

𝑚
(𝑔)
𝐼𝐴

= 𝑖
√
2[𝜕𝐼P𝐴 − 1

4
𝛿𝐶𝐴

√︁
𝛽𝐴𝛽𝐶𝛿𝐼𝑇

( 1
√
𝑔𝐴𝑔𝐶

+
√︁
𝛽𝐴𝛽𝐶Re𝑇

)−1
P𝐶] − 𝑖

2
3
√
2𝑊

(𝑊𝐼 + 𝐾𝐼𝑊 )P𝐴

(12.75)

𝑚
(𝑔)
𝐴𝐵

= −1
2
𝑒𝐾/2𝛿𝐴𝐵

√︁
𝛽𝐴𝛽𝐵𝐺

𝑇 𝐽 (𝑊̄𝐽 + 𝐾𝐽𝑊̄ ) + 1
3𝑒𝐾/2𝑊

P𝐴P𝐵 (12.76)

𝑚
(𝑔)
𝐼𝜆

= − 𝑖
√
2
U𝐼

U − 𝑖
√
2

3𝑊
(𝑊𝐼 + 𝐾𝐼𝑊 )U =𝑚

(𝑔)
𝜆𝐼
, (12.77)

𝑚
(𝑔)
𝜆𝜆

= −𝑒𝐾/2
(
𝑊̄ + 4𝐺 𝐼 𝐽

(
U𝐼

U + 𝐾𝐼
3

)
(𝑊̄𝐽 + 𝐾𝐽𝑊̄ )

)
+ U2

3𝑒𝐾/2𝑊
, (12.78)

where 𝜆𝐴 is the gaugino corresponding to the gauge multiplet 𝑉𝐴 (𝐴 = 𝑆𝑈 (3)𝑐, 𝑆𝑈 (2)𝐿,𝑈 (1)𝑌 ),

and 𝜆 is the superpartner of the new FI term vector multiplet 𝑉 . Remember that U is nowhere

vanishing by de�nition; that is, U = 𝜉 + 𝑈 > 0 with 𝑈 ≥ 0 and 𝜉 ≠ 0. The detailed derivation

of the masses is present in the appendix C. We note that gravitino in this model has the Hubble

mass 𝐻 , i.e. super-EeV-scale gravition, which may be heavy dark matter candidates explored in

Refs. [82, 84, 85].

We have checked that only neutral components𝐻 0
𝑢 , 𝐻

0
𝑑
of the Higgs �elds have non-vanishing

vacuum expectation values (VEV), while the other matters have vanishing VEVs. In addition, we

have supposed thatU|𝑣𝑎𝑐 = (𝜉 +𝑈 ) |𝑣𝑎𝑐 > 0. Then, denoting𝐻 0
𝑢 , 𝐻

0
𝑑
by an index 𝑎 and 𝑧𝑖 including

𝐻+
𝑢 , 𝐻

−
𝑑
(where 𝑖 ≠ 𝑎) by 𝑖′, we have at the vacuum (

〈
𝐻 0
𝑎

〉
= 𝑣𝑎/

√
2 and

〈
𝑧𝑖

′〉
= 0):

Φ𝑎 |𝑣𝑎𝑐 =
𝑣2𝑎
2
, Φ𝑖 ′ |𝑣𝑎𝑐 = 0, U|𝑣𝑎𝑐 ≈ 𝜉 ∼ 𝑀4

𝑆 ∼ 𝐻 2, 𝑋 |𝑣𝑎𝑐 = 1, 𝑊 𝑜
𝑖 ′ |𝑣𝑎𝑐 = 0, 𝑊 𝑜

𝑖 ′𝑏 |𝑣𝑎𝑐 = 0,

𝑚3/2 = 𝑒
𝐺/2 |𝑣𝑎𝑐 =

√︁
|𝑊 |2 |𝑣𝑎𝑐 ∼ 𝐻, 𝜇 ∼ O(𝐻 ). (12.79)

251



The moment maps with respect to the gauge groups of SM are given by

P𝑈 (1)𝑌 =
𝑔1

𝑋

[ ∑︁
𝑖=𝑔𝑒𝑛

(1
6
𝑄̃

†
𝑖
𝑄̃𝑖 −

1
2
𝐿̃
†
𝑖
𝐿̃𝑖 −

2
3
𝑢̃
†
𝑅𝑖
𝑢̃𝑅𝑖 +

1
3
𝑑
†
𝑅𝑖
𝑑𝑅𝑖 + 𝑙

†
𝑅𝑖
𝑙𝑅𝑖

)
+ 1
2
𝐻 †
𝑢𝐻𝑢 −

1
2
𝐻

†
𝑑
𝐻𝑑

]
,

(12.80)

P𝑆𝑈 (2)𝐿 =
𝑔2

𝑋

[ ∑︁
𝑖=𝑔𝑒𝑛

(
𝑄̃

†
𝑖

®𝜎
2
𝑄̃𝑖 + 𝐿̃†𝑖

®𝜎
2
𝐿̃𝑖

)
+ 𝐻†

𝑢

®𝜎
2
𝐻𝑢 + 𝐻†

𝑑

®𝜎
2
𝐻𝑑

]
, (12.81)

P𝑆𝑈 (3)𝑐 =
𝑔3

𝑋

[ ∑︁
𝑖=𝑔𝑒𝑛

(
𝑄̃

†
𝑖

®𝜆
2
𝑄̃𝑖 − 𝑢̃†𝑅𝑖

®𝜆
2
𝑢̃𝑅𝑖 − 𝑑

†
𝑅𝑖

®𝜆
2
𝑑𝑅𝑖

)]
, (12.82)

where tilded �elds are superpartner scalars to the SM fermions; ®𝜎 and ®𝜆 are Pauli and Gell-Mann

matrices; 𝑔1, 𝑔2, 𝑔3 are gauge couplings, and the index 𝑖 runs over the three generations of particle

in the SM. Their vacuum expectation values are found by

〈
P𝑈 (1)𝑌

〉
=
𝑔1

4
(𝑣2𝑢 − 𝑣2𝑑),

〈
P𝑆𝑈 (2)𝐿

〉
= −𝑔2

4
(𝑣2𝑢 − 𝑣2𝑑),

〈
P𝑆𝑈 (3)𝑐

〉
= 0, (12.83)

and

〈
𝜕𝐻 0

𝑢
P𝑈 (1)𝑌

〉
=
𝑔1𝑣𝑢

2
√
2
+ 𝑔1𝑣𝑢

12
√
2
(𝑣2𝑢 − 𝑣2𝑑),

〈
𝜕𝐻 0

𝑑
P𝑈 (1)𝑌

〉
= −𝑔1𝑣𝑑

2
√
2
+ 𝑔1𝑣𝑑

12
√
2
(𝑣2𝑢 − 𝑣2𝑑), (12.84)〈

𝜕𝐻 0
𝑢
P𝑆𝑈 (2)𝐿

〉
= −𝑔2𝑣𝑢

2
√
2
− 𝑔2𝑣𝑢

12
√
2
(𝑣2𝑢 − 𝑣2𝑑),

〈
𝜕𝐻 0

𝑑
P𝑆𝑈 (2)𝐿

〉
=
𝑔2𝑣𝑑

2
√
2
− 𝑔2𝑣𝑑

12
√
2
(𝑣2𝑢 − 𝑣2𝑑),(12.85)

where 〈𝜕𝐼P𝐴〉 = 0 for others.

Now we are ready to estimate the scales of the fermionic masses. First, we are estimating

masses of the matter fermions. Given the supergravity G-function 𝐺 = −3 ln[𝑇 + 𝑇 − Φ/3] +

ln𝑊 + ln𝑊̄ with the superpotential𝑊 =𝑊 ℎ (𝑇 ) +𝑊 𝑜 (𝑧𝑖), the components of the fermion mass
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matrix are as follows:

𝑚
(𝑔)
𝑖 𝑗

=

√︂
1
𝑋 3

[
𝑊 𝑜
𝑖 𝑗 +

2
3𝑋

(𝑊 𝑜
𝑖 Φ 𝑗 + Φ𝑖𝑊

𝑜
𝑗 ) +

2
3𝑋 2Φ𝑖Φ 𝑗𝑊

+
2Φ𝑖Φ 𝑗
9𝑋 2 (Φ − Φ𝑚Φ

𝑚𝑙Φ𝑙 )
(
𝑊 ℎ
𝑇

3
−𝑊
𝑋

) ]
− 2
3

(
𝑊 𝑜
𝑖 + Φ𝑖𝑊

𝑋

) (
𝑊 𝑜
𝑗 +

Φ 𝑗𝑊

𝑋

)
, (12.86)

𝑚
(𝑔)
𝑖𝑇

=

√︂
1
𝑋 3

[
−
𝑊 𝑜
𝑖

𝑋
+ 2Φ𝑖
𝑋

(
𝑊 ℎ
𝑇

3
−𝑊
𝑋

)
−

(
𝑊 ℎ
𝑇

3
−𝑊
𝑋

)
(Φ − Φ𝑚Φ

𝑚𝑙Φ𝑙 )
2Φ𝑖
3𝑋 2

]
−2
3

(
𝑊 𝑜
𝑖 + Φ𝑖

𝑋
𝑊

) (
𝑊 ℎ
𝑇 − 3

𝑋
𝑊

)
, (12.87)

𝑚
(𝑔)
𝑇𝑇

=
6
𝑋

(
𝑊

𝑋
−
𝑊 ℎ
𝑇

3

) (
1 + 1

3𝑋
(Φ − Φ𝑚Φ

𝑚𝑙Φ𝑙 )
)
, (12.88)

If Φ = 𝛿𝑖 𝑗𝑧
𝑖𝑧 𝑗 , then Φ = Φ𝑚Φ

𝑚𝑙Φ𝑙 . Thus, the components reduce to

𝑚
(𝑔)
𝑖 𝑗

=

√︂
1
𝑋 3

[
𝑊 𝑜
𝑖 𝑗 +

2
3𝑋

(𝑊 𝑜
𝑖 Φ 𝑗 + Φ𝑖𝑊

𝑜
𝑗 ) +

2
3𝑋 2Φ𝑖Φ 𝑗𝑊

]
− 2
3

(
𝑊 𝑜
𝑖 + Φ𝑖𝑊

𝑋

) (
𝑊 𝑜
𝑗 +

Φ 𝑗𝑊

𝑋

)
,

(12.89)

𝑚
(𝑔)
𝑖𝑇

=

√︂
1
𝑋 3

[
−
𝑊 𝑜
𝑖

𝑋
+ 2Φ𝑖
𝑋

(
𝑊 ℎ
𝑇

3
−𝑊
𝑋

) ]
− 2
3

(
𝑊𝑖 +

Φ𝑖
𝑋
𝑊

) (
𝑊 ℎ
𝑇 − 3

𝑋
𝑊

)
, (12.90)

𝑚
(𝑔)
𝑇𝑇

=
6
𝑋

(
𝑊

𝑋
−
𝑊 ℎ
𝑇

3

)
. (12.91)
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The non-trivial components at the vacuum are then given by

𝑚
(𝑔)
𝑖 ′ 𝑗 ′ = 𝑊 𝑜

𝑖 ′ 𝑗 ′ ≈
𝑣
√
2
𝑌𝑖 ′ 𝑗 ′, (12.92)

𝑚
(𝑔)
𝑢𝑢 = −2

3
𝜇𝑣𝑢𝑣𝑑 +

1
6
𝑣2𝑢𝑊 − 2

3

(
− 𝜇 𝑣𝑑√

2
+ 𝑣

2
𝑢𝑊

2

)2
≈ 𝜇𝑣2 ∼ O(𝐻𝑣2) ∼𝑚(𝑔)

𝑑𝑑
, (12.93)

𝑚
(𝑔)
𝑢𝑑

=

[
𝑊 𝑜
𝑢𝑑

+ 1
3
(𝑊 𝑜

𝑢 𝑣𝑑 + 𝑣𝑢𝑊 𝑜
𝑑
) + 1

6
𝑣𝑢𝑣𝑑𝑊

]
− 2
3

(
𝑊 𝑜
𝑢 + 𝑣

2
𝑢𝑊

2

) (
𝑊 𝑜
𝑑
+
𝑣2
𝑑
𝑊

2

)
≈ −𝜇 ∼ −𝐻 ∼ −𝑚(𝑔)

+− , (12.94)

𝑚
(𝑔)
𝑢𝑇

=

[
−𝑊 𝑜

𝑢 + 𝑣2𝑢

(
𝑊 ℎ
𝑇

3
−𝑊

) ]
− 2
3

(
𝑊𝑢 +

𝑣2𝑢
2
𝑊

) (
𝑊 ℎ
𝑇 − 3𝑊

)
≈ 𝜇

𝑣𝑑√
2
∼ 𝐻𝑣, (12.95)

𝑚
(𝑔)
𝑑𝑇

=

[
−𝑊 𝑜

𝑑
+ 𝑣2

𝑑

(
𝑊 ℎ
𝑇

3
−𝑊

) ]
− 2
3

(
𝑊𝑑 +

𝑣2
𝑑

2
𝑊

) (
𝑊 ℎ
𝑇 − 3𝑊

)
≈ 𝜇

𝑣𝑢√
2
∼ 𝐻𝑣, (12.96)

𝑚
(𝑔)
𝑇𝑇

= 6𝑊 − 2𝑊 ℎ
𝑇 ≈𝑚3/2 ∼ 𝐻, (12.97)

where 𝑖′’s are denoted by non-higgs matters, and the indices ± mean 𝐻+
𝑢 and 𝐻−

𝑑
respectively.

Next, let us estimate the other mass parameters. We �nd

𝑚
(𝑔)
𝑢𝐵

∼𝑚(𝑔)
𝑑𝐵

≈ 𝑔𝐵 (𝑖𝑣 − 𝑖
(−𝜇𝑣 + 𝑣𝐻 )

𝐻
𝑣2) ∼ 𝑖𝑔𝐵𝑣, (12.98)

𝑚
(𝑔)
𝐴𝐵

≈ 𝑔𝐴𝑔𝐵
𝑣2

𝐻
− 𝐻𝛿𝐴𝐵

√︁
𝛽𝐴𝛽𝐵 ∼ −O(𝛽𝐻 ), (12.99)

𝑚
(𝑔)
𝐴𝑇

≈ 𝑔𝐴O(𝑣2) − 𝛽𝐴𝑔2𝐴
〈
P𝐴

〉
, (12.100)

𝑚
(𝑔)
𝐴𝜆

≈ 𝑔𝐴O(𝑣2), (12.101)

𝑚
(𝑔)
𝑢𝜆

≈ −𝑖 𝑏𝑣𝑢
𝜉

− 𝑖−𝜇𝑣𝑑 + 𝑣𝑢𝐻
𝐻

𝜉 ∼ −𝑖 𝑏𝑣
𝐻

∼𝑚(𝑔)
𝑑𝜆
, (12.102)

𝑚
(𝑔)
𝑇𝜆

≈ 𝜉 ∼ 𝐻, (12.103)

𝑚
(𝑔)
𝜆𝜆

≈ 𝑚3/2 +
𝜉2

𝑚3/2
∼ 𝐻 + 𝐻

2

𝐻
∼ 𝐻, (12.104)

where 𝐴, 𝐵 = 1, 2 for 𝑈 (1)𝑌 and 𝑆𝑈 (2)𝐿 respectively. In terms of 𝑚𝑢𝜆,𝑚𝑑𝜆 , since 10−26 � 𝑏 �
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10−10, we have

10−32 �𝑚𝑢𝜆,𝑚𝑑𝜆 � 10−16 � 𝐻. (12.105)

In summary, the fermion mass matrix is represented by

𝑀𝑓 ≡

©­­­­­­­­­­­­­­­­­­­­­­«

𝑚
(𝑔)
𝑖 ′ 𝑗 ′ 𝑚

(𝑔)
𝑖 ′𝑢 𝑚

(𝑔)
𝑖 ′𝑑 𝑚

(𝑔)
𝑖 ′+ 𝑚

(𝑔)
𝑖 ′− 𝑚

(𝑔)
𝑖 ′𝑇 𝑚

(𝑔)
𝑖 ′𝐵 𝑚

(𝑔)
𝑖 ′𝜆

𝑚
(𝑔)
𝑢 𝑗 ′ 𝑚

(𝑔)
𝑢𝑢 𝑚

(𝑔)
𝑢𝑑

𝑚
(𝑔)
𝑢+ 𝑚

(𝑔)
𝑢− 𝑚

(𝑔)
𝑢𝑇

𝑚
(𝑔)
𝑢𝐵

𝑚
(𝑔)
𝑢𝜆

𝑚
(𝑔)
𝑑 𝑗 ′ 𝑚

(𝑔)
𝑑𝑢

𝑚
(𝑔)
𝑑𝑑

𝑚
(𝑔)
𝑑+ 𝑚

(𝑔)
𝑑− 𝑚

(𝑔)
𝑑𝑇

𝑚
(𝑔)
𝑑𝐵

𝑚
(𝑔)
𝑑𝜆

𝑚
(𝑔)
+ 𝑗 ′ 𝑚

(𝑔)
+𝑢 𝑚

(𝑔)
+𝑑 𝑚

(𝑔)
++ 𝑚

(𝑔)
+− 𝑚

(𝑔)
+𝑇 𝑚

(𝑔)
+𝐵 𝑚

(𝑔)
+𝜆

𝑚
(𝑔)
− 𝑗 ′ 𝑚

(𝑔)
−𝑢 𝑚

(𝑔)
−𝑑 𝑚

(𝑔)
−+ 𝑚

(𝑔)
−− 𝑚

(𝑔)
−𝑇 𝑚

(𝑔)
−𝐵 𝑚

(𝑔)
−𝜆

𝑚
(𝑔)
𝑇 𝑗 ′ 𝑚

(𝑔)
𝑇𝑢

𝑚
(𝑔)
𝑇𝑑

𝑚
(𝑔)
𝑇+ 𝑚

(𝑔)
𝑇− 𝑚

(𝑔)
𝑇𝑇

𝑚
(𝑔)
𝑇𝐵

𝑚
(𝑔)
𝑇𝜆

𝑚
(𝑔)
𝐴𝑗 ′ 𝑚

(𝑔)
𝐴𝑢

𝑚
(𝑔)
𝐴𝑑

𝑚
(𝑔)
𝐴+ 𝑚

(𝑔)
𝐴− 𝑚

(𝑔)
𝐴𝑇

𝑚
(𝑔)
𝐴𝐵

𝑚
(𝑔)
𝐴𝜆

𝑚
(𝑔)
𝜆 𝑗 ′ 𝑚

(𝑔)
𝜆𝑢

𝑚
(𝑔)
𝜆𝑑

𝑚
(𝑔)
𝜆+ 𝑚

(𝑔)
𝜆− 𝑚

(𝑔)
𝜆𝑇

𝑚
(𝑔)
𝜆𝐵

𝑚
(𝑔)
𝜆𝜆

ª®®®®®®®®®®®®®®®®®®®®®®¬

≈

©­­­­­­­­­­­­­­­­­­­­­­«

𝑣√
2
𝑌𝑖 𝑗 0 0 0 0 0 0 0

0 O(𝐻𝑣2) −𝐻 0 0 𝐻𝑣 𝑖𝑣𝑔𝐵 −𝑖 𝑏𝑣
𝐻

0 −𝐻 O(𝐻𝑣2) 0 0 𝐻𝑣 𝑖𝑣𝑔𝐵 −𝑖 𝑏𝑣
𝐻

0 0 0 0 𝐻 0 0 0

0 0 0 𝐻 0 0 0 0

0 𝐻𝑣 𝐻𝑣 0 0 𝐻 O(𝑣2)𝑔𝐵 𝐻

0 𝑖𝑣𝑔𝐴 𝑖𝑣𝑔𝐴 0 0 O(𝑣2)𝑔𝐴 −O(𝛽𝐻 ) 0

0 −𝑖 𝑏𝑣
𝐻

−𝑖 𝑏𝑣
𝐻

0 0 𝐻 0 𝐻

ª®®®®®®®®®®®®®®®®®®®®®®¬
(12.106)

where 𝑚(𝑔)
𝐴𝜆

= 𝑚
(𝑔)
𝜆𝐵

= 0 since there are no couplings between the relevant vector multiplets.

Keeping the Yukawa masses of the matter fermions and dropping the other terms much less than
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the Hubble scale, the fermion mass matrix can be approximated into

𝑀𝑓 ≈

©­­­­­­­­­­­­­­­­­­­­­­«

𝑣√
2
𝑌𝑖 𝑗 0 0 0 0 0 0 0

0 0 −𝐻 0 0 0 0 0

0 −𝐻 0 0 0 0 0 0

0 0 0 0 𝐻 0 0 0

0 0 0 𝐻 0 0 0 0

0 0 0 0 0 𝐻 0 𝐻

0 0 0 0 0 0 −𝛽𝐻 0

0 0 0 0 0 𝐻 0 𝐻

ª®®®®®®®®®®®®®®®®®®®®®®¬

(12.107)

We observe that masses of the SM matter fermions can be matched with the observed values by

adjusting Yukawa couplings which is free parameters. Diagonalizing the fermion mass matrices

may produce negative mass eigenvalues, but the masses can be made to be positive by absorbing

the negative sign into the mixing matrices that get imaginary [90]. We note that the chargino,

neutralino, and gaugino masses at the true vacua after in�ation are of the order of Hubble scale

O(10−5)𝑀𝑝𝑙 ∼ O(1013) GeV, implying that they may be candidate of the so-called supermassive

dark matter “WIMPZILLA” [91–94] (or superheavy dark matter in Ref. [95]). We are not go-

ing to further investigate details of phenomenology related to these fermions since it is beyond

the scope of our purpose in this work. Nevertheless, it would be worthwhile to study possible

phenomenological implications about those fermions in the future.

Lastly, we summarize all the parameters in our supergravity model of in�ation compatible

with MSSM as follows:

• Hubble Scale 𝐻 (∼ 𝜇, 𝑔−1, 𝑀2
𝑆
, 𝐴) for in�ation,

• Yukawa couplings 𝑌𝑖 ′ 𝑗 ′ for fermion masses,

• Neutral Higgs VEVs 𝑣𝑢, 𝑣𝑑 such that 𝑣 ≡
√︃
𝑣2𝑢 + 𝑣2𝑑 for Higgs mechanism,
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• Angle between 𝑣𝑢 and 𝑣𝑑 , i.e. tan 𝛽 = 𝑣𝑢/𝑣𝑑 ,

• Gauge couplings 𝑔1, 𝑔2, 𝑔3 for strong, weak, and hypercharge interactions in the SM,

• New-FI-term hidden-sector parameters𝐶𝑖 ’s for producing scalar bosons heavier than Hub-

ble,

• New-FI-term observable-sector parameter 𝑏 for generating supersymmetric Higgs poten-

tial,

• Hidden-sector superpotential parameter 𝑎 for KKLT superpotential,

which determine all the other parameters in ourmodel. In particular, fully-free parameters among

them are 𝛽,𝐶𝑖, 𝑏, 𝑎.
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13 | Conclusion

In this thesis, we have investigated how to construct and examine locally supersymmetric

e�ective �eld theories of in�ation in various aspects in the superconformal formalism.

In Ch. 7, we have con�rmed that the liberated N = 1 supergravity can be de�ned in the

superconformal formalism as well, which were originally proposed in the superspace formalism

by Farakos, Kehagias, and Riotto. The key fact of the liberated supergravity is that a new general

scalar potential can be introduced by promoting Kähler transformations to abelian gauge sym-

metry and contriving a new D-term action with the Kähler-potential real multiplet. As a similar

e�ort to this, relaxed supergraivty is proposed in this research. We also proved that liberated su-

pergravity is not literally liberated due to some strong constraints on the liberated terms, which

is done by inspecting e�ective-�eld-theoretical suppression of the nonrenormalizable fermionic

Lagrangians. There, we relate the “liberated” scalar potential U to the UV cuto�. Nevertheless,

in Ch. 10, we show that it is shown that a possible toy model of in�ation can consistently be built

if taking into account a special phase transition of supersymmetry breaking scale from Planck

during in�ation to electroweak scale after in�ation.

In Ch. 8, we have revisited the component action of a Kähler-invariant new FI term (called

“ACIK-FI term”) in the superconformal formalism. We used the superconformal tensor calculus

to constrain the size of new supergravity terms that are present in the ACIK-FI term, but absent

in standard supergravity. Speci�cally, we derive the constraints on the ACIK-FI term used in [60].

We have seen that ACIK-FI term has a cuto� such that Λ𝑐𝑢𝑡 ∼ 𝐻 2/3 = 10−2.66𝑀𝑝𝑙 . What makes our
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constraints powerful is that di�erently from standard supergravity, both liberated supergravity

and the ACIK-FI terms introduce nonrenormalizable interactions proportional to inverse powers

of the supersymmetry breaking scale 𝑀𝑆 . This makes it impossible to send 𝑀𝑆 to zero while

keeping the UV cuto� of the theory �nite. The most singular nonrenormalizable interactions in

the limit 𝑀𝑆 → 0 are cumbersome, multi-fermion operators, but they can be found and studied

using the superconformal tensor calculus in a systematic and economical way.

In Ch. 9, we have found a no-go theorem for the higher order corrections in FKLP minimal

supergravity models of in�ation. The no-go theorem tells us that the higher order corrections in

the �eld strength of a vector multiplet 𝑉 must include some powers of the real linear multiplet

(𝑉 )𝐷 whose lowest component is given by the auxiliary �eld 𝐷 of the vector multiplet 𝑉 . We

discovered a new negative-de�nite generic potential term. We also found moderate constraints

on the new negative term by evaluating the suppression of nonrenormalizable interactions with

respect to a cuto� scale Λ𝑐𝑢𝑡 . These constraints identify the cuto� Λ𝑐𝑢𝑡 with the SUSY breaking

scale 𝑀𝑆 . It turns out that we have to take into account high-scale SUSY breaking putting the

naturalness away. Then, we showed a comparison between relaxed and liberated supergravities.

As an example, we observed that we can generate the in�ation energy of order 10−10𝑀4
𝑝𝑙
through

relaxed supergravity since the total scalar potential is bounded above by𝑉 �𝑆
𝐷
less than the Planck

scale 𝑀𝑝𝑙 , while we cannot do through the liberated supergravity because only the scales below

10−64𝑀4
𝑝𝑙
or 10−96𝑀4

𝑝𝑙
can be allowed. In this sense, relaxed supergravity is truly liberated than

the original liberated supergravity.

In Ch. 11, we have seen that our model can naturally produce plateau-potential in�ation at the

Hubble scale with a high scale spontaneously supersymmetry breaking in the hidden sector and

low scale soft supersymmetry breaking interactions with various soft masses in the observable

sector. We also obtain naturally a super-EeV gravitino, which is compatible with constraint for

heavy gravitino cold dark matter (i.e. 0.1 EeV . 𝑚3/2 . 1000 EeV) [83]. In this work, we have

not investigated the speci�c structure and dynamics of observable-sector interactions or the de-
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tailed construction of a realistic low energy e�ective theory of the observable sector. It would

be of obvious interest to see how far this scenario could be pursued and how to incorporate in

it a supersymmetric extension of the Standard Model or a Grand Uni�ed Theory. Models with

a dynamically generated FI term, realistic observable sector, D-term in�ation, and high-scale su-

persymmetry breaking have been studied in [41, 42]; other uses of FI terms for in�ation were

presented in [50–52]. It would be interesting to reproduce the phenomenologically desirable fea-

tures of [41, 42, 50–52] and other models proposed in the literature in our scenario. On a di�erent

note, it would be extremely interesting to see if the new FI term in general and in our KKLT-type

scenario in particular can be obtained in string theory. In other words, it would be interesting to

see if our model belongs to the string landscape or the string swampland [96] (See refs. [97, 98]

for recent reviews of swampland conjectures).

In Ch. 12, we have explored a possible e�ective �eld theory of single-�eld Starobinsky-type

in�ation and minimal supersymmetric standard model in four-dimensional N = 1 supergraivty

with the KKLT string background and new Kähler-invariant Fayet-Iliopoulos (FI) terms without

gauging R-symmetry. We takes advantage of gravity mediation for supersymmetry breaking,

which is broken at the in�ation scale𝑀𝑆 ∼ 10−2.5𝑀𝑝𝑙 . That is, this model is e�ective �eld theory

of in�ation with broken supersymmetry. In the hidden sector, we observe that slow-roll in�ation

occurs with the Hubble scale 𝐻 ∼ 10−5𝑀𝑝𝑙 through the combination of the new FI term and

F-term scalar potentials in de Sitter space, whose vacuum energy is given by the cosmological

constant Λ ∼ 10−120𝑀4
𝑝𝑙
. In particular, we have examined suppression of the nonrenormalizable

fermionic Lagrangians arising from the new FI term, and then imposed a constraint on the new

FI term. We have seen that our model can be valid as e�ective �eld theory if we require a proper

choice of the gauge kinetic function for the vector multiplet responsible for the new FI term. We

showed a speci�c example about this, and proved that the case is indeed comparable with a weak

coupling 𝑔 of the new FI term, and does not ruin the kinetic term of the new-FI-term vector �eld.

Remarkably, every scalar except for in�aton and lightest Higgs in the observable sector can be
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supermassive compared to the Hubble mass𝐻 ∼ 10−5𝑀𝑝𝑙 . Because of the introduction of the new

FI terms, we have no issue of the tachyonic mass, and no excessive number of unnecessary extra

light scalars in our model. Indeed, this implies that the unique in�ationary plateau can be natu-

rally created. Moreover, we have seen that stabilization of Higgs �elds can easily be done since

the new FI terms allows us to modify the scalar potential in our favor. Regarding the standard-

model fermions, they can be light up to whatever we wish through the free parameters of Yukawa

coupling. Particularly, the other supersymmetric fermions including gravitino can be massive up

to the Hubble due to the F-term of high scale. Furthermore, we can make gauginos to be heavy

by considering the linear term of the moduli 𝑇 in the gauge kinetic functions corresponding to

the standard model gauge groups.

At last, I put some research directions for future investigation. First, it would be attractive

to explore how quantum one-loop e�ective potentials in supergravity under broken supersym-

metry will a�ect the theories discussed in this thesis. Speci�cally, it would be interesting to see

what conditions determine their validity. In addition, it is also interesting to devise a general

“spectroscopy” scheme for one to be able to easily scrutinize suppression of non-renormalizable

terms using the superconformal tensor calculus in order to read o� the exact cuto� scale of the

theory in a systematic and e�cient manner. Besides, it would be fascinating to search for pos-

sible phenomenological consequences from supergravity in order to explain the remaining open

questions in cosmology, such as large non-gaussianity, production of primordial black holes as

possible candidate of dark matter relic, or normally dark-sector particle physics. Lastly, I would

like to mention that the conventional slow-roll in�ation could not be compatible with string the-

ory if de Sitter swampland conjecture (dSC) [99] is accepted. Certainly, this is the main limitation

of this dissertation. In particular, I would like to mention that minimal warm in�ation (MWI)

[100] may be a good in�ationary model according to some recent works, which say that MWI

can be compatible with some swampland conditions like de Sitter swampland conjecture [101]

and Trans-planckian censorship conjecture (TCC) [102]. Therefore, it would be worth studying
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how we can obtain other possible in�ationary models which can satisfy such swampland conjec-

tures, and how suchmodels includingminimal warm in�ation can be constructed in supergravity.
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A | Spinor Algebras in General

Dimensions

Here, I follow the same convention used in Ref. [8], which this chapter is mainly based on.

A.1 Clifford Algebra in General Diemnsions

A.1.1 The generating Gamma matrices of Clifford algebra

• Pauli matrices ∈ 𝑆𝐿(2,C): They are Hermitian/Involutory1/Traceless(HIT).

𝜎1 =
©­­«
0 1

1 0

ª®®¬ , 𝜎2 =
©­­«
0 −𝑖

𝑖 0

ª®®¬ , 𝜎3 =
©­­«
1 0

0 −1

ª®®¬ (A.1)

• Pauli-matrix 4-vector ∈ 𝑆𝑂 (1, 3):

𝜎𝜇 ≡ (1, 𝜎𝑖) = 𝜎𝜇, 𝜎𝜇 ≡ (−1, 𝜎𝑖) = 𝜎𝜇 (A.2)
1Involutory matrix is the matrix that is its own inverse.
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• Homomorphisms between 𝑆𝐿(2,b) and 𝑆𝑂 (1, 3):

®𝑥 = 𝜎𝜇𝑥
𝜇 ⇐⇒ 𝑥 𝜇 =

1
2
Tr[𝜎𝜇 ®𝑥], (A.3)

®𝑥′ = 𝐴®𝑥𝐴† ⇐⇒ 𝑥′𝜇 =
1
2
Tr[𝜎𝜇𝐴𝜎𝜈𝐴†]𝑥𝜈 (A.4)

• Euclidean(or Spatial) Gamma Matrices: They are Hermitian/Involutory/Anti-commuting.

The Euclidean Gamma matrices in 𝐷 = 2𝑚 > 0 (or 𝐷 = 2𝑚 + 1 > 1) dimensional spacetime

can be constructed by taking a tensor-product of ‘𝑚’ Pauli & identity matrices, so that they

become a 2𝑚-by-2𝑚 matrices.

𝛾1 ≡ 𝜎1 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ · · ·︸                    ︷︷                    ︸
‘𝑚′

,

𝛾2 ≡ 𝜎2 ⊗ 1 ⊗ 1 ⊗ 1 ⊗ · · ·︸                    ︷︷                    ︸
‘𝑚′

,

𝛾3 ≡ 𝜎3 ⊗ 𝜎1 ⊗ 1 ⊗ 1 ⊗ · · ·︸                     ︷︷                     ︸
‘𝑚′

,

𝛾4 ≡ 𝜎3 ⊗ 𝜎2 ⊗ 1 ⊗ 1 ⊗ · · ·︸                     ︷︷                     ︸
‘𝑚′

,

... (A.5)

𝛾 𝜇 ≡ 𝜎3 ⊗ 𝜎3 ⊗ · · · ⊗ 𝜎3 ⊗ 𝜎𝑖︸                       ︷︷                       ︸
‘𝑚′

,

(A.6)

While the last gamma matrix will end with 𝜎2 in even dimension 𝐷 = 2𝑚, it will end with

𝜎3 in odd dimension 𝐷 = 2𝑚 + 1.
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• LorentzianGammaMatrices: time-direction gammamatrix is anti-Hermitian/anti-involutory.

To obtain the Lorentzian Gamma matrix,

(1) Decompose 𝐴 Euclidean Gamma matrices into 𝐴 = (𝑎, 𝛼),

(2) Pick any single Euclidean Gamma matrix 𝛾𝑎 ,

(3) Multiply it by 𝑖 and re-label this as 𝛾𝑎 → 𝛾0 ≡ 𝑖𝛾𝑎

(We call this as “timelike-direction” Lorentzian Gamma matrix).

(4) Re-label the remaining Euclidean matrices as 𝛾 𝑖 ≡ 𝛾𝛼

(We call this as “spacelike-direction” Lorentzian Gamma matrix).

(5) The �nal Lorentzian Gamma Matrices 𝛾 𝜇 = (𝛾0, 𝛾 𝑖), where 0 ≤ 𝜇 ≤ 𝐷 − 1, satisfy the

Hermitian representation of the Gamma matrix (𝛾 𝜇)† = 𝛾0𝛾 𝜇𝛾0.

• Conjugancy of Gamma matrix: for some unitary matrix 𝑆 , two representations that di�er

by the unitary matrix are equivalent, i.e. 𝛾 ′𝜇 = 𝑆𝛾 𝜇𝑆−1. Up to this conjugancy, there is a

unique irreducible representation of the Cli�ord algebra by the Gamma matrices in ‘even’

dimension. In odd dimension, there are two inequivalent irreducible representations, which

are determined by the sign of the �nal gamma matrix 𝛾𝐷=2𝑚+1, i.e. ±𝛾𝐷=2𝑚+1.

• Orthogonal Basis of Cli�ord Algebra in Even Dimensional Spacetime:

{Γ𝐴 ≡ 1, 𝛾 𝜇, 𝛾 𝜇1𝜇2, · · · , 𝛾 𝜇1···𝜇𝐷 }, {Γ𝐴 ≡ 1, 𝛾𝜇, 𝛾𝜇2𝜇1, · · · , 𝛾𝜇𝐷 ···𝜇1} (A.7)

where 𝛾 𝜇𝑟 ···𝜇1 = (−1)𝑟 (𝑟−1)/2𝛾 𝜇1···𝜇𝑟 (𝑟 = 2, 3 mod 4) for some rank-𝑟 gamma matrix 𝛾 𝜇1···𝜇𝑟 ,

and the index values follow the conditions 𝜇1 < 𝜇2 < · · · < 𝜇𝑟 . At each rank 𝑟 of Gamma

matrix (i.e. 𝛾 𝜇1···𝜇𝑟 ), there are 𝐷𝐶𝑟 di�erent choices of index values like 𝜇 = 3 for some

indices 𝜇1 · · · 𝜇𝑟 of a rank-𝑟 Gamma matrix 𝛾 𝜇1···𝜇𝑟 , so that the total number of di�erent

“unindexed” matrices, like 𝛾123, in the set of {Γ𝐴} is 2𝐷 (of course, in the set {Γ𝐴}, there

are 𝐷 + 1 “indexed” matrices like 𝛾 𝜇𝜈 ). The upper/lower indices can be interchanged with

each other by contracting it to the spacetime metric 𝑔𝜇𝜈 . For any matrix 𝑀 with the same
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dimension of Gamma matrices, it satis�es the following properties

Trace orthogonality: Tr[Γ𝐴Γ𝐵] = 2𝑚𝛿𝐴𝐵 , (A.8)

Gamma-matrix expansion: 𝑀 =
∑︁
𝐴

𝑚𝐴Γ
𝐴 =

[𝐷]∑︁
𝑘=0

1
𝑘!
𝑚𝜇𝑘 ...𝜇1𝛾

𝜇1 ...𝜇𝑘 , (A.9)

Expansion coe�cient: 𝑚𝐴 =
1
2𝑚

Tr[𝑀Γ𝐴] =⇒ 𝑚𝜇𝑘 ...𝜇1 =
1
2𝑚

Tr[𝑀𝛾𝜇𝑘 ...𝜇1], (A.10)

where [𝐷] = 𝐷 for even 𝐷 , while [𝐷] = (𝐷 − 1)/2 for odd 𝐷 .

• The highest rank Cli�ord algebra component 𝛾∗: This is Hermitian/Involutory/Traceless,

and commutes with all even-rank Cli�ord elements (e.g. 𝛾 𝜇𝜈 , 𝛾 𝜇𝜈𝜌𝜎 , etc.) but anti-commutes

with all odd-rank Cli�ord elements (e.g. 𝛾 𝜇, 𝛾 𝜇𝜈𝜌 , etc.). Plus, this provides the link between

even and odd dimensions, and is closely realted to the “chirality” of fermions.

𝛾∗ ≡ (−𝑖)𝑚+1
𝐷−1∏
𝜇=0

𝛾𝜇 = (−𝑖)𝑚+1𝛾0𝛾1 · · ·𝛾𝐷−1. (A.11)

For any order of 𝜇𝑖 , one can write

𝛾𝜇1···𝜇𝐷 = 𝑖𝑚+1𝜀𝜇1···𝜇𝐷𝛾∗. (A.12)

• Chiral-Projection operators 𝑃𝐿, 𝑃𝑅 : they are idempotent (e.g. 𝑃2
𝐿/𝑅 = 𝑃𝐿/𝑅), and orthogonal

to each other (𝑃𝐿𝑃𝑅 = 𝑃𝑅𝑃𝐿 = 0).

𝑃𝐿 ≡
1 + 𝛾∗
2

, 𝑃𝑅 ≡ 1 − 𝛾∗
2

. (A.13)

For a Dirac (or Majorana) spinor Ψ ≡
©­­«
𝜓

𝜒

ª®®¬ consisting of two Weyl �elds (𝜓, 𝜒), these can be
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found as chiral-projected �elds from the Dirac (or Majorana) spinor as

𝑃𝐿Ψ =
©­­«
𝜓

0

ª®®¬ , 𝑃𝑅Ψ =
©­­«
0

𝜒

ª®®¬ (A.14)

• Symmetries of Cli�ord elements

- Charge-conjugation unitary matrix 𝐶 and Transpose of Gamma matrix:

In the Cli�ord algebra of the 2𝑚-by-2𝑚 matrices, for both even and odd dimensions 𝐷 , we

can distinguish the ‘symmetric’ and ‘anti-symmetric’ ones in the following way.

There exists a unitary matrix 𝐶 called “Charge Conjugation” such that each matrix 𝐶Γ (𝑟 )

for some rank-𝑟 Cli�ord element is either symmetric or anti-symmetric:

(𝐶Γ (𝑟 ))𝑇 = −𝑡𝑟𝐶Γ (𝑟 ) where 𝑡𝑟 = ±1 such that 𝑡2𝑟 = 1. (A.15)

For rank-0 and 1, we obtain

𝐶𝑇 = −𝑡0𝐶 =⇒ 𝐶† = −𝑡0𝐶∗ = 𝐶−1, 𝛾 𝜇
𝑇
= 𝑡0𝑡1𝐶𝛾

𝜇𝐶−1. (A.16)

These determine the symmetries of all the other𝐶𝛾 𝜇1···𝜇𝑟 Cli�ord elements via the iteration

of (𝑡0, 𝑡1, 𝑡2 = −𝑡0, 𝑡3 = −𝑡1) over the 𝑡𝑟 ’s, e.g. 𝑡4 = 𝑡0, 𝑡5 = 𝑡1, 𝑡6 = −𝑡0, 𝑡7 = −𝑡1. The values of

𝑡0, 𝑡1 are determined by the spacetime dimension modulo 8 (𝐷 mod 8) and the rank modulo

4 (𝑟 mod 4). For example, 𝐷 = 4 =⇒ (𝑡0 = 1, 𝑡1 = −1), 𝐷 = 10 =⇒ (𝑡0 = 𝑡1 = −1),
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𝐷 = 11 =⇒ (𝑡0 = 1, 𝑡1 = −1). We can also represent this as follows:

𝑡𝑟 =



𝑡0 when 𝑟 = 0 mod 4

𝑡1 when 𝑟 = 1 mod 4

−𝑡0 when 𝑟 = 2 mod 4

−𝑡1 when 𝑟 = 3 mod 4

. (A.17)

For even dimension, there are two choices according to the product 𝑡0𝑡1.

𝐶 (𝑡0𝑡1 = −1) ≡ 𝐶− = (𝜎2 ⊗ 𝜎1) ⊗ (𝜎2 ⊗ 𝜎1) ⊗ · · · ≡ 𝐶. (A.18)

𝐶 (𝑡0𝑡1 = +1) ≡ 𝐶+ = (𝜎1 ⊗ 𝜎2) ⊗ (𝜎1 ⊗ 𝜎2) ⊗ · · · . = 𝐶𝛾∗. (A.19)

For odd dimension, there is a unique 𝐶 .

- Spinor-Charge-Conjugation unitary matrix 𝐵 and Complex-conjugates of Gammamatrix:

The complex conjugate of gamma matrix is determined by the Hermitian and transpose

properties of gamma matrix using a unitary matrix 𝐵:

𝛾 𝜇
∗
= 𝛾0

𝑇
𝛾 𝜇
𝑇
𝛾0
𝑇
= −𝑡0𝑡1𝐵𝛾 𝜇𝐵−1 where 𝐵 ≡ 𝑖𝑡0𝐶𝛾0 satisfying 𝐵∗𝐵 = −𝑡11.(A.20)

proof)

𝛾 𝜇
†
= 𝛾0𝛾 𝜇𝛾0 =⇒ 𝛾 𝜇

∗
= 𝛾0

𝑇
𝛾 𝜇
𝑇
𝛾0
𝑇

= (𝑡0𝑡1)3(𝐶𝛾0𝐶−1) (𝐶𝛾 𝜇𝐶−1) (𝐶𝛾0𝐶−1)

= 𝑡0𝑡1𝐶𝛾
0𝛾 𝜇𝛾0𝐶−1 = 𝑡0𝑡1𝐶𝛾

0𝛾 𝜇 (−(𝛾0)−1)𝐶−1

= −𝑡0𝑡1𝐶𝛾0𝛾 𝜇 (𝛾0)−1𝐶−1 = −𝑡0𝑡1(𝑖𝑡0𝐶𝛾0)𝛾 𝜇 (𝑖𝑡0𝐶𝛾0)−1

= −𝑡0𝑡1𝐵𝛾 𝜇𝐵−1. � (A.21)
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𝐵∗𝐵 = (−𝑖𝑡0𝐶∗𝛾0
∗) (𝑖𝑡0𝐶𝛾0) = 𝐶∗(−𝛾0𝑇 )𝐶𝛾0

= (−𝑡0𝐶−1) (−𝑡0𝑡1𝐶𝛾0𝐶−1)𝐶𝛾0 = −𝑡1(𝛾0)2 = −𝑡11. � (A.22)

Note that the transpose and complex conjugate properties of the gamma matrix hold for

the Hermitian representation 𝛾 𝜇† = 𝛾0𝛾 𝜇𝛾0 via the unitary matrices 𝐶 and 𝐵. In another

representation given by 𝛾 ′𝜇 = 𝑆𝛾 𝜇𝑆−1, the corresponding new 𝐶′ and 𝐵′ are given by 𝐶′ =

𝑆−1
𝑇
𝐶𝑆−1 and 𝐵′ = 𝑆−1𝑇𝐵𝑆−1.

A.2 Spinors in General Dimensions

A.2.1 Spinor and spinor-bilinears

• Majorana Conjugate: for any spinor 𝜆, we de�ne “Majorana conjugate” as 𝜆 ≡ 𝜆𝑇𝐶 .

• Majorana Flip condition of Spinor-Bilinear Scalar:

Using the Majorana conjugate de�nition and (𝐶Γ (𝑟 ))𝑇 = −𝑡𝑟𝐶Γ (𝑟 ) , we �nd the following

relation:

𝜆𝛾𝜇1···𝜇𝑟 𝜒 = 𝑡𝑟 𝜒𝛾𝜇1···𝜇𝑟𝜆. (A.23)

proof)

𝜆𝛾𝜇1···𝜇𝑟 𝜒 = 𝜆𝑇𝐶𝛾𝜇1···𝜇𝑟 𝜒 = −(𝜒𝑇 [𝐶𝛾𝜇1···𝜇𝑟 ]𝑇𝜆)𝑇 ∵ 𝜆, 𝜒 are anti-commuting!

= 𝑡𝑟 (𝜒𝑇𝐶𝛾𝜇1···𝜇𝑟𝜆)𝑇 = 𝑡𝑟 (𝜒𝛾𝜇1···𝜇𝑟𝜆)𝑇 = 𝑡𝑟 𝜒𝛾𝜇1···𝜇𝑟𝜆 � (A.24)

– Corallaries:

𝜆(Γ (𝑟1) · · · Γ (𝑟𝑝 ))𝜒 = (𝑡𝑝−10 ) (𝑡𝑟1 · · · 𝑡𝑟𝑝 )𝜒 (Γ (𝑟𝑝 ) · · · Γ (𝑟1))𝜆. (A.25)
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– For Majorana dimensions 𝐷 = 2, 3, 4 mod 8,

𝜆𝛾 𝜇1 · · ·𝛾 𝜇𝑝 𝜒 = (−1)𝑝 𝜒𝛾 𝜇𝑝 · · ·𝛾 𝜇1𝜆. (A.26)

𝜒𝜇1···𝜇𝑟 ≡ 𝛾𝜇1···𝜇𝑟𝜆 =⇒ 𝜒𝜇1···𝜇𝑟 = 𝑡0𝑡𝑟𝜆𝛾𝜇1···𝜇𝑟 , (A.27)

𝜒 ≡ Γ (𝑟1) · · · Γ (𝑟𝑝 )𝜆 =⇒ 𝜒 = 𝑡
𝑝

0 𝑡𝑟1 · · · 𝑡𝑟𝑝𝜆Γ
(𝑟𝑝 ) · · · Γ (𝑟1) (A.28)

• Chirality of the conjugate spinor in “even” dimensions:

In “even” dimensional spacetime, we can de�ne the chirality (left-handed/right-handed

parts) of spinors using the chiral projection operators 𝑃𝐿 and 𝑃𝑅 . Since 𝜒∗ = 𝛾∗𝜆 =⇒

𝜒∗ = 𝑡0𝑡𝐷𝜆𝛾∗, we obtain

𝜒 = 𝑃𝐿𝜆 =⇒ 𝜒 = 𝑃𝐿𝜆 =


𝜆𝑃𝐿 for 𝐷 = 0 mod 4 (: 𝑡0𝑡𝐷 = +1),

𝜆𝑃𝑅 for 𝐷 = 2 mod 4 (: 𝑡0𝑡𝐷 = −1).
(A.29)

A.2.2 Spinor indices

• The fundamental spinor 𝜆 and its transpose 𝜆𝑇 :

(𝜆)𝛼 ≡ 𝜆𝛼 and (𝜆𝑇 )𝛼 = 𝜆𝛼 .

• The Majonara-conjugate (barred) spinor 𝜆 and its transpose 𝜆𝑇 :

(𝜆)𝛼 ≡ 𝜆𝛼 ≡ 𝜆𝛼 and (𝜆𝑇 )𝛼 = 𝜆𝛼 ≡ 𝜆𝛼 2

Note that ‘transpose’ changes the alignment of the entry components of a spinor between

horizontal and vertical alignments, so that the position of the index remains same.

2We can omit the barred notation in the indexed form.
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• Majorana-spinor-metric matrix C (i.e. Rasing/Lowering matrices) generated by Charge

conjugation matrix 𝐶:

(1) From the de�nition of the Majorana conjugate 𝜆 ≡ 𝜆𝑇𝐶 and using the transpose opera-

tion 3,

(𝜆)𝛼 = (𝜆𝑇𝐶)𝛼 = 𝜆𝛽 (𝐶)𝛽𝛼 = (𝐶𝑇 )𝛼𝛽𝜆𝛽 ≡ C𝛼𝛽𝜆𝛽 = 𝜆𝛼

=⇒ (𝐶𝑇 )𝛼𝛽 ≡ C𝛼𝛽 such that 𝜆𝛼 ≡ C𝛼𝛽𝜆𝛽 . (A.30)

(2) Of course, from 𝐶𝑇 = −𝑡0𝐶 =⇒ 𝐶 = −𝑡0𝐶𝑇 , we �nd

(𝐶)𝛼𝛽 = −𝑡0(𝐶𝑇 )𝛼𝛽 =⇒ (𝐶)𝛼𝛽 = −𝑡0C𝛼𝛽 . (A.31)

(3) Also, from 𝜆 ≡ 𝜆𝑇𝐶 , we have 𝜆𝐶−1 ≡ 𝜆𝑇 , which gives

(𝜆𝑇 )𝛼 = (𝜆𝐶−1)𝛼 = 𝜆𝛽 (𝐶−1)𝛽𝛼 ≡ 𝜆𝛽C𝛽𝛼 = 𝜆𝛼

=⇒ (𝐶−1)𝛼𝛽 ≡ C𝛼𝛽 such that 𝜆𝛼 ≡ 𝜆𝛽C𝛽𝛼 (A.32)

(4) Likewise, from 𝐶−1 = −𝑡0𝐶∗ =⇒ 𝐶∗ = −𝑡0𝐶−1, we �nd

(𝐶∗)𝛼𝛽 = −𝑡0(𝐶−1)𝛼𝛽 =⇒ (𝐶∗)𝛼𝛽 = −𝑡0C𝛼𝛽 . (A.33)

Note that both 𝐶 and 𝐶𝑇 have upper indices, while both 𝐶−1 and 𝐶∗ have lower indices.
3Refer to the dee�nition of Transpose of a matrix 𝐴, [𝐴𝑇 ]𝑖 𝑗 ≡ ([𝐴]𝑖 𝑗 )𝑇 ≡ [𝐴] 𝑗𝑖 . This tells us that the transpose

operation can directly act on the indices, resulting in the exchange of the indices for the original matrix after the
transpose operation. The symmetry of a matrix 𝐴 is de�ned to be the condition that 𝐴𝑇 = 𝐴 =⇒ [𝐴𝑇 ]𝑖 𝑗

!
=

[𝐴]𝑖 𝑗 =⇒ 𝐴 𝑗𝑖 = 𝐴𝑖 𝑗 , while the anti-symmetry of a matrix 𝐴 is de�ned to be the condition that 𝐴𝑇 = −𝐴 =⇒
[𝐴𝑇 ]𝑖 𝑗

!
= −[𝐴]𝑖 𝑗 =⇒ 𝐴 𝑗𝑖 = −𝐴𝑖 𝑗 .
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Plus, all the positive contractions occur according to the NW-SE convention (I will also call

this contraction as “Back-Slash contraction”).

(5) In order for the two equations to be consistent with each other, we need to impose

𝜆𝛼 = C𝛼𝛽𝜆𝛽 = C𝛼𝛽𝜆𝛾C𝛾𝛽
!
= 𝜆𝛾𝛿𝛼𝛾 =⇒ C𝛼𝛽C𝛾𝛽 = 𝛿𝛼𝛾 , C𝛽𝛼C𝛽𝛾 = 𝛿𝛾𝛼 (A.34)

Notice that the identity matrix has mixed indices.

(6) Moreover, since taking the complex conjugate of𝐶−1 = 𝐶† (due to the unitarity of𝐶 (i.e.

𝐶𝐶† = 𝐶𝑇𝐶∗ = 1)) which has lower indices produces the 𝐶𝑇 which has upper indices, we

obtain the fact that

C𝛼𝛽 = (C𝛼𝛽)∗ & C𝛼𝛽 = (C𝛼𝛽)∗. (A.35)

Notice that the complex conjugate operation on the charge conjugation matrix changes the

position of indices between upper and lower ones.

(7) The (anti-)symmetry property of the metric is given as

(𝐶)𝛼𝛽 = [(𝐶𝑇 )𝑇 ]𝛼𝛽 = (𝐶𝑇 )𝛽𝛼 = C𝛽𝛼 !
= −𝑡0C𝛼𝛽 =⇒ ∴ C𝛼𝛽 = −𝑡0C𝛽𝛼 & C𝛼𝛽 = −𝑡0C𝛽𝛼(A.36)

• Gamma matrix indices:

(1) Gamma matrix has mixed indices: the spinor-bilinear scalar is represented in index by

𝜒𝛾𝜇𝜆 = 𝜒𝛼 (𝛾𝜇) 𝛽𝛼 𝜆𝛽 . (A.37)

(2) But, one can also raise or lower the indices of gammamatrix using the metric as follows:

(𝛾𝜇)𝛼𝛽 = (𝛾𝜇) 𝛾𝛼 C𝛾𝛽 . (A.38)
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(3) These Gamma matrices with indices at the “same level” (i.e. fully-upper or fully-lower

indices) have a de�nite (anti-)symmetry property:

(Γ (𝑟 ))𝛼𝛽 = −𝑡𝑟 (Γ (𝑟 ))𝛽𝛼 & (Γ (𝑟 ))𝛼𝛽 = −𝑡𝑟 (Γ (𝑟 ))𝛽𝛼 . (A.39)

proof)

(𝐶Γ (𝑟 ))𝑇 = −𝑡𝑟𝐶Γ (𝑟 ) =⇒ [(𝐶Γ (𝑟 ))𝑇 ]𝛼𝛽 = −𝑡𝑟 [𝐶Γ (𝑟 )]𝛼𝛽 =⇒ [𝐶Γ (𝑟 )]𝛽𝛼 = −𝑡𝑟 [𝐶Γ (𝑟 )]𝛼𝛽

=⇒ (𝐶)𝛽𝛾 (Γ (𝑟 )) 𝛼𝛾 = −𝑡𝑟 (𝐶)𝛼𝛾 (Γ (𝑟 )) 𝛽𝛾 =⇒ (−𝑡0C𝛽𝛾 ) (Γ (𝑟 )) 𝛼𝛾 = −𝑡𝑟 (−𝑡0C𝛼𝛾 ) (Γ (𝑟 )) 𝛽𝛾

=⇒ ∴ (Γ (𝑟 ))𝛼𝛽 = −𝑡𝑟 (Γ (𝑟 ))𝛽𝛼 & (Γ (𝑟 ))𝛼𝛽 = −𝑡𝑟 (Γ (𝑟 ))𝛽𝛼 � (A.40)

For example,

(𝛾𝜇1···𝜇𝑟 )𝛼𝛽 = −𝑡𝑟 (𝛾𝜇1···𝜇𝑟 )𝛽𝛼 . (A.41)

• Rasing or lowering a contracted index produces “−𝑡0” factor:

𝜆𝛼 𝜒𝛼 = −𝑡0𝜆𝛼 𝜒𝛼 . (A.42)

proof)

𝜆𝛼 𝜒𝛼 = (C𝛼𝛾𝜆𝛾 ) (𝜒𝜎C𝜎𝛼 ) = 𝜆𝛾 𝜒𝜎C𝛼𝛾 (C𝜎𝛼 ) = 𝜆𝛾 𝜒𝜎C𝛼𝛾 (−𝑡0C𝛼𝜎 ) = −𝑡0𝜆𝛾 𝜒𝜎𝛿𝛾𝜎 = −𝑡0𝜆𝛼 𝜒𝛼 �(A.43)

Notice that (Back-Slash contraction) = −𝑡0(Slash contraction).
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A.2.3 Fierz rearrangement

In this section, we consider even dimensions 𝐷 = 2𝑚. The following arguments can also be

applied to odd dimensions 𝐷 = 2𝑚 + 1 if the sum over 𝐴 is restricted to rank 𝑟𝐴 ≤ 𝑚 of the

Gamma matrix basis Γ𝐴. “Fierz rearrangement” is a procedure of changing the pairing of spinors

in products of spinor bilinears. To �gure out this, let us recall the results of Gamma-matrix

expansion from Eqs. (A.8),(A.9), and (A.10):

Trace orthogonality: Tr[Γ𝐴Γ𝐵] = 2𝑚𝛿𝐴𝐵 ,

Gamma-matrix expansion: 𝑀 =
∑︁
𝐴

𝑚𝐴Γ
𝐴 =

[𝐷]∑︁
𝑘=0

1
𝑘!
𝑚𝜇𝑘 ...𝜇1𝛾

𝜇1 ...𝜇𝑘 ,

Expansion coe�cient: 𝑚𝐴 =
1
2𝑚

Tr[𝑀Γ𝐴] =⇒ 𝑚𝜇𝑘 ...𝜇1 =
1
2𝑚

Tr[𝑀𝛾𝜇𝑘 ...𝜇1],

where [𝐷] = 𝐷 for even 𝐷 , while [𝐷] = (𝐷 − 1)/2 for odd 𝐷 . The key idea of Fierz rearrangement

is that instead of𝑀,𝑚𝐴 with no explicit indices on them, one may consider any matrix (𝑀) 𝛿
𝛼 and its

corresponding expansion coe�cient (𝑚𝐴) 𝛿
𝛼 with spectator indices𝛼, 𝛿 . Then, the indexed expansion

is written by

𝑀 𝛿
𝛼 =

∑︁
𝐴

(𝑚𝐴) 𝛿
𝛼 Γ𝐴 =⇒ (𝑀 𝛿

𝛼 ) 𝛽
𝛾 =

∑︁
𝐴

(𝑚𝐴) 𝛿
𝛼 (Γ𝐴) 𝛽

𝛾 , (A.44)

and the indexed expansion coe�cient is given by

(𝑚𝐴) 𝛿
𝛼 =

1
2𝑚

(Tr[(𝑀 𝛿
𝛼 ) (Γ𝐴)]) =

1
2𝑚

((𝑀 𝛿
𝛼 ) 𝛽

𝛾 (Γ𝐴) 𝛾

𝛽
). (A.45)

We are now in a position to �nd some useful Fierz identities. As the most simple example, let us

�nd the basic Fierz identity. First, we specify (𝑀 𝛿
𝛼 ) 𝛽

𝛾 in the following way

(𝑀 𝛿
𝛼 ) 𝛽

𝛾 ≡ 𝛿𝛽𝛼𝛿𝛿𝛾 . (A.46)
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Then, by inserting this into the expansion coe�cients formula, we get

(𝑚𝐴) 𝛿
𝛼 =

1
2𝑚
𝛿
𝛽
𝛼𝛿

𝛿
𝛾 (Γ𝐴)

𝛾

𝛽
=

1
2𝑚

(Γ𝐴) 𝛿
𝛼 . (A.47)

Lastly, by putting this back to the expansion formula, we obtain the basic Fierz identity

𝛿
𝛽
𝛼𝛿

𝛿
𝛾 =

1
2𝑚

∑︁
𝐴

(Γ𝐴) 𝛿
𝛼 (Γ𝐴) 𝛽

𝛾 . (A.48)

For example, by applying 𝜆𝛼3𝜆4𝛽𝜆
𝛾

1𝜆2𝛿 = −𝜆𝛼3𝜆2𝛿𝜆
𝛾

1𝜆4𝛽 to the above basic Fierz identity, we can

immediately �nd

(𝜆1𝜆2) (𝜆3𝜆4) = − 1
2𝑚

∑︁
𝐴

(𝜆1Γ𝐴𝜆4) (𝜆3Γ𝐴𝜆2) (A.49)

for any set of four anticommuting spinors. Hence, following this logic, one may obtain various

Fierz rearrangements. Other Fierz identity can be given by

(𝛾 𝜇) 𝛽
𝛼 (𝛾𝜇) 𝛿

𝛾 =
1
2𝑚

∑︁
𝐴

(−1)𝑟𝐴 (𝐷 − 2𝑟𝐴) (Γ𝐴) 𝛿
𝛼 (Γ𝐴) 𝛽

𝛾 , (A.50)

where 𝑟𝐴 is a tensor rank of the Gamma matrix basis Γ𝐴. Especially, let us consider the case of

(𝛾 𝜇)𝛼𝛽 (𝛾𝜇)𝛾𝛿 and completely symmetric parts in (𝛽𝛾𝛿). Then, the left-hand side of Eq. (A.50) can

be non-vanishing only for dimensions with 𝑡1 = −1. However, its right-hand side can be given

only by rank-1 gamma matrices when𝐷 = 3, 4. When𝐷 = 3, 4, Eq. (A.50) implies a cyclic identity

(𝛾𝜇)𝛼 (𝛽 (𝛾 𝜇)𝛾𝛿) = 0 (A.51)

which can hold for 𝐷 = 2, 10 when contracted with chiral spinors, and thus gives rise to

𝛾𝜇𝜆[1𝜆2𝛾
𝜇𝜆3] = 0. (A.52)
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Notice that this can be obtained by multiplying 𝜆𝛽1 , 𝜆
𝛾

2, 𝜆
𝛿
3 to the cyclic identity. Another Fierz

identities can be found as follows:

(𝜆1𝑀𝜆2) (𝜆3𝑁𝜆4) = − 1
2𝑚

∑︁
𝐴

(𝜆1Γ𝐴𝑁𝜆4) (𝜆3Γ𝐴𝑀𝜆2), (A.53)

and for 𝐷 = 4 we have

𝑃𝐿𝜒𝜆𝑃𝐿 = −1
2
𝑃𝐿 (𝜆𝑃𝐿𝜒) +

1
8
𝑃𝐿𝛾

𝜇𝜈 (𝜆𝛾𝜇𝜈𝑃𝐿𝜒), (A.54)

𝑃𝐿𝜒𝜆𝑃𝑅 = −1
2
𝑃𝐿𝛾

𝜇 (𝜆𝛾𝜇𝑃𝐿𝜒), (A.55)

and also for 𝐷 = 5, we have

𝜒𝜆 − 𝜆𝜒 = 𝛾𝜇𝜈 (𝜆𝛾 𝜇𝜈 𝜒). (A.56)

A.2.4 Reality

• Charge and Complex conjugations of spinors and matrices:

(1) Complex conjugation of any “Scalar” is equal to the charge conjugation of that scalar;

i.e. (𝑆)𝐶 = (𝑆)∗ for some scalar 𝑆 .

(2) Complex conjugation of any “Grassmann number”: for any two Grassmann numbers 𝑧

and 𝑤 , the complex conjugate of (𝑧𝑤) is determined by their Grassmann parities |𝑧 | and

|𝑤 | as follows:

(𝑧𝑤)∗ = 𝑤∗𝑧∗ = (−1) |𝑧 | |𝑤 |𝑧∗𝑤∗, (A.57)

where |𝑧 | = 0 if 𝑧 is commuting (bosonic), and |𝑧 | = 1 if 𝑧 is anti-commuting (fermionic).
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(3) For any spinor 𝜆, its charge conjugate is de�ned by

𝜆𝐶 ≡ 𝐵−1𝜆∗ (A.58)

and using 𝐵 = 𝑖𝑡0𝐶𝛾
0, 𝜆 ≡ 𝜆𝑇𝐶 , 𝐵∗𝐵 = −𝑡11 and (𝛾0)2 = −1, the barred charge conjugate

spinor is then determined as

𝜆𝐶 = (−𝑡0𝑡1) 𝑖𝜆†𝛾0︸︷︷︸
Dirac conj.

= (𝜆)𝐶 (A.59)

in which we �nd the relation between Dirac and Majorana conjugations as

(Dirac conj. of 𝜆) ≡ 𝑖𝜆†𝛾0 = (−𝑡0𝑡1) (Majorana conj. of 𝜆𝐶) = (−𝑡0𝑡1)𝜆𝐶 . (A.60)

proof) First, let us �nd the left-hand side.

𝜆𝐶 = (𝜆𝐶)𝑇𝐶 = (𝐵−1𝜆∗)𝑇𝐶 = 𝜆†(𝐵−1)𝑇𝐶 = 𝜆†𝐵∗𝐶 = −𝑡1𝜆†𝐵−1𝐶

= −𝑡1𝜆†(𝑖𝑡0(𝛾0)−1𝐶−1)𝐶 = (−𝑡0𝑡1)𝑖𝜆†𝛾0 � (A.61)

Next, let us prove the right-hand side.

(𝜆𝜒)𝐶 = (𝜆𝜒)∗ = −𝜆∗𝜒∗ = −(𝜆𝑇𝐶)∗𝐵𝜒𝐶 = −𝜆†𝐶∗𝐵𝜒𝐶 = −𝜆†(−𝑡0𝐶−1) (𝑖𝑡0𝐶𝛾0)𝜒𝐶

= 𝑖𝜆†𝛾0𝜒𝐶
!
= (−𝑡0𝑡1) (𝜆)𝐶 (𝜒)𝐶 =⇒ (𝜆)𝐶 = (−𝑡0𝑡1)𝑖𝜆†𝛾0

!
= 𝜆𝐶 � (A.62)

Note that (−𝑡0𝑡1) = +1 in 2, 3, 4, 10, or 11 Dimensions.

(4) For any 2𝑚-by-2𝑚 matrices𝑀 and 𝑁 , its charge conjugate is

𝑀𝐶 ≡ 𝐵−1𝑀∗𝐵, (𝑀𝑁 )𝐶 = 𝑀𝐶𝑁𝐶 . (A.63)
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- In fact, the matrices𝑀 are usually given by the generating Gamma matrices.

(𝛾𝜇)𝐶 = 𝐵−1𝛾∗𝜇𝐵 = (−𝑡0𝑡1)𝛾𝜇 (A.64)

proof)

(𝛾𝜇)𝐶 = 𝐵−1𝛾∗𝜇𝐵 = 𝐵−1(−𝑡0𝑡1𝐵𝛾𝜇𝐵−1)𝐵 = (−𝑡0𝑡1)𝛾𝜇 � (A.65)

- For the highest gamma matrix 𝛾∗ ≡ (−𝑖)𝑚+1𝛾0𝛾1 · · ·𝛾𝐷−1,

(𝛾∗)𝐶 = (−1)𝐷/2+1𝛾∗ (A.66)

proof)

(𝛾∗)𝐶 = [(−𝑖)𝑚+1𝛾0𝛾1 · · ·𝛾𝐷−1]𝐶 = [(−𝑖)𝑚+1]𝐶𝛾𝐶0 𝛾𝐶1 · · ·𝛾𝐶𝐷−1

= (𝑖)𝑚+1(−𝑡0𝑡1)𝐷𝛾0𝛾1 · · ·𝛾𝐷−1 =
(−𝑖)𝑚+1

(−𝑖)𝑚+1 (𝑖)
𝑚+1(−𝑡0𝑡1)𝐷𝛾0𝛾1 · · ·𝛾𝐷−1

=
(𝑖)𝑚+1

(−𝑖)𝑚+1 (−𝑡0𝑡1)
𝐷𝛾∗ = (−1)𝑚+1(−𝑡0𝑡1)𝐷𝛾∗ = (−1)𝐷/2+1(−𝑡0𝑡1)2𝑚𝛾∗

= (−1)𝐷/2+1𝛾∗ � (A.67)

(5) Complex(or Charge) conjugation of spinor-bilinear scalar:

(𝜒𝑀𝜆)∗ ≡ (𝜒𝑀𝜆)𝐶 = (−𝑡0𝑡1)𝜒𝐶𝑀𝐶𝜆𝐶 . (A.68)

proof) using 𝜒 = 𝜒𝑇𝐶 , 𝐶∗ = −𝑡0𝐶−1, 𝜆𝐶 = 𝐵−1𝜆∗, and𝑀𝐶 = 𝐵−1𝑀∗𝐵, we have

(𝜒𝑀𝜆)∗ = (−1) |𝜒 | |𝜆 |𝜒∗𝑀∗𝜆∗ = −𝜒∗𝑀∗𝜆∗ = −(𝜒𝑇𝐶)∗(𝐵𝑀𝐶𝐵−1) (𝐵𝜆𝐶)

= −𝜒†(−𝑡0𝐶−1) (𝐵𝑀𝐶𝐵−1)𝐵𝜆𝐶 = 𝑡0𝜒
†𝐶−1𝐵𝑀𝐶𝜆𝐶 (A.69)
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Since 𝐵 = 𝑖𝑡0𝐶𝛾
0, we get

(𝜒𝑀𝜆)∗ = 𝑡0𝜒
†𝐶−1(𝑖𝑡0𝐶𝛾0)𝑀𝐶𝜆𝐶 = (𝑖 𝜒†𝛾0)𝑀𝐶𝜆𝐶 = (−𝑡0𝑡1)𝜒𝐶𝑀𝐶𝜆𝐶 � (A.70)

(6) For any spinor 𝜆,

(𝜆𝐶)𝐶 = −𝑡1𝜆 (A.71)

proof)

(𝜆𝐶)𝐶 = (𝐵−1𝜆∗)𝐶 = 𝐵−1(𝐵−1𝜆∗)∗ = 𝐵−1𝐵−1∗𝜆 = (𝐵∗𝐵)−1𝜆 = (−𝑡11)−1𝜆 = −𝑡1𝜆 � (A.72)

A.3 Majorana Spinors

In even dimension, Dirac �elds have 2𝑚 complex components. Weyl �elds have 2𝑚−1 complex

components due to the equations of motion. Majorana �elds have also 2𝑚−1 complex components

due to a reality condition.

A.3.1 Definition and properties of Majorana spinor

• Majorana condition: the reality constraint we may impose is given by

𝜓 = 𝜓𝐶 = 𝐵−1𝜓 ∗ =⇒ 𝜓 ∗ = 𝐵𝜓 . (A.73)

Taking a complex conjugate of𝜓 ∗ gives

(𝜓 ∗)∗ = 𝐵∗𝜓 ∗ = 𝐵∗𝐵𝜓 = −𝑡1𝜓
!
= 𝜓 =⇒ 𝐵∗𝐵 = 1

=⇒ |𝐵 |2 = 1 =⇒ ∴ 𝑡1 = −1 and 𝐵 = 1 up to a phase factor 𝑒𝑖𝜃 (A.74)
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This constraint then leads to

𝐶 = 𝑡0𝑖𝛾
0, 𝐶𝑇 = −𝑡0𝐶, 𝐶∗ = −𝑡0𝐶−1,

(𝛾 𝜇)𝑇 = −𝑡0𝐶𝛾 𝜇𝐶−1 = −𝑡0𝛾0𝛾 𝜇𝛾0, (𝛾 𝜇)𝐶 = (𝛾 𝜇)∗ = 𝑡0𝛾 𝜇

𝑀𝐶 = 𝑀∗, 𝜆𝐶 = 𝜆∗ = 𝜆 (A.75)

However, we have to still consider “𝑡0 = ±1” in general.

(1)Majorana (M) spinor (𝑡0 = +1, 𝑡1 = −1):

– 𝑡0 = +1 holds for the spacetime dimensions 𝐷 = 2, 3, 4 mod 8.

– When 𝑡0 = +1, 𝑡1 = −1, Majorana conjugate is equal to Dirac conjugate.

𝜆
!
= 𝜆𝐶 = 𝑖𝜆†𝛾0

!≡ 𝜆𝐷 � (A.76)

– Really real representations of the Gamma matrices are allowed for 𝐷 = 2, 3, 4 mod 8.

In 𝐷 = 4,

𝛾0 =
©­­«
0 1

−1 0

ª®®¬ = 𝑖𝜎2 ⊗ 1, 𝛾1 =
©­­«
1 0

0 −1

ª®®¬ = 𝜎3 ⊗ 1,

𝛾2 =
©­­«
0 𝜎1

𝜎1 0

ª®®¬ = 𝜎1 ⊗ 𝜎1, 𝛾3 =
©­­«
0 𝜎3

𝜎3 0

ª®®¬ = 𝜎1 ⊗ 𝜎3. (A.77)

In this really real representation, all the gamma matrices are real-valued. Plus, the

spatial gamma matrices 𝛾 𝑖 are symmetric, while the time-direction gamma matrix 𝛾0
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is anti-symmetric. In particular, in this representation,

𝐵 = 1, 𝐶 = 𝑖𝛾0, 𝜓𝐶 = 𝜓 ∗ = 𝜓, 𝑀𝐶 = 𝑀∗, (𝛾𝜇)𝐶 = 𝛾∗𝜇 = 𝛾𝜇

(𝛾𝜇)𝑇 = 𝛾0𝛾𝜇𝛾
0, (𝜒𝛾𝜇1···𝜇𝑟𝜓 )∗ = (𝜒𝛾𝜇1···𝜇𝑟𝜓 )𝐶 = 𝜒𝐶 (𝛾𝜇1···𝜇𝑟 )𝐶𝜓𝐶 = 𝜒𝛾𝜇1···𝜇𝑟𝜓 .

(A.78)

(2) pseudo-Majorana spinor (𝑡0 = −1, 𝑡1 = −1): 𝑡0 = −1 holds for the spacetime dimen-

siosn𝐷 = 8, 9. In this case, we have (𝛾 𝜇)∗ = −𝛾 𝜇 . Thus, the reality properties of bilinears by

pseudo-Majorana spinor are di�erent from those of bilinears by Majorana spinor. In spite

of this distinction, it is common not to distinguish between pseudo-Majorana andMajorana

spinors since the core property of reality of Majorana spinor still holds.

(3) Majorana-Weyl (MW) spinor: When 𝐷 = 2 mod 8 (i.e. 𝐷 = 2, 10), we have (𝛾∗𝜓 )𝐶 =

𝛾∗𝜓 , which gives rise to

Majorana:𝜓𝐶 = 𝜓
compatible!

& Weyl: 𝑃𝐿,𝑅𝜓 = 𝜓 =⇒ (𝑃𝐿,𝑅𝜓 )𝐶 = 𝑃𝐿,𝑅𝜓 . (A.79)

Each chiral projection of Majorana spinor (i.e. 𝑃𝐿,𝑅𝜓 ) satisfying both Majorana and Weyl

conditions is calledMajorana-Weyl spinor, which has 2𝑚−1 “real” components. On the other

hand, when 𝐷 = 4 mod 4, we have

(𝑃𝐿,𝑅𝜓 )𝐶 = 𝑃𝑅,𝐿𝜓 . (A.80)

Notice that this property of Majorana-Weyl spinor is completely di�erent from that ofWeyl

spinors 𝑃𝐿,𝑅𝜓𝐷 from Dirac spinor 𝜓𝐷 since 𝜓𝐷 does not satisfy the reality conditon of Ma-

jorana spinor!
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(4) Symplectic-Majorana (S) spinor: When 𝑡1 = 1, it is not possible to de�ne a Majorana

spinor. However, we can de�ne a so-called Symplectic-Majorana spinor, which follows

modi�ed reality condition given by

𝜒𝑖 = 𝜀𝑖 𝑗 (𝜒 𝑗 )𝐶 = 𝜀𝑖 𝑗𝐵−1(𝜒 𝑗 )∗, (A.81)

where 𝜀𝑖 𝑗 is a non-singular antisymmetric matrix such that 𝜀𝑖 𝑗𝜀𝑘 𝑗 = 𝛿𝑖
𝑘
. In particular, in

dimensions𝐷 = 6mod 8, using (𝛾∗)𝐶 = (−)𝐷/2+1𝛾∗, it is possible to show that the symplectic

Majorana condition is compatible with chirality, and thus we have

𝑃𝐿𝜒
𝑖 = 𝜀𝑖 𝑗 (𝑃𝐿𝜒 𝑗 )𝐶 = 𝜀𝑖 𝑗𝐵−1(𝑃𝐿𝜒 𝑗 )∗, (A.82)

which is called symplectic-Majorana-Weyl (SW) spinor.

A.4 Majorana Spinors in Physical Theories

A.4.1 Variation of a Majorana lagrangian

Consider aMajorana spinor �eldΨ in dimensions𝐷 = 2, 3, 4mod 8. WhileMajorana andDirac

spinors transform in the same way under Lorentz transformation, since Majorana fermions have

half of degrees of freedom of Dirac fermion, the Majorana action is given by

𝑆 [Ψ] = −1
2

∫
𝑑𝐷𝑥 Ψ̄(𝑥) [𝛾 𝜇𝜕𝜇 −𝑚]Ψ(𝑥). (A.83)

Regarding this Majorana action, there is an interesting remark. If the �eld components of Majo-

rana spinor Ψ are given by conventioanal commuting variables, then the action vanishes be-

cause 𝑚Ψ̄(𝑥)Ψ(𝑥) = 𝑚Ψ𝑇𝐶Ψ = 0 where 𝐶 is antisymmetric, and because Ψ̄(𝑥)𝛾 𝜇𝜕𝜇Ψ(𝑥) =
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Ψ𝑇 (𝑥)𝐶𝛾 𝜇𝜕𝜇Ψ(𝑥) ∼ 𝜕𝜇 [Ψ𝑇 (𝑥)𝐶𝛾 𝜇Ψ(𝑥)] where 𝐶𝛾 𝜇 is symmetric. Hence, when the �eld com-

ponents are given by commuting variables, it is not able to have any dynamics from such Majo-

rana action 𝑆 [Ψ]. This means that we have to consider “anti-commuting Grassmann variables”

as the �eld components of Majorana spinor! Then, holding this, after Majorana �ip and partial

integration, we �nd the equation of motion for Majorana spinor as

𝛿𝑆 [Ψ] = −
∫

𝑑𝐷𝑥𝛿Ψ̄[𝛾 𝜇𝜕𝜇 −𝑚]Ψ = 0 =⇒ [𝛾 𝜇𝜕𝜇 −𝑚]Ψ = 0, (A.84)

which means that Majorana �eld satis�es the conventional Dirac equation of motion.

A.4.2 Relation of Majorana and Weyl spinor theories

In even dimensions 𝐷 = 0, 2, 4 mod 8, both Majorana and Weyl �elds can be present. When

𝐷 = 4, the action can be written as

𝑆 [Ψ] = −1
2

∫
𝑑4𝑥 Ψ̄(𝑥) [𝛾 𝜇𝜕𝜇 −𝑚]Ψ(𝑥) = −1

2

∫
𝑑4𝑥 Ψ̄(𝑥) [𝛾 𝜇𝜕𝜇 −𝑚] (𝑃𝐿 + 𝑃𝑅)Ψ(𝑥)

= −
∫

𝑑4𝑥
(
Ψ̄𝛾 𝜇𝜕𝜇𝑃𝐿Ψ − 1

2
𝑚Ψ̄𝑃𝐿Ψ − 1

2
𝑚Ψ̄𝑃𝑅Ψ

)
, (A.85)

which gives the equations of motion

�𝜕𝑃𝐿Ψ =𝑚𝑃𝑅Ψ, �𝜕𝑃𝑅Ψ =𝑚𝑃𝐿Ψ =⇒ �𝑃𝐿,𝑅Ψ =𝑚2𝑃𝐿,𝑅Ψ = 0. (A.86)

In particular, from the Majorana condition Ψ = 𝐵−1Ψ∗ = 𝛾0𝛾1𝛾3Ψ∗, we �nd that

Ψ =

©­­­­­­­­«

𝜙1

𝜙2

𝜙∗
2

−𝜙∗
1

ª®®®®®®®®¬
=

©­­«
𝜓

𝜓

ª®®¬ =
©­­«
𝜓

0

ª®®¬ +
©­­«
0

𝜓

ª®®¬ ≡ 𝑃𝐿Ψ + 𝑃𝑅Ψ. (A.87)
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The equations of motion for two-component Weyl �elds𝜓,𝜓 are given by

𝜎𝜇𝜕𝜇𝜓 =𝑚𝜓, 𝜎𝜇𝜕𝜇𝜓 =𝑚𝜓. (A.88)

A.4.3 U(1) symmetries of a Majorana field

It is easy to see that the 𝑈 (1) symmetry given by Ψ′ = 𝑒𝑖𝜃Ψ cannot be compatible with

Majorana condition. On the contrary, the axial transformation or chiral 𝑈 (1) symmetry given

by Ψ′ = 𝑒𝑖𝛾∗𝜃Ψ can be compatible with Majorana condition thanks to (𝑖𝛾∗)𝐶 = 𝑖𝛾∗. However, the

corresponding Majorana action can be invariant only if the Majorana �eld is massless because

the variation of the action under the chiral𝑈 (1) symmetry is given by

𝛿𝑆 [Ψ] = 𝑖𝜃𝑚
∫

𝑑4𝑥 Ψ̄𝛾∗Ψ, (A.89)

which can vanish only for a massless Majorana spinor.
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B | Superconformal Tensor Calculus

The purpose of Tensor calculus of supergravity is to construct models in the way that the

symmetry algebras are ensured to be closed. There are two representative tensor calculus, which

are super-Poincaré tensor calculus and superconformal tensor calculus.

In tensor calculus, there are three steps. One is to construct multiplets as representations

of symmetry algebras like super-Poincaré or superconformal ones. The second is to make new

(composite) multiplet in terms of the �elds of the other multiplet. The last is to use a density

formula which gives invariant actions as a function of �elds of a multiplet on the composite

multiplet built in the second step.

Then, one may ask: which tensor calculus is better? Of course, the two ways of tensor calcu-

lus have their own bene�ts. Nevertheless, I would like to point out that superconformal tensor

calculus has more advantages compared to super-Poincaré tensor calculus from the user-friendly

perspective. Superconformal tensor calculus has simplicity in that one does not have to specify

which set of auxiliary �elds at the beginning. To do this, one can start with a larger symmetry

group which keep expression simpler, which means that superconformal tensor calculus has gen-

erality in that respect. The tensor calculus has �exibility since one does not have to do laborious

rescalings of �elds, which must be done in the �nal calculations of the super-Poincaré tensor

calculus.
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B.1 Superconformal Algebras

In this section, we specify superconformal algebras, and we �nd their representations as the

covariant quantities of the gauge theory of superconformal symmetry. Then, we construct the

invariant action of representations under the superconformal transformations.

Following the Gauge Equivalence Program, we �rst de�ne the superconformal symmetry

transformation 𝛿𝑠𝑐 as “extra” symmetries in the way

𝛿𝑠𝑐 ≡ 𝜉𝑎𝑃𝑎 + 𝜖𝛼𝑄𝛼 +
1
2
𝜆𝑎𝑏𝑀𝑎𝑏 + 𝜆𝐷𝐷 + 𝜃𝐴 + 𝜂𝛼𝑆𝛼 + 𝜆𝑎𝐾𝑘𝑎, (B.1)

where symmetry generators and their transformation parameters are given as follows: 𝑃𝑎 is

spacetime translation with 𝜉𝑎;𝑄𝛼 is supersymmetry with 𝜖𝛼 (a.k.a. 𝑄-SUSY);𝑀𝑎𝑏 is local Lorentz

symmetry with 𝜆𝑎𝑏 ; 𝐷 is dilatation with 𝜆𝐷 ; 𝐴 is chiral U(1) symmetry with 𝜃 ; 𝑆𝛼 is conformal

supersymmetry with 𝜂𝛼 (a.k.a. 𝑆-SUSY), and 𝐾𝑎 is special conformal symmetry with 𝜆𝑎
𝐾
. Then,
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these generators form the “17” non-trivial commutation relations as follows:

1. [𝑃𝑎, 𝑀𝑏𝑐] = 2𝜂𝑎[𝑏𝑃𝑐] =⇒ 𝑓 𝑃
𝑃𝑀 = 𝑓 𝑑

𝑎[𝑏𝑐] = 2𝜂𝑎[𝑏𝛿𝑑𝑐], (B.2)

2. [𝑃𝑎, 𝐷] = −𝑃𝑎 =⇒ 𝑓 𝑃
𝑃𝐷 = 𝑓 𝑏𝑎 = −𝛿𝑏𝑎 , (B.3)

3. [𝑃𝑎, 𝑆𝛼 ] = (𝛾𝑎𝑄)𝛼 =⇒ 𝑓
𝑄

𝑃𝑆
= 𝑓

𝛽
𝑎𝛼 = (𝛾𝑎) 𝛽

𝛼 , (B.4)

4. {𝑄𝛼 , 𝑄𝛽} = −1
2
(𝛾𝑎) 𝛾

𝛼 𝐶
−1
𝛾𝛽
𝑃𝑎 =⇒ 𝑓 𝑃

𝑄𝑄 = 𝑓 𝑎
𝛼𝛽

= −1
2
(𝛾𝑎)𝛼𝛽, (B.5)

5. [𝑄𝛼 , 𝑀𝑎𝑏] =
1
2
(𝛾𝑎𝑏𝑄)𝛼 =⇒ 𝑓

𝑄

𝑄𝑀
= 𝑓

𝛽

𝛼 [𝑎𝑏] =
1
2
(𝛾𝑎𝑏) 𝛽

𝛼 , (B.6)

6. [𝑄𝛼 , 𝐷] = −1
2
𝑄𝛼 =⇒ 𝑓

𝑄

𝑄𝐷
= 𝑓

𝛽
𝛼• = −1

2
𝛿
𝛽
𝛼 , (B.7)

7. [𝑄𝛼 , 𝐴] =
3
2
𝑖 (𝛾∗𝑄)𝛼 =⇒ 𝑓

𝑄

𝑄𝐴
= 𝑓

𝛽
𝛼• =

3
2
𝑖 (𝛾∗) 𝛽

𝛼 , (B.8)

8. {𝑄𝛼 , 𝑆𝛽} = −1
2
𝐶−1
𝛼𝛽
𝐷 − 1

4
(𝛾𝑎𝑏)𝛼𝛽𝑀𝑎𝑏 +

𝑖

2
(𝛾∗)𝛼𝛽𝐴

=⇒ 𝑓 𝐷
𝑄𝑆 = 𝑓 •

𝛼𝛽
= −1

2
𝐶−1
𝛼𝛽
, 𝑓 𝑀

𝑄𝑆 = 𝑓
[𝑎𝑏]

𝛼𝛽
= −1

2
(𝛾𝑎𝑏)𝛼𝛽, 𝑓 𝐴

𝑄𝑆 = 𝑓 •
𝛼𝛽

=
𝑖

2
(𝛾∗)𝛼𝛽,

(B.9)

9. [𝑄𝛼 , 𝐾𝑎] = −(𝛾𝑎𝑆)𝛼 =⇒ 𝑓 𝑆
𝑄𝐾 = 𝑓

𝛽
𝛼𝑎 = −(𝛾𝑎) 𝛽

𝛼 , (B.10)

10. [𝑀𝑎𝑏, 𝑀𝑐𝑑] = 4𝜂 [𝑎[𝑐𝑀𝑑]𝑏] =⇒ 𝑓 𝑀
𝑀𝑀 = 𝑓

[𝑒 𝑓 ]
[𝑎𝑏],[𝑐𝑑] = 8𝜂 [𝑐 [𝑏𝛿

[𝑒
𝑎]𝛿

𝑓 ]
𝑑] , (B.11)

11. [𝑀𝑎𝑏, 𝑆𝛼 ] = −1
2
(𝛾𝑎𝑏𝑆)𝛼 =⇒ 𝑓 𝑆

𝑀𝑆 = 𝑓
𝛽

[𝑎𝑏],𝛼 = −1
2
(𝛾𝑎𝑏) 𝛽

𝛼 , (B.12)

12. [𝐾𝑎, 𝑀𝑏𝑐] = 2𝜂𝑎[𝑏𝐾𝑐] =⇒ 𝑓 𝐾
𝐾𝑀 = 𝑓 𝑑

𝑎,[𝑏𝑐] = 2𝜂𝑎[𝑏𝛿𝑑𝑐], (B.13)

13. [𝐷, 𝑆𝛼 ] = −1
2
𝑆𝛼 =⇒ 𝑓 𝑆

𝐷𝑆 = 𝑓
𝛽

•𝛼 = −1
2
𝛿
𝛽
𝛼 , (B.14)

14. [𝐷,𝐾𝑎] = −𝐾𝑎 =⇒ 𝑓 𝐾
𝐷𝐾 = 𝑓 𝑏

•𝑎 = −𝛿𝑏𝑎 , (B.15)

15. [𝐴, 𝑆𝛼 ] =
3
2
𝑖 (𝛾∗𝑆)𝛼 =⇒ 𝑓 𝑆

𝐴𝑆 = 𝑓
𝛽

•𝛼 =
3
2
𝑖 (𝛾∗) 𝛽

𝛼 , (B.16)

16. {𝑆𝛼 , 𝑆𝛽} = −1
2
(𝛾𝑎) 𝛾

𝛼 𝐶
−1
𝛾𝛽
𝐾𝑎 =⇒ 𝑓 𝐾

𝑆𝑆 = 𝑓 𝑎
𝛼𝛽

= −1
2
(𝛾𝑎)𝛼𝛽, (B.17)

17. [𝑃𝑎, 𝐾𝑏] = 2𝜂𝑎𝑏𝐷 + 2𝑀𝑎𝑏 =⇒ 𝑓 𝐷
𝑃𝐾 = 𝑓 •

𝑎𝑏
= 2𝜂𝑎𝑏, 𝑓

[𝑐𝑑]
𝑃𝐾

= 4𝛿 [𝑐𝑎 𝛿
𝑑]
𝑏
, (B.18)
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where we used the charge conjugation matrix 𝐶𝛼𝛽 such that

𝐶𝑇 = −𝐶, 𝐶† = 𝐶−1, 𝐶∗ = −𝐶−1, (𝛾 𝜇)𝑇 = −𝐶𝛾 𝜇𝐶−1 (B.19)

𝜓𝛼 = (𝐶𝑇 )𝛼𝛽𝜓𝛽, 𝜓𝛼 = 𝜓 𝛽 (𝐶−1)𝛽𝛼 , 𝜓𝛼 (𝛾𝑎) 𝛽
𝛼 𝜓𝛽 = −𝜓𝛼 (𝛾𝑎)𝛼𝛽𝜓 𝛽 ≡ 𝜓𝛾𝑎𝜓 (B.20)

The other commutators of the generators vanish.

B.2 Gauge Fields and Curvatures

We de�ne a set of gauge �elds that correspond to the superconformal symmetry.

𝐵𝐴𝜇𝑇𝐴 ≡ 𝑒𝑎𝜇𝑃𝑎 +𝜓𝛼𝜇𝑄𝛼 +
1
2
𝜔𝑎𝑏𝜇 𝑀𝑎𝑏 + 𝑏𝜇𝐷 +𝐴𝜇𝐴 + 𝜙𝛼𝜇 𝑆𝛼 + 𝑓 𝑎𝜇 𝐾𝑎, (B.21)

where 𝑒𝑎𝜇,𝜓𝛼𝜇 , 𝜔𝑎𝑏𝜇 , 𝑏𝜇, 𝐴𝜇, 𝜙𝛼𝜇 , 𝑓 𝑎𝜇 are gauge �elds corresponding to the generators, respectively.

Then, it is possible to compute the corresponding curvatures using

𝑅 𝐴
𝜇 (𝑇𝐴) ≡ 𝜕𝜇𝐵

𝐴
𝜈 − 𝜕𝜈𝐵𝐴𝜇 + 𝐵𝐶𝜈 𝐵𝐵𝜇 𝑓 𝐴

𝐵𝐶 . (B.22)

• 1. Curvature of Local spacetime translation “𝑅𝑎𝜇𝜈 (𝑃𝑎)” is calculated by using the structure

constants from the commutators (B.2) for PM, (B.3) for PD, (B.5) for QQ since 𝑃𝑎 operator

can be only found in the right-hand side of the three commutators, so that

𝑅𝑎𝜇 (𝑃𝑎) = 2𝜕[𝜇𝑒𝑎𝜈] + 2𝑏 [𝜇𝑒𝑎𝜈] + 2𝜔𝑎𝑏[𝜇𝑒𝜈]𝑏 −
1
2
𝜓𝜇𝛾

𝑎𝜓𝜈 . (B.23)

• 2. Curvature of Local Q-SUSY “𝑅𝛼𝜇𝜈 (𝑄𝛼 )” is calculated by using the structure constants (B.4)

for PS, (B.6) for QM, (B.7) for QD, and (B.8) for QA since 𝑄𝛼 operator can be found only in
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the right-hand side of the four commutators, so that

𝑅𝛼𝜇𝜈 (𝑄𝛼 ) = 2𝜕[𝜇𝜓𝛼𝜈] − 2𝛾 [𝜇𝜙𝛼𝜈] +
1
2
𝜔𝑎𝑏[𝜇 (𝛾𝑎𝑏𝜓𝜈])

𝛼 + 𝑏 [𝜇𝜓𝛼𝜈] − 3𝑖𝐴[𝜇 (𝛾∗𝜓𝜈])𝛼 . (B.24)

• 3. Curvature of Local Lorentz transformation “𝑅𝑎𝑏𝜇𝜈 (𝑀)” is calculated by using the structure

constants from the commutators (B.9) for QS, (B.11) for MM, and (B.18) for PK since 𝑀𝑎𝑏

operator can be found only in the right-hand side of the three commutators, so that

𝑅𝑎𝑏𝜇𝜈 (𝑀) = 2𝜕[𝜇𝜔𝑎𝑏𝜈] − 2𝜔𝑎[𝜇𝑐𝜔
𝑐𝑏
𝜈] + 8𝑓 [𝑎[𝜇 𝑒

𝑏]
𝜈] −𝜓 [𝜇𝛾

𝑎𝑏𝜙𝜈] . (B.25)

• 4. Curvature of Local Dilatation “𝑅𝜇𝜈 (𝐷)” is calculated by using the structure constants

from the commutators (B.9) for QS and (B.18) for PK since 𝐷 operator can be found only in

the right-hand side of the two commutators, so that

𝑅𝜇𝜈 (𝐷) = 2𝜕[𝜇𝑏𝜈] −𝜓 [𝜇𝜙𝜈] − 4𝑓 𝑎[𝜇𝑒𝜈]𝑎 . (B.26)

• 5. Curvature of Local Chiral U(1) symmetry “𝑅𝜇𝜈 (𝐴)” is calculated by using the structure

constants from the commutator (B.9) for QS since 𝐴 operator can be found only in the

right-hand side of the commutator, so that

𝑅𝜇𝜈 (𝐴) = 2𝜕[𝜇𝐴𝜈] + 𝑖𝜓 [𝜇𝛾∗𝜙𝜈] . (B.27)

• 6. Curvature of Local 𝑆-SUSY “𝑅𝛼𝜇𝜈 (𝑆𝛼 )” is calculated by using the structure constants from

the commutators (B.10) for QK, (B.12) for MS, (B.14) for DS, and (B.16) for AS since 𝑆𝛼

operator can be found only in the right-hand side of the four commutators, so that

𝑅𝛼𝜇𝜈 (𝑆𝛼 ) = 2𝜕[𝜇𝜙𝛼𝜈] − 𝑏 [𝜇𝜙
𝛼
𝜈] − 3𝑖𝐴[𝜇 (𝛾∗𝜙𝜈])𝛼 +

1
2
𝜔𝑎𝑏[𝜇 (𝛾𝑎𝑏𝜙𝜈])

𝛼 − 2𝑓[𝜇 (𝛾𝑎𝜓𝜈])𝛼 . (B.28)
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• 7. Curvature of Local Special Conformal symmetry “𝑅𝑎𝜇𝜈 (𝐾𝑎)” is calculated by using the

structure constnats from the commutators (B.13) for KM, (B.15) for DK, and (B.17) for SS

since 𝐾𝑎 operator can be found only in the right-hand side of the three commutators, so

that

𝑅𝑎𝜇𝜈 (𝐾𝑎) = 2𝜕[𝜇 𝑓 𝑎𝜈] − 2𝑏 [𝜇 𝑓 𝑎𝜈] + 2𝜔𝑎𝑏[𝜇 𝑓𝜈]𝑏 −
1
2
𝜙𝜇𝛾

𝑎𝜙𝜈 . (B.29)

B.3 Covariant Local Translation under Superconformal

Symmetry, and Introduction of Gravitational

Curvature

In this section, we �nd some constraints on the curvatures since we wish to use the covariant

local translation in Eq. (5.30) under the superconformal symmetry. Thus, let us recall the general

curvature constraint from Eq. (5.35), i.e.

𝜉𝜈𝑅𝐴𝜈𝜇 (𝑇𝐴) = 0, (B.30)

where 𝑇𝐴’s are given by the non-covariant local translation 𝑃𝑎 and the other standard gauge

symmetries. Certainly, for any𝐴 in 𝑅𝐴𝜇𝜈 , the constraint must hold in order to take the replacement

𝑃𝑎 −→ 𝑃𝑎 in the symmetry algebras.

Getting back to the superconformal algebras in Eqs. (B.2) to (B.18), we notice that only the

right-hand side of the commutator of QQ in Eq. (B.5) includes a single 𝑃𝑎 . Thus, we need to
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examine this commutator. Let us apply this to a gauge �eld 𝑒𝑎𝜇 . Then, we have

[𝛿𝑄 (𝜖1), 𝛿𝑄 (𝜖2)]𝑒𝑎𝜇 = [𝜖𝛼1𝑄𝛼𝜖
𝛽

2𝑄𝛽 − 𝜖
𝛽

2𝑄𝛽𝜖
𝛼
1𝑄𝛼 ]𝑒𝑎𝜇 = 𝜖

𝛽

2𝜖
𝛼
1 {𝑄𝛼 , 𝑄𝛽}𝑒𝑎𝜇

= −1
2
(𝛾𝑏) 𝛾

𝛼 𝐶−1
𝛾𝛽
𝜖
𝛽

2𝜖
𝛼
1 𝑃𝑏𝑒

𝑎
𝜇 =

1
2
𝜖𝛼1 (𝛾𝑏)

𝛾
𝛼 𝐶−1

𝛾𝛽
𝜖
𝛽

2𝑃𝑏𝑒
𝑎
𝜇

= −1
2
𝜖1𝛾

𝑏𝜖2𝑃𝑏𝑒
𝑎
𝜇 =

1
2
𝜖2𝛾

𝑏𝜖1𝑃𝑏𝑒
𝑎
𝜇 ≡ 𝜉𝑏𝑃𝑏𝑒𝑎𝜇, (B.31)

where 𝜉𝑏 ≡ 1
2𝜖2𝛾

𝑏𝜖1. Hence, since the non-gauge �eld e�ect M 𝑎
𝜇𝐵

= 0 does not exist for the

vielbein, we can impose

𝜉𝜈𝑅𝑎𝜇𝜈 (𝑃𝑏) =
1
2
𝜖2𝛾

𝜈𝜖1𝑅
𝑎
𝜇𝜈 (𝑃𝑏) = 0 =⇒ 𝑅𝑎𝜇𝜈 (𝑃𝑏) = 0, (B.32)

which is because 𝑅𝑎𝜇𝜈 (𝑃) is purely bosonic. Regarding this constraint, there is a problem, which is

that the constraint is not invariant under the 𝑄 supersymmetry. That is, if we obey the original

transformation rules under the Q-SUSY, we obtain

𝛿𝑄 (𝜖)𝑅𝑎𝜇𝜈 (𝑃) =
1
2
𝜖𝛾𝑎𝑅𝜇𝜈 (𝑄) ≠ 0. (B.33)

The solution to this problem may be to modify the supersymmetry transformation of𝜔𝑎𝑏𝜇 . This is

because𝜔𝑎𝑏𝜇 is no longer an independent �eld but a dependent one due to the constraint 𝑅𝑎𝜇𝜈 (𝑃𝑏) =

0. This means that the Q-SUSY transformation law of this dependent �eld𝜔𝑎𝑏𝜇 must be consistent

with the constraint. Hence, we assume that there is an additional Q-SUSY transformation of 𝜔𝑎𝑏𝜇

denoted by 𝛿′
𝑄
for compensating the remaining shift of 1

2𝜖𝛾
𝑎𝑅𝜇𝜈 (𝑄). That is, we have

𝛿𝑄 (𝜖)𝑅𝑎𝜇𝜈 =
1
2
𝜖𝛾𝑎𝑅𝜇𝜈 (𝑄) + 2𝛿′𝑄 (𝜖)𝜔𝑎𝑏[𝜇𝑒𝜈]𝑏 ≡ 0, (B.34)
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which gives

𝛿′𝑄 (𝜖)𝜔𝑎𝑏𝜇 = −1
2
𝜖𝛾 [𝑎𝑅𝑏]𝜇 (𝑄) − 1

4
𝜖𝛾𝜇𝑅

𝑎𝑏 (𝑄), (B.35)

which is a special example of Eq. (5.38). In fact, 𝜔𝑎𝑏𝜇 , 𝜙𝛼𝜇 , 𝑓 𝑎𝜇 are dependent �elds. This is because

the other two constraints are given by

𝑒𝜈
𝑏
𝑅𝜇𝜈 (𝑀𝑎𝑏) = 0, 𝛾 𝜇𝑅𝜇𝜈 (𝑄) = 0, (B.36)

where the �rst one can produce a solution for the gauge �eld 𝑓 𝑎𝜇 of the special conformal sym-

metry 𝐾𝑎 , while the second one can yield the solution for the gauge �eld 𝜙𝛼𝜇 of the conformal

supersymmetry 𝑆𝛼 . The covariant curvature of𝑀𝑎𝑏 is given by

𝑅𝜇𝜈 (𝑀𝑎𝑏) = 𝑅 𝑎𝑏
𝜇𝜈 (𝑀) + 8𝑓 [𝑎[𝜇 𝑒

𝑏]
𝜈] , (B.37)

𝑅 𝑎𝑏
𝜇𝜈 (𝑀) = 𝑟 𝑎𝑏

𝜇𝜈 (𝑀) +𝜓 [𝜇𝛾
[𝑎𝑅𝑏]

𝜈] (𝑄) +
1
2
𝜓 [𝜇𝛾𝜈]𝑅

𝑎𝑏 (𝑄), (B.38)

𝑟 𝑎𝑏
𝜇𝜈 (𝑀) = 2𝜕[𝜇𝜔 𝑎𝑏

𝜈] + 2𝜔 𝑎
𝜇 𝑐𝜔

𝑐𝑑
𝜈] −𝜓 [𝜇𝛾

𝑎𝑏𝜙𝜈] . (B.39)

We can also compute the corresponding Ricci tensor and scalar

𝑅(𝑀) = 𝑒𝜇𝑎𝑅 𝑎
𝜇 (𝑀), 𝑅 𝑎

𝜇 (𝑀) = 𝑅 𝑎𝑏
𝜇𝜈 (𝑀)𝑒𝜈

𝑏
. (B.40)

The curvature of 𝑄 is

𝑅𝜇𝜈 (𝑄) = 𝑅′𝜇𝜈 (𝑄) − 2𝛾 [𝜇𝜙𝜈], (B.41)

𝑅′𝜇𝜈 (𝑄) = 2
(
𝜕[𝜇 +

1
2
𝑏 [𝜇 −

3
2
𝑖𝐴[𝜇𝛾∗ +

1
4
𝜔 𝑎𝑏
[𝜇 𝛾𝑎𝑏

)
𝜓𝜈] . (B.42)
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Then, we are now able to solve for the gauge �elds 𝑓 𝑎𝜇 and 𝜙𝜇 , which are found to be

𝑓 𝑎
𝜇 = −1

4
𝑅 𝑎
𝜇 (𝑀) + 1

24
𝑒𝑎𝜇𝑅(𝑀), (B.43)

𝜙𝜇 = −1
2
𝛾𝜈𝑅′𝜇𝜈 (𝑄) +

1
12
𝛾𝜇𝛾

𝑎𝑏𝑅′
𝑎𝑏
(𝑄), (B.44)

which gives rise to

𝑓
𝜇
𝜇 = − 1

12
𝑅(𝑀) = − 1

12
(𝑅(𝜔) −𝜓𝑎𝛾𝑎𝑏𝜙𝑏), (B.45)

𝛾 𝜇𝜙𝜇 = −1
6
𝛾 𝜇𝜈𝑅′𝜇𝜈 (𝑄), (B.46)

𝛾𝑎𝑏𝜙𝑏 = −1
4
𝛾𝑎𝑏𝑐𝑅′

𝑏𝑐
(𝑄). (B.47)

Here we note that gravitational curvature “𝑅(𝜔)” (i.e. related to the kinetic term of spin-2

graviton for Einstein-Hilbert action) is introduced into the superconformal action of supergravity

via the dependent gauge �eld of the special conformal symmetry, i.e. 𝑓 𝑎𝜇 .

B.4 Superconformal Multiplets

B.4.1 General complex superconformal multiplet

Here we construct the representations of the superconformal algebras. First of all, let us re-

call a supermultiplet Φ. In SUSY, it is possible to construct �nite number of its supersymmetric

descendant �elds by applying the supersymmetry operators𝑄,𝑄 to the supermultiplet Φ, such as

𝑄Φ,𝑄Φ,𝑄2𝑄2Φ, etc. That is, all the supersymmetric descendant �elds can appear as the component

�elds of the supermultiplet Φ. However, it is not guaranteed for a supermultiplet to be a super-

conformal multiplet. This is largely because the �elds of superconformal multiplet transform

under the superconformal symmetry, not just a supersymmetry. For example, let us consider the
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𝑆-SUSY transformation of 𝑄Φ. When we apply 𝑆𝛽 to 𝑄𝛼Φ, we obtain

𝑆𝛽 (𝑄𝛼Φ) = {𝑆𝛽, 𝑄𝛼 }Φ −𝑄𝛼 (𝑆𝛽Φ) =
(
− 1
2
𝐶−1
𝛼𝛽
𝐷 − 1

4
(𝛾𝑎𝑏)𝛼𝛽𝑀𝑎𝑏 +

𝑖

2
(𝛾∗)𝛼𝛽𝐴

)
Φ −𝑄𝛼 (𝑆𝛽Φ), (B.48)

where we used {𝑄, 𝑆} ∼ 𝑀 + 𝐷 +𝐴 from the commutator (B.9) for QS, i.e. {𝑄𝛼 , 𝑆𝛽} = −1
2𝐶

−1
𝛼𝛽
𝐷 −

1
4 (𝛾

𝑎𝑏)𝛼𝛽𝑀𝑎𝑏 + 𝑖
2 (𝛾∗)𝛼𝛽𝐴. From the above result, we notice that the 𝑆-transformation of (𝑄Φ) is

dependent on the 𝑄-transformation of a new �eld 𝑆Φ! This is problematic because the �eld 𝑆Φ

is beyond the components of Φ; that is, 𝑆Φ is not a superpartner of Φ! Hence, in this sense, a

supermultiplet may be “not supersymmetric” in the superconformal algebras.

Interestingly, there is a clever way of de�ning a superconformal multiplet V as a supermul-

tiplet. This is to impose the two conditions to the lowest component C of a superconformal

multipletV:

𝑆𝛼C = 0, 𝐾𝑎C = 0, (B.49)

which means that the lowest component C of a superconformal multiplet V is inert under both

S-SUSY and Special conformal symmetry of the superconformal symmetry.

Keeping this inmind, let us start with a superconformal multipletV whose lowest component

C transforms under

𝛿𝑄C =
𝑖

2
𝜖𝛾∗Z, 𝛿𝑀C = 0, 𝛿𝐷 = 𝑤𝜆𝐷C, 𝛿𝐴𝐶 = 𝑖𝑐𝜃C, 𝛿𝑆C = 0, 𝛿𝐾C = 0, (B.50)

where 𝛿𝐼 ≡ 𝜖𝐼𝑇𝐼 without summation for 𝐼 , and importantly, we introduce a “supersymmetric”

descendant �eldZ as an arbitrary spinor whose transformation law is determined by the “supercon-

formal” algebras. In addition, note that we have introduced the so-called Weyl weight “𝑤” and

Chiral weight “𝑐 ,” which usually make a pair as (𝑤, 𝑐) that is called “Weyl/Chiral weights.”

These weights are very crucial in that they completely characterize a superconformal multiplet
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V .

Next, let us �nd the 𝑆-transformation of Z. From the commutator (B.9) for QS, we have

[𝛿𝑆 (𝜂), 𝛿𝑄 (𝜖)] = −𝜂𝛽𝜖𝛼 {𝑆𝛽, 𝑄𝛼 } =
1
2
𝜂𝛽𝜖𝛼𝐶−1

𝛼𝛽
𝐷 + 1

4
𝜂𝛽𝜖𝛼 (𝛾𝑎𝑏)𝛼𝛽𝑀𝑎𝑏 −

𝑖

2
𝜂𝛽𝜖𝛼 (𝛾∗)𝛼𝛽𝐴

=
1
2
𝜂𝛽𝜖𝛽𝐷 − 1

4
𝜖𝛼 (𝛾𝑎𝑏)𝛼𝛽𝜂𝛽𝑀𝑎𝑏 +

𝑖

2
𝜖𝛼 (𝛾∗)𝛼𝛽𝜂𝛽𝐴

=
1
2
𝜂𝛽𝜖𝛽𝐷 + 1

4
𝜖𝛼 (𝛾𝑎𝑏) 𝛽

𝛼 𝜂𝛽𝑀𝑎𝑏 −
𝑖

2
𝜖𝛼 (𝛾∗) 𝛽

𝛼 𝜂𝛽𝐴

=
1
2
𝜂𝜖𝐷 + 1

4
𝜖𝛾𝑎𝑏𝜂𝑀𝑎𝑏 −

𝑖

2
𝜖𝛾∗𝜂𝐴

= 𝛿𝐷

(1
2
𝜂𝜖

)
+ 𝛿𝑀

(1
4
𝜖𝛾𝑎𝑏𝜂

)
+ 𝛿𝐴

(
− 𝑖

2
𝜖𝛾∗𝜂

)
, (B.51)

where we used the properties that 𝜂, 𝜖, 𝑆,𝑄 all are anticommuting with each other, and switching

the upper and lower positions of two spinor indices in their contraction produces a minus sign,

i.e. 𝐴𝛼𝐵𝛼 = −𝐴𝛼𝐵𝛼 . Then, we are ready to consider the following computation for the lowest

component C, i.e.

𝛿𝑆 (𝜂)𝛿𝑄 (𝜖)C = [𝛿𝑆 (𝜂), 𝛿𝑄 (𝜖)]C + 𝛿𝑄 (𝜖)𝛿𝑆 (𝜂)C. (B.52)

The left-hand side of Eq. (B.52) gives

𝛿𝑆 (𝜂)𝛿𝑄 (𝜖)C = 𝛿𝑆 (𝜂)
( 𝑖
2
𝜖𝛾∗Z

)
=
𝑖

2
𝜖𝛾∗ [𝛿𝑆 (𝜂)Z] . (B.53)

The right-hand side of Eq. (B.52) gives

[𝛿𝑆 (𝜂), 𝛿𝑄 (𝜖)]C + 𝛿𝑄 (𝜖)𝛿𝑆 (𝜂)C = 𝛿𝐷

(1
2
𝜂𝜖

)
C + 𝛿𝑀

(1
4
𝜖𝛾𝑎𝑏𝜂

)
C + 𝛿𝐴

(
− 𝑖

2
𝜖𝛾∗𝜂

)
C

+𝛿𝑄 (𝜖)𝛿𝑆 (𝜂)C

=
1
2
𝜂𝜖𝑤C + 0 − 𝑖𝑐 𝑖

2
𝜖𝛾∗𝜂C + 0 =

1
2
𝜖𝛾2∗𝜂𝑤C − 𝑖𝑐 𝑖

2
𝜖𝛾∗𝜂C

=
𝑖

2
𝜖𝛾∗

(
− 𝑖𝑤𝛾∗ − 𝑖𝑐

)
𝜂C, (B.54)

295



where we used 𝛾2∗ = 1, which de�nes the projection operators 𝑃𝐿 ≡ 1+𝛾∗
2 and 𝑃𝑅 ≡ 1−𝛾∗

2 . By equat-

ing these two results, we can determine the 𝑆-transformation of the new �eld Z we introduced

in Eq. (B.50):

𝛿𝑆 (𝜂)Z = −𝑖 (𝑤𝛾∗ + 𝑐)𝜂C. (B.55)

The point here is that transformation laws of a descendant �eld can be uniquely determined by the

transformation laws of the ascendant �elds. In particular, we can also take the decomposition of

spinor 𝜓 = 𝑃𝐿𝜓 + 𝑃𝑅𝜓 using the projection operators 𝑃𝐿 ≡ (1 + 𝛾∗)/2, 𝑃𝑅 ≡ (1 − 𝛾∗)/2 such that

𝑃2
𝐿
= 𝑃2

𝑅
= 1, 𝑃𝐿𝑃𝑅 = 𝑃𝑅𝑃𝐿 = 0, 𝛾∗𝑃𝐿 = 𝑃𝐿, 𝛾∗𝑃𝑅 = −𝑃𝑅 . Thus, we can also get

𝛿𝑆 (𝜂)𝑃𝐿Z = −𝑖 (𝑤 + 𝑐)𝑃𝐿𝜂C, 𝛿𝑆 (𝜂)𝑃𝑅Z = 𝑖 (𝑤 − 𝑐)𝑃𝑅𝜂C. (B.56)

Another important computation is the 𝑄-transformation of Z. Let us consider

[𝛿𝑄 (𝜖1), 𝛿𝑄 (𝜖2)]C = −1
2
𝜖1𝛾

𝑎𝜖2D𝑎C, (B.57)

where D𝑎 is a relevant covariant derivative. To calculate the left-hand side of this commutator,

let us consider the most general form of 𝛿𝑄Z. In the basis of 𝛾-matrices, we can express 𝛿𝑄Z as

𝛿𝑄Z = (Φ0 + Φ1𝛾𝑎 + Φ2
𝑎𝑏
𝛾𝑎𝑏 + 𝛾𝑎𝛾∗Φ3

𝑎 + 𝛾∗Φ4)𝜖, (B.58)

𝛿𝑄𝑃𝐿Z = 𝑃𝐿 (Φ0 + Φ1𝛾𝑎 + Φ2
𝑎𝑏
𝛾𝑎𝑏 − 𝛾𝑎Φ3

𝑎 + Φ4)𝜖, (B.59)

𝛿𝑄𝑃𝑅Z = 𝑃𝑅 (Φ0 + Φ1𝛾𝑎 + Φ2
𝑎𝑏
𝛾𝑎𝑏 + 𝛾𝑎Φ3

𝑎 − Φ4)𝜖, (B.60)

where Φ𝐴 (𝐴 = 0, 1, 2, 3, 4) are bosonic �elds with(out) the local Lorentz indices, and we used

𝑃𝐿/𝑅𝛾
𝑎 = 𝛾𝑎𝑃𝑅/𝐿 given by {𝛾𝑎, 𝛾∗} = 0. In fact, the expansion coe�cients, Φ𝐼 ’s, correspond to all

the possible supersymmetric descendant �elds of Z. Then, the commutator result can be given
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by

[𝛿𝑄 (𝜖1), 𝛿𝑄 (𝜖2)]C =
𝑖

2
𝜖2𝛾∗𝛿𝑄 (𝜖1)Z − (𝜖1 ↔ 𝜖2)

=
𝑖

2
(𝜖2𝛾∗𝜖1Φ0 + 𝜖2𝛾∗𝛾𝑎𝜖1Φ1

𝑎 + 𝜖2𝛾∗𝛾𝑎𝑏𝜖1Φ2
𝑎𝑏

+ 𝜖2𝛾∗𝛾𝑎𝛾∗𝜖1Φ3
𝑎 + 𝜖2𝜖1Φ4) − (𝜖1 ↔ 𝜖2)

= 𝑖𝜖2𝛾∗𝛾
𝑎𝑏𝜖1Φ

2
𝑎𝑏

+ 𝑖𝜖1𝛾𝑎𝜖2Φ3
𝑎

!
= −1

2
𝜖1𝛾

𝑎𝜖2D𝑎C

=⇒ ∴ Φ2
𝑎𝑏

= 0 and Φ3
𝑎 ≡

𝑖

2
D𝑎C (B.61)

The undetermined coe�cients Φ0,Φ1
𝑎,Φ

4 will be considered as the supersymmetric descendant

�elds ofZ. Conventionally, we represent them as (following the notation of FKVW [70]1):

Φ0 ≡ − 𝑖
4
(K − H), Φ1

𝑎 ≡ −1
2
B𝑎, Φ4 ≡ 𝑖

4
(H + K) . (B.62)

Therefore, the 𝑄-transformation ofZ can be written as

𝛿𝑄 (𝜖)Z =
1
2
(𝑖H − 𝛾𝑎B𝑎 − 𝑖𝛾∗𝛾𝑎D𝑎C)𝜖, (B.63)

𝛿𝑄 (𝜖)𝑃𝐿Z =
1
2
𝑃𝐿 (𝑖H − 𝛾𝑎B𝑎 − 𝑖𝛾𝑎D𝑎C)𝜖, (B.64)

𝛿𝑄 (𝜖)𝑃𝑅Z =
1
2
𝑃𝑅 (−𝑖K − 𝛾𝑎B𝑎 + 𝑖𝛾𝑎D𝑎C)𝜖. (B.65)

Following this procedure, it is possible to identify all the components of the superconfor-

mal multiplet V and its complex conjugate multiplet V∗, which are usually represented by the

following collection

V(𝑤,𝑐) ≡
(
C,Z,H ,K,B𝑎,Λ,D

)
, (B.66)

V∗
(𝑤,−𝑐) ≡

(
C∗,Z𝐶,K∗,H ∗,B𝑎,Λ𝐶,D∗

)
, (B.67)

where 𝐶 denotes the charge conjugation on the spinor; for the Majorana spinor represention,
1The Kugo notation 𝐻,𝐾 can be written in terms of our notation as 𝐻 ≡ 1

2 (H + K) and 𝐾 ≡ 𝑖
2 (K − H).
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it becomes the complex conjugate, and V(𝑤,𝑛) means its lowest component has the Weyl/chiral

weights (𝑤, 𝑐). The transformation laws of all the components of the superconformal multiplet

V(𝑤,𝑐) can be found follows:

• C (𝑤, 𝑐):

𝛿𝑄C =
𝑖

2
𝜖𝛾∗Z, 𝛿𝑀C = 0, 𝛿𝐷C = 𝑤𝜆𝐷C, 𝛿𝐴C = 𝑖𝑛𝜃C, 𝛿𝑆C = 0, 𝛿𝐾C = 0. (B.68)

• 𝑃𝐿Z (𝑤 + 1/2, 𝑐 − 3/2), 𝑃𝑅Z (𝑤 + 1/2, 𝑐 + 3/2):

𝛿𝑄 (𝜖)𝑃𝐿Z =
1
2
𝑃𝐿 (𝑖H − 𝛾𝑎B𝑎 − 𝑖𝛾𝑎D𝑎C)𝜖, 𝛿𝑀𝑃𝐿Z = −1

4
𝜆𝑎𝑏𝛾𝑎𝑏𝑃𝐿Z,

𝛿𝐷𝑃𝐿Z = (𝑤 + 1/2)𝜆𝐷𝑃𝐿Z, 𝛿𝐴𝑃𝐿Z = 𝑖 (𝑐 − 3/2)𝜃𝑃𝐿Z,

𝛿𝑆𝑃𝐿Z = −𝑖 (𝑤 + 𝑐)𝑃𝐿𝜂C, 𝛿𝐾𝑃𝐿Z = 0., (B.69)

𝛿𝑄 (𝜖)𝑃𝑅Z =
1
2
𝑃𝑅 (−𝑖K − 𝛾𝑎B𝑎 + 𝑖𝛾𝑎D𝑎C)𝜖, 𝛿𝑀𝑃𝑅Z = −1

4
𝜆𝑎𝑏𝛾𝑎𝑏𝑃𝑅Z,

𝛿𝐷𝑃𝑅Z = (𝑤 + 1/2)𝜆𝐷𝑃𝑅Z, 𝛿𝐴𝑃𝑅Z = 𝑖 (𝑐 + 3/2)𝜃𝑃𝑅Z,

𝛿𝑆𝑃𝑅Z = 𝑖 (𝑤 − 𝑐)𝑃𝑅𝜂C, 𝛿𝐾𝑃𝑅Z = 0. (B.70)

• H (𝑤 + 1, 𝑐 − 3):

𝛿𝑄H = −𝑖𝜖𝑃𝑅 (𝛾𝑎D𝑎Z + Λ), 𝛿𝑀H = 0, 𝛿𝐷H = (𝑤 + 1)𝜆𝐷H , 𝛿𝐴H = 𝑖𝜃 (𝑐 − 3)H ,

𝛿𝑆H = 𝑖𝜂 (𝑤 − 2 + 𝑐)𝑃𝐿Z, 𝛿𝐾H = 0. (B.71)

• K (𝑤 + 1, 𝑐 + 3):

𝛿𝑄K = 𝑖𝜖𝑃𝐿 (𝛾𝑎D𝑎Z + Λ), 𝛿𝑀K = 0, 𝛿𝐷K = (𝑤 + 1)𝜆𝐷K, 𝛿𝐴K = 𝑖𝜃 (𝑐 + 3)K,

𝛿𝑆K = 𝑖𝜂 (−𝑤 + 2 + 𝑐)𝑃𝑅Z, 𝛿𝐾K = 0. (B.72)
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• B𝑎 (𝑤 + 1, 𝑐):

𝛿𝑄B𝑎 = −1
2
𝜖 (𝛾𝑎Λ + D𝑎Z), 𝛿𝑀B𝑎 = −𝜆 𝑏

𝑎 B𝑏, 𝛿𝐷B𝑎 = (𝑤 + 1)𝜆𝐷B𝑎, 𝛿𝐴B𝑎 = 𝑖𝑐𝜃B𝑎,

𝛿𝑆B𝑎 =
1
2
𝜂 [(𝑤 + 1) + 𝑐𝛾∗]𝛾𝑎Z, 𝛿𝐾B𝑎 = −2𝑖𝜆𝐾,𝑎𝑐C (B.73)

• 𝑃𝐿Λ (𝑤 + 3/2, 𝑐 − 3/2), 𝑃𝑅Λ (𝑤 + 3/2, 𝑐 + 3/2):

𝛿𝑄𝑃𝐿Λ =
1
2
[𝛾𝑎𝑏 (D𝑎B𝑏 − 𝑖D𝑎D𝑏C) + 𝑖D]𝑃𝐿𝜖, 𝛿𝑀𝑃𝐿Λ = −1

4
𝜆𝑎𝑏𝛾𝑎𝑏𝑃𝐿Λ,

𝛿𝐷𝑃𝐿Λ = (𝑤 + 3/2)𝜆𝐷𝑃𝐿Λ, 𝛿𝐴𝑃𝐿Λ = 𝑖𝜃 (𝑐 + 3/2)𝑃𝐿Λ,

𝛿𝑆𝑃𝐿Λ = −1
2
𝑃𝐿 (𝑖K + 𝛾𝑎B𝑎 + 𝑖𝛾𝑎D𝑎C)(𝑤 + 𝑐𝛾∗)𝜂, 𝛿𝐾𝑃𝐿Λ = 𝜆𝑎𝐾 (𝑤 + 𝑐)𝛾𝑎𝑃𝑅Z,(B.74)

𝛿𝑄𝑃𝑅Λ =
1
2
[𝛾𝑎𝑏 (D𝑎B𝑏 + 𝑖D𝑎D𝑏C) − 𝑖D]𝑃𝑅𝜖, 𝛿𝑀𝑃𝑅Λ = −1

4
𝜆𝑎𝑏𝛾𝑎𝑏𝑃𝑅Λ,

𝛿𝐷𝑃𝑅Λ = (𝑤 − 3/2)𝜆𝐷𝑃𝑅Λ, 𝛿𝐴𝑃𝑅Λ = 𝑖𝜃 (𝑐 − 3/2)𝑃𝑅Λ,

𝛿𝑆𝑃𝑅Λ =
1
2
𝑃𝑅 (𝑖H − 𝛾𝑎B𝑎 + 𝑖𝛾𝑎D𝑎C)(𝑤 + 𝑐𝛾∗)𝜂, 𝛿𝐾𝑃𝑅Λ = 𝜆𝑎𝐾 (𝑤 − 𝑐)𝛾𝑎𝑃𝐿Z (B.75)

• D (𝑤 + 2, 𝑐):

𝛿𝑄D =
𝑖

2
𝜖𝛾∗𝛾

𝑎D𝑎Λ, 𝛿𝑀D = 0, 𝛿𝐷D = (𝑤 + 2)𝜆𝐷D, 𝛿𝐴D = 𝑖𝑐𝜃D,

𝛿𝑆D = 𝑖𝜂 (𝑤𝛾∗ + 𝑐) (
1
2
𝛾𝑎D𝑎Z + Λ), 𝛿𝐾D = 2𝜆𝑎𝐾 (𝑤D𝑎C + 𝑖𝑐B𝑎). (B.76)

If there are internal symmetries 𝛿𝐺C𝐼 = 𝜃𝐴𝑘 𝐼
𝐴
(C𝐼 ) of the lowest components C𝐼 from several

superconformal multipletsV𝐼 labeled by an index 𝐼 , then we have to add additional contributions
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to the above transformations, which are given by

𝛿𝑄B𝐼
𝑎 =

𝑖

2
𝜖𝛾𝑎𝛾∗(Λ𝐺 )𝐴𝑘 𝐼𝐴 (C), (B.77)

𝛿𝑄Λ
𝐼 =

[
− 1
2
D𝐴
𝐺𝑘

𝐼
𝐴 (C) +

1
4
{(Λ̄𝐺 )𝐴𝛾𝑎Z 𝐽 }𝜕𝐽𝑘 𝐼𝐴𝛾𝑎 +

1
4
{(Λ̄𝐺 )𝐴𝛾∗𝛾𝑎Z 𝐽 }𝜕𝐽𝑘 𝐼𝐴𝛾∗𝛾𝑎

]
𝜖, (B.78)

𝛿𝑄D𝐼 =
1
2
𝜖Z 𝐽 𝜕𝐽𝑘

𝐼
𝐴 (C)D

𝐴
𝐺 + 𝑖

2
𝜖𝛾∗𝛾

𝑎B𝐼
𝑎 (Λ𝐺 )𝐴𝜕𝐽𝑘 𝐼𝐴 (C) −

1
2
𝜖𝛾𝑎D𝑎 (𝑘 𝐼𝐴 (C)(Λ

𝐺 )𝐴), (B.79)

where (Λ𝐺 )𝐴,D𝐴
𝐺
are from the components of gauge multipletsV𝐺 .

The superconformal covariant derivatives of the �elds of a superconformal multiplet V

under the superconformal symmetry are as follows:

D𝜇C = (𝜕𝜇 −𝑤𝑏𝜇 − 𝑖𝑐𝐴𝜇)C − 𝑖

2
𝜓𝜇𝛾∗Z, (B.80)

𝑃𝐿D𝜇Z =

(
𝜕𝜇 − (𝑤 + 1/2)𝑏𝜇 − 𝑖 (𝑐 − 3/2)𝐴𝜇 +

1
4
𝜔𝑎𝑏𝜇 𝛾𝑎𝑏

)
Z

−1
2
𝑃𝐿 (𝑖H − 𝛾𝑎B𝑎 − 𝑖𝛾𝑎D𝑎C)𝜓𝜇 − 𝑖 (𝑤 + 𝑐)𝑃𝐿𝜙𝜇C, (B.81)

𝑃𝑅D𝜇Z =

(
𝜕𝜇 − (𝑤 + 1/2)𝑏𝜇 − 𝑖 (𝑐 + 3/2)𝐴𝜇 +

1
4
𝜔𝑎𝑏𝜇 𝛾𝑎𝑏

)
Z

−1
2
𝑃𝑅 (−𝑖K − 𝛾𝑎B𝑎 + 𝑖𝛾𝑎D𝑎C)𝜓𝜇 − 𝑖 (𝑤 − 𝑐)𝑃𝑅𝜙𝜇C, (B.82)

D𝑎B𝑏 = 𝑒
𝜇
𝑎

[
(𝜕𝜇 − (𝑤 + 1)𝑏𝜇 − 𝑖𝑐𝐴𝜇)B𝑏 + 𝜔𝜇𝑏𝑐B𝑐

+1
2
𝜓𝜇 (D𝑏Z + 𝛾𝑏Λ) −

1
2
𝜙𝜇 (𝑤 + 1 + 𝑐𝛾∗)𝛾𝑏Z + 2𝑖𝑐C 𝑓𝜇𝑏

]
, (B.83)

𝑃𝐿D𝜇Λ = 𝑃𝐿

(
𝜕𝜇 − (𝑤 + 3/2)𝑏𝜇 − 𝑖 (𝑐 + 3/2)𝐴𝜇 +

1
4
𝜔𝑎𝑏𝜇 𝛾𝑎𝑏

)
Λ

−1
2
[𝛾𝑎𝑏 (D𝑎B𝑏 − 𝑖D𝑎D𝑏C) + 𝑖D]𝑃𝐿𝜓𝜇

+1
2
𝑃𝐿 (𝑖K + 𝛾𝑎B𝑎 + 𝑖𝛾𝑎D𝑎C)(𝑤 + 𝑐𝛾∗)𝜙𝜇 − (𝑤 + 𝑐)𝛾𝑎𝑃𝑅Z 𝑓 𝑎𝜇 , (B.84)

𝑃𝑅D𝜇Λ = 𝑃𝑅

(
𝜕𝜇 − (𝑤 + 3/2)𝑏𝜇 − 𝑖 (𝑐 − 3/2)𝐴𝜇 +

1
4
𝜔𝑎𝑏𝜇 𝛾𝑎𝑏

)
Λ

−1
2
[𝛾𝑎𝑏 (D𝑎B𝑏 + 𝑖D𝑎D𝑏C) − 𝑖D]𝑃𝑅𝜓𝜇

−1
2
𝑃𝑅 (𝑖H − 𝛾𝑎B𝑎 + 𝑖𝛾𝑎D𝑎C)(𝑤 + 𝑐𝛾∗)𝜙𝜇 − (𝑤 − 𝑐)𝛾𝑎𝑃𝐿Z 𝑓 𝑎𝜇 , (B.85)

D[𝑎D𝑏]C = −1
2
[𝑤𝑅𝑎𝑏 (𝐷) + 𝑖𝑐𝑅𝑎𝑏 (𝐴)]C − 𝑖

4
𝑅𝑎𝑏 (𝑄)𝛾∗Z. (B.86)
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B.4.2 Chiral superconformal multiplet

A chiral supermultiplet is given by

X = {𝑋, 𝑃𝐿Ω, 𝐹 }. (B.87)

In the superconformal formalism, this can be represented by imposing chiral condition 𝑃𝑅Z ≡ 0,

so that the other consistency conditions are followed as

𝑃𝑅Z ≡ 0 =⇒ K = Λ = D = 0, B𝜇 = 𝑖D𝜇C, (B.88)

which gives the following collection as a chiral superconformal multiplet

X =

(
𝑋,−𝑖

√
2𝑃𝐿Ω,−2𝐹, 0, 𝑖D𝜇𝑋, 0, 0

)
. (B.89)

The complex conjugate of this superconformal multiplet can be obtained by imposing the chiral

condition 𝑃𝐿Z = 0, leading to

𝑃𝐿Z ≡ 0 =⇒ H = Λ = D = 0, B𝜇 = −𝑖D𝜇C∗, (B.90)

and

X∗ =
(
𝑋 ∗, 𝑖

√
2𝑃𝑅Ω, 0,−2𝐹 ∗,−𝑖D𝜇𝑋

∗, 0, 0
)
. (B.91)

In fact, the chiral superconformal multiplet X can only be obtained when Weyl weight is

equal to chiral weight, i.e. 𝑤 = 𝑐 . The reason for this is that when we impose the chiral con�tion
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𝑃𝑅Z = 0, its 𝑆-transformation must vanish as well, resulting in

𝛿𝑆𝑃𝑅Z = 𝑖 (𝑤 − 𝑐)𝑃𝑅𝜂C
!
= 0 =⇒ 𝑤 = 𝑐. (B.92)

Meanwhile, there is another way of obtaining a chiral superconformal multiplet from the

genral one. Let us take a look at the superconformal transformations ofK . If we impose 𝑐 = 𝑤−2,

the transformation laws of a scalar C′ ≡ −1
2K are given by

𝛿𝑄C′ = −1
2
𝑖𝜖𝑃𝐿 (𝛾𝑎D𝑎Z + Λ), 𝛿𝑀C′ = 0, 𝛿𝐷C′ = (𝑤 + 1)𝜆𝐷C′,

𝛿𝐴C′ = 𝑖𝜃 (𝑤 + 1)C′, 𝛿𝑆C′ = 0, 𝛿𝐾C′ = 0. (B.93)

We notice that these transformations are those of a chiral superconformal multiplet whose lowest

component is given by C′ = −1
2K and the chiral fermion is identi�ed withZ′ = −𝑃𝐿 (𝛾𝑎D𝑎Z+Λ).

Therefore, we can de�ne an operation called Chiral projection 𝑇 such that

𝑇 (C(𝑤,𝑐=𝑤−2))(𝑤+1,𝑤+1) ≡ X′ =
(
− 1
2
K,− 𝑖

√
2
𝑃𝐿 (𝛾𝑎D𝑎Z + Λ), 1

2
(D + �𝐶C + 𝑖D𝑎B𝑎)

)
, (B.94)

𝑇 (C∗
(𝑤,𝑐=𝑤−2))(𝑤+1,𝑤+1) ≡ X′ =

(
− 1
2
H ∗,

𝑖
√
2
𝑃𝑅 (𝛾𝑎D𝑎Z𝐶 + Λ𝐶), 1

2
(D∗ + �𝐶C∗ − 𝑖D𝑎B∗

𝑎 )
)
,

(B.95)

Note that the Weyl/chiral weights changes from (𝑤, 𝑐 = 𝑤 − 2) to (𝑤 + 1, 𝑐 = 𝑤 + 1). Hence, we

can say that 𝑇 carries the Weyl/chiral weights (1, 3)!

Plus, there is a special case that the chiral projection operation𝑇 (·) can be applied to a chiral

multiplet with𝑤 = 1, i.e. X(1,1) ≡ {𝑋, 𝑃𝐿Ω, 𝐹 }. Then, the corresponding chiral projection is

𝑇 (X(1,1))(2,2) =
(
𝐹 ∗, 𝛾𝑎D𝑎𝑃𝑅Ω, �

𝐶𝑋 ∗
)
. (B.96)
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B.4.3 Real superconformal multiplet

It is also possible to obtain a real superconformal multiplet by imposing a real condition that

C∗ = C ≡ 𝐶, (𝑃𝐿Z)𝐶 = 𝑃𝑅Z ≡ 𝑃𝑅𝜁 , (𝑃𝑅Z)𝐶 = 𝑃𝐿Z ≡ 𝑃𝐿𝜁 , H ∗ = K,

B∗
𝑎 = B𝑎 ≡ 𝐵𝑎, (𝑃𝐿Λ)𝐶 = 𝑃𝑅Λ ≡ 𝑃𝑅𝜆, (𝑃𝑅Λ)𝐶 = 𝑃𝐿Λ ≡ 𝑃𝐿𝜆, D∗ = D ≡ 𝐷. (B.97)

The real multiplt 𝑉 is then given by

𝑉 =

(
𝐶, 𝜁 ,H ,H ∗, 𝐵𝑎, 𝜆, 𝐷

)
. (B.98)

B.4.4 Linear superconformal multiplet

Using the chiral projection operation, we can de�ne a complex linear superconformal multi-

pletV𝐿 by imposing two conditions 𝑐 = 𝑤 − 2 and

𝑇 (V𝐿) ≡ 0. (B.99)

In particular, by requiring reality to 𝐿 in addition to the two conditions, we get a real linear

superconformal multiplet given by

V𝐿 =

(
𝐶𝐿, 𝜁 𝐿, 0, 0, 𝐵𝐿𝑎 ,−𝛾𝑎D𝑎𝜁

𝐿,−�𝐶𝐶𝐿
)
, (B.100)

where 𝐶𝐿 is a real scalar, 𝜁 𝐿 is a Majorana spinor, and 𝐵𝐿𝑎 is a real vector such that D𝑎𝐵𝐿𝑎 = 0.
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B.4.5 Gauge superconformal multiplet

Another crucial multiplet is a Gauge superconformal multiplet. To get this, we can start

with a real superconformal multiplet with the Weyl/chiral weight (0,0):

𝑉𝐴𝐺 =

(
𝐶𝐴, 𝜁𝐴,H𝐴,H ∗𝐴, 𝐵𝐴𝑎 , (𝜆𝐺 )𝐴, (𝐷𝐺 )𝐴

)
. (B.101)

Then, let us look at the following �eld rede�nition

𝐵̂𝜇 ≡ 𝑒𝑎𝜇𝐵𝑎 −
1
2
𝜓𝜇𝜁 . (B.102)

Then, the 𝑄-transformation of this vector �eld is given by

𝛿𝑄 𝐵̂𝜇 = −1
2
𝜖𝛾𝜇𝜆 −

1
2
𝜕𝜇 (𝜖𝜁 ). (B.103)

Here we see that the last term may be thought as a 𝑈 (1) gauge transformation of a gauge �eld

𝐵̂𝜇 −→ 𝐵̂𝜇 − 𝜕𝜇𝜃 where 𝜃 is a real scalar gauge parameter. We then establish a superconformal

multiplet de�ned by

𝑉𝐴𝐺 =

(
0, 0, 0, 0, (𝐵̂𝑎)𝐴, (𝜆𝐺 )𝐴, (𝐷𝐺 )𝐴

)
, (B.104)

where (𝐵̂𝑎)𝐴 is gauge (vector) �eld; (𝜆𝐺 )𝐴 is its fermionic superpartner called gaugino, and (𝐷𝐺 )𝐴

is auxiliary real scalar of the gauge multiplet. Their transformations are speci�ed as follows:

• (𝐵̂𝜇)𝐴 (1, 0):

𝛿𝑄 (𝐵̂𝜇)𝐴 = −1
2
𝜖𝛾𝜇 (𝜆𝐺 )𝐴, 𝛿𝑀 (𝐵̂𝜇)𝐴 = 𝛿𝐷 (𝐵̂𝜇)𝐴 = 𝛿𝐴 (𝐵̂𝜇)𝐴 = 𝛿𝑆 (𝐵̂𝜇)𝐴 = 𝛿𝐾 (𝐵̂𝜇)𝐴 = 0(B.105)

Here notice that gauge �eld (𝐵̂𝜇)𝐴 transforms only under the Q-SUSY transformation, while
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it is inert under the others.

• (𝜆𝐺 )𝐴 (3/2,±3/2):

𝛿𝑄 (𝜆𝐺 )𝐴 =

( 𝑖
2
𝛾∗(𝐷𝐺 )𝐴 + 1

4
𝛾𝑎𝑏 (𝐹𝐺

𝑎𝑏
)𝐴

)
𝜖, 𝛿𝑀 (𝜆𝐺 )𝐴 = −1

4
𝜆𝑎𝑏𝛾𝑎𝑏 (𝜆𝐺 )𝐴,

𝛿𝐷 (𝜆𝐺 )𝐴 =
3
2
𝜆𝐷 (𝜆𝐺 )𝐴, 𝛿𝐴 (𝜆𝐺 )𝐴 =

3
2
𝑖𝜃𝛾∗(𝜆𝐺 )𝐴, 𝛿𝑆 (𝜆𝐺 )𝐴 = 𝛿𝐾 (𝜆𝐺 )𝐴 = 0,

where (𝐹𝐺
𝑎𝑏
)𝐴 ≡ 𝑒𝜇𝑎𝑒𝜈𝑏

(
2𝜕[𝜇 (𝐵̂𝜈])𝐴 + 𝑓 𝐴

𝐵𝐶 (𝐵̂𝜇)𝐵 (𝐵̂𝜈 )𝐶 +𝜓 [𝜇𝛾𝜈] (𝜆𝐺 )𝐴
)
. (B.106)

• (𝐷𝐺 )𝐴 (2, 0):

𝛿𝑄 (𝐷𝐺 )𝐴 =
𝑖

2
𝜖𝛾∗(𝛾𝑎D𝑎𝜆

𝐺 )𝐴, 𝛿𝑀 (𝐷𝐺 )𝐴 = 0, 𝛿𝐷 (𝐷𝐺 )𝐴 = 2𝜆𝐷 (𝐷𝐺 )𝐴,

𝛿𝑠 (𝐷𝐺 )𝐴 = 𝛿𝐾 (𝐷𝐺 )𝐴 = 0. (B.107)

It is obvious that the Q-SUSY transformations of a general superconformal multiplet will change

due to the additional shifts caused by internal gauge symmetries. When a multiplet is charged

under gauge symmetries, a partial derivative must be replaced by a proper covariant derivative

which involves the gauge-coupling part given by 𝜕𝜇 −→ 𝐷𝜇 ⊃ −(𝐵̂𝜇)𝐴𝑘 𝐼𝐴 (C). Since the gauge

�eld transforms under Q-SUSY, a transformation of the covariant derivative of some �elds of the

gauged multiplet must depend on the gaugino, which is completely new compared to the Q-SUSY

transformations of the un-gauged case. The additional corrections to the Q-SUSY transformations

are shown in Eq. (B.79). In addition, a gauged chiral superconformal multiplet is given by

X𝑔𝑎𝑢𝑔𝑒𝑑 =
(
𝑋,−𝑖

√
2𝑃𝐿Ω,−2𝐹,−2𝑖𝐹 , 𝑖D𝑎𝑋,−2𝑖𝑃𝑅 (𝜆𝐺 )𝐴𝑘𝐴 (𝑋 ),−𝑖𝑘𝐴 (𝑋 ) (𝐷𝐺 )𝐴

)
, (B.108)

where 𝑘𝐴 (𝑋 ) is the Killing vector of gauge symmetries.
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B.5 Multiplication Laws of Superconformal multiplets

In this section, I introduce the multiplication laws of the superconformal multiplets from Ref.

[70]. Multiplication laws for a composite multiplet whose arguments are given only by complex

superconformal multiplets:

C̃ = 𝑓 (C𝑖), (B.109)

Z̃ = 𝑓𝑖Z𝑖, (B.110)

H̃ = 𝑓𝑖H 𝑖 − 1
2
𝑓𝑖 𝑗Z̄𝑖𝑃𝐿Z 𝑗 , (B.111)

K̃ = 𝑓𝑖K𝑖 − 1
2
𝑓𝑖 𝑗Z̄𝑖𝑃𝑅Z 𝑗 , (B.112)

B̃𝜇 = 𝑓𝑖B𝑖
𝜇 +

𝑖

4
𝑓𝑖 𝑗Z̄𝑖𝛾∗𝛾𝜇Z 𝑗 = 𝑓𝑖B𝑖

𝜇 +
𝑖

2
𝑓𝑖 𝑗Z̄𝑖𝑃𝐿𝛾𝜇Z 𝑗 , (B.113)

Λ̃ = 𝑓𝑖𝜆
𝑖 + 1

2
𝑓𝑖 𝑗

[
𝑖𝛾∗��B𝑖 + 𝑃𝐿K𝑖 + 𝑃𝑅H 𝑖 −��DC𝑖

]
Z 𝑗 − 1

4
𝑓𝑖 𝑗𝑘Z𝑖Z̄ 𝑗Z𝑘 , (B.114)

D̃ = 𝑓𝑖D𝑖 + 1
2
𝑓𝑖 𝑗

(
K𝑖H 𝑗 − B𝑖 · B 𝑗 − DC𝑖 · DC 𝑗 − 2Λ̄Z 𝑗 − Z̄𝑖

��DZ 𝑗
)

−1
4
𝑓𝑖 𝑗𝑘Z̄𝑖

(
𝑖𝛾∗��B𝑖 + 𝑃𝐿K𝑖 + 𝑃𝑅H 𝑖

)
Z𝑘 + 1

8
𝑓𝑖 𝑗𝑘𝑙 (Z̄𝑖𝑃𝐿Z 𝑗 ) (Z̄𝑘𝑃𝑅Z𝑙 ). (B.115)
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Multiplication laws fora composite multiplet whose arguments are given only by chiral super-

conformal multiplets:

C̃ = 𝑓 (𝑋𝛼 , 𝑋𝛼 ), (B.116)

Z̃ = 𝑖
√
2(−𝑓𝛼Ω𝛼 + 𝑓𝛼Ω𝛼 ), (B.117)

H̃ = −2𝑓𝛼𝐹𝛼 + 𝑓𝛼𝛽 Ω̄𝛼Ω𝛽, (B.118)

K̃ = −2𝑓𝛼𝐹𝛼 + 𝑓𝛼𝛽 Ω̄𝛼Ω𝛽, (B.119)

B̃𝜇 = 𝑖 𝑓𝛼D𝜇𝑋
𝛼 − 𝑖 𝑓𝛼D𝜇𝑋

𝛼 + 𝑖 𝑓𝛼𝛽 Ω̄𝛼𝛾𝜇Ω𝛽, (B.120)

𝑃𝐿Λ̃ = −
√
2𝑖 𝑓𝛼𝛽 [(��D𝑋 𝛽)Ω𝛼 − 𝐹𝛼Ω𝛽] − 𝑖

√
2
𝑓𝛼𝛽𝛾Ω

𝛾 Ω̄𝛼Ω𝛽, (B.121)

𝑃𝑅Λ̃ =
√
2𝑖 𝑓𝛼𝛽 [(��D𝑋 𝛽)Ω𝛼 − 𝐹𝛼Ω𝛽] + 𝑖

√
2
𝑓𝛼𝛽𝛾Ω

𝛾 Ω̄𝛼Ω𝛽, (B.122)

D̃ = 2𝑓𝛼𝛽
(
− D𝜇𝑋

𝛼D𝜇𝑋 𝛽 − 1
2
Ω̄𝛼𝑃𝐿��DΩ𝛽 − 1

2
Ω̄𝛽𝑃𝑅��DΩ𝛼 + 𝐹𝛼𝐹 𝛽

)
+𝑓𝛼𝛽𝛾 (−Ω̄𝛼Ω𝛽𝐹𝛾 + Ω̄𝛼 (��D𝑋 𝛽)Ω𝛾 ) + 𝑓𝛼𝛽𝛾 (−Ω̄𝛼Ω𝛽𝐹𝛾 + Ω̄𝛼 (��D𝑋 𝛽)Ω𝛾 )

+1
2
𝑓𝛼𝛽𝛾𝛿 (Ω̄𝛼𝑃𝐿Ω𝛽) (Ω̄𝛾𝑃𝑅Ω𝛿 ). (B.123)
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Multiplication laws for a composite multiplet whose arguments are given only by real supercon-

formal multiplets:

C̃ = 𝑓 (𝐶𝑖), (B.124)

Z̃ = 𝑓𝑖𝜁
𝑖, (B.125)

H̃ = 𝑓𝑖H 𝑖 − 1
2
𝑓𝑖 𝑗𝜁

𝑖𝑃𝐿𝜁
𝑗 , (B.126)

K̃ = 𝑓𝑖H ∗𝑖 − 1
2
𝑓𝑖 𝑗𝜁

𝑖𝑃𝑅𝜁
𝑗 , (B.127)

B̃𝜇 = 𝑓𝑖𝐵
𝑖
𝜇 +

𝑖

4
𝑓𝑖 𝑗𝜁

𝑖𝛾∗𝛾𝜇𝜁
𝑗 , (B.128)

Λ̃ = 𝑓𝑖𝜆
𝑖 + 1

2
𝑓𝑖 𝑗

[
𝑖𝛾∗�𝐵

𝑖 + ReH 𝑖 − 𝑖𝛾∗ImH 𝑖 −��D𝐶𝑖
]
𝜁 𝑗 − 1

4
𝑓𝑖 𝑗𝑘𝜁

𝑖𝜁 𝑗𝜁 𝑘 , (B.129)

D̃ = 𝑓𝑖𝐷
𝑖 + 1

2
𝑓𝑖 𝑗

(
H 𝑖H ∗ 𝑗 − 𝐵𝑖 · 𝐵 𝑗 − D𝐶𝑖 · D𝐶 𝑗 − 2𝜆𝑖𝜁 𝑗 − 𝜁 𝑖��D𝜁 𝑗

)
−1
4
𝑓𝑖 𝑗𝑘𝜁

𝑖
(
𝑖𝛾∗�𝐵

𝑖 + ReH 𝑖 − 𝑖𝛾∗ImH 𝑖
)
𝜁 𝑘 + 1

8
𝑓𝑖 𝑗𝑘𝑙 (𝜁 𝑖𝑃𝐿𝜁 𝑗 ) (𝜁 𝑘𝑃𝑅𝜁 𝑙 ). (B.130)

B.6 Density Formulae

• F-term Density Formula: For any chiral superconformal multiplet X with the Weyl/chi-

ral weights (3, 3) whose supermultiplet form is given by {𝑋, 𝑃𝐿Ω, 𝐹 }, the corresponding

invariant action “[𝑋 ]𝐹 ” via F-term sector can be obtained by the following expression:

[𝑋 ]𝐹 ≡
∫

𝑑4𝑥𝑒

[
𝐹 + 1

√
2
𝜓𝜇𝛾

𝜇𝑃𝐿Ω + 1
2
𝑋𝜓𝜇𝛾

𝜇𝜈𝑃𝑅𝜓𝜈

]
+ ℎ.𝑐. (B.131)

where 𝑒 ≡ det(𝑒𝑎𝜇). This F-term density formula form is the same as that of the Kugo’s

notation.

• D-term Density Formula: For any real superconformal multiplet V with Weyl/chiral

weights (2, 0) whose lowest component is given by a real scalar𝐶 , we can always construct

a chiral superconformal multiplet with theWeyl/chiral weights (3, 3) by applying the chiral
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projection operation𝑇 to the real multipletV . This means that it is possible to compute the

corresponding invariant action using the above F-term density formula. Here, we de�ne

the D-term density formula in terms of the chiral projection and F-term density formula as

follows:

[C]𝐷 ≡ 1
2
[𝑇 (C)]𝐹 . (B.132)

Also, we have [𝑇 (C)]𝐹 = [𝑇 (C∗)]. After integrating by parts, we reach the following

equivalent invariant action “[𝐶]𝐷” that can also be calculated via D-term sector:

[𝐶]𝐷 ≡ 1
2

∫
𝑑4𝑥𝑒

[
𝐷 + D𝑎D𝑎𝐶 + 1

2

(
𝑖𝜓 · 𝛾𝑃𝑅 (𝜆 + 𝛾𝑎D𝑎𝜁 ) −

1
4
𝜓𝜇𝑃𝐿𝛾

𝜇𝜈𝜓𝜈H + ℎ.𝑐.
)]

=
1
2

∫
𝑑4𝑥𝑒

[
𝐷 − 1

2
𝜓 · 𝛾𝑖𝛾∗𝜆 −

1
3
𝐶𝑅(𝜔) + 1

6

(
𝐶𝜓𝜇𝛾

𝜇𝜌𝜎 − 𝑖𝜁𝛾𝜌𝜎𝛾∗
)
𝑅′𝜌𝜎 (𝑄)

+1
4
𝜀𝑎𝑏𝑐𝑑𝜓𝑎𝛾𝑏𝜓𝑐 (𝐵𝑑 −

1
2
𝜓𝑑𝜁 )

]
, (B.133)

where 𝑅′𝜌𝜎 (𝑄) ≡ 2(𝜕[𝜇 + 1
4𝜔

𝑎𝑏
[𝜇𝛾𝑎𝑏 +

1
2𝑏 [𝜇 −

3
2𝑖𝐴[𝜇𝛾∗)𝜓𝜈] , and 𝑅(𝜔) ≡ 𝑅𝑐𝑜𝑣𝜇𝜈 (𝑀)𝑔𝜇𝜈 . It is worth

noticing that there is a factor of 1/2 in this D-term density formula in our notation (which

follows Ferrara’s one), while in the Kugo’s notation, there is no the factor of 1/2.

• Theorems on the chiral projection: 𝑇 (𝑍C) = 𝑍𝑇 (C) is satis�ed if 𝑍 is a chiral multiplet

and C has the Weyl/chiral weights (𝑤,𝑤 − 2). Plus, for any two chiral multiplets Λ with

(0, 0) and 𝑍 with (1, 1), [(Λ + Λ∗)𝑍𝑍 ∗]𝐷 = 1
2 [𝑇

(
(Λ + Λ∗)𝑍𝑍 ∗

)
]𝐹 = [Λ𝑍𝑇 (𝑍 ∗)]𝐹 can be

satis�ed.
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C | Derivation of Fermion Masses in

the Supergravity Model of

Inflation in Ch. 11

We consider matter chiral multiplets 𝑍 𝑖 , the chiral compensator 𝑆0, a real multiplet 𝑉 , and

another real multiplet (𝑉 )𝐷 , whose lowest component is the auxiliary D term of the real multiplet

𝑉 . Their superconformal multiplets are given as follows:

𝑉 = {0, 0, 0, 0, 𝐴𝜇, 𝜆, 𝐷} in the Wess-Zumino gauge, i.e. 𝑣 = 𝜁 = H = 0, (C.1)

𝑍 𝑖 = (𝑧𝑖,−𝑖
√
2𝑃𝐿𝜒𝑖,−2𝐹 𝑖, 0, +𝑖D𝜇𝑧

𝑖, 0, 0) = {𝑧𝑖, 𝑃𝐿𝜒𝑖, 𝐹 𝑖}, (C.2)

𝑍 𝑖 = (𝑧𝑖, +𝑖
√
2𝑃𝑅𝜒𝑖, 0,−2𝐹 𝑖,−𝑖D𝜇𝑧

𝑖, 0, 0) = {𝑧𝑖, 𝑃𝑅𝜒𝑖, 𝐹 𝑖}, (C.3)

𝑆0 = (𝑠0,−𝑖
√
2𝑃𝐿𝜒0,−2𝐹0, 0, +𝑖D𝜇𝑠0, 0, 0) = {𝑠0, 𝑃𝐿𝜒0, 𝐹0}, (C.4)

𝑆0 = (𝑠0, +𝑖
√
2𝑃𝑅𝜒0, 0,−2𝐹0,−𝑖D𝜇𝑠0, 0, 0) = {𝑠0, 𝑃𝑅𝜒0, 𝐹0}, (C.5)

𝜆𝑃𝐿𝜆 = (𝜆𝑃𝐿𝜆,−𝑖
√
2𝑃𝐿Λ, 2𝐷2

−, 0, +𝑖D𝜇 (𝜆𝑃𝐿𝜆), 0, 0) = {𝜆𝑃𝐿𝜆, 𝑃𝐿Λ,−𝐷2
−}, (C.6)

𝜆𝑃𝑅𝜆 = (𝜆𝑃𝑅𝜆, +𝑖
√
2𝑃𝑅Λ, 0, 2𝐷2

+,−𝑖D𝜇 (𝜆𝑃𝑅𝜆), 0, 0) = {𝜆𝑃𝑅𝜆, 𝑃𝑅Λ,−𝐷2
+}, (C.7)

(𝑉 )𝐷 = (𝐷,��D𝜆, 0, 0,D𝑏𝐹𝑎𝑏,−��D��D𝜆,−�𝐶𝐷), (C.8)
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where

𝑃𝐿Λ ≡
√
2𝑃𝐿 (−

1
2
𝛾 · 𝐹 + 𝑖𝐷)𝜆, 𝑃𝑅Λ ≡

√
2𝑃𝑅 (−

1
2
𝛾 · 𝐹 − 𝑖𝐷)𝜆, (C.9)

𝐷2
− ≡ 𝐷2 − 𝐹− · 𝐹− − 2𝜆𝑃𝐿��D𝜆, 𝐷2

+ ≡ 𝐷2 − 𝐹+ · 𝐹+ − 2𝜆𝑃𝑅��D𝜆, (C.10)

D𝜇𝜆 ≡
(
𝜕𝜇 −

3
2
𝑏𝜇 +

1
4
𝑤𝑎𝑏
𝜇 𝛾𝑎𝑏 −

3
2
𝑖𝛾∗A𝜇

)
𝜆 −

(
1
4
𝛾𝑎𝑏𝐹𝑎𝑏 +

1
2
𝑖𝛾∗𝐷

)
𝜓𝜇 (C.11)

𝐹𝑎𝑏 ≡ 𝐹𝑎𝑏 + 𝑒 𝜇𝑎 𝑒 𝜈𝑏 𝜓 [𝜇𝛾𝜈]𝜆, 𝐹𝑎𝑏 ≡ 𝑒 𝜇𝑎 𝑒 𝜈𝑏 (2𝜕[𝜇𝐴𝜈]), (C.12)

𝐹±𝜇𝜈 ≡
1
2
(𝐹𝜇𝜈 ± ˜̂

𝐹𝜇𝜈 ), ˜̂
𝐹𝜇𝜈 ≡ −1

2
𝑖𝜖𝜇𝜈𝜌𝜎𝐹

𝜌𝜎 . (C.13)

Next, we show the components of the �rst superconformal composite complex multiplets𝑤 ′2

and 𝑤̄ ′2 with Weyl/chiral weights (−1, 3) and (−1,−3) respectively. These composite multiplets

are de�ned to be

𝑤 ′2 ≡ 𝜆𝑃𝐿𝜆

(𝑆0𝑆0𝑒−𝐾/3)2
= {C𝑤 ,Z𝑤 ,H𝑤 ,K𝑤 ,B𝑤

𝜇 ,Λ𝑤 ,D𝑤 } (C.14)

𝑤̄ ′2 ≡ 𝜆𝑃𝑅𝜆

(𝑆0𝑆0𝑒−𝐾/3)2
= {C𝑤̄ ,Z𝑤̄ ,H𝑤̄ ,K𝑤̄ ,B𝑤̄

𝜇 ,Λ𝑤̄ ,D𝑤̄ }. (C.15)
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where

C𝑤 = ℎ ≡ 𝜆𝑃𝐿𝜆

(𝑠0𝑠0𝑒−𝐾 (𝑧,𝑧)/3)2
, (C.16)

Z𝑤 = 𝑖
√
2(−ℎ𝑎Ω𝑎 + ℎ𝑎Ω𝑎), (C.17)

H𝑤 = −2ℎ𝑎𝐹𝑎 + ℎ𝑎𝑏 Ω̄𝑎Ω𝑏, (C.18)

K𝑤 = −2ℎ𝑎𝐹𝑎 + ℎ𝑎𝑏 Ω̄𝑎Ω𝑏, (C.19)

B𝑤
𝜇 = 𝑖ℎ𝑎D𝜇𝑋

𝑎 − 𝑖ℎ𝑎D𝜇𝑋
𝑎 + 𝑖ℎ𝑎𝑏 Ω̄𝑎𝛾𝜇Ω𝑏, (C.20)

𝑃𝐿Λ𝑤 = −
√
2𝑖ℎ𝑎𝑏 [(��D𝑋𝑏)Ω𝑎 − 𝐹𝑎Ω𝑏] −

𝑖
√
2
ℎ𝑎𝑏𝑐Ω

𝑐 Ω̄𝑎Ω𝑏, (C.21)

𝑃𝑅Λ𝑤 =
√
2𝑖ℎ𝑎𝑏 [(��D𝑋𝑏)Ω𝑎 − 𝐹𝑎Ω𝑏] +

𝑖
√
2
ℎ𝑎𝑏𝑐Ω

𝑐 Ω̄𝑎Ω𝑏, (C.22)

D𝑤 = 2ℎ𝑎𝑏
(
− D𝜇𝑋

𝑎D𝜇𝑋𝑏 − 1
2
Ω̄𝑎𝑃𝐿��DΩ𝑏 − 1

2
Ω̄𝑏𝑃𝑅��DΩ𝑎 + 𝐹𝑎𝐹𝑏

)
+ℎ𝑎𝑏𝑐 (−Ω̄𝑎Ω𝑏𝐹 𝑐 + Ω̄𝑎 (��D𝑋𝑏)Ω𝑐) + ℎ𝑎𝑏𝑐 (−Ω̄𝑎Ω𝑏𝐹 𝑐 + Ω̄𝑎 (��D𝑋𝑏)Ω𝑐)

+1
2
ℎ𝑎𝑏𝑐𝑑 (Ω̄𝑎𝑃𝐿Ω𝑏) (Ω̄𝑐𝑃𝑅Ω𝑑). (C.23)

Notice that when �nding the multiplet 𝑤̄ ′2, we can just replace ℎ by its complex conjugate ℎ∗.

The second superconformal multiplets that we need are the composite chiral projection mul-

tiplets𝑇 (𝑤̄ ′2) and𝑇 (𝑤 ′2) with Weyl/chiral weights (0, 0). From their component supermultiplets

de�ned by

𝑇 (𝑤̄ ′2) =

(
−1
2
K𝑤̄ ,−

1
2
√
2𝑖𝑃𝐿 (��DZ𝑤̄ + Λ𝑤̄ ),

1
2
(D𝑤̄ + �𝐶C𝑤̄ + 𝑖D𝑎B𝑎

𝑤̄ )
)
, (C.24)

𝑇 (𝑤 ′2) =

(
−1
2
K∗
𝑤̄ ,

1
2
√
2𝑖𝑃𝑅 (��DZ𝐶

𝑤̄ + Λ𝐶𝑤̄ ),
1
2
(D∗

𝑤̄ + �𝐶C∗
𝑤̄ − 𝑖D𝑎 (B𝑎

𝑤̄ )∗)
)

(C.25)

we �nd the corresponding superconformal multiplets and their complex conjugates as follows:

𝑇 ≡ 𝑇 (𝑤̄ ′2) = {C𝑇 ,Z𝑇 ,H𝑇 ,K𝑇 ,B𝑇
𝜇 ,Λ𝑇 ,D𝑇 }

𝑇 ≡ 𝑇 (𝑤 ′2) = {C𝑇 ,Z𝑇 ,H𝑇 ,K𝑇 ,B𝑇
𝜇 ,Λ𝑇 ,D𝑇 }, (C.26)
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whose superconformal components are given by

C𝑇 = −1
2
K𝑤̄ = ℎ∗𝑎𝐹

𝑎 − 1
2
ℎ∗
𝑎𝑏
Ω̄𝑎Ω𝑏 ≡ 𝐶𝑇 (C.27)

Z𝑇 = −
√
2𝑖𝑃𝐿

[
��D(−ℎ∗𝑎Ω𝑎 + ℎ∗𝑎Ω𝑎) − ℎ∗𝑎𝑏 [(��D𝑋

𝑏)Ω𝑎 − 𝐹𝑎Ω𝑏] − 1
2
ℎ∗
𝑎𝑏𝑐

Ω𝑐 Ω̄𝑎Ω𝑏

+ℎ∗
𝑎𝑏
[(��D𝑋𝑏)Ω𝑎 − 𝐹𝑎Ω𝑏] +

1
2
ℎ∗
𝑎𝑏𝑐

Ω𝑐 Ω̄𝑎Ω𝑏
]
≡ −

√
2𝑖𝑃𝐿Ω𝑇 , (C.28)

H𝑇 = −2
[
ℎ∗
𝑎𝑏

(
− D𝜇𝑋

𝑎D𝜇𝑋𝑏 − 1
2
Ω̄𝑎𝑃𝐿��DΩ𝑏 − 1

2
Ω̄𝑏𝑃𝑅��DΩ𝑎 + 𝐹𝑎𝐹𝑏

)
+1
2
ℎ∗
𝑎𝑏𝑐

(−Ω̄𝑎Ω𝑏𝐹 𝑐 + Ω̄𝑎 (��D𝑋𝑏)Ω𝑐) +
1
2
ℎ∗
𝑎𝑏𝑐

(−Ω̄𝑎Ω𝑏𝐹 𝑐 + Ω̄𝑎 (��D𝑋𝑏)Ω𝑐)

+1
4
ℎ∗
𝑎𝑏𝑐𝑑

(Ω̄𝑎𝑃𝐿Ω𝑏) (Ω̄𝑐𝑃𝑅Ω𝑑) +
1
2
�𝐶ℎ∗ + 1

2
𝑖D𝜇 (𝑖ℎ∗𝑎D𝜇𝑋

𝑎 − 𝑖ℎ∗𝑎D𝜇𝑋
𝑎 + 𝑖ℎ∗

𝑎𝑏
Ω̄𝑎𝛾𝜇Ω

𝑏)
]

≡ −2𝐹𝑇 , (C.29)

K𝑇 = 0, (C.30)

B𝑇
𝜇 = −𝑖D𝜇C𝑇 , (C.31)

Λ𝑇 = 0, (C.32)

D𝑇 = 0, (C.33)

where we used 𝑎, 𝑏, 𝑐, 𝑑 = 0, 𝑖 (≡ 𝑧𝑖),𝑊 (≡ 𝜆𝑃𝐿𝜆). This gives the super�eld components of the

chiral projection multiplet 𝑇 :

𝑇 (𝑤̄ ′2) = (𝐶𝑇 , 𝑃𝐿Ω𝑇 , 𝐹𝑇 ) (C.34)
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where

𝐶𝑇 = ℎ∗𝑎𝐹
𝑎 − 1

2
ℎ∗
𝑎𝑏
Ω̄𝑎Ω𝑏, (C.35)

𝑃𝐿Ω𝑇 = ��D(−ℎ∗𝑎Ω𝑎 + ℎ∗𝑎Ω𝑎) − ℎ∗𝑎𝑏 [(��D𝑋
𝑏)Ω𝑎 − 𝐹𝑎Ω𝑏] − 1

2
ℎ∗
𝑎𝑏𝑐

Ω𝑐 Ω̄𝑎Ω𝑏

+ℎ∗
𝑎𝑏
[(��D𝑋𝑏)Ω𝑎 − 𝐹𝑎Ω𝑏] +

1
2
ℎ∗
𝑎𝑏𝑐

Ω𝑐 Ω̄𝑎Ω𝑏, (C.36)

𝐹𝑇 = ℎ∗
𝑎𝑏

(
− D𝜇𝑋

𝑎D𝜇𝑋𝑏 − 1
2
Ω̄𝑎𝑃𝐿��DΩ𝑏 − 1

2
Ω̄𝑏𝑃𝑅��DΩ𝑎 + 𝐹𝑎𝐹𝑏

)
+1
2
ℎ∗
𝑎𝑏𝑐

(−Ω̄𝑎Ω𝑏𝐹 𝑐 + Ω̄𝑎 (��D𝑋𝑏)Ω𝑐) +
1
2
ℎ∗
𝑎𝑏𝑐

(−Ω̄𝑎Ω𝑏𝐹 𝑐 + Ω̄𝑎 (��D𝑋𝑏)Ω𝑐)

+1
4
ℎ∗
𝑎𝑏𝑐𝑑

(Ω̄𝑎𝑃𝐿Ω𝑏) (Ω̄𝑐𝑃𝑅Ω𝑑) +
1
2
�𝐶ℎ∗ − 1

2
D𝜇 (ℎ∗𝑎D𝜇𝑋

𝑎 − ℎ∗𝑎D𝜇𝑋
𝑎 + ℎ∗

𝑎𝑏
Ω̄𝑎𝛾𝜇Ω

𝑏).

(C.37)

Morever,

𝑇 (𝑤 ′2) = {𝐶∗
𝑇 , 𝑃𝑅Ω𝑇 , 𝐹

∗
𝑇 } (C.38)

where

𝐶∗
𝑇 = ℎ𝑎𝐹

𝑎 − 1
2
ℎ𝑎𝑏 Ω̄

𝑎Ω𝑏, (C.39)

𝑃𝑅Ω𝑇 = ��D(−ℎ𝑎Ω𝑎 + ℎ𝑎Ω𝑎) − ℎ𝑎𝑏 [(��D𝑋𝑏)Ω𝑎 − 𝐹𝑎Ω𝑏] −
1
2
ℎ𝑎𝑏𝑐Ω

𝑐 Ω̄𝑎Ω𝑏

+ℎ𝑎𝑏 [(��D𝑋𝑏)Ω𝑎 − 𝐹𝑎Ω𝑏] +
1
2
ℎ𝑎𝑏𝑐Ω

𝑐 Ω̄𝑎Ω𝑏, (C.40)

𝐹 ∗𝑇 = ℎ𝑎𝑏

(
− D𝜇𝑋

𝑎D𝜇𝑋𝑏 − 1
2
Ω̄𝑎𝑃𝐿��DΩ𝑏 − 1

2
Ω̄𝑏𝑃𝑅��DΩ𝑎 + 𝐹𝑎𝐹𝑏

)
+1
2
ℎ𝑎𝑏𝑐 (−Ω̄𝑎Ω𝑏𝐹 𝑐 + Ω̄𝑎 (��D𝑋𝑏)Ω𝑐) +

1
2
ℎ𝑎𝑏𝑐 (−Ω̄𝑎Ω𝑏𝐹 𝑐 + Ω̄𝑎 (��D𝑋𝑏)Ω𝑐)

+1
4
ℎ𝑎𝑏𝑐𝑑 (Ω̄𝑎𝑃𝐿Ω𝑏) (Ω̄𝑐𝑃𝑅Ω𝑑) +

1
2
�𝐶ℎ − 1

2
D𝜇 (ℎ𝑎D𝜇𝑋

𝑎 − ℎ𝑎D𝜇𝑋
𝑎 + ℎ𝑎𝑏 Ω̄𝑏𝛾𝜇Ω𝑎).

(C.41)

We then present a superconformal composite real multipletR withWeyl/chiral weights (0, 0).
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De�ning some chiral multiplets X𝐴 ≡ {𝑋𝐴, 𝑃𝐿Ω𝐴, 𝐹𝐴} where 𝐴 = {𝑆0, 𝑍 𝑖, 𝜆𝑃𝐿𝜆,𝑇 (𝑤̄ ′2)} and their

conjugates, we represent the composite one R as

R ≡ (𝑆0𝑆0𝑒−𝐾/3)−3
(𝜆𝑃𝐿𝜆) (𝜆𝑃𝑅𝜆)
𝑇 (𝑤̄ ′2)𝑇 (𝑤 ′2)

U (C.42)

whose lowest component is

CR ≡ (𝑠0𝑠0𝑒−𝐾/3)−3
(𝜆𝑃𝐿𝜆) (𝜆𝑃𝑅𝜆)

𝐶𝑇𝐶𝑇
U ≡ 𝑓 (𝑋𝐴, 𝑋𝐴) (C.43)

where 𝐶𝑇 = −𝐷2
+Δ

−2; 𝐶𝑇 = −𝐷2
−Δ

−2, and Δ ≡ 𝑠0𝑠0𝑒
−𝐾/3, and 𝐾,U are functions of the matter

multiplets 𝑍 𝑖 ’s.

CR = 𝑓 ≡ (𝑠0𝑠0𝑒−𝐾/3)−3
(𝜆𝑃𝐿𝜆) (𝜆𝑃𝑅𝜆)

𝐶𝑇𝐶𝑇
U, (C.44)

ZR = 𝑖
√
2(−𝑓𝐴Ω𝐴 + 𝑓𝐴Ω𝐴), (C.45)

HR = −2𝑓𝐴𝐹𝐴 + 𝑓𝐴𝐵 Ω̄𝐴Ω𝐵, (C.46)

KR = −2𝑓𝐴𝐹𝐴 + 𝑓𝐴𝐵 Ω̄𝐴Ω𝐵, (C.47)

BR
𝜇 = 𝑖 𝑓𝐴D𝜇𝑋

𝐴 − 𝑖 𝑓𝐴D𝜇𝑋
𝐴 + 𝑖 𝑓𝐴𝐵 Ω̄𝐴𝛾𝜇Ω𝐵, (C.48)

𝑃𝐿ΛR = −
√
2𝑖 𝑓𝐴𝐵 [(��D𝑋𝐵)Ω𝐴 − 𝐹𝐴Ω𝐵] − 𝑖

√
2
𝑓𝐴𝐵𝐶Ω

𝐶 Ω̄𝐴Ω𝐵, (C.49)

𝑃𝑅ΛR =
√
2𝑖 𝑓𝐴𝐵 [(��D𝑋𝐵)Ω𝐴 − 𝐹𝐴Ω𝐵] + 𝑖

√
2
𝑓𝐴𝐵𝐶Ω

𝐶 Ω̄𝐴Ω𝐵, (C.50)

DR = 2𝑓𝐴𝐵
(
− D𝜇𝑋

𝐴D𝜇𝑋𝐵 − 1
2
Ω̄𝐴𝑃𝐿��DΩ𝐵 − 1

2
Ω̄𝐵𝑃𝑅��DΩ𝐴 + 𝐹𝐴𝐹𝐵

)
+𝑓𝐴𝐵𝐶 (−Ω̄𝐴Ω𝐵𝐹𝐶 + Ω̄𝐴 (��D𝑋𝐵)Ω𝐶) + 𝑓𝐴𝐵𝐶 (−Ω̄𝐴Ω𝐵𝐹𝐶 + Ω̄𝐴 (��D𝑋𝐵)Ω𝐶)

+1
2
𝑓𝐴𝐵𝐶𝐷̄ (Ω̄𝐴𝑃𝐿Ω𝐵) (Ω̄𝐶𝑃𝑅Ω𝐷̄). (C.51)
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Then, the superconformal multiplet of the new Fayet-Iliopoulos term can be written by using

R · (𝑉 )𝐷 = {C̃, Z̃, H̃ , K̃, B̃𝜇, Λ̃, D̃}, (C.52)

whose superconformal multiplet components are as follows:

C̃ = 𝐷𝑓 , (C.53)

Z̃ = 𝑓��D𝜆 + 𝐷𝑖
√
2(−𝑓𝐴Ω𝐴 + 𝑓𝐴Ω𝐴), (C.54)

H̃ = 𝐷 (−2𝑓𝐴𝐹𝐴 + 𝑓𝐴𝐵 Ω̄𝐴Ω𝐵) − 𝑖
√
2(−𝑓𝐴Ω̄𝐴 + 𝑓𝐴Ω̄𝐴)𝑃𝐿��D𝜆, (C.55)

K̃ = 𝐷 (−2𝑓𝐴𝐹𝐴 + 𝑓𝐴𝐵 Ω̄𝐴Ω𝐵) − 𝑖
√
2(−𝑓𝐴Ω̄𝐴 + 𝑓𝐴Ω̄𝐴)𝑃𝑅��D𝜆, (C.56)

B̃ = (D𝜈𝐹𝜇𝜈 ) 𝑓 + 𝐷 (𝑖 𝑓𝐴D𝜇𝑋
𝐴 − 𝑖 𝑓𝐴D𝜇𝑋

𝐴 + 𝑖 𝑓𝐴𝐵 Ω̄𝐴𝛾𝜇Ω𝐵), (C.57)

Λ̃ = −𝑓��D��D𝜆 + 𝐷 (𝑃𝐿ΛR + 𝑃𝑅ΛR) +
1
2

(
𝛾∗(−𝑓𝐴��D𝑋𝐴 + 𝑓𝐴��D𝑋𝐴 − 𝑓𝐴𝐵 Ω̄𝐴��𝛾Ω

𝐵)

+𝑃𝐿 (−2𝑓𝐴𝐹𝐴 + 𝑓𝐴𝐵 Ω̄𝐴Ω𝐵) + 𝑃𝑅 (−2𝑓𝐴𝐹𝐴 + 𝑓𝐴𝐵 Ω̄𝐴Ω𝐵) −��D 𝑓

)
��D𝜆

+1
2

(
𝑖𝛾∗𝛾

𝜇D𝜈𝐹𝜇𝜈 −��D𝐷
)
𝑖
√
2(−𝑓𝐴Ω𝐴 + 𝑓𝐴Ω𝐴), (C.58)

D̃ = −𝑓 �𝐶𝐷 + 𝐷
{
2𝑓𝐴𝐵 (−D𝜇𝑋

𝐴D𝜇𝑋𝐵 − 1
2
Ω̄𝐴𝑃𝐿��DΩ𝐵 − 1

2��
Ω𝐵𝑃𝑅��DΩ𝐴 + 𝐹𝐴𝐹𝐵)

+𝑓𝐴𝐵𝐶 (−Ω̄𝐴Ω𝐵𝐹𝐶 + Ω̄𝐴 (��D𝑋𝐵)Ω𝐶) + 𝑓𝐴𝐵𝐶 (−Ω̄𝐴Ω𝐵𝐹𝐶 + Ω̄𝐴 (��D𝑋𝐵)Ω𝐶)

+1
2
𝑓𝐴𝐵𝐶𝐷̄ (Ω̄𝐴𝑃𝐿Ω𝐵) (Ω̄𝐶𝑃𝑅Ω𝐷̄)

}
−(D𝜈𝐹

𝜇𝜈 ) (𝑖 𝑓𝐴D𝜇𝑋
𝐴 − 𝑖 𝑓𝐴D𝜇𝑋

𝐴 + 𝑖 𝑓𝐴𝐵 Ω̄𝐴𝛾𝜇Ω𝐵)

+
(√

2𝑖 𝑓𝐴𝐵 [(��D𝑋𝐵)Ω𝐴 − 𝐹𝐴Ω𝐵] + 𝑖
√
2
𝑓𝐴𝐵𝐶Ω

𝐶 Ω̄𝐴Ω𝐵

)
��D𝜆

−
(√

2𝑖 𝑓𝐴𝐵 [(��D𝑋𝐵)Ω𝐴 − 𝐹𝐴Ω𝐵] + 𝑖
√
2
𝑓𝐴𝐵𝐶Ω

𝐶 Ω̄𝐴Ω𝐵

)
��D𝜆

−(D𝜇 𝑓 ) (D𝜇𝐷) − 1
2�
�D[𝑖

√
2(−𝑓𝐴Ω𝐴 + 𝑓𝐴Ω𝐴)] (��D𝜆) +

1
2
𝑖
√
2(−𝑓𝐴Ω𝐴 + 𝑓𝐴Ω𝐴) (��D��D𝜆),(C.59)

where the indices 𝐴, 𝐵,𝐶, 𝐷 run over 0, 𝑖,𝑊 ,𝑇 . The component action of the new FI term is then
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given by the D-term density formula

L𝑁𝐸𝑊 ≡ −[R · (𝑉 )𝐷]𝐷 = −1
4

∫
𝑑4𝑥𝑒

[
D̃ − 1

2
𝜓 · 𝛾𝑖𝛾∗Λ̃ − 1

3
C̃𝑅(𝜔)

+1
6

(
C̃𝜓𝜇𝛾 𝜇𝜌𝜎 − 𝑖 ¯̃Z𝛾𝜌𝜎𝛾∗

)
𝑅′𝜌𝜎 (𝑄)

+1
4
𝜀𝑎𝑏𝑐𝑑𝜓𝑎𝛾𝑏𝜓𝑐

(
B̃𝑑 −

1
2
𝜓𝑑Z̃

)]
+ h.c.. (C.60)

Using 𝑓 = Δ−3 𝑊𝑊̄
𝐶𝑇𝐶𝑇

U,𝑊 ≡ (𝜆𝑃𝐿𝜆), 𝑊̄ ≡ (𝜆𝑃𝑅𝜆), Ω𝑊 ∼
√
2𝑖𝐷𝑃𝐿𝜆, Ω̄𝑇 ∼ 2𝐷2Δ−2( Ω̄0

𝑠0
− 𝐾𝐼 Ω̄

𝐼

3 ),

𝐶𝑇 ∼ −𝐷2Δ−2, 𝐹𝑊 ∼ −𝐷2, 𝐹𝑇 ∼ 2𝐷2Δ−2( 𝐹 0̄
𝑠0
− 1

3𝐾𝐽𝐹
𝐽 ) where Δ ≡ 𝑠0𝑠0𝑒−𝐾/3,

L (2f)
newFI𝑒

−1

= −𝐷𝑓0𝑊̄ 𝐹 0𝐹𝑊̄ − 𝐷𝑓𝐼𝑊̄ 𝐹 𝐼𝐹𝑊̄ − 𝐷𝑓𝑇𝑊̄ 𝐹𝑇 𝐹𝑊̄

+1
2
𝑓0𝑊𝑊̄ Ω̄0Ω𝑊 𝐹𝑊̄ + 1

2
𝑓𝐼𝑊𝑊̄ Ω̄𝐼Ω𝑊 𝐹𝑊̄ + 1

2
𝑓𝑇𝑊𝑊̄ Ω̄𝑇Ω𝑊 𝐹𝑊̄ − 𝐷

√
2

4
𝜓𝜇𝛾

𝜇 𝑓𝑊̄𝑊 𝐹
𝑊̄Ω𝑊 + 𝑐.𝑐 ..,

= −3Δ (𝜆𝑃𝐿𝜆)
𝐷

U 𝐹 0

𝑠0
+ Δ

(𝜆𝑃𝐿𝜆)
𝐷

(𝐾𝐼U +U𝐼 )𝐹 𝐼 + 2Δ
(𝜆𝑃𝐿𝜆)
𝐷

U( 𝐹
0

𝑠0
− 1
3
𝐾𝐼𝐹

𝐼 )

+ 3𝑖
√
2

Δ

𝐷𝑠0
U(Ω̄0𝑃𝐿𝜆) −

𝑖
√
2
Δ

𝐷
(𝐾𝐼U +U𝐼 ) (Ω̄𝐼𝑃𝐿𝜆) +

√
2𝑖

Δ

𝐷𝑠0
U(Ω̄0𝑃𝐿𝜆) −

√
2𝑖
3

Δ

𝐷
U𝐾𝐼 (Ω̄𝐼𝑃𝐿𝜆)

+ 𝑖
2
ΔU(𝜓𝜇𝛾 𝜇𝑃𝐿𝜆) + 𝑐.𝑐 .,

=
Δ

𝐷

(
− 𝐹 0U

𝑠0
+ U𝐼𝐹

𝐼 + 1
3
U𝐾𝐼𝐹

𝐼

)
(𝜆𝑃𝐿𝜆) +

5
√
2
𝑖
Δ

𝐷𝑠0
U(Ω̄0𝑃𝐿𝜆)

−𝑖 Δ
𝐷

(
5

3
√
2
𝐾𝐼U + 1

√
2
U𝐼

)
(Ω̄𝐼𝑃𝐿𝜆) +

𝑖

2
ΔU(𝜓𝜇𝛾 𝜇𝑃𝐿𝜆) + ℎ.𝑐. (C.61)

At the superconformal gauge (i.e. 𝑃𝐿Ω0 = 1
3𝑒
𝐾/6𝐾𝐼𝑃𝐿Ω𝐼 , 𝑠0 = 𝑠0 = 𝑒𝐾/6, Δ = 1), the lagrangian

is rewritten by

L (2f)
newFI𝑒

−1

=
1
𝐷

(
− 𝐹 0U𝑒−𝐾/6 + U𝐼𝐹

𝐼 + 1
3
U𝐾𝐼𝐹

𝐼

)
(𝜆𝑃𝐿𝜆) −

𝑖

𝐷

U𝐼√
2
(Ω̄𝐼𝑃𝐿𝜆) +

𝑖

2
U(𝜓𝜇𝛾 𝜇𝑃𝐿𝜆) + ℎ.𝑐.

(C.62)
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The D-term lagrangian is found to be

L𝐷𝑒
−1 ⊃ 1

2
𝐷2 −U𝐷 + 1

𝐷

(
− 𝐹 0U𝑒−𝐾/6 + U𝐼𝐹

𝐼 + 1
3
U𝐾𝐼𝐹

𝐼

)
(𝜆𝑃𝐿𝜆) −

𝑖

𝐷

U𝐼√
2
(Ω̄𝐼𝑃𝐿𝜆)

+ 1
𝐷

(
− 𝐹 0̄U𝑒−𝐾/6 + U𝐽𝐹

𝐽 + 1
3
U𝐾𝐽𝐹

𝐽

)
(𝜆𝑃𝑅𝜆) +

𝑖

𝐷

U𝐽√
2
(Ω̄𝐽𝑃𝑅𝜆) (C.63)

The solution for 𝐷 can be obtained by

𝐷 = U + 1
U2

[(
− 𝐹 0U𝑒−𝐾/6 + U𝐼𝐹

𝐼 + 1
3
U𝐾𝐼𝐹

𝐼

)
(𝜆𝑃𝐿𝜆) − 𝑖

U𝐼√
2
(Ω̄𝐼𝑃𝐿𝜆) + ℎ.𝑐.

]
+ higher order terms,

(C.64)

Then, we �nd

L (2𝑓 )
newFI𝑒

−1 =
1
U

[(
− 𝐹 0U𝑒−𝐾/6 + U𝐼𝐹

𝐼 + 1
3
U𝐾𝐼𝐹

𝐼

)
(𝜆𝑃𝐿𝜆) − 𝑖

U𝐼√
2
(Ω̄𝐼𝑃𝐿𝜆) + ℎ.𝑐.

]
(C.65)

The total lagrangian containing the auxiliary �elds 𝐹 0 and 𝐹 𝐼 is given by

L𝑒−1 = −3𝑒−𝐾/3𝐹 0𝐹 0̄ + 3𝑒𝐾/3𝑊𝐹 0 + 3𝑒𝐾/3𝑊̄ 𝐹 0̄ + 1
9
𝐺𝐼 𝐽𝐹

𝐼𝐹 𝐽

+1
3
𝑒𝐾/2∇𝐼𝑊𝐹 𝐼 + 1

3
𝑒𝐾/2∇𝐽𝑊̄ 𝐹 𝐽

+ 1
U

[(
− 𝐹 0U𝑒−𝐾/6 + U𝐼𝐹

𝐼 + 1
3
U𝐾𝐼𝐹

𝐼

)
(𝜆𝑃𝐿𝜆) − 𝑖

U𝐼√
2
(Ω̄𝐼𝑃𝐿𝜆)

]
+ 1
U

[(
− 𝐹 0̄U𝑒−𝐾/6 + U𝐽𝐹

𝐽 + 1
3
U𝐾𝐽𝐹

𝐽

)
(𝜆𝑃𝑅𝜆) + 𝑖

U𝐽√
2
(Ω̄𝐽𝑃𝑅𝜆)

]
, (C.66)

where ∇𝐼𝑊 ≡𝑊𝐼 + 𝐾𝐼𝑊 . By solving the equations of motion for the auxiliary �elds, we �nd

𝐹 0 = 𝑒2𝐾/3𝑊̄ − 1
3
𝑒𝐾/6(𝜆𝑃𝑅𝜆), (C.67)

𝐹 𝐽 = −3𝑒𝐾/2𝐺 𝐼 𝐽∇𝐼𝑊 −𝐺 𝐼 𝐽
(
9
U𝐼

U + 3𝐾𝐼
)
(𝜆𝑃𝐿𝜆) (C.68)

318



and also read the mass𝑚𝐼𝜆

𝑚𝐹𝐼
𝐼𝜆

= − 𝑖
√
2
U𝐼

U , (C.69)

𝑚𝐹𝐼
𝜆𝜆

= −𝑒𝐾/2
(
𝑊̄ + 4𝐺 𝐼 𝐽

(
U𝐼

U + 𝐾𝐼
3

)
(𝑊̄𝐽 + 𝐾𝐽𝑊̄ )

)
(C.70)

The gravitino mixing term is given by

Lmix𝑒
−1 =

1
√
2
∇𝐼𝑊𝑒𝐾/2𝜓𝜇𝛾

𝜇𝑃𝐿Ω
𝐼 + 𝑖

2
P𝐴𝜓𝜇𝛾 𝜇𝑃𝐿𝜆𝐴 + 𝑖

2
U𝜓𝜇𝛾 𝜇𝑃𝐿𝜆 + ℎ.𝑐 = −𝜓𝜇𝛾 𝜇𝑃𝐿𝑣 + ℎ.𝑐.,(C.71)

which gives the goldstino

𝑃𝐿𝑣 = − 1
√
2
∇𝐼𝑊𝑒𝐾/2𝑃𝐿Ω

𝐼 − 𝑖

2
P𝐴𝑃𝐿𝜆𝐴 − 𝑖

2
U𝑃𝐿𝜆, (C.72)

where 𝜆𝐴 is the gaugino corresponding to the gauge multiplet 𝑉𝐴, and 𝜆 is the superpartner of

the new FI term vector multiplet 𝑉 .

The fermionic masses from standard N = 1 supergravity are found by

𝑚3/2 = 𝑒𝐾/2𝑊, (C.73)

𝑚
(0)
𝐼 𝐽

= 𝑒𝐾/2(𝜕𝐼 + 𝐾𝐼 ) (𝑊𝐽 + 𝐾𝐽𝑊 ) − 𝑒𝐾/2𝐺𝐾𝐿𝜕𝐼𝐺 𝐽𝐿 (𝑊𝐾 + 𝐾𝐾𝑊 ), (C.74)

𝑚
(0)
𝐼𝐴

= 𝑖
√
2[𝜕𝐼P𝐴 − 1

4
𝑓𝐴𝐵𝐼 (Re𝑓 )−1 𝐵𝐶P𝐶], (C.75)

𝑚
(0)
𝐴𝐵

= −1
2
𝑒𝐾/2𝑓𝐴𝐵𝐼𝐺

𝐼 𝐽 (𝑊̄𝐽 + 𝐾𝐽𝑊̄ ), (C.76)

𝑚
(0)
𝐼𝜆

= 0, (C.77)

𝑚
(0)
𝜆𝜆

= 0. (C.78)
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The fermionic masses from super-Higgs e�ect are given by

𝑚
(𝜈)
𝐼 𝐽

= − 2
3𝑊

𝑒𝐾/2(𝑊𝐼 + 𝐾𝐼𝑊 ) (𝑊𝐽 + 𝐾𝐽𝑊 ), (C.79)

𝑚
(𝜈)
𝐼𝐴

= −𝑖 2
3
√
2𝑊

(𝑊𝐼 + 𝐾𝐼𝑊 )P𝐴, (C.80)

𝑚
(𝜈)
𝐴𝐵

=
1

3𝑒𝐾/2𝑊
P𝐴P𝐵, (C.81)

𝑚
(𝜈)
𝐼𝜆

= −𝑖 2
3
√
2𝑊

(𝑊𝐼 + 𝐾𝐼𝑊 )U, (C.82)

𝑚
(𝜈)
𝜆𝜆

=
U2

3𝑒𝐾/2𝑊
(C.83)

The fermionic masses from the new FI term are found to be

𝑚𝐹𝐼
𝐼 𝐽 = 0, (C.84)

𝑚𝐹𝐼
𝐼𝐴 = 0, (C.85)

𝑚𝐹𝐼
𝐴𝐵 = 0, (C.86)

𝑚𝐹𝐼
𝐼𝜆

= − 𝑖
√
2
U𝐼

U , (C.87)

𝑚𝐹𝐼
𝜆𝜆

= −𝑒𝐾/2
(
𝑊̄ + 4𝐺 𝐼 𝐽

(
U𝐼

U + 𝐾𝐼
3

)
(𝑊̄𝐽 + 𝐾𝐽𝑊̄ )

)
. (C.88)

Thus, the �nal fermionic masses are made by combinations of the three contributions above as
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follows:

𝑚3/2 = 𝑊𝑒𝐾/2,

𝑚
(𝑔)
𝐼 𝐽

= 𝑚
(0)
𝐼 𝐽

+𝑚𝐹𝐼
𝐼 𝐽 +𝑚

(𝜈)
𝐼 𝐽

= 𝑒𝐾/2(𝑊𝐼 𝐽 + 𝐾𝐼 𝐽𝑊 + 𝐾𝐽𝑊𝐼 + 𝐾𝐼𝑊𝐽 + 𝐾𝐼𝐾𝐽𝑊 )

−𝑒𝐾/2𝐺𝐾𝐿𝜕𝐼𝐺 𝐽𝐿 (𝑊𝐾 + 𝐾𝐾𝑊 ) − 2
3
(𝑊𝐼 + 𝐾𝐼𝑊 ) (𝑊𝐽 + 𝐾𝐽𝑊 ),

𝑚
(𝑔)
𝐼𝐴

= 𝑚
(0)
𝐼𝐴

+𝑚𝐹𝐼
𝐼𝐴 +𝑚(𝜈)

𝐼𝐴

= 𝑖
√
2[𝜕𝐼P𝐴 − 1

4
𝑓𝐴𝐵𝐼 (Re𝑓 )−1 𝐵𝐶P𝐶] − 𝑖

2
3
√
2𝑊

(𝑊𝐼 + 𝐾𝐼𝑊 )P𝐴

𝑚
(𝑔)
𝐴𝐵

= 𝑚
(0)
𝐼𝐴

+𝑚𝐹𝐼
𝐼𝐴 +𝑚(𝜈)

𝐼𝐴

= −1
2
𝑒𝐾/2𝑓𝐴𝐵𝐼𝐺

𝐼 𝐽 (𝑊̄𝐽 + 𝐾𝐽𝑊̄ ) + 1
3𝑒𝐾/2𝑊

P𝐴P𝐵

𝑚
(𝑔)
𝐼𝜆

= 𝑚
(0)
𝐼𝜆

+𝑚𝐹𝐼
𝐼𝜆
+𝑚(𝜈)

𝐼𝜆

= − 𝑖
√
2
U𝐼

U − 𝑖
√
2

3𝑊
(𝑊𝐼 + 𝐾𝐼𝑊 )U =𝑚

(𝑔)
𝜆𝐼
,

𝑚
(𝑔)
𝜆𝜆

= 𝑚
(0)
𝜆𝜆

+𝑚𝐹𝐼
𝜆𝜆

+𝑚(𝜈)
𝜆𝜆

= −𝑒𝐾/2
(
𝑊̄ + 4𝐺 𝐼 𝐽

(
U𝐼

U + 𝐾𝐼
3

)
(𝑊̄𝐽 + 𝐾𝐽𝑊̄ )

)
+ U2

3𝑒𝐾/2𝑊
. (C.89)
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D | Scanning Nonrenormalizable Terms

of New FI Terms

The selection rules we de�ned are

For (𝑑, 𝑓 , 𝑎), C̃ : (0, 0, 0) =⇒ Γ(C̃) = 0 𝛿𝑎𝑑𝑑 = 2, 4,

Z̃ : (0, 1, 0) =⇒ Γ(Z̃) = 1 𝛿𝑎𝑑𝑑 = 5/2, 9/2,

B̃𝑎 : (1, 0, 0), (0, 2, 0) =⇒ Γ(B̃𝑎) = 1, 2 𝛿𝑎𝑑𝑑 = 3,

Λ̃ : (1, 1, 0), (1, 1, 1), (0, 3, 0) =⇒ Γ(Λ̃) = 2, 3 𝛿𝑎𝑑𝑑 = 3/2,

D̃ : (0, 0, 0), (2, 0, 0), (0, 2, 0), (0, 0, 2),

(0, 2, 1), (1, 2, 0), (0, 4, 0) =⇒ Γ(D̃) = 0, 2, 3, 4 𝛿𝑎𝑑𝑑 = 0.

D.1 Case (0,0,0) coupled to C̃ with 𝛿𝑎𝑑𝑑 = 2, 4

• Case of 𝑏 = 0 (with no derivatives):

(𝑁 − 𝑢2)𝑏=0 = 2, (D.1)

(𝛿𝑡𝑜𝑡 − 4)𝑏=0 = 2 + 64𝜆 + 𝛿𝑎𝑑𝑑 − 4 (D.2)
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which gives

𝛼 =
2

4 + 𝛿𝑎𝑑𝑑
=
1
2
,
1
3
,
1
4
. (D.3)

D.2 Case (0,1,0) coupled to Z̃ with 𝛿𝑎𝑑𝑑 = 5/2, 9/2

• Case of 𝑏 = 0 (with derivatives):

(𝑁 − 𝑢2)𝑏=0 = 2, (D.4)

(𝛿𝑡𝑜𝑡 − 4)𝑏=0 = 64𝜆 +
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 + 𝛿𝑎𝑑𝑑 − 4 (D.5)

which gives

𝛼 =
2

7/2 + 𝛿𝑎𝑑𝑑
=
1
3
,
1
4
. (D.6)

• Case of 𝑏 = 1:

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 1

= 2, (D.7)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 1

= 32𝜆 + 𝛿𝑎𝑑𝑑 −
1
2
, (D.8)

which gives

𝛼 =
2

5/2 + 𝛿𝑎𝑑𝑑
=
2
5
,
2
7

(D.9)

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 2

= 1, (D.10)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 2

= 32𝜆 + 𝛿𝑎𝑑𝑑 −
5
2
, (D.11)
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which gives

𝛼 =
1

1/2 + 𝛿𝑎𝑑𝑑
=
1
3
,
1
5
. (D.12)

D.3 Case (1,0,0) coupled to B̃ with 𝛿𝑎𝑑𝑑 = 3

• Case of 𝑏 = 0 (with derivatives):

(𝑁 − 𝑢2)𝑏=0 = 2, (D.13)

(𝛿𝑡𝑜𝑡 − 4)𝑏=0 = 64𝜆 + 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2 + 𝛿𝑎𝑑𝑑 − 4 (D.14)

which gives

𝛼 =
2

5 + {1, 2, 4} =
1
3
,
2
7
,
2
9
. (D.15)

D.4 Case (0,2,0) coupled to B̃ with 𝛿𝑎𝑑𝑑 = 3

• Case of 𝑏 = 0 (with derivatives):

(𝑁 − 𝑢2)𝑏=0 = 2, (D.16)

(𝛿𝑡𝑜𝑡 − 4)𝑏=0 = 64𝜆 +
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 − 1 (D.17)

which gives 𝛼 = 1
4 .
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• Case of 𝑏 = 1:

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 1

= 2 + 𝑓 𝜆𝑇 2 + 2𝑓 𝜆𝑇 3, (D.18)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 1

= 32𝜆 +
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 +

5
2
, (D.19)

which gives

𝛼 =
2

11/2 + 3/2 =
2
7
,

3
11/2 + 5/2 =

3
8
,

4
11/2 + 11/2 =

4
11
. (D.20)

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 2

= 1 + 𝑓 𝜆𝑇 2 + 2𝑓 𝜆𝑇 3, (D.21)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 2

= 32𝜆 +
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 +

1
2
, (D.22)

which gives

𝛼 =
1

7/2 + 3/2 =
1
5
,

2
7/2 + 5/2 =

1
3
,

3
7/2 + 11/2 =

1
3
. (D.23)

• Case of 𝑏 = 2:

(𝑁 − 𝑢2)𝑏=2=𝑓 𝜆
𝑊 1

= 2, (D.24)

(𝛿𝑡𝑜𝑡 − 4)𝑏=2=𝑓 𝜆
𝑊 1

= 6, (D.25)

which gives 𝛼 = 1/3.

(𝑁 − 𝑢2)𝑏=2=𝑓 𝜆
𝑊 2

= 0, (D.26)

(𝛿𝑡𝑜𝑡 − 4)𝑏=2=𝑓 𝜆
𝑊 2

= 2, (D.27)
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which gives 𝛼 = 0.

(𝑁 − 𝑢2)𝑏=2,𝑓 𝜆
𝑊 1=𝑓

𝜆
𝑊 2=1

= 1, (D.28)

(𝛿𝑡𝑜𝑡 − 4)𝑏=2,𝑓 𝜆
𝑊 1=𝑓

𝜆
𝑊 2=1

= 4. (D.29)

which gives 𝛼 = 1/4.

D.5 Case (1,1,0) coupled to Λ̃ with 𝛿𝑎𝑑𝑑 = 3/2

• Case of 𝑏 = 0 (with derivatives):

(𝑁 − 𝑢2)𝑏=0 = 2, (D.30)

(𝛿𝑡𝑜𝑡 − 4)𝑏=0 = 64𝜆 + 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 +

3
2
𝑓𝑠1 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2 +
3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 − 5/2(D.31)

The most largest one is given by 𝛼 = 1/3 when 𝑑𝑠2 = 𝑓𝑠1 = 1.

• Case of 𝑏 = 1:

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 1

= 2 + 𝑑𝜆𝑇 3 + 2𝑑𝜆𝑇 4, (D.32)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 1

= 32𝜆 + 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2 + 5𝑑𝜆𝑇 3 + 7𝑑𝜆𝑇 4 + 1, (D.33)

which gives 𝛼 = 2/5, 1/3, 4/11.

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 2

= 1 + 𝑑𝜆𝑇 3 + 2𝑑𝜆𝑇 4, (D.34)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 2

= 32𝜆 + 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2 + 5𝑑𝜆𝑇 3 + 7𝑑𝜆𝑇 4 − 1, (D.35)

which gives 𝛼 = 1/3, 2/7.
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D.6 Case (1,1,1) coupled to Λ̃ with 𝛿𝑎𝑑𝑑 = 3/2

• Case of 𝑏 = 0 (with derivatives):

(𝑁 − 𝑢2)𝑏=0 = 2 − 𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1, (D.36)

(𝛿𝑡𝑜𝑡 − 4)𝑏=0 = 64𝜆 + 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 +

3
2
𝑓𝑠1 + 2𝑑𝑧1

+4𝑑𝜓
𝑧2 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 + 3𝑎𝑇 2 + 3/2 − 4 (D.37)

which gives 𝛼 = 1/6, 2/9.

• Case of 𝑏 = 1:

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 1

= 2 + 𝑑𝜆𝑇 3 + 2𝑑𝜆𝑇 4 − 𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1, (D.38)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 1

= 32𝜆 + 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2

+5𝑑𝜆𝑇 3 + 7𝑑𝜆𝑇 4 + 3𝑎𝑇 2 + 1, (D.39)

which gives 𝛼 = 1/4, 1/5, 2/7, 2/9, 3/11.

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 2

= 1 + 𝑑𝜆𝑇 3 + 2𝑑𝜆𝑇 4 − 𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1, (D.40)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 2

= 32𝜆 + 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2

+5𝑑𝜆𝑇 3 + 7𝑑𝜆𝑇 4 + 3𝑎𝑇 2 − 1, (D.41)

which gives 𝛼 = 1/7, 1/6, 1/5, 1/4, 2/9.
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D.7 Case (0,3,0) coupled to Λ̃ with 𝛿𝑎𝑑𝑑 = 3/2

• Case of 𝑏 = 0 (with derivatives):

(𝑁 − 𝑢2)𝑏=0 = 2, (D.42)

(𝛿𝑡𝑜𝑡 − 4)𝑏=0 = 64𝜆 +
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 + 3/2 − 4 (D.43)

which gives 𝛼 = 1/4.

• Case of 𝑏 = 1:

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 1

= 2 + 𝑓 𝜆𝑇 2 + 2𝑓 𝜆𝑇 3, (D.44)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 1

= 32𝜆 +
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 + 3/2 − 1

2
, (D.45)

which gives 𝛼 = 2/7, 3/8, 4/9, 5/12, 6/15.

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 2

= 1 + 𝑓 𝜆𝑇 2 + 2𝑓 𝜆𝑇 3, (D.46)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 2

= 32𝜆 +
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 + 3/2 − 5

2
, (D.47)

which gives 𝛼 = 1/5, 1/3, 3/7, 2/5, 5/13.

• Case of 𝑏 = 2:

(𝑁 − 𝑢2)𝑏=2=𝑓 𝜆
𝑊 1

= 2 + 𝑓 𝜆𝑇 2 + 2𝑓 𝜆𝑇 3, (D.48)

(𝛿𝑡𝑜𝑡 − 4)𝑏=2=𝑓 𝜆
𝑊 1

=
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 + 3/2 + 3, (D.49)
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which gives 𝛼 = 1/3, 3/7, 2/5.

(𝑁 − 𝑢2)𝑏=2=𝑓 𝜆
𝑊 2

= 𝑓 𝜆𝑇 2 + 2𝑓 𝜆𝑇 3, (D.50)

(𝛿𝑡𝑜𝑡 − 4)𝑏=2=𝑓 𝜆
𝑊 2

=
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 + 3/2 − 1, (D.51)

which gives 𝛼 = 0, 1/3.

(𝑁 − 𝑢2)𝑏=2,𝑓 𝜆
𝑊 1=𝑓

𝜆
𝑊 2=1

= 1 + 𝑓 𝜆𝑇 2 + 2𝑓 𝜆𝑇 3, (D.52)

(𝛿𝑡𝑜𝑡 − 4)𝑏=2,𝑓 𝜆
𝑊 1=𝑓

𝜆
𝑊 2=1

=
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 + 3/2 + 1. (D.53)

which gives 𝛼 = 1/4, 2/5, 3/8.

D.8 Case (0,0,0) coupled to D̃ with 𝛿𝑎𝑑𝑑 = 0

• Case of 𝑏 = 0 (with no derivatives):

(𝑁 − 𝑢2)𝑏=0 = 2, (D.54)

(𝛿𝑡𝑜𝑡 − 4)𝑏=0 = 2 + 64𝜆 − 4 (D.55)

which gives 𝛼 = 1/2.

D.9 Case (2,0,0) coupled to D̃ with 𝛿𝑎𝑑𝑑 = 0

• Case of 𝑏 = 0 (with derivatives):

(𝑁 − 𝑢2)𝑏=0 = 2, (D.56)

(𝛿𝑡𝑜𝑡 − 4)𝑏=0 = 64𝜆 + 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2 − 4 (D.57)
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The largest one is given by 𝛼 = 1/2.

D.10 Case (0,2,0) coupled to D̃ with 𝛿𝑎𝑑𝑑 = 0

• Case of 𝑏 = 0 (with derivatives):

(𝑁 − 𝑢2)𝑏=0 = 2, (D.58)

(𝛿𝑡𝑜𝑡 − 4)𝑏=0 = 64𝜆 +
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 − 4 (D.59)

which gives 𝛼 = 2/5.

• Case of 𝑏 = 1:

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 1

= 2 + 𝑓 𝜆𝑇 2 + 2𝑓 𝜆𝑇 3, (D.60)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 1

= 32𝜆 +
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 −

1
2
, (D.61)

which gives 𝛼 = 4/11, 3/5, 1/2. In particular, 𝛼 = 3/5 is obtained when 𝑓 𝜆
𝑇 2 = 1.

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 2

= 1 + 𝑓 𝜆𝑇 2 + 2𝑓 𝜆𝑇 3, (D.62)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 2

= 32𝜆 +
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 −

5
2
, (D.63)

which gives 𝛼 = 1/2, 2/3. In particular, 𝛼 = 2/3 is obtained when 𝑓 𝜆
𝑇 2 = 1, which is iden-

ti�ed as the largest power of 𝐻 . Notice that this arises via the kinetic mixing term of the

fermions of𝑊 and 𝑇 multiplets in the D̃ term action of the new FI term, i.e. L𝑛𝑒𝑤𝐹𝐼𝑒
−1 ⊃

𝐷
4 𝑓𝑊𝑇 Ω̄

𝑊
��DΩ𝑇 ∼ 𝐷−2O (7)

4𝜆 .

• Case of 𝑏 = 2: This case corresponds to the fermionic kinetic term in the D̃ of the super-

gravity action. Thus, all the terms from this case vanish on-shell (i.e. D𝑎𝐹
𝑎𝑏 = 0,��D𝜆 = 0
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and using Bianchi identities D[𝑎𝐹𝑏]𝑐 = 0) because��DΩ𝑊 = ��D
(√

2𝑃𝐿 (−1
2𝛾 · 𝐹 + 𝑖𝐷)𝜆

)
= 0

on-shell and��D𝐷 ∼ U (1)𝐷 ∼ 0 along the potential minima.

D.11 Case (0,0,2) coupled to D̃ with 𝛿𝑎𝑑𝑑 = 0

• Case of 𝑏 = 0 (with derivatives):

(𝑁 − 𝑢2)𝑏=0 = 2 − 𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1, (D.64)

(𝛿𝑡𝑜𝑡 − 4)𝑏=0 = 64𝜆 + 3𝑎𝑇 2 − 4. (D.65)

which gives 𝛼 = 0, 1/5, 1/4.

D.12 Case (0,2,1) coupled to D̃ with 𝛿𝑎𝑑𝑑 = 0

• Case of 𝑏 = 0 (with derivatives):

(𝑁 − 𝑢2)𝑏=0 = 2 − 𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1, (D.66)

(𝛿𝑡𝑜𝑡 − 4)𝑏=0 = 64𝜆 +
3
2
𝑓𝑠1 + 2𝑑𝑧1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 + 3𝑎𝑇 2 − 4 (D.67)

which gives 𝛼 = 1/5, 1/4.

• Case of 𝑏 = 1:

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 1

= 2 + 𝑓 𝜆𝑇 2 + 2𝑓 𝜆𝑇 3 − 𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1, (D.68)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 1

= 32𝜆 +
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 + 3𝑎𝑇 2 −

1
2
, (D.69)
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which gives 𝛼 = 1/4, 2/7, 2/5, 3/8, 4/11.

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 2

= 1 + 𝑓 𝜆𝑇 2 + 2𝑓 𝜆𝑇 3 − 𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1, (D.70)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 2

= 32𝜆 +
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 + 3𝑎𝑇 2 −

5
2
, (D.71)

which gives 𝛼 = 0, 1/5, 1/3.

• Case of 𝑏 = 2:

(𝑁 − 𝑢2)𝑏=2=𝑓 𝜆
𝑊 1

= 2 − 𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1, (D.72)

(𝛿𝑡𝑜𝑡 − 4)𝑏=2=𝑓 𝜆
𝑊 1

= 3𝑎𝑇 2 + 3, (D.73)

which gives 𝛼 = 1/3.

(𝑁 − 𝑢2)𝑏=2=𝑓 𝜆
𝑊 2

= −𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1, (D.74)

(𝛿𝑡𝑜𝑡 − 4)𝑏=2=𝑓 𝜆
𝑊 2

= 3𝑎𝑇 2 − 1, (D.75)

which gives 𝛼 = 0 and renormalizable terms.

(𝑁 − 𝑢2)𝑏=2,𝑓 𝜆
𝑊 1=𝑓

𝜆
𝑊 2=1

= 1 − 𝑎𝑠1 − 𝑎𝑧1 − 𝑎𝑇 1, (D.76)

(𝛿𝑡𝑜𝑡 − 4)𝑏=2,𝑓 𝜆
𝑊 1=𝑓

𝜆
𝑊 2=1

= 3𝑎𝑇 2 + 1. (D.77)

which gives 𝛼 = 0, 1/4.
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D.13 Case (1,2,0) coupled to D̃ with 𝛿𝑎𝑑𝑑 = 0

• Case of 𝑏 = 0 (with derivatives):

(𝑁 − 𝑢2)𝑏=0 = 2, (D.78)

(𝛿𝑡𝑜𝑡 − 4)𝑏=0 = 64𝜆 + 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 +

3
2
𝑓𝑠1 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2 +
3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 − 4 (D.79)

which gives 𝛼 = 1/3 as the largest one.

• Case of 𝑏 = 1:

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 1

= 2 + 𝑑𝜆𝑇 3 + 2𝑑𝜆𝑇 4 + 𝑓
𝜆
𝑇 2 + 2𝑓 𝜆𝑇 3, (D.80)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 1

= 32𝜆 + 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 +

3
2
𝑓𝑠1 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2 +
3
2
𝑓𝑧1

+5𝑑𝜆𝑇 3 + 7𝑑𝜆𝑇 4 +
3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 −

1
2
, (D.81)

which gives 𝛼 = 2/5, 1/3, 4/11, 1/2, 4/9.

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 2

= 1 + 𝑑𝜆𝑇 3 + 2𝑑𝜆𝑇 4 + 𝑓
𝜆
𝑇 2 + 2𝑓 𝜆𝑇 3, (D.82)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 2

= 32𝜆 + 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 +

3
2
𝑓𝑠1 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2 +
3
2
𝑓𝑧1

+5𝑑𝜆𝑇 3 + 7𝑑𝜆𝑇 4 +
3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 −

5
2
, (D.83)

which gives 𝛼 = 1/3, 2/7, 1/2, 3/7.

• Case of 𝑏 = 2:

(𝑁 − 𝑢2)𝑏=2=𝑓 𝜆
𝑊 1

= 2 + 𝑑𝜆𝑇 3 + 2𝑑𝜆𝑇 4, (D.84)

(𝛿𝑡𝑜𝑡 − 4)𝑏=2=𝑓 𝜆
𝑊 1

= 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2 + 5𝑑𝜆𝑇 3 + 7𝑑𝜆𝑇 4 + 3, (D.85)
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which gives 𝛼 = 1/2, 3/8, 2/5.

(𝑁 − 𝑢2)𝑏=2=𝑓 𝜆
𝑊 2

= 𝑑𝜆𝑇 3 + 2𝑑𝜆𝑇 4, (D.86)

(𝛿𝑡𝑜𝑡 − 4)𝑏=2=𝑓 𝜆
𝑊 2

= 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2 + 5𝑑𝜆𝑇 3 + 7𝑑𝜆𝑇 4 − 1, (D.87)

which gives 𝛼 = 0, 1/4, 1/3.

(𝑁 − 𝑢2)𝑏=2,𝑓 𝜆
𝑊 1=𝑓

𝜆
𝑊 2=1

= 1 + 𝑑𝜆𝑇 3 + 2𝑑𝜆𝑇 4, (D.88)

(𝛿𝑡𝑜𝑡 − 4)𝑏=2,𝑓 𝜆
𝑊 1=𝑓

𝜆
𝑊 2=1

= 2𝑑𝑠1 + 𝑑𝑠2 + 4𝑑𝜓
𝑠3 + 2𝑑𝑧1 + 4𝑑𝜓

𝑧2 + 5𝑑𝜆𝑇 3 + 7𝑑𝜆𝑇 4 + 1. (D.89)

which gives 𝛼 = 1/2, 1/3, 3/8.

D.14 Case (0,4,0) coupled to D̃ with 𝛿𝑎𝑑𝑑 = 0

• Case of 𝑏 = 0 (with derivatives):

(𝑁 − 𝑢2)𝑏=0 = 2, (D.90)

(𝛿𝑡𝑜𝑡 − 4)𝑏=0 = 64𝜆 +
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 − 4 (D.91)

which gives 𝛼 = 1/4 since 𝑓 = 4.

• Case of 𝑏 = 1:

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 1

= 2 + 𝑓 𝜆𝑇 2 + 2𝑓 𝜆𝑇 3, (D.92)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 1

= 32𝜆 +
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 −

1
2
, (D.93)
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which gives 𝛼 = 2/7, 4/9, 5/12, 2/5.

(𝑁 − 𝑢2)𝑏=1=𝑓 𝜆
𝑊 2

= 1 + 𝑓 𝜆𝑇 2 + 2𝑓 𝜆𝑇 3, (D.94)

(𝛿𝑡𝑜𝑡 − 4)𝑏=1=𝑓 𝜆
𝑊 2

= 32𝜆 +
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 −

5
2
, (D.95)

which gives 𝛼 = 1/5, 2/7, 2/5, 5/13.

• Case of 𝑏 = 2:

(𝑁 − 𝑢2)𝑏=2=𝑓 𝜆
𝑊 1

= 2 + 𝑓 𝜆𝑇 2 + 2𝑓 𝜆𝑇 3, (D.96)

(𝛿𝑡𝑜𝑡 − 4)𝑏=2=𝑓 𝜆
𝑊 1

=
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 + 3, (D.97)

which gives 𝛼 = 1/3, 3/7, 1/2, 5/11, 3/7.

(𝑁 − 𝑢2)𝑏=2=𝑓 𝜆
𝑊 2

= 𝑓 𝜆𝑇 2 + 2𝑓 𝜆𝑇 3, (D.98)

(𝛿𝑡𝑜𝑡 − 4)𝑏=2=𝑓 𝜆
𝑊 2

=
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 − 1, (D.99)

which gives 𝛼 = 0, 1/2, 3/7, 2/5.

(𝑁 − 𝑢2)𝑏=2,𝑓 𝜆
𝑊 1=𝑓

𝜆
𝑊 2=1

= 1 + 𝑓 𝜆𝑇 2 + 2𝑓 𝜆𝑇 3, (D.100)

(𝛿𝑡𝑜𝑡 − 4)𝑏=2,𝑓 𝜆
𝑊 1=𝑓

𝜆
𝑊 2=1

=
3
2
𝑓𝑠1 +

3
2
𝑓𝑧1 +

3
2
𝑓𝑇 1 +

5
2
𝑓 𝜆𝑇 2 +

11
2
𝑓 𝜆𝑇 3 + 1. (D.101)

which gives 𝛼 = 1/4, 2/5, 1/2, 4/9, 5/12.
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