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ABSTRACT Locating anatomical landmarks in a cephalometric X-ray image is a crucial step in cephalomet-
ric analysis. Manual landmark localization suffers from inter- and intra-observer variability, which makes
developing automated localization methods urgent in clinics. Most of the existing techniques follow the
routine thoughts which estimate numerical values of displacements or coordinates for the target landmarks.
Additionally, there are no reported applications of generative adversarial networks (GAN) in cephalometric
landmark localization. Motivated by these facts, we propose a new automated cephalometric landmark
localization method under the framework of GAN. The principle behind our approach is fundamentally
different from the conventional ones. It trained an adversarial network under the framework of GAN to learn
the mapping from features to the distance map of a specific target landmark. Namely, the output of the
adversarial network in this paper is image data, instead of displacements or coordinates as the conventional
approaches. Based on the trained networks, we can predict the distance maps of all target landmarks in a new
cephalometric image. Subsequently, the target landmarks are detected from the predicted distance maps by
an approach similar to regression voting. Experimental results validate the good performance of our method
in localization of cephalometric landmarks in dental X-ray images.

INDEX TERMS Adversarial encoder-decoder networks, localization of anatomical landmarks, cephalomet-
ric analysis, prediction of distance maps.

I. INTRODUCTION

As an indispensable tool for modern orthodontics,
orthognathic treatment, and maxillofacial surgery [1],
the cephalometric analysis provides valuable information
about patients’ bony, dental, and soft tissue structures. Based
on the cephalometric analysis of patients, dentists can provide
with diagnosis and treatment of obstructive sleep apnea [2],
assessment of mandible/lower jaw [3] and soft facial tis-
sue [4], and so on.
In clinics, the first step of a routine cephalometric analysis

is to manually mark all the anatomical landmarks after draw-
ing craniofacial structure contours on a 2D cephalometric
X-ray image. Fig. 1 displays 19 commonly used landmarks
adopted in our work, and [5] describes these landmarks.

The associate editor coordinating the review of this manuscript and
approving it for publication was Pasquale De Meo.

After that, orthodontists calculate some cephalometric tracing
clinical measurements [6], such as angles and line segments
between the identified landmarks. Then, they can decide if
there are anatomical abnormalities or not, according to the
clinical measurements.

However, manual marking suffers from inter- and intra-
observer variability, which eventually affects the accuracy of
cephalometric analysis [7]. Besides, another disadvantage of
manual marking is time-consuming. It will take an experi-
enced orthodontist more than 20minutes to locate 19 anatom-
ical landmarks on a 2D cephalometric X-ray image [8].
Therefore, automatically locating anatomical landmarks on
lateral cephalograms is in urgent need.

There have been many approaches developed for cephalo-
metric landmark detection. The traditional methods include
edge detection [9]–[12], active model [13]–[16], and tem-
platematching [8], [17]–[20]. Edge detection techniques used
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FIGURE 1. 19 anatomical landmarks used in this paper.

predefined lines, intersections, and exterior boundaries to
detect landmarks. Although edge detection techniques can
automatically identify the landmarks, they fail when the land-
marks to be detected do not lie on the edges.
To solve these problems, some applied active models,

such as the active shape model (ASM) [21] and the active
appearance model (AAM) [22]. In ASM approaches, they
deformed a global model of the spatial relationship between
the essential structures to make an initial estimation of the
location of landmarks and built a local model of image tex-
ture to determine the final positions of targets [13], [15].
Kafieh et al. [23] also extended ASM approaches by combing
neural networks. As for AAM, using a full model combin-
ing shape and texture variability makes it different from
ASM [14], [16]. For instance, Rueda incorporated mathemat-
ical morphology into AAM for landmark detection [14].
As an alternative to the active model, template match-

ing approaches also play an important role in automated
landmark localization. For examples, El-Feghi et al. located
20 anatomical landmarks by using a template-matching
algorithm and a trained neuro-fuzzy system [8]. Kaur com-
bined the sum of squared distance with normalized cross-
correlation in template matching to obtain the location of
landmarks [20]. Overall, template matching approaches can
achieve higher accuracy of landmark localization than above
two types of methods [20].
Due to the great success of machine learning in image

processing and computer vision, researchers employed some
popular techniques in cephalometric landmark localization.
Early in 2003, after extracting projected principal-edge dis-
tribution (EPPD) features as input, Chakrabartty et al. [24]
trained a support vector machine (SVM) to detect cephalo-
metric landmarks. After that, Pouyan and Farshbaf [25]
replaced EPPD with histograms of oriented gradient (HOG)
descriptors as the input of SVM. Besides SVM, some
articles also reported the applications of the neural net-
work [26]–[31], game theory [32], and convex optimiza-
tion [33] in locating cephalometric landmarks.
Moreover, many works that used the tree-based approach

to detect landmarks on 2D lateral cephalograms have
been done recently [34]–[38]. Chu et al. used the random

forest (RF) regression trained with HOG features to obtain
the initial position of the target landmarks and corrected
the position iteratively via a sparse shape composition
model [35]. To get accurate results of cephalometric land-
mark detection, Mirzaalian and Hamarneh [36] blended sev-
eral hand-crafted features, e.g., local binary patterns, spatial
coordinates, blobness, tubularness, and Zernike features to
train the random forest models. Lindner et al. [37] developed
a fully automatic landmark annotation (FALA) system in
which they used their previous work about random forest
regression-voting [39] in cephalometric analysis. In Van-
daele’s detection algorithm [38], they resorted to a variant
of the random forest named as an extremely randomized tree
with a multi-resolution scheme.

The general rationale behind the above machine learning-
based approaches is to train a model or a network to learn
the mapping from features to displacements of each voxel
towards the target landmark or the relationship between fea-
tures and coordinates of the target landmark directly. And,
the output of the trained model or network is the numerical
value of displacement or coordinate.

Fundamentally different from the previouswork, themethod
proposed in this paper is dedicated to learning the mapping
from features to the distance map of the target landmark by
constructing a generative encoder-decoder network. To make
the predicted results more realistic, we also build an adversar-
ial network under the generative adversarial framework. After
obtaining the displacement of each voxel towards the target
landmark in a new dental X-ray image from the predicted
distance map, our method can locate the target landmark in a
similar way to regression voting [39]. As the distance map
is an image in which the value of each pixel indicates its
displacement to the target landmark, the proposed network
outputs image data, instead of numerical values as the existing
methods.

One can find more details about how our method works
to automatically locate the cephalometric landmarks on
2D lateral cephalograms in Section 2. Section 3 provides
the experimental results to evaluate the performance of the
proposed method. Section 4 concludes the paper.

II. METHODS

In this paper, we propose an automated landmark localiza-
tion method for in 2D lateral cephalograms. Fig. 2 shows
the pipeline of the proposed method, which is composed of
two stages. In this first stage, i.e., training stage, we train
an encoder-decoder network as the generator to predict the
distance map of input source images after preprocessing the
training data. Secondly, we use a series of convolutional
layers to construct the discriminator network, which is similar
to the encoder part of the generator. After the training of
detectors for all the target landmarks, the testing stage can
produce the distance maps of the target landmarks for the
newly acquired 2D lateral cephalograms. Finally, our method
can locate the target landmarks through the methodology,
which bears some resemblance to the regression voting.
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FIGURE 2. The pipeline of the proposed landmark localization method for 2D lateral cephalograms.

The next subsections will give the details of the proposed
method.

A. DATA PREPROCESSING

Since the resolution and size of clinically acquired 2D lateral
cephalograms are usually large, using them as training data
directly is time-consuming and would have a high require-
ment against computing performance.

We notice that for a specific target landmark, merely
the region nearby it is our concern, instead of the whole
image. Inspired by this, our method crops the patches from
2D lateral cephalograms as source images before the training
stage, or testing stage begins. To obtain cropped patches,
we will use the template matching method in [8] to estimate
the rough locations of the target landmarks in the training or
testing images. Subsequently, those roughly estimated points
for the target landmarks are treated as the centers of the
patches cropped from the training and testing images. That
will reduce the computational burden efficiently.

B. ADVERSARIAL ENCODER-DECODER NETWORK

The proposed adversarial encoder-decoder network has two
components: generator and discriminator. While training the
generator to estimate the distance maps of the input source
images, we simultaneously train the discriminator to decide if
it could consider the results produced by the generator as the
real ones. We give the architecture of the adversarial encoder-
decoder network in Fig. 3.

As shown in Fig. 3, the generator network has an encoder
part and a decoder part. There are seven convolutional

layers in the encoder part and six up-convolutional
layers plus one output layer in the decoder part. And,
the encoder part connects to the decoder part via four fully-
connected layers. Accurately, by sequentially conducting a
convolutional operation, a batch normalization (BN) and a
rectified linear unit (ReLU) operation, the first convolutional
layer converts the input source images into the initial feature
maps. After taking similar actions as the first convolutional
layer, each of the next six convolutional layers yields the
feature representation from the previous layer. Unlike the
other well-known networks, the encoder part, even the whole
network presented in this paper, do not add any pooling layer
due to its inclination to spatial resolution loss.

Next, the four fully-connected layers propagate feature
representation from the seventh convolutional layer in the
encoder part to the decoder part. By reshaping the feature
maps of the third fully-connected layer, the fourth fully-
connected layer has the same size as the seventh convolu-
tional layer in the encoder part.

The following six layers in the decoder part are up-
convolutional layers which make up-convolution operations
act on the previous layer to produce new features. The differ-
ence between the first four up-convolutional layers and the
last two is that as the formers use BN and ReLU operations,
the latter adopts BN and Tanh operations.

While the output of ReLu operation must be more than
zero, the production of Tanh operation range from −1 to 1.
It indicates that Tanh operation can output a negative, which
will make the features produced by Tanh operation better
than the ones by ReLu operation in our network. As a proof,
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FIGURE 3. The architecture of the adversarial encoder-decoder network proposed in this paper.

FIGURE 4. The comparison of some feature maps produced by Tanh and
ReLu operations respectively in the fifth up-convolution layer of the
decoder part. (a) is the feature maps in the fifth up-convolution layer
when Tanh operation is used. (b) is the corresponding feature maps if
ReLu operation substitutes for Tanh.

Fig. 4 below provides some examples of the feature maps in
the fifth up-convolution layer of the decoder part which is
produced through up-convolution, BN and, Tanh operations
sequentially (the first row in Fig. 4). In the second row of
Fig. 4, we also give the corresponding feature maps if the
Tanh operation is replaced with ReLu. It is clear from Fig. 4
that the feature maps in the fifth up-convolution layer of the

decoder part when using Tanh operation are closer to the real
distance maps than ReLu operation.

As the final layer of the decoder, the output layer, which
is built by up-convoluting the feature maps of the sixth up-
convolutional layer with filters, amounts to the predicted
distance maps.

Similar to the generator, the discriminator has six convolu-
tional layers and one output layer. Having both the predicted
results and their ground truth as input, we train the discrim-
inator to provide loss gradients for the generator. The out-
come of the discriminator is the probability that the predicted
results are drawn from the distribution of real ones. In the
convolutional layers, convolutional operation, BN, and ReLU
operation are involved.

Generally, the dimensions of the input and output data are
significant determinants of the network’s parameters, such
as the number and size of filters, stride, and padding values
for each convolutional and up-convolutional operations. For
the sake of simplicity, we do not make an inventory of the
network’s parameters here. Instead, the experiment section
will give the network’s settings.

C. THE TRAINING PROCEDURE

As we train the generator to predict the distance maps, the
discriminator needs to be trained simultaneously to judge if it
could consider the synthetic data as real ones. Only when the
discriminator accepts all the generated results as real ones,
will the whole training procedure stop.

The training of the discriminator D for the prediction task
will utilize the favorite loss function in (1).

LD = max
D

EY [log (D (Y ))] + EX [log(1−D(G(X )))] (1)
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where X is the input source image; G(X ) is the generated
distance map for X ; and, Y is the corresponding ground-truth
of G(X ).
As for the generator G, we first use the reconstruction

loss, which measures the difference between the predicted
distance map and its ground-truth. Since the reconstruction
loss would lead to blur degradation of the estimated results,
the loss function of the generator G also adds the term of
image gradient difference (IGD) [40] as a supplement. The
IGD loss tries to keep the estimated distance map with sharp
edges. (2)- (4) define the loss function for the generator G.

LG = Lr + LIGD (2)

Lr = ‖Y − G(X )‖2 (3)

LIGD =
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with ||•||2 being L2 distance.
In the proposed network, the training procedure for each

target landmark will not stop until the loss of the generator
decreases to 0.00006. At that time, the output probability
of the discriminator is between 0.5 and 0.6, which means
that the discriminator considers the generated results as the
real ones. Besides, to avoid an infinite loop, we also set the
maximum epoch in the training procedure to be 3000. In other
words, even though the loss of the generator is still higher
than 0.00006, our method will force the training process to
stop when the epoch reaches 3000. And, we adopt the well-
known Adam algorithm as the optimizer.

D. LOCALIZATION OF TARGET LANDMARKS

After the training procedure finishes, we can localize the
target landmarks in the newly acquired X-ray dental images.
The first step of localization is to input the new image into the
trained networks to produce the distance maps of the 19 target
landmarks one by one. As the intensity of the predicted
distance map denotes the displacement of each pixel towards
a specific landmark, we can use an approach, which is similar
to regression voting method [39], to achieve the coordinates
of the current target landmark from the distance map. Specif-
ically, after deriving the displacement d of pixel Z towards
the target landmark from the predicted distance map, every
point, whose distance from Z is d , wins one vote from Z.
Once the voting for all the pixel in the new image finishes,
the candidate point which garners the most votes is the target
landmark.

III. EXPERIMENTAL RESULTS

In this section, we carry out some experiments on the
database released by Automatic Cephalometric X-Ray Land-
mark Detection Challenge (ACXLDC), which was supported
by IEEE International Symposium on Biomedical Imag-
ing (ISBI) in 2014 [5]. The database from ACXLDC con-
sists of 300 2D lateral cephalograms whose resolution is
1935×2400 pixels with the pixel size of 0.1mm × 0.1mm,
and corresponding coordinates of the target landmarks in
these cephalograms. The database from ACXLDC split all

the data equally and randomly into three subsets: Training
data, Test1 data, and Test2 data. In each subgroup, there are
100 2D lateral cephalograms and corresponding coordinates
of the target landmarks. Note that the ACXLDC database
uses 19 cephalometric landmarks which have been manually
marked by two experts. Since the intensity of each pixel in a
distance map is equal to the value of its displacement towards
the target landmark, we artificially generate the distancemaps
for each target landmark in all the cephalograms by calculat-
ing the absolute Euclidean distance between each pixel and
the target landmark in the cephalograms. The size of input
source images cropped from the full 2D lateral cephalograms
is 512×384 pixels.
The following experiments use the subset Training data

and the corresponding distance maps of 19 target landmarks
as training data. To keep generalization of our method,
we perform k-folds cross-validation (k = 10). Specifically,
we divide all the training images and their corresponding
distance maps into ten groups randomly. For each cross-
validation, our method chooses one of ten groups for val-
idation and the other nine groups for training. And, there
is no overlap between training dataset and testing dataset.
Then, the subset Test1 data and the corresponding distance
maps are for testing. Table 1 lists the number and size of
filters, stride, and padding values for each convolutional and
up-convolutional operations. The numbers of neurons used
in the four fully-connected layers F1∼F4 are 12288, 400,
12288 and 12288, respectively.
We ran all the experiments on a workstation with two Intel

Xeon E5-2640 v4 CPU 2.4 GHz and 64 GB memory, plus
one GeForce GTX 1080 Ti GPU in the training and testing.
Table 2 lists the epochs and training time for each of 19 target
landmarks under this circumstance.
The batch size used in the proposed network is 100. The

initial value of the learning rate is 0.001. When the loss is in
the range [0.001 0.0003], we reset the learning rate as 0.0001.
As the loss falls into the range [0.0003 0.0001], our method
lets the learning rate is 0.00001. So long as the loss is less
than 0.0001, we keep the learning rate equal to 0.000001.
Since predicting distance maps is one of the crucial steps

in our method, the first a few experiments will testify the
performance of our approach in prediction. Fig. 5 shows some
examples of predicted patches cropped from the full distance
maps, as well as the corresponding real ones. After comparing
the predicted results with their ground-truth in Fig. 5, we say
that all the synthetic results are visually comparable to the
real ones.
Furthermore, this section also uses structural similarity

index (SSIM) [41] to quantitatively assess the quality of the
estimated results.
Fig. 6 gives the mean SSIM of the predicted results for

19 target landmarks. From Fig. 6, one can see that the mean
SSIM values of the predicted results for all target landmarks
exceed 0.93, which indicates that the proposed adversarial
encoder-decoder network succeeds in preserving the struc-
tural details of the distance maps.
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TABLE 1. The setting of some parameters for each convolutional and
up-convolutional operation involved in the generator and discriminator.
Here, C1∼C7 denote the convolutional operations used in the generator;
C8∼C13 denote the convolutional operations used in the discriminator;
U1∼U7 denote the up-convolutional operations used in the generator.

TABLE 2. The epochs and time required for the training procedures
of 19 target landmarks.

Fig. 7 provides some examples of the localized landmarks
(marked in blue) and their ground-truth (marked in red)
in the testing images from different patients. The results
in Fig. 7 suggest that despite the morphological difference
of the various patients, most of the localized landmarks
seem to be close to the positions where they are supposed
to be.
To quantitatively evaluate the accuracy of estimated coor-

dinates for localized target landmarks, we adopt two fre-
quently usedmeasurements, namelymean radial error (MRE)
in (5) and standard deviation (SD) in (6) respectively [5].

MRE =

∑N
i=1 Ri

N
(5)

FIGURE 5. Some predicted patches cropped from the full distance maps
and the corresponding real ones for No. 1, 7, 17 and 19 landmarks.

SD =

√

√

√

√

√

N
∑

i=1
(Ri −MRE)2

N − 1
(6)
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FIGURE 6. The mean SSIM of the predicted distance maps for each of the
19 target landmarks.

where Ri is the absolute Euclidean distance between the
estimated coordinates of a specific target landmark and its
corresponding ground-truth in i-th testing image; N is the
total number of the testing images for a particular target
landmark.
The evaluation also adopts success detection rate (SDR)

to find out how many target landmarks can be successfully
localized considering a certain margin of error. Equation (7)
defines SDR [5]

pb =
# {j : ‖Ld (j) − Lr (j)‖ < b}

M
× 100% (7)

with Ld and Lr being the coordinates of the localized land-
mark and its corresponding ground-truth respectively. M is
the number of all the localized landmarks; #{�} denotes the
amount of the localized landmarks which satisfy the condi-
tion�. As far as we know, ACXLDC first used 2mm, 2.5mm,
3mm, and 4mm as the margin of errors when calculating
SDR to evaluate the submitted landmark detection methods.
Since then, many localization methods, which conducted
their experiments on the ACXLDC’s database, also accepted
the same settings for the margin of errors as ACXLDC.
For the sake of comparing performance with the previous
methods, we carried out the experiments on the ACXLDC’s
database and consequently followed the common choice of
the margin of errors as well.

In Fig.8 and Fig. 9, we offer the average MRE and
SD values of the localized landmarks in the testing images.
It is clear that the averageMRE and SD for most of the results
are below about 4.0mm and 3.5mm, respectively.

And, Fig. 10 displays the average SDR values of the
results when the margins of error are 2.0mm, 2.5mm,
3.0mm or 4.0mm respectively, with the comparison to the
results by Chu [35] and Chen’s methods [33].

Fig. 10 tells that as the margins of error rise, there is an
increase of the average SDR obtained by all the methods as
expected; and when the margins of error are set to 2.0mm,
2.5mm, and 3.0mm, the landmarks successfully localized by
our methods are slightly less than the other two. However,
the average SDR achieved by our approach is highest with the
margins of error being 4.0mm. Although higher SDR at lower

FIGURE 7. Some examples of the testing images embedded with
localized landmarks and their ground-truth. We mark the localized
landmarks in blue and their ground-truth in red.

margin of error, such as 2.0mm, 2.5mm, or 3.0mm, indi-
cates the coordinates of the localized landmarks being more
accurate, we think that merely considering SDR at lower

132744 VOLUME 7, 2019



X. Dai et al.: Locating Anatomical Landmarks on 2D Lateral Cephalograms Through Adversarial Encoder-Decoder Networks

FIGURE 8. The average MRE of the localized results in the testing images.

FIGURE 9. The average SD of the localized results in the testing images.

FIGURE 10. The comparison of different methods in terms of the average
SDR for the localized results in the testing images when the margins of
error are 2.0mm, 2.5mm, 3.0mm, or 4.0mm, respectively.

margin of error is not enough to give a comprehensive evalua-
tion to the performance of cephalometric landmark detection
algorithms. According to Yue’s article [15], it considers the
localized landmarks as being clinically acceptable, provided
the distance between the localized results and their actual
positions is less than 4.0mm. That is to say, the value of SDR
with a 4.0mm margin of error suggests the proportion of the
localized cephalometric landmarks which can be clinically
recognized. Thus, the SDRs with the 4.0mm margin of error
and lower margins of error have the same vital roles in a
thorough assessment of the performance of cephalometric
landmark localization algorithms.

IV. CONCLUSION AND DISCUSSION

In this paper, we propose an automated landmark local-
ization method for 2D cephalometric X-ray images.

While other existing methods estimate the coordinates of the
target landmarks or the displacement vectors of each pixel
towards the target landmarks directly, our approach aims to
predict the distance maps of the target landmarks by con-
structing an adversarial encoder-decoder network. Afterward,
we obtain the coordinates of the target landmarks from the
predicted distance maps via an approach similar to regression
voting.

The experimental results imply that our method performs
well in locating most of the anatomical landmarks. However,
we also observe that in Fig. 6, the mean SSIM for No. 4,
No. 10 and No. 16 landmarks are the lowest three among
all the landmarks. It seems that locating No. 4, No. 10,
and No. 16 landmarks is more challenging than the other
landmarks. In Fig.8 and Fig. 9, the relatively higher average
MRE and SD values of the localized No. 10 and No. 16
landmarks confirm that it is more difficult to detect these
landmarks again. Several influential review articles have also
reported the difficulty of localization for No. 4, No. 10, and
No. 16 landmarks [5], [6]. We will devote our future work to
further investigation into this issue.

Also, since our workstation has limited computational per-
formance, we have to crop the patches from full-size train-
ing or testing images to reduce the computational burden.
However, using the cropped patches, instead of the whole
images, in the training and testing step inevitably loses some
context information. That would lead to degradation of per-
formance for our method. To avoid a trade-off between per-
formance and computational burden, we plan to incorporate
a multi-resolution scheme into the proposed method in our
future work.
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