
Locating and Bypassing Routing Holes
in Sensor Networks

Qing Fang
Department of Electrical Engineering

Stanford University
Stanford, CA 94305

E-mail: jqfang@stanford.edu

Jie Gao
Department of Computer Science

Stanford University
Stanford, CA 94305

E-mail: jgao@cs.stanford.edu

Leonidas J. Guibas
Department of Computer Science

Stanford University
Stanford, CA 94305

E-mail: guibas@cs.stanford.edu

Abstract— Many algorithms for routing in sensor networks
exploit greedy forwarding strategies to get packets to their
destinations. In this paper we study a fundamental difficulty
such strategies face: the “local minimum phenomena” that can
cause packets to get stuck. We give a definition of stuck nodes
where packets may get stuck in greedy multi-hop forwarding,
and develop a local rule, the TENT rule, for each node in the
network to test whether a packet can get stuck at that node. To
help the packets get out of stuck nodes, we describe a distributed
algorithm, BOUNDHOLE, to build routes around holes, which are
connected regions of the network with boundaries consisting of all
the stuck nodes. We show that these hole-surrounding routes can
be used in many applications such as geographic routing, path
migration, information storage mechanisms and identification of
regions of interest.

Keywords: Graph theory, System design, Combinatorics

I. INTRODUCTION

A sensor network is a collection of a large number of
small devices each with sensing, computation and wireless
communication capability. The energy constraint of a sensor
node and frequently changed topology impose extra difficulties
in the design of efficient routing protocols. The routing table
approach used in wired networks requires a large amount of
memory at each node and does not adapt easily to topology
changes. Protocols for ad hoc mobile networks, are optimized
for quick response to dynamic link conditions in mobile
networks, hence, not suitable for wireless sensor networks,
where sensors are static in most cases. Flooding the whole
network consumes more resource than necessary, and should
be avoided whenever possible. Greedy forwarding, as a simple,
efficient and scalable strategy, is the most promising routing
scheme for large sensor networks. In a geographical greedy
forwarding scheme, a source node knows the location of
the destination node, either by acquiring it from a location
service [1], or by computing it using a hash function in a data-
centric storage scheme [2]. A packet is forwarded to a 1-hop

This work was in part supported by the Defense Advanced Research
Projects Agency (DARPA) under contract number F30602-00-C-0139 through
the Sensor Information Technology Program, the DoD Multidisciplinary
University Research Initiative (MURI) program administered by the Office
of Naval Research under Grant N00014-00-1-0637, and NSF grant CCR-
0204486. Jie Gao wishes to also acknowledge support by an IBM graduate
fellowship.

neighbor which is closer to the destination than the current
node. This process is repeated until the packet reaches the
destination. However, geographic forwarding suffers from the
so called local minimum phenomenon. Specifically, a packet
gets stuck at a node whose 1-hop neighbors are all further
away from the destination.

To help packets get out of the local minimum, Karp and
Kung [3], and independently Bose et al. [4], proposed the
idea of combining the greedy forwarding and the perimeter
routing on a planar graph that represents the same connectivity
as the original network. When a packet gets stuck at a node,
it is routed by the “right-hand rule” counter-clockwise along
a face of the graph until it reaches a node that is closer to
the destination than the one where the packet entered the
perimeter routing phase. At this point, the packet returns to
greedy forwarding phase. They showed that greedy forwarding
along with perimeter routing guarantees delivery of the packet
if a path exists. Perimeter routing requires the maintenance
of the underlying planar graph, which introduces extra cost.
More importantly, perimeter routing and the planar graph
are not used most of the time. From the simulations that
Karp and Kung did by using the greedy perimeter stateless
routing (GPSR) protocol [3], most of the packets reach their
destinations by greedy forwarding only. Therefore keeping a
planar graph at every node all the time, which is used only
occasionally seems unnecessary. We wonder what underlying
geometric properties beget the local minimum phenomenon.
Are there any structures behind the seemingly unorganized
nodes? This paper is to answer those questions.

II. OVERVIEW

In this paper, we study a fundamental problem behind the
“local minimum phenomenon” in geographic forwarding. We
define the stuck nodes where packets can possibly get stuck in
greedy multi-hop forwarding, and developed a local rule, the
TENT rule, for each node in the network to test if it is a stuck
node. To help packets get out of the stuck nodes, we developed
a distributed algorithm, BOUNDHOLE, to find the so-called
holes, the regions of the network with boundaries consisting
of all the stuck nodes. Holes are usually associated with
regions where nodes are depleted or regions that do not have
enough nodes due to irregular terrain. Holes have sometimes

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

been referred to as “communication voids” as well. Both our
analysis and simulations show that the holes identified using
this method indeed capture the underlying structure of the
network and correctly identify regions with communication
voids.

This paper focuses on defining and discovering holes in a
sensor network, as well as building routes around them. In the
process of discovering a hole, we also find the “boundary”
of the hole, i.e., a closed cycle with no self-intersections that
bounds a closed region. In other words, a hole is defined by
its boundary. The boundary of a hole can be cached locally
in that region, which provides a “conduit” for stuck packets
being routed using the greedy forwarding scheme. Depending
on application requirements, these routes can be found on
demand, i.e., only when a packet gets stuck at a node, is
the exploration of the boundary of the hole started. Boundary
information is then saved at the nodes on the boundary to
help follow-on packets. On the other hand, the routes around
the holes can also be discovered in a preprocessing phase
and stored locally along the boundaries of holes. Topological
changes of a hole can be discovered and updated locally
through careful design of protocols that handle node failures
and additions.

Routing in a network with all the holes identified before
hand can be very efficient. When a packet gets stuck under
greedy forwarding, it must be at a stuck node. The locally
stored information about the routes around the hole will help
the packet get out of the local minimum in a way similar to that
of perimeter routing on a planar graph. Unlike the planar graph
approach, computing and storing the information of holes are
only necessary at the problematic parts of the network where
there are indeed communication voids. Similarly, holes can
help geographic multi-cast [5], where data needs to be routed
to a geographic region instead of a destination node specified
by an address.

Information about holes can be used to help path migration,
where a communication path is to be kept between two
continuously moving objects of interest. Local and greedy path
migration has the same problem as that in the greedy forward-
ing, where there is no local improvement when the routing
path is along the boundary of a hole although “bypassing” the
hole will give a much shorter path. The information about the
holes tells when and how to shift the path from one side of
the hole to the other side.

Holes can also be used in information storage mecha-
nisms in sensor networks, such as the geographic hash table
(GHT) [2] and DIMENSIONS [6]. A geographic hash table
hashes data to points in the plane, which are in most cases not
co-located with sensor nodes. A perimeter that encloses the
destination is found by the GPSR protocol to replicate data.
We show that in this case the planar graph used in GPSR
to find the perimeter can be replaced by the holes identified
using our algorithm. In fact, almost all the places where a
planar graph is needed can be replaced by the holes, whose
computation is more efficient and problem-oriented.

There are many applications where information about holes

time: 0.2

Fig. 1. The sensors in black failed, leaving a large “hole” in a network with
sensors randomly placed. There are also small ”holes” due to low sensor
density. Small circles represent sensor nodes. Black nodes represent failed
sensors. Red nodes represent stuck nodes that will be explained later.

is especially useful. Some applications actually aim at finding
the holes. In disaster detection, for example, a forest fire,
destroyed the sensor nodes in the fire region and left a hole
in the network. Figure 1 shows such a scenario, where a large
hole is formed in the network. Detection of the boundary
of this hole indicates the troublesome region. Massive drop-
off of sensor nodes on irregular terrains leaves holes that
correspond to mountains or shadows. Hence the holes can tell
the geographic properties of the underlying terrain. Holes can
also be used to detect regions with low sensor density due to
depletion of node power. Therefore holes are the places where
adding new nodes will dramatically improve the connectivity
of the network.

In the following sections, we will introduce the algorithms
of finding the stuck nodes and the holes, followed by the
protocol issues, applications and discussions.

III. ALGORITHMS

We discuss two types of stuck nodes: weak stuck nodes and
strong stuck nodes. Assume there are n wireless nodes S in
the plane, each with a communication range as a disk of radius
1. Each node can get the location information of itself and its
1-hop neighbors, either by GPS or other location services [7],
[8], [9], [10].

In the remaining part of this section, we give the formal
definitions of holes. We discuss the limitations of using the
weak stuck node definition. We then propose a distributed
greedy algorithm, BOUNDHOLE, to find holes using the strong
stuck node definition, followed with proofs of correctness and

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

guaranteed termination of the algorithm.

A. Weak stuck nodes and holes

1) Weak stuck nodes: A node p ∈ S is called a weak stuck
node if there exists a node b ∈ S outside p’s transmission
range so that none of the 1-hop neighbors of p is closer to b
than p itself. The destination b is called a black node of p, as
shown in Figure 3.

This definition of stuck node suits applications where rout-
ing destinations are always some nodes in the network. In
greedy forwarding, a packet can only get stuck at a stuck
node. We show that holes under this definition are formally
the faces of at least 4 vertices in the Delaunay triangulation
with all the edges longer than 1 removed.

2) Finding the holes: For a set of nodes S in the plane,
the Voronoi diagram partitions the plane into convex regions,
called Voronoi cells, such that all the points inside one cell
are closest to only one node. The Delaunay triangulation is
the dual graph of the Voronoi diagram, by connecting the
nodes whose corresponding cells are adjacent in the Voronoi
diagram. The delaunay triangulation enjoys a “empty-circle”
property: the circumcircle of a Delaunay triangle contains no
nodes of S inside [11].

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�������
�������
�������

�������
�������
�������

������
������
������
������
������

������
������
������
������
������

(i) (ii)

Fig. 2. (i) Voronoi diagram and Delaunay triangulation; (ii) Restricted
Delaunay Graph.

Lemma 3.1. In the Delaunay triangulation DT (S), if all the
edges adjacent to a node p are no longer than 1. Then p is not a
stuck node.

Proof: We prove by contradiction. Assume a node p is
a stuck node and all the edges adjacent to p are less than or
equal to 1. Assume that there is a node q so that all the 1-hop
neighbors of p are farther away from q than p itself. We take
one triangle �upv adjacent to p so that q is inside the cone
defined by the two lines pu and pv, as shown in Figure 3. Since
�upv is a Delaunay triangle, the circle centered at O defined
by �upv has no other nodes inside. We draw the bisector �1

of edge up and the bisector �2 of edge pv. �1 and �2 intersect
at point O and divide the plane into 4 quadrants. Only the
points in the quadrant containing p are closer to p than u and
v. Then node q must be inside the region bounded by �1, �2

and edges pu, pv. This region is fully inside the circumcircle
of �upv. This contradicts to the empty-circle property of the
Delaunay triangulation.

q

�1 �2

O

black node b

vu
p

Fig. 3. Solid circle represents node p’s transmission range 1. Dotted circle
represents the circumcircle of �upv.

�
We define the Restricted Delaunay Graph (RDG) to be the

subgraph of the Delaunay triangulation so that only edges no
longer than 1 are kept. (Notice the restricted delaunay graph
defined in [12] may contain edges that are not in the Delaunay
triangulation, as long as the graph is still planar.) We identify
all the nodes with at least one adjacent delaunay edges longer
than 1 to be the possible stuck nodes. Define a hole to be
a face in the RDG with at least 4 vertices. Then from the
previous lemma we know that,

Theorem 3.2. All the weak stuck nodes must be on the bound-
aries of holes.

Therefore, we can identify the weak stuck nodes and the
corresponding holes by computing the Delaunay triangulation
and removing the edges longer than 1. Figure 4 shows an
example outcome of the holes identified by the Restricted
Delaunay Graph in a 300m by 300m area with 1000 sensors
placed uniformly at random. The algorithm for computing
the Delaunay triangulation is a centralized algorithm [11].
Leibeherr et al. [13] proposed a distributed implementation,
which is still a heavy algorithm for sensor networks. Moreover,
the set of nodes identified using this method, is a super set of
the set of real weak stuck nodes. Furthermore, the definition
of weak stuck nodes is not inclusive enough for applications
where the destination may not be a node in the network, as
the scenarios discussed in the geographic hash table [2]. This
motivates us to find better definitions and algorithms.

B. Strong stuck nodes and holes

1) Strong stuck node: We say a node p ∈ S is a strong
stuck node if there exists a location q outside p’s transmission
range in R

2 so that none of the 1-hop neighbors of p is closer
to q than p itself. The collection of q’s is called the black
region, shown as the shaded area in Figure 5. All the weak
stuck nodes must be strong stuck nodes.

2) The TENT rule: We use a simple rule to detect the stuck
nodes. For each node p, we first order all the 1-hop neighbors
of p counterclockwise. For each pair of adjacent nodes u, v, we
draw the perpendicular bisector of up and vp, which intersect
at a center O. If O is inside the communication range of p,
the black region (recall the black region is the collection of

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

time: 1

Fig. 4. A super set of weak stuck nodes (in red) and the holes identified by
the Restricted Delaunay Graph.

black region

p

�1 �2

O

vu

Fig. 5. Solid circle represents node p’s transmission range 1. Dotted circle
represents the circumcircle of �upv.

nodes inside the cone upv which are closer to p than u or
v) must also be inside the communication range of p. Since
u and v are adjacent in counterclockwise order, there are no
nodes inside the black region. Therefore p can not get stuck
for any destinations inside the cone defined by pu and pv. We
say that p is not stuck in the direction of upv. Conversely, if
the center O is outside the communication range, there must a
destination in the plane where the packet can get stuck at p. So
the TENT rule is both sufficient and necessary. To formalize,
we call a stuck angle at a node p to be the angle spanned
by a pair of angularly adjacent neighbors of node p in which
direction p becomes a local minimum. A node is a strong stuck
node if it has at least one stuck angle.

We do this local check for all the pairs of adjacent neigh-
bors of p and identify all the possible stuck directions. The
computation can be preformed with only information on 1-hop
neighbors. The definition of a strong stuck node also implies

that if the angle upv is smaller than 120 degrees, the node
p can not get stuck. So one node can have at most 3 stuck
directions.

Comparison of strong stuck nodes with the nodes identified
by the Restricted Delaunay Graph shows that both of them are
supersets of the weak stuck nodes, but neither is a superset of
the other, as shown in Figure 6.

√
2

u

v

x

y

1 1

11

> 2π/3

1
v

u w

1

(i) (ii)

Fig. 6. (i) uvxy is a unit square. ux is a delaunay edge with length
√

2 and
therefore deleted in the restricted delaunay triangulation. u, v are identified
as possible weak stuck nodes by the restricted delaunay method, but they are
not strong stuck nodes; (ii) uvw is a delaunay triangle. uv and vw are edges
of length 1. The angle uvw is larger than 2π/3. v is a strong stuck node by
the TENT rule, but is not identified by the restricted delaunay method.

C. BOUNDHOLE - the finding hole algorithm

Unlike the case of weak stuck nodes, where a hole can
naturally be defined as a face in the Restricted Delaunay
Graph, here we need to define what is a hole, how to identify
them and how to route around them. This is the major
contribution of this paper. The algorithm we propose is very
simple. The basic intuition is shown in Figure 7. There are
nodes s, p, t1, t2... bounding a hole. Node p is stuck at the
direction spt1 facing the hole. Our approach is to start from a
stuck node p and sweep over the stuck direction and connect
to a neighbor t1 in a counterclockwise order. In the context
of networking, we say “connect” meaning to have a packet
hop to that node. Node t1 further passes this packet on to
its neighbor bounding the hole, in this case, node t2. How to
identify t2 is what algorithm BOUNDHOLE addresses. Repeat
this process for every node this packet hops to. We prove that
the packet will mark the boundary of the hole and return to
node p after touring the boundary. The hole is therefore defined
as the closed region bounded by the cycle that BOUNDHOLE

produces.
Having outlined the basic ideas, we can now formalize our

description of the algorithm. We begin by introducing the
following definitions.

Definition 3.3. A hole is a closed region bounded by a non
self-intersecting polygonal loop. The polygonal loop is called
the boundary of the hole.

Definition 3.4. A hole H belongs to a strong stuck node v if
H is identical to the loop formed by BOUNDHOLE starting at
v.

Definition 3.5. We call a node u the upstream node of node v,
if u is the previous hop neighbor sharing the same boundary of

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

a hole with v in a clockwise order. In this case, v is called the
downstream node of u.

1) A greedy algorithm - BOUNDHOLE: Assume p is a stuck
node and the angle spt1 is the stuck direction, we use the
following algorithm to find the hole that contains p on the
boundary. Basically we are trying to find a closed cycle that
goes back to p. The cycle is found by a local rule at each node.
The cycle pt1t2 · · · tkp is oriented. Define the right hand side
of each edge titi+1 is the positive side. The cycle divided the
plane into two faces. The face with positive orientation, i.e.,
the face lies on the positive side of every edge titi+1, is the
hole. The algorithm works as described below.

1) We use the “right-hand rule” starting from t1: take the
first node t2 by sweeping from p counterclockwise, such
that t2 is the first one hit by the sweeping line which
is also not inside the shaded region in Figure 7. The
shaded region is called the forbidden region of node t1
where the next hop of the route can not fall inside. The
forbidden region is essential in the algorithm since we
want to make substantial progress at each step. If the
angle spt1 is greater than π, then the forbidden region is
empty. t2 is then notified by t1 to continue this process.

Hole

t1 p

t2

s

Fig. 7. Greedy sweeping at t1.

2) This procedure is continued until the path pt1t2 · · · tk
goes back to p and encloses a closed region.

3) Edge intersection For the case where edge tjtj+1

intersects edge titi+1, j > i, there could be two cases.
For the edge intersection of the first kind, node tj is not
visible to node ti and ti+1. For the edge intersection of
the second kind, node ti is not visible to node tj and
tj+1. These two cases are the only possible cases. The
detailed proof appears in the appendix.
For the first kind, we simply delete the segments
ti+1ti+2 · · · tjtj+1 and continue on t0t1 · · · titj+1tj , p =
t0, as shown in Figure 8.
For the second kind, we take ti+1 as the next hop for
tj and continue on t0 · · · tjti+1ti, p = t0, as shown in
Figure 9.

The algorithm BOUNDHOLE to find a hole for each strong
stuck node and one stuck direction is simple and localized.
The computation at each node depends only on the 1-hop
neighbors. Thus the algorithm is distributed and scales well
to large networks. Figure 10 shows the stuck nodes and
holes identified using BOUNDHOLE for the same network

t0 = p

tj

ti+1 titj+1

C

t0 = p

tj

titj+1

(i) (ii)

Fig. 8. The edge intersection of the first kind, before and after.

t0 = p

ti

tjti+1

ti+2 tj+1

C
t0 = p

ti

tjti+1

ti+2

C

(i) (ii)

Fig. 9. The edge intersection of the second kind, before and after.

configuration shown in Figure 4. If we compare the two
figures, the result by BOUNDHOLE captures the topology
of the holes more preceisely. The result by the Restricted
Delaunay method has a lot of false positives. Furthermore,
BOUNDHOLE produces “tighter” holes, i.e., the number of
nodes on the boundary of a hole is less. This is due to the
observation in the following subsection that we are making
substantial progress at each step of BOUNDHOLE. We will
refer to strong stuck nodes as stuck nodes from this point on.

2) Termination of the algorithm: Simple as the BOUND-
HOLE algorithm, the proof that it terminates and indeed
generates a finite hole is highly non-trivial. BOUNDHOLE

generates a sequence of nodes t0t1 · · · tk, where t0 = p.
We are going to prove that the sequence is finite, i.e., the
algorithm terminates. The proof is based on an important
property, which says we are indeed making progresses in
generating the sequence.

Property 3.1. If ti−2ti−1ti are consecutive nodes in the se-
quence, then ti is not visible to ti−2; or, the angle ti−2ti−1ti
is greater than or equal to π.

Lemma 3.6. Property 3.1 is true for i = 2.

Lemma 3.7. For a piece of sequence tjtj+1tj+2 · · · tk with no
edge-intersections, if for i = j + 2, Property 3.1 is true, then
Property 3.1 is true for all j + 2 ≤ i ≤ k.

Lemma 3.8. If the sequence t0t1 · · · tj satisfies Property 3.1,
and there is an edge intersection titi+1 and tjtj+1, j > i, the
sequence is modified to t0t1 · · · ti−1titj+1tj (or tj−1ti+1ti),
both ti−1titj+1 and titj+1tj (tj−1tjti + 1 and tjti+1ti) sat-
isfies Property 3.1.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

time: 0.2

Fig. 10. Strong stuck nodes (in red) by the TENT rule and the holes identified
by BOUNDHOLE.

With the help of the above lemmas, whose proofs are in the
appendix, we have,

Theorem 3.9. The sequence t0t1 · · · tk, t0 = p, generated by
BOUNDHOLE satisfied Property 3.1, for all i = 2, · · · k.

Proof: We chop the sequence t0t1 · · · tk into a set of seg-
ments. Each segment stops at an edge intersection, i.e., when
tjtj+1 intersects with titi+1, we stop the current segment at
ti(tj), and the next segment starts from titj+1tj(tjti+1ti), for
the edge intersection of the first(second) kind. We check the
segments sequentially. For a segment t�t�+1t�+2 · · · tm, we
assume all the segments before it have been proved to have
Property 3.1. From Lemma 3.6 and Lemma 3.8, we know that
the first three nodes t�t�+1t�+2 satisfies Property 3.1. Then
Lemma 3.7 says that the whole segment t�t�+1t�+2 · · · tm
satisfies Property 3.1. Therefore the whole sequence t0t1 · · · tk
satisfies Property 3.1 too. �

By simple geometry, Property 3.1 implies,

Property 3.2. The angle ti−2ti−1ti is greater than or equal to
π/3. Also the forbidden region of ti must be inside the visible
range of ti−1.

Then we can prove the termination of the algorithm.

Theorem 3.10. For any stuck node p, BOUNDHOLE termi-
nates and gives a cycle t0t1t2 · · · tkt0, p = t0, which is not
self-intersecting.

Proof: To argue the termination of the algorithm, we only
need to prove that any node u won’t appear in the sequence
infinitely many times. In fact, each node can only appear in
the sequence at most 6 times.

Assume a node appears more than once, i.e., the path gets
back to a node which it has seen. Assume the current path is
t0t1 · · · tjtj+1tj+2, with ti = tj+1, i < j.

If the angle ti−1titi+1 is greater than ti−1titj (the angle is
measured counterclockwise), ti chooses ti+1 as the next hop,
then tj must be inside the forbidden region of ti and therefore
inside the visible range of ti−1. In addition, ti−2ti−1 can
not intersect with tjti since we don’t have edge intersections
before. So ti−2 is inside the triangle titjti−1, which must
be inside the visible range of ti. This contradicts with the
fact that ti−2ti−1ti satisfy Property 3.1. See Figure 11 for an
illustration.

ti−2

titi+1

ti−1

tj

Fig. 11. tj is inside the forbidden region of ti−1.

If the angle ti−1titi+1 is smaller than ti−1titj , there are
two possible cases, as shown in Figure 12. In this case, the
angle ti−1titi+1 doesn’t overlap with tjtitj+2, where both the
two angles are at least π/3, as shown by Property 3.2. So ti
can appear at most 6 times in the sequence. The total length
of the sequence is at most 6n. �

C

ti+1

ti−1

tj

ti C

ti−1

ti+1 ti

tj

(i) (ii)

Fig. 12. Self-intersections at vertices.

IV. PROTOCOL AND VALIDATION

In the previous sections, we introduced a distributed algo-
rithm that identifies the stuck nodes for greedy forwarding
and connects the stuck nodes possibly along with some non-
stuck nodes into cycles encircling areas that we call holes in
a network topology. In this section, we discuss issues related
to protocol design. Besides the implementation of BOUND-
HOLE, some local optimizations are also made taking into
consideration the network resource constraints. We simulated
the TENT rule and BOUNDHOLE by a simulator we developed
using C++ at the topology level to validate our algorithms and
protocols.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

For a protocol to be applicable to large-scale networks with
limited resources, it should have the following properties. First,
it should be distributed in nature for scalability. Second, it
should not require synchronicity, which is hard to meet in a
distributed wireless system. Third, it should converge quickly.
It this case, it is desirable to have the protocol converge in
time proportional to the length of the perimeter of the hole.

At each stuck node, there is only one hole associated with it
in each direction it is stuck. However, one node can be on the
boundaries of multiple holes. One stuck node associates each
stuck angle to the hole in the direction of that stuck angle,
building a 1-to-1 mapping from the stuck angles to the holes.
This is important for efficient implementation of the algorithm.

We define a messenger packet of a stuck node v as a packet
originated by v to mark the boundary of the hole that belongs
to v in the direction of a stuck angle. The choice for the next
hop node that this packet visits is dictated by BOUNDHOLE.

A. Suppressed start

In the initialization stage of a network, each node broadcasts
its coordinate to its one hop neighbors. Each node gathers its 1-
hop neighbors’ information, such as their IDs and coordinates.
Then each node determines if it is a stuck node and the
direction(s) it is stuck in by following the TENT rule. After
the stuck nodes are identified, BOUNDHOLE is used to find
the boundaries of the holes. This process begins as follows:
A stuck node initiates a messenger packet in each direction
this node is stuck in. Each messenger packet is sent to the
second neighbor in counterclockwise order facing the direction
of a stuck angle. The ID of the originator is recorded in each
messenger packet. From this point on, BOUNDHOLE is used
at each hop the messenger packet hops until it returns to its
originating node and completes the cycle.

(ii)(i)

p

i j

k

l

mn

o

p

i

j

k

l

m
n

o

Fig. 13. Illustrations on cases for suppressed start: (i) the most common case in
which suppressed start can effectively reduce traffic overhead; (ii) the case in
which suppressed start may be overly suppressing, so that the hole belonging
to node k may never get discovered as its messenger packet may get dropped
by node such as o, p or i.

Such a cycle may consist of nodes that are not stuck nodes,
in which case, they are only included to complete a cycle.
There are, initially, no coordinations among the stuck nodes.
They initiate their messenger packets in some random order. If
we let each of them run the full algorithm to the end, many of
the stuck nodes will find the identical hole. Figure 13 (i) shows
an example. In such a scenario, eight messenger packets will
be generated by eight stuck nodes on the boundary of a hole.
Each packet will traverse all the nodes in a clockwise order

and returns to its originating node. This causes unnecessary
network traffic and worse yet, packet collisions. The situation
gets worse especially for large holes shown in Figure 1. To
avoid such overhead, we can suppress redundant hole finding
processes. The basic idea is to drop redundant messenger
packets as early as possible. The criterion for judging whether
a messenger packet is redundant is as follows: at each node,
if a messenger packet comes in via an ingress edge that an
earlier messenger packet with a lower originator ID has taken,
we consider the packet redundant and drop it. Consequently,
the higher the ID of a stuck node, the less likely its messenger
packet will travel far along the boundary. This effectively
reduces the number of messenger packets in the network.

The downside of this simple scheme is that, in some rare
case, some necessary messenger packets may also be dropped.
Figure 13 (ii) shows such a case. In this figure, there are loop
j − l−n− o− p− i− j and loop k−m−n− o− p− i− j−
k. These two sets of nodes share some common edges. For
the edges they do not share, they will have crossing edges as
shown in the figure. It is worth pointing out that edge crossings
only happen between edges belonging to different stuck nodes.
A loop belonging to one stuck node never intersects itself.
If a messenger packet of stuck node k gets dropped along
the shared part of the cycle, in this case, node o, p, i, node
k may never get to find the hole belonging to it. Since the
scenario shown here does not happen frequently in a randomly
generated network topology, suppressed start is still valuable
in reducing start up cost of the finding hole process in most of
the cases. We solve the dilemma as follows. If a stuck node
does not get its messenger packet returned within time Tm

and it is not notified by other stuck nodes that it shares a
common boundary with them, it re-sends a messenger packet
with its enforce bit set to ’1’, so that other nodes relaying this
packet will not intentionally drop this packet. This mechanism
is also useful for fault tolerance purpose in case messenger
packet gets lost due to packet loss. Details of the algorithm
are shown in Figure 14. Please refer to Figure 13 (ii) for the
scenario used for the pseudo-code. Again, the suppression of
messenger packets is not required for the implementation of
our algorithm. However, it is effective in reducing networking
overhead and possible packet collisions, especially when large
holes exist in the network.

The messenger packet originated by the stuck node with the
lowest ID is guaranteed to be overlaid at each hop. After this
packet returns to its origin, the originating node carries out
the following tasks:

• Generate a random ID for the hole;
• Claim itself as the leader node by sending refresh packets

Pr recorded with its own ID and the hole ID to all the
nodes sharing the same boundary every Tr time interval.

If a node’s memory capacity allows, we may choose to
cache some information about the shape of the boundary at
each node to help optimize routing paths and support fast
response to routing queries. We can also use the refresh packet
to carry the boundary information and update each node it hops

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

if (j receives messenger packet P via ingress edge eij)
if (P ’s originator ID is not smallest among packets coming

in via eij && P ’s enforce bit is not set)
drop(P);

else
x = i;
repeat

x=TheFirstCCWNeighborSweepingFrom(x);
// x is the next hop. in this case, x = l

until (i is invisible from x)
if (j had initiated a messenger packet to x and

P ’s originator’s ID is larger than j’s ID)
drop(P);

else
send(P) to x; // in this case, send to l

Fig. 14. Pseudo-code for suppressed start of BOUNDHOLE .

with the most current boundary node membership.

B. Handling node failures

Node failures may create additional holes in the network
topology. Failure of a boundary node also changes the bound-
ary of an existing hole. To detect node failures in the local
neighborhood, each node periodically broadcasts its “heart-
beat” to its 1-hop neighbors. The time interval of these
announcements, Th, is a system design parameter dictated by
application requirements.

If a node v has not received such an announcement from
one of its neighbors w for three consecutive Th intervals, it
first check whether it has an egress edge to node w.

(ii)(i)
t2

t3

y

v

t1

w

x

v

x

u

w

u

Fig. 15. (i) Node v is not stuck in the direction of ∠uvx after the node w
fails. (ii) There was a hole bounded by vwt1t2t3uv. After the failure of node
w, the hole is bounded by vxyt1t2t3uv.

If the answer is ‘no’, v uses the TENT rule to test if it is
stuck in the direction spanned by two new angularly adjacent
neighbors u and x after the failure of w. If v is not stuck in that
direction, the procedure stops. Figure 15 (i) shows such a case.
If v is stuck in that direction spanned by ∠uvx, BOUNDHOLE

is then used in finding the boundary of the hole that belongs
to v in this direction.

If the answer is ‘yes’, such as that shown in Figure 15
(ii), v initiates a messenger packet starting from itself. The
sweeping is done with the ingress edge being the edge from
the previous neighbor of the failed node in a counterclockwise
order, in this case, node u. This edge is also the previous
ingress edge for the now defunct egress edge vw. Following
BOUNDHOLE, v identify node x to be the next hop of the

boundary. The finding hole process will continue from that
point on. To avoid its packet being suppressed because of some
node with smaller ID sharing the previous boundary, v sets
the enforce bit in the packet to enforce each node the packet
hops to overlay this packet. In the same figure, node t2, t3,
u and w were the stuck nodes before the failure of w. The
boundary of the hole was v − w − t1 − t2 − t3 − u − v.
After the failure, node x and t1 become stuck in directions in
which they were not stuck before. The boundary now becomes
v − x − y − t1 − t2 − t3 − u − v.

It is possible that a boundary node of a hole is no longer
on the boundary after some topology changes because some
failed nodes disconnect this node or newly added nodes repair
the communication void. If a node is no longer chosen to be
on the boundary of a hole, it will no longer receive refresh
messages from its upstream node. This node then first check if
it is a stuck node. If the answer is ‘no’, its status as a boundary
node will retire according to a “retire timer” Td. If the answer
is ‘yes’, there are two possibilities: either the leader node died
or part of the boundary failed. This node will then initiate
a hole finding process using BOUNDHOLE. The choice of Td

depends on the applications. Generally speaking, the following
relation is reasonable: 3Th ≤ Tr ≤ 0.25Td. Such a mechanism
makes the discovery and maintenance of holes a self-learning
and adaptive process.

C. Information storage and memory requirement

Our algorithm is a practical solution for the local minimum
problem. In the scheme proposed, a node does not need to store
any additional information to support the algorithm, unless it
is on the boundary of a hole. If a node finds itself indeed
bordering a hole, depending on the application requirements,
we can have a boundary node: 1) only store its upstream and
downstream neighbors along the boundary of a hole; or 2)
store information about all the nodes sharing the boundary;
or in between, 3) store the size and a summary about the
shape of the boundary. Storage cost for Option 1) is only
O(1). Option 2) and 3) have higher demand on node memory,
but capture the geometric shape of the hole and can be used
to help improve the quality of routing paths, as well as
support fast and efficient path migration. The planar graph
approach can also be augmented for nodes to record such
kind of information. But since we only compute and store
the holes at the problematic parts of the network where there
are indeed communication voids, we would expect to save
both computation and storage compared with the planar graph
approach. Furthermore, the cost is justifiable especially for
applications where fast response to routing requests is needed
and optimal paths are desirable.

V. APPLICATIONS

A. Routing

Greedy forwarding with holes identified can be done as
follows. If a packet gets stuck with greedy forwarding, the
packet is at a stuck node p. Then it must be on the boundary
of a hole. We then route the packet along the boundary of

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

the hole. when the packet gets to a node u whose distance to
the destination q is closer than that of p, this packet follows
greedy forwarding again. In case that the destination is outside
the hole, such a node u must exist. In fact, if we connect the
line pq, it crosses the boundary of the hole at an edge uv.
Both u and v are closer to q than p itself. In this case the

q

p

v
u

q
p

u v

u′

v′

(i) (ii)

Fig. 16. (i) The destination q is outside the hole. (ii) Restricted flooding inside
the hole.

packet always get closer to the destination and therefore the
packet will finally reach the destination. If the destination is
inside the hole, then it is possible that all the nodes on the
hole are not closer to the destination than p is. For example,
in Figure 16 (ii), p is the closest node to q among all the nodes
on the boundary of the hole. q is indeed reachable via nodes
v′ and u′ with u′ inside the hole and v′ outside the hole.
But node u′ is not inside the communication range of any
node on the boundary of the hole. In such a case the routing
along the boundary of the hole will come back to node p
without being able to find a node closer to the destination.
We then initiate a “restricted flooding” stage where each node
on the boundary of the hole sends the packet to all its 1-hop
neighbors, who will flood the nodes within the hole. For the
example in Figure 16 (ii), node v′ outside the hole will get the
packet and then send it to q through u′ eventually. In summary,
by greedy forwarding with holes identified and with possible
restricted flooding inside the hole, a packet will always get to
the destination if such a path exists in the network.

B. Identifying regions of interest

The BOUNDHOLE algorithm was motivated by and devel-
oped for identifying regions with sparse network connectivity.
However, the algorithm is applicable in identifying regions of
any kind that can be defined according to some criteria testable
locally, such as temperature, gas concentration, etc. One ex-
ample is to find the regions in a sensor field with temperature
higher than a constant. To the extreme, if we imagine a sensor
field with infinite sensor density, then BOUNDHOLE can be
used to find the isothermal contour in the field. For such an
application, in addition to that each sensor node needs to know
its neighbors’ locations, it also need to know the temperature
at each neighbor’s location. If the temperature at a neighbor’s
location doesn’t not pass the local test, we consider that
neighbor does not exist and run BOUNDHOLE on the reduced
neighbor set. Another interesting and important application
for this algorithm is to identify traffic congestion regions in
a network and build detour routes for transit packets. There

are two aspects in solving such a problem. First, determine
if the destination is inside the congested area. This can be
readily handled by caching boundary information (detailed or
summarized) at each boundary node. Second, build a route
around the congested area so that route to the destination is
guaranteed, should such a route exist. To do this, we need a
way to measure the degree of traffic congestion. Once this is
established, using predefined threshold to reduce the neighbor
set and run BOUNDHOLE will yield the route for bypassing
the congested area in the network. This is of interest for our
future research.

C. Supporting path migration

Some sensor network applications require maintenance of
virtual connections among a set of moving agents. For ex-
ample, in a pursuer and evader scenario, a sensor network is
used to monitor certain moving objects of interest, e.g., the
evader. Information about the evader is constantly sent to the
location where the pursuer is querying the network through
a multi-hop path between the two. As the evader and pursuer
move around, the communication path needs constant updates.
Network infrastructure supporting fast response to path migra-
tion is desirable. In a dense network, path migration can be
accomplished by finding shortest homotopy equivalence of the
original path through greedy adjustment of the previous path.
However, when communication void exists in the network,
path migration by greedy adjustment based on only 1-hop
neighbor information is impossible.

Figure 17 shows a scenario in which a communication path
between two agents, A and B, is maintained. There is one
“hole” in the immediate neighborhood of the path between
A and B. As both A and B move towards the right, it is
desirable to migrate the existing communication path to the
right as well. However, because of the existence of the hole,
there are no nodes to overlay the path between node A and
B and the communication path is “stuck” at the boundary of
the hole, shown as the narrow black line in Figure 17 (ii).
Greedy decisions through local homotopy cannot overcome
such irregularity in the network topology. In the scheme we
proposed, information about the boundary of the holes can
be cached locally at the nodes along the boundary. When the
path migrates to the boundary, the two nodes at which the
path crosses the boundary decide if the path should further
migrate to the other side of the hole, based on the locally
cached information about the shape of the hole.

VI. DISCUSSIONS

A. Improvement of path quality

Although GPSR guarantees the delivery of a packet to
any connected destination within the same network, it may
use a long de-tour compared with the shortest path to the
destination [14]. This is because the right-hand-rule used
by the perimeter routing always guides the packet by going
counter-clockwise along a face. But routing clockwise along
a face may generate a much shorter path. Greedy forwarding
combined with localized search and backtrack [15], [16] routes

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

A

B

A

B

(i) (ii)

A

B

A

B

A

B

A

B

(i) (ii)

Fig. 17. A path migration scenario: (i) a multi-hop communication path is
established between two mobile agents A and B, using the sensor network;
(ii) as both agents move to the right, the path, shown as the thin line, gets
stuck at the the boundary of the hole. The improved path is shown as the
bold line.

a packet along a path with length O(k2) if the shortest path
is O(k). A simple and more practical approach to improve
the quality of a path is to store the shape of the hole on the
boundary of the hole. When a packet gets stuck, it computes
the better side to route around the hole. To do this, we do not
need to save the exact shape of the hole, an approximation
suffices. This approach could also be incorporated in the GPSR
protocol where each node remembers the shape of the face it
is on. Since we have a lot fewer holes than the number of faces
in the planar graph, we can expect to get better performance
in both storage and running time.

B. Impact of non-uniform transmission range

In the previous sections we assumed that the transmission
ranges of the wireless nodes are uniform. If the transmission
ranges are non-uniform, efficient routing problem in general
becomes extremely hard. Indeed, if the radii of the communi-
cation coverage differ, the communication graph is no longer
undirected. It is possible that one node u can send a packet
to node v but node v can never send a packet to u, if v
has a smaller communication range. Therefore u can not ever
know v’s existence. In the case where nodes have no global
information of the distribution of the other nodes, the only
way to send a packet to a sink like v is to flood the network
blindly, let each node to send the packet to its neighborhood,
and hope this packet would luckily get there sometime.

Although the non-uniform transmission range imposes fun-
damental difficulty to the routing problem. We should be aware
that our finding hole algorithm will still do reasonable things in
such situation. We let two nodes to claim each other as 1-hop
neighbor only when both can hear from each other. The local
algorithm will still find a cycle back to the original stuck node,
although we can no longer say that greedy routing with the
help of the holes can always get a packet to its destination if
there does exist a path. Similarly, non-uniform communication
range will cause the planar graph to be disconnected in the
GPSR protocol, and thus delivery is not guaranteed.

VII. CONCLUSION AND FUTURE WORK

This paper initiates the research on studying the structures in
sensor networks. We believe that the stuck nodes and the holes
defined in this paper have more applications than what have
been mentioned here. Some of the applications in this paper,
for example, network traffic congestion avoidance, deserve
further study.

REFERENCES

[1] J. Li, J. Jannotti, D. DeCouto, D. Karger, and R. Morris, “A scalable
location service for geographic ad-hoc routing,” in Proc. 6th Annu.
ACM/IEEE International Conference on Mobile Computeing and Net-
working., 2000.

[2] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan,
and S. Shenker, “GHT: A geographic hash table for data-centric
storage in sensornets,” in 1st ACM International Workshop on Wireless
Sensor Networks and Applications (WSNA), 2002, pp. 78–87. [Online].
Available: citeseer.nj.nec.com/ratnasamy02ght.html

[3] B. Karp and H. Kung, “GPSR: Greedy perimeter stateless routing for
wireless networks,” in Proc. MobiCom, 2000, pp. 243–254.

[4] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with
guaranteed delivery in ad hoc wireless networks,” in 3rd Int. Work-
shop on Discrete Algorithms and methods for mobile computing and
communications (DialM ’99), 1999, pp. 48–55.

[5] Y. Yu, R. Govindan, and D. Estrin, “Geographical and energy aware
routing: A recursive data dissemination protocol for wireless sensor
networks,” UCLA/CSD-TR-01-0023, Tech. Rep., 2001.

[6] D. Ganesan and D. Estrin, “DIMENSIONS:why do we need a new data
handling architecture for sensor networks?” in First workshop on Hot
Topics in Networks, 2002.

[7] J. Hightower and G. Borriello, “Location systems for ubiquitous com-
puting,” IEEE Computer, vol. 34, no. 8, pp. 57–667, August 2001.

[8] A. Savvides, C.-C. Han, and M. B. Strivastava, “Dynamic fine-grained
localization in ad-hoc networks of sensors,” in Proc. MobiCom, 2001,
pp. 166–179.

[9] A. Savvides and M. B. Strivastava, “Distributed fine-grained localization
in ad-hoc networks,” IEEE Transactions of Mobile Computing, 2003.

[10] A. Ward, A. Jones, and A. Hopper, “A new location technique for the
active office,” IEEE Personnel Communications, vol. 4, no. 5, pp. 42–47,
October 1997.

[11] F. P. Preparata and M. I. Shamos, Computational Geometry: An Intro-
duction. New York, NY: Springer-Verlag, 1985.

[12] J. Gao, L. J. Guibas, J. Hershberger, L. Zhang, and A. Zhu, “Geometric
spanner for routing in mobile networks,” in Proc. 2nd ACM Symposium
on Mobile Ad Hoc Networking and Computing, 2001, pp. 45–55.

[13] J. Liebeherr, M. Nahas, and W. Si, “Application-layer multicasting with
delaunay triangulation overlays,” IEEE Journal on Selected Areas in
Communications, vol. 20, no. 8, October 2002.

[14] M. Mauve, J. Widmer, and H. Hartenstein, “A survey on position-based
routing in mobile ad hoc networks,” IEEE Network Magazine,
vol. 15, no. 6, pp. 30–39, November 2001. [Online]. Available:
citeseer.nj.nec.com/article/mauve01survey.html

[15] F. Kuhn, R. Wattenhofer, and A. Zollinger, “Asymptotically optimal
geometric mobile ad-hoc routing,” in Proc. Dial-M, 2002, pp. 24–33.

[16] ——, “Worst-case optimal and average-case efficient geometric ad-hoc
routing,” in Proc. MobiHoc, 2003, pp. 267–278.

VIII. APPENDIX

a) Proof of Lemma 3.6: Property 3.1 is true for t2, where
t0 = p, the original stuck node, since there are no nodes inside
the fan defined by the angle spt1 which is greater than 2π/3.
So t2 is either outside the communication range of p or the
angle pt1t2 is greater than π.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

b) Proof of Lemma 3.7: We prove by induction. Property
3.1 is true for the case of i = j+2, by the assumption. Assume
Property 3.1 is true for tm, m ≤ i. We take a look at the case of
ti+1. Assume otherwise, i.e., ti+1 is inside the communication
range of ti−1 and the angle ti−1titi+1 is less than π, as shown
in Figure 18. Then the reason that ti−1 choose ti instead of
ti+1 as the next hop must be that ti+1 is inside the forbidden
region of ti−1, which implies that ti−3 is inside the convex
polygon bounded by ti−2ti−1titi+1. Since ti+1, ti and ti−1

are all inside the communication range of ti−1, so is ti−3.
This contradicts with the induction hypothesis.

ti−3

ti−1ti

ti+1

ti−2

Fig. 18. If ti+1 is inside the communication range of ti−1.

c) Proof of Lemma 3.8: Notice that due to BOUNDHOLE,
whenever an edge intersection was detected, the current se-
quence of nodes can not have edge-intersections. Assume that
the current edge intersection is edge tjtj+1 and edge titi+1,
i < j. With the same argument as in Theorem 3.9, Property
3.1 is always true for all the three consecutive nodes before
the current edge intersection.

We first argue that there are only two cases of edge
intersections. The reason is that since tj chooses tj+1 as
the next hop, it must be (1) ti+1 is angularly closer with tj
than tj+1 in counter-clockwise order; or (2), ti+1 is angularly
further away from tj than tj+1 in counter-clockwise order.
These two cases corresponds to Figure 8 and 9 respectively.

If ti+1 is angularly closer with tj than tj+1 in counter-
clockwise order, ti+1 is either inside the forbidden region
of tj , or is not visible to tj . The first case is not possible,
since otherwise we should have self-intersections already. In
addition, ti chooses ti+1 instead of tj as the next hop, then
either tj is not inside the communication range of ti, as shown
in Figure 19 (i); or, tj is visible to ti but tj is also inside the
forbidden region of ti, as shown in Figure 19 (ii).

Figure 19 (i) implies that Property 3.1 is true for the
three consecutive nodes titj+1tj . In addition, we claim that
ti−1titj+1 also satisfied Property 3.1. Assume otherwise, then
the angle ti−1titj+1 is less than π and tj+1 is visible to ti−1.
Since ti−1 chooses ti instead of tj+1, the reason must be that
tj+1 is inside the forbidden region of ti−1. This implies that
ti−3 is inside the triangle ti−2ti−1tj+1, which is fully inside
the communication range of ti−1. Therefore ti−3 is also inside
the communication range of ti−1. This leads to contradiction
that ti−3ti−2ti−1 satisfies the Property 3.1.

For Figure 19 (ii), since tj is inside the forbidden region
of ti, then tj must be visible to ti−1, by Property 3.2 and
the assumption. Also ti−2 must be inside the convex polygon
bounded by tj , ti+1, ti, ti−1, and therefore inside the commu-
nication range of ti. This contradicts with the assumption that
ti−2ti−1ti satisfied Property 3.1.

ti−3

tj

ti+1 titj+1

C

ti−1

ti−2

ti−2

tj

ti+1 tj+1

C

ti

ti−1

(i) (ii)

Fig. 19. (i) tj is not inside the communication range of ti; (ii) tj is visible
to ti but tj is inside the forbidden region of ti.

If ti+1 is angularly further away from tj than tj+1 in
counter-clockwise order, as shown in Figure 9, by the same
argument as above we can show that any three consecutive
nodes in the sequence t0t1 · · · tjti+1ti satisfies Property 3.1.
Thus the Lemma 3.8 is proved.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

