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Abstract

The identification of interaction faults in component-based systems has focussed
on indicating the presence of faults, rather than their location and magnitude. While
this is a valuable step in screening a system for interaction faults prior to its release, it
provides little information to assist in the correction of such faults. Consequently tests
to reveal the location of interaction faults are of interest. The problem of nonadap-
tive location of interaction faults is formalized under the hypothesis that the system
contains (at most) some number d of faults, each involving (at most) some number
t of interacting factors. Restrictions on the number and size of the putative faults
lead to numerous variants of the basic problem. The relationships between this class
of problems and interaction testing using covering arrays to indicate the presence of
faults, designed experiments to measure and model faults, and combinatorial group
testing to locate faults in a more general testing scenario, are all examined. While
each has some definite similarities with the fault location problems for component-
based systems, each has some striking differences as well. In this paper, we formulate
the combinatorial problems for locating and detecting arrays to undertake interaction
fault location. Necessary conditions for existence are established, and using a close
connection to covering arrays, asymptotic bounds on the size of minimal locating and
detecting arrays are established.

1 Introduction

This is a preprint version of a paper appearing in J Comb Optim (2008) 15: 17–48.

Testing component-based systems is a challenging problem. Consider, for example, the
manufacture and delivery of a home computing system. Many hardware components are
intended to be interoperable, so a variety of choices may be available for the processor,
primary memory, cache memory, disk interface, CD/DVD device, and the like. Once a
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hardware platform is selected, standard software tools also exhibit a wide variety of choices
for each component, such as operating system, web browser, email system, and the like.
Once software is installed, the system itself will then function in an environment controlled
by many factors, each with multiple options – for example, the system may function as a
server or a client in a networked environment.

The customer, quite reasonably, expects the system to function correctly on delivery. Yet
in a system of even moderate complexity in terms of the options available, the manufacturer
cannot be expected to have experience with all of the possible systems that could be built.
There are just too many of them. Naturally the manufacturer is expected provide only
those options that have survived rigorous unit testing, so that the option works according
to specification in isolation. Moreover, for components in which there is a documented
interaction (such as the interface between cache and main memory), one can expect that the
manufacturer conducts thorough integration testing to ensure that these two components
interact as expected.

Unanticipated interactions that disrupt proper system operation pose the real problems
here. While fault models and user models can suggest areas for further testing, they focus
on interactions that the models predict, and hence can miss important interactions. To give
a simple example, if an operating system requires certain data to be in cache, and a disk
interface reserves cache for direct memory access, but the cache is too small to support both,
this may cause total system failure or degradation of system performance. Attributing the
fault to any one of the cache, operating system, or disk interface alone does not adequately
explain the fault.

One reason why user modelling and fault modelling are prevalent is that it is not possible,
in general, to examine every possible interaction without conducting exhaustive testing; then
treating those that appear to be the most likely is natural. Among those that our models
do not anticipate, which interactions are most likely to cause faults? A single system may
involve millions of interactions of hundreds of components, yet the explanation for the failure
of such a system is typically (not always) due to the faulty interaction of a small number of
them. Interaction testing proceeds by setting a limit on the number of components involved
in interactions to be examined, and ensuring that testing includes systems with all possible
interactions of a number of components up to this specified size.

Let us introduce this testing problem more formally. There are k factors F1, . . . , Fk. Each
factor Fi has a set Si = {vi1, . . . , visi} of si possible values (levels). A test is an assignment,
for each i = 1, . . . , k, of a level from vi1, . . . , visi to Fi. A test, when executed, can pass or fail.
For any subset {i1, . . . , it} ⊆ {1, . . . , k} and levels σij ∈ Sij , the set {(ij, σij) : 1 ≤ j ≤ t}
is a t-way interaction, or an interaction of strength t. Thus a test on k factors contains
(covers)

(
k
t

)
interactions of strength t. A test suite is a collection of tests; the outcomes are

the corresponding set of pass/fail results. A fault is evidenced by a failure outcome for a
test; however the fault is rarely due to a complete k-way interaction; rather it is the result
of one or more faulty interactions of strength smaller than k covered in the test. All tests
chosen are executed in parallel, so that testing is nonadaptive. Unlike adaptive testing in
which tests are chosen based on the outcomes of the executions of prior tests, here no test
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outcomes are available to guide the section of tests.
Given a test suite, and the set of interactions causing faults, the outcomes can be easily

calculated: A test fails exactly when it contains at least one of the faulty interactions,
and does not fail otherwise. In order to observe an interaction fault, it is necessary that
the interaction be covered by at least one test in the test suite. With no restriction on the
interactions that can cause faults, the best one can do is to form all

∏k
i=1 si possible tests, the

exhaustive test suite. Rarely, however, do faults arise from interactions of “high” strength,
and therefore an upper bound t is placed on the strength of interactions to be covered.

We adopt a matrix formulation. An array with N rows, k columns, and symbols in the ith
column chosen from an alphabet Si of size si is denoted as an N×k array of type (s1, . . . , sk).
A t-way interaction in this array is a choice of t columns i1, . . . , it, and the selection of a
level σij ∈ Sij for 1 ≤ j ≤ t, represented as T = {(ij, σij) : 1 ≤ j ≤ t}. For such an array
A = (axy) and interaction T , define ρ(A, T ) = {r : arij = σij , 1 ≤ j ≤ t}, the set of rows of
A in which the interaction is covered. For a set of interactions T , ρ(A, T ) =

⋃
T∈T ρ(A, T ).

Then locating faults requires that T be recovered from ρ(A, T ). Arrays for this purpose are
defined in §2.

The arrays to be defined relate to numerous other combinatorial structures, to which
connections are explored in the subsequent sections. The outcomes of a test suite execution
must reveal the presence of faulty interactions among those considered. Hence every possible
interaction must appear in at least one test. An N × k array A of type (s1, . . . , sk) is
a mixed level covering array of strength t, denoted MCA(N ; t, (s1, . . . , sk), if for every t-
way interaction T , one finds that |ρ(A, T )| ≥ 1, i.e. every t-way interaction appears at
least once. These have been very extensively studied; a brief survey is given in §3. The
notation CA(N ; t, k, v) is used when all factors have the same number of levels, i.e. when
s1 = · · · = sk = v.

If faults arise from one or more interactions of strength at most t, the outcomes from
the tests in a covering array will indicate the presence of faults. However the location
and magnitude of the interactions causing the faults may be far from clear. In a covering
array, it is a frequent occurrence that t-way interactions are covered only once; yet faults
from two interactions that each appear in the same test, and only in that test, cannot
be distinguished. This measurement of interactions is the subject of an extensive field,
the statistical design of experiments. The techniques developed there are targeted towards
outcomes of a continuous nature, such as execution time, or amount of memory consumed,
rather than binary ‘pass/fail’ outcomes. In §4 techniques are examined from the design of
experiments that facilitate measurement – and hence location – of interactions, rather than
simply indicating the presence of one or more faulty interactions.

On the one hand, covering arrays indicate the presence of faulty interactions, while
designed experiments aim to quantify their contribution to the outcomes. In our testing
environment, no such quantification is reasonable, since an interaction is faulty or not, and
a test passes or fails. Viewed as a problem of locating defectives in a population using tests
that “pool” items for testing establishes a further connection, this time with combinatorial
group testing. This connection is explored in §5.
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Having developed this extensive set of relationships with other combinatorial structures,
in §6 we provide a collection of illustrative examples and in §7 we determine when locating
arrays can exist for a broad class of sets of interaction faults. Finally in §8 we establish that
for fixed number and strength of interactions, the number of tests in a locating or detecting
array grows logarithmically in the number of factors.

2 Definitions: Locating and Detecting Arrays

Let It be the set of all t-way interactions for an array of type (s1, . . . , sk), and let It be the
set of all interactions of strength at most t. Consider an interaction T ∈ It of strength less
than t. Any interaction T ′ of strength t that contains T necessarily has ρ(A, T ′) ⊆ ρ(A, T ),
and hence when T is faulty we are unable to determine whether or not T ′ is also faulty; call
a subset T ′ of interactions in It independent if there do not exist T, T ′ ∈ T ′ with T ⊂ T ′. In
general, some interactions in It (or perhaps It) are believed to be faulty, but their number
and identity are unknown. As discussed later, if there is no information on the number
of such faulty interactions, it is impossible to identify them precisely from the outcomes.
We therefore suppose that a priori information on the number is available; a number d of
faulty interactions is specified, and when d is an upper bound on such number we employ
the notation d. Of course it is often unreasonable to expect that such a priori information
on the strengths and number of faults is available; we return to this point later.

Write ρ(A, T ′) =
⋃
T∈T ′ ρ(A, T ). An array A is (d, t)-locating if

ρ(A, T1) = ρ(A, T2)⇔ T1 = T2

whenever T1, T2 ⊆ It, |T1| = d, and |T2| = d. The notation is extended to permit interactions
of strength at most t by writing t̂ in place of t, and permitting instead that T1, T2 ⊆ It.
When in addition T1 and T2 are required to be independent, the notation t is used instead.
In a similar manner, the definition is extended to permit sets of at most d interactions by
writing d in place of d, and permitting instead that |T1| ≤ d and |T2| ≤ d.

Using a (d, t)-locating array A to conduct tests, if there is any set of d interactions of
strength t that produce exactly the outcomes obtained, then there is exactly one such set
of interactions. Hence in principle the location of the interactions causing the faults can be
calculated from the outcomes.

The a priori assumptions on number and strength of interactions poses a serious practical
concern in testing. How could one recover if these bounds are supplied incorrectly? In
essence, one wants a guarantee that if more than d interactions are present, or one has
strength greater than t, this can be distinguished from an explanation of the outcomes
involving at most d interactions each of strength at most t. As we have seen (implicitly),
any outcome involving an interaction T in its explanation will be equally well explained by
adjoining any further interaction T ′ having T ⊂ T ′ to the explanation, and hence interactions
of higher strength can easily be masked by those of lower strength.

In essence, locating faults that are necessarily hidden by faults of smaller strength con-
tained within the fault cannot be done, and so when faulty interactions are not independent,
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it is required to know the strengths of the faults. One might hope that requiring the faults
found to be an independent set resolves this problem. But unless an exhaustive array is
employed, some interaction does not appear in any test – and hence if faulty cannot be
located. For this reason, while it may happen that the presence of interactions of strength
greater than t will be indicated by the outcomes, this cannot be ensured.

On the other hand, determining whether there are more than d t-way interactions is an
easy extension. For if T is a set of at most d t-way interactions and R is a set of more than
d t-way interactions, every R ∈ R satisfies ρ(A,R) ⊆ ρ(A, T ). In analogy with specializing
union-free families to cover-free families (discussed in §5), we introduce a further set of
definitions. An array A is (d, t)-detecting if

ρ(A, T ) ⊆ ρ(A, T1)⇔ T ∈ T1

whenever T1 ⊆ It, |T1| = d, and T ∈ It \T1. The notation is extended to permit interactions
of strength at most t by writing t̂ in place of t, and permitting instead that T1 ⊆ It and
T ∈ It. When in addition T1 ∪ {T} is required to be independent, the notation t is used
instead. Similarly the notation d is used to represent at most d interactions.

While detecting arrays may necessitate more rows in order to locate, the algorithm for
location is straightforward. One simply considers all of the outcomes. When a test passes,
all interactions in it are known not to be faulty. Those interactions not found to pass in this
way form a set of candidate faults. If there are at most d candidate faults, then a d-detecting
array identifies the candidate faults as the set of faulty interactions. If, on the other hand,
there are more than d, there is no set of d of fewer faults explaining the outcomes; but we
cannot be sure that all candidate faults are in fact faulty (nevertheless, all faulty interactions
must appear among the candidate faults).

The latter observation is crucial. If a set of d or fewer faults is found, then no other fault
can be present. In this way, the a priori limit on d can be validated. Indeed this serves as
an indicator of the relationship to combinatorial group testing for defective items, where the
corresponding observation arises as well [24, p. 134].
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001221 010122
021012 022101
012210 102112
120211 112021
111202 121120
112002 121200
102120 100212
120021 010220
001022 020102
022010 002201

Shown on the left is an example array for a system with six factors.
The first has two levels (0 and 1), while the remaining factors have
three levels each (0, 1, and 2). Each of the twenty rows displayed is a
test. This array is (1,1)-locating because all of the 1-way interactions
appear in a different set of tests; indeed it is (1,1)-detecting, because
the set of tests involving any one 1-way interaction never contains
the set of tests involving another. It is (2,1)-locating because the
union of the tests containing either or both of two specified 1-way
interactions never equals the union for another. However it is not
(2,2)-detecting because the two 1-way interactions (1,0) and (1,1)
together appear in all tests, and hence include the tests in which
any other 1-way interaction appears.
The array is (1,2)-locating as well, but not (1,2)-detecting. These
statements can be verified by determining the sets of tests in which
each of the 120 2-way interactions arise, noting that no two are equal
but proper containment does occur.

3 Covering Arrays

Covering arrays have an extensive history, and we do not attempt a survey here. They have
arisen in numerous combinatorial problems, but our primary concern is with fault testing.
The goal of testing with covering arrays, or interaction test suites, is to indicate the presence
or absence of faults, not their location, and not their magnitude. Fault location evidently
requires that the presence of faults be determined, and hence covering arrays provide a
minimal type of fault location. Indeed when the outcomes of the tests are known, an adaptive
strategy can test further by restricting attention to only those interactions appearing in faulty
tests. Nonadaptive strategies, on the other hand, necessitate further tests in the array itself.
Nevertheless, since locating and detecting arrays are also covering arrays, we review the
current state of affairs on covering arrays to provide context for fault location.

The combinatorics of covering arrays is treated in [18, 34], although no textbook treat-
ment of the subject is available; we just summarize the principal research directions. An
early investigation of covering arrays appears implicitly in Marczewski [51]. Rényi [60] de-
termined sizes of covering arrays for the case t = v = 2 when N is even. Kleitman and
Spencer [43] and Katona [40] independently determined covering array numbers for all N
when t = v = 2. They determined the exact relationship between N and k: k =

(
N−1
dN

2
e

)
.

For large k, N grows logarithmically. The construction is straightforward. Form a matrix
in which the columns consist of all distinct binary N -tuples of weight dN

2
e that have a 0 in

the first position. In 1990 Gargano, Körner and Vaccaro [30] gave a probabilistic bound
when t = 2 and v > 2:

N = (
v

2
log k)(1 + o(1))

Now we explore a dual formulation. Let C be an N×k covering array. Suppose that rows
are indexed by a set R of size N . Then each column can be viewed as a partition of R into
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exactly v classes (M1, . . . ,Mv); the class Mi of a symbol r ∈ R is determined by the level i
appearing in row r in the chosen column. In this manner, such an array gives a collection
P = {R1, R2, . . . , Rk} of partitions of R. A family of partitions is t-qualitatively independent
when for every t of the partitions Ri1 , . . . Rit , and for every choice of classes Mij ∈ Rij , for

1 ≤ j ≤ t, we find that
⋂t
j=1Mij 6= ∅. It follows that covering arrays of strength t having

N rows are the same as t-qualitatively independent partitions of a set of size N . Many of
the early results were established using this vernacular, but we for the most part translate
to the language of covering arrays. Poljak, Pultr, and Rödl [58] and Körner and Lucertini
[44] discuss combinatorial problems related to qualitative independence.

Covering arrays appear in other mathematical disguises as well. A (k, t)-universal set is a
subset of {0, 1}k such that the projection on every t coordinates contains all 2t combinations.
Hence it is a CA(N ; t, k, 2). Naor and Naor [55] establish that (k, t)-universal sets arise as
probability spaces with limited independence; indeed these have been extensively studied
as ε-biased arrays [1, 47, 55]. Bierbrauer and Schellwatt [3] extend this framework to more
than two levels per symbol.

The nomenclature t-surjective array for a covering array of strength t is also used, to
indicate that on each t columns, every possible outcome arises. See [11, 14, 28, 64], for
example.

3.1 The Basics

Let CAN(t, k, v) be the minimum number N of rows in a CA(N ; t, k, v). An obvious lower
bound is vt ≤ CAN(t, k, v). More generally for an MCA(N ; t, k, (v1, v2, . . . , vk)),

∏t
i=1 vi is

a lower bound on the size of the mixed covering array. Although the {vi} are listed in a
specified order, reordering the {vi} in the definition results in a simple column reordering of
the MCA. For this reason, we present these sizes in any convenient order. In this way, the
stated bound can be treated as the product of the t largest values among the {vi}.

An equally obvious lower bound results from the requirement that every two columns be
distinct; indeed columns with vi and vj symbols, vi ≤ vj, differ in at least vi(vj − 1) rows;
hence whenever t ≥ 2 and all numbers of levels are required to be at least 2, N ≥ log k.

Evidently if any of the {vi} is 1, it can be omitted provided that the number of factors
is at least two. With this in mind, a simple inequality establishes that

CAN(t, k, (v1, v2, . . . , vk)) ≤ CAN(t, k, (v1 + 1, v2, . . . , vk)) (1)

and consequently

CAN(t, k − 1, (v2, . . . , vk)) ≤ CAN(t, k, (v1, v2, . . . , vk)) (2)

Suppose A is a covering array CA(N ; t, k, v) and let i be any row and x any symbol.
Then the (k − 1) × N ′ subarray obtained by deleting row i from A and keeping only those
columns of A that had symbol x in row i is a CA(N ′; t− 1, k− 1, v), where N ′ is the number
of occurrences of x in row i. Hence

CAN(t− 1, k − 1, v) ≤ 1

v
CAN(t, k, v). (3)
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By the same token,

CAN(t, k, (v1, v2, . . . , vk)) ≥ v1 · CAN(t− 1, k − 1, (v2, . . . , vk)) (4)

More sophisticated bounds have been the subject of much research. Godbole, Skipper,
and Sunley [33] examine the random process of choosing, in each entry of an N × k array,
each of v possible levels equiprobably. They establish that when N is large enough with
respect to t, k, and v, such a random array has nonzero probability of being a CA(N ; t, k, v).
It follows from their results that

CAN(t, k, v) ≤ (t− 1) log k

log vt

vt−1

(1 + o(1)).

In [2], it is established that

CAN(t, k, 2) ≤ 2ttO(log t) log k.

Gargano, Körner, and Vaccaro [29] show that the ratio of CAN(2, k, v) to log k is asymptotic
to 1

2
v. Indeed a stronger version in [30] establishes the same result when only a small fraction

of the pairs need to be covered. For higher strength, considering the largest k for which a

CA(N ; t, k, v) exists, it has been established that k is at least et
v
e
N
tvt and at most

κv,N√
N

4
N

vt−1 ,

where κv,N is a constant depending only upon v and N ; see [58, 59].
Lower bounds are in general not well explored.

3.2 Combinatorial Constructions

An orthogonal array OAλ(N ; t, k, v) is an N × k array. In every N × t subarray, each t-tuple
occurs exactly λ times, where λ = N

vt
. The parameter t is the strength; k is the number

of factors; and v is the number of levels associated with each factor, the order. Evidently
an orthogonal array OA(N ; t, k, v) is a covering array, and when N = vt it is optimal. The
theory of orthogonal arrays is well developed; indeed a recent book treats many facets of
their construction and use [36]. Although orthogonal arrays both provide many of the best
constructions, and motivate many of the published methods, we do not delve into them here
but instead refer the reader to [34] for an overview in the context of covering arrays, to [20]
for OA(2, k, v)s, and to [36] for higher strength.

Direct constructions using group divisible designs, orthogonal arrays, and projective and
affine geometries are described in [18, 34]. These provide relatively few examples of the
smallest covering arrays—but the ones provided are often optimal or close to optimal.

Following Roux [61, 67], many “cut-and-paste” recursive constructions have been devel-
oped. For t = 2 the best available Roux-type constructions appear in [21]; for t = 3 in
[22]; for t = 4 in [22, 53], and for t ≥ 5 in [52, 53]. The basic strategy in each is to form a
number ` of copies of a t-covering array on k factors to form an array on k` factors, simply
juxtaposing the copies. While such juxtaposition covers many of the t-tuples, typically some
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remain to be covered by covering arrays of lower strength. The refinements in this method
have resulted primarily from the careful analysis of the extra rows needed.

A different inflation strategy is very effective, especially for large covering arrays. Two
examples follow.

The Turán number T (t, n) is the largest number of edges in a t-vertex simple graph
having no (n+1)-clique. Turán showed that a graph with the T (t, n) edges is constructed by
setting a = bt/nc and b = t− na, and forming a complete multipartite graph with b classes
of size a+ 1 and n− b classes of size a (see [34]).

Theorem 3.1. [34] If a CA(N ; t, k, v) and a CA(k2; 2, T (t, v) + 1, k) both exist, then a
CA(N · (T (t, v) + 1); t, k2, v) exists.

Perfect hash families are well studied combinatorial objects. A t-perfect hash family H,
denoted PHF(n; k, q, t), is a family of n functions h : A 7→ B, where k = |A| ≥ |B| = q,
such that for any subset X ⊆ A with |X| = t, there is at least one function h ∈ H that is
injective on X. Thus a PHF(n; k, q, t) can be viewed as an n× k-array H with entries from
a set of q symbols such that for any set of t columns there is at least one row having distinct
entries in this set of columns.

Theorem 3.2. (see [3, 53]) If a PHF(s; k,m, t) and a CA(N ; t,m, v) both exist then a
CA(sN ; t, k, v) exists.

For the current status of existence of perfect hash families see [76].

3.3 Algorithmic Methods

Algorithms and tools to construct interaction test suites are of substantial interest. Available
algorithms arise from many different sources. TConfig [78] develops a recursive construction
method based on orthogonal arrays. Exact algorithms (integer programming, backtracking)
have met success only for very small problems [18]. Constraint programming has been
applied for strengths greater than two [37]. Meta-heuristic search has been quite effective.
Simulated annealing (SA) [16, 70] and tabu search [56] have produced many of the smallest
available test suites. In these approaches, transformations are repeatedly applied to the
current putative test suite, and a transformation is “accepted” using an heuristic decision
rule (see [15, 16, 56]).

In simulated annealing [16], a test suite goes through a series of transformations. A
typical transformation is to change a single level in one test. The current cost is measured
as the number of t-way interactions not covered. When a transformation reduces this cost,
it is performed. Otherwise, it is performed with a probability that changes dynamically ac-
cording to a given “cooling schedule”. In cite [17], augmented annealing combines simulated
annealing with combinatorial constructions to improve both accuracy and efficiency.

In tabu search [56], transformations are also applied to a putative test suite. Cost is again
the number of uncovered t-way interactions. The least cost move is selected from among
those that are not tabu. Typically a tabu move is one that would return to a test suite that
is included among those seen within the last T moves; T is the length of history maintained.
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A greedy algorithm with both horizontal and vertical growth is IPO [72]. However, most
greedy algorithms in the literature use a one-test-at-a-time strategy. These are exemplified
by AETG [13], TCG [75], and DDA [8].

If the size of the test suite is the overriding concern, meta-heuristic search often yields
the best results. The substantial time required (and perhaps the complexity of implementing
search methods) has led to the widespread use of simpler heuristics, such as hill-climbing [16]
and greedy methods. See [16, 17, 56] for data on accuracy and execution time of simulated
annealing and tabu search.

3.4 Applications

The concept of pairwise coverage has been used across many disciplines including medicine,
agriculture and manufacturing [36]. It has entered the software testing community, appearing
in practitioner’s guidebooks and provided in simple spreadsheets. The use of covering arrays
in software testing was pioneered by Mandl [50] and Brownlie et al. [7, 57]. Empirical results
indicate that testing of all pairwise interactions in a software system indeed finds a large
percentage of existing faults [23, 45, 46]. Indeed, Burr et al. [9] provide more empirical
results to show that this type of test coverage leads to useful code coverage as well. Dalal
et al. present empirical results to argue that the testing of all pairwise interactions in a
software system finds a large percentage of the existing faults [23]. Dunietz et al. link the
effectiveness of these methods to software code coverage. They show that high code block
coverage is obtained when testing all two-way interactions, but higher subset sizes are needed
for good path coverage [25]. Kuhn et al. examined fault reports for three software systems.
They show that 70% of faults can be discovered by testing all two-way interactions, while
90% can be detected by testing all three way interactions. Six-way coverage was required in
these systems to detect 100% of the faults reported [45]. This study was followed by similar
experiments, such as one of 109 software-controlled medical devices that were recalled by
the U.S. Food and Drug Administration (FDA) [46]. These experiments found that 97% of
the flaws in these 109 cases could be detected with pair-wise testing of parameter settings.
Only three devices required coverage higher than two.

Williams et al. [78] quantify the coverage for a particular interaction strength. For
instance, if we have four factors, any new test case can contribute at most

(
4
2

)
, or 6 new

covered pairs. Further, if each factor has three levels, there are a total of
(
4
2

)
32 = 54

possible pairs that must be covered. Therefore any one new test case increases our coverage
by at most 11.1% [78]. A similar method is described by Dunietz et al. [25]. We would expect
that a real testing environment has the ability to capture variable coverage requirements for
a given test suite.

3.4.1 Hardware Testing

Imagine a circuit with k inputs that we are to test. Within the circuit, the input signals
interact through arithmetic and logical operations to determine an output vector. From the
specification, we know the output vector that should be produced, but errors may occur. As
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with software, we expect errors to be evinced by setting a fraction of the inputs to specified
high or low values. Tang et al. [73] study hardware (circuit testing) in this environment,
proposing test coverage that includes each of the 2t input settings for each subset of t inputs.
Seroussi and Bshouti [64] give a comprehensive treatment. In each case, the test suite is a
binary covering array of strength t.

3.4.2 Testing Advanced Materials

Cawse [10] reports on experimental plans for mixture experiments, in which materials are
combined to yield improved strength, flexibility, melting point, and the like. In this appli-
cation, avoiding certain combinations is not just desirable – rather it is necessary, as certain
mixtures can be explosive, or toxic. With this in mind, the goal is to consider a represen-
tative sample of mixtures, under a variety of controlled environmental conditions. Cawse
advocates the use of covering arrays for such experimentation.

3.4.3 Interactions Regulating Gene Expression

Regulation of developmental and biological processes depends upon certain signals (hor-
mones) impact the expression of a particular gene. Multiple signals may interact in regu-
lation, by jointly inhibiting or enhancing gene expression. Numerous examples are given in
[65]. Identification of signal interactions cannot be achieved by examining all possible signal
combinations, but a (by now) familiar theme emerges. Interactions among few signals are
those of most interest. Covering arrays provide precisely the experimental plan to ensure
that all “small” potential interactions are explored. Shasha et al. [65] provide details on the
application.

3.5 Summary

Tables of the best known covering array numbers are given in [19] for t = 2, [22] for t ∈ {3, 4},
and [77] for t = 5. Except when t = k = 2, the size of a minimum covering array remains
open, although when t is small the existing techniques appear to be quite effective.

In the context of locating arrays, however, this extensive literature on covering arrays
leaves many questions unanswered. Most particularly, the effectiveness of covering arrays
at locating faults rather than indicating their presence has not been studied from a combi-
natorial viewpoint; indeed even their ability to narrow the possible faults to a “small” set
does not appear to have been studied. However it has been shown that covering arrays are
competitive with D-optimal designs from the design of experiments when used to measure
interactions [39]. In fact the most suitable covering arrays are experimentally observed to
be those of strength t that evenly balance the occurrences of (t + 1)-tuples [38], a feature
that has been used in heuristic algorithms for the construction of covering arrays [35]. Later
we see that this condition arises naturally when location of faults is required. The literature
on covering arrays therefore provides a guide of sorts, suggesting possible extensions from
covering to locating arrays.
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4 Designed Experiments

If fault testing via minimum covering arrays lie at one end of the testing spectrum, statistical
design of experiments (DOE) lies at the opposite. While DOE typically employs test suites
that are substantially larger than those used in fault testing, the aim is very different. DOE
aims to provide test suites such that the system in question can be (approximately) modeled.

DOE focuses on designing test suites that allow analysis of variance (ANOVA) testing,
least-squares estimation, and other methods to produce statistically significant test results
and regression models in a minimum number of tests. The core of most designed experiments
is the full factorial design, written vk, which is equivalent to the exhaustive test suite E for
factors F1 . . . Fk with v = s1 = s2 · · · = sk . Often all factors are restricted to 2 or 3 symbols
({−1, +1} and {−1, 0, +1}), leading to the more common notation as 2k and 3k factorial
designs.

To probe the whole of the designed experiments literature is well beyond the scope of
this work. For a survey, see [54]. Traditionally, test cases are added to or subtracted from
a full factorial design to achieve certain properties in the subsequent statistical analysis.
Center and axial runs as well as replicated suites are used to detect potential curvature in
the response of the system and lower prediction variance for any regression models fitted.
Subtraction of runs, on the other hand, is used to minimize the number tests when cost
prohibits use of exhaustive suites.

In order to maintain the necessary properties for statistical analysis, runs are usually
reduced in groups and along guidelines. These reductions result in test suites in which k
factors are tested in what would be an exhaustive suite for k − p factors. In the DOE
literature, designs are considered 1

vp
fractions of the vk design. Typically, these designs are

limited to v = 2 and referred to as 2k−p. Naturally, the saturation of a smaller design with
a large number of factors causes a certain amount of information to be obscured. For the
case of these fractional factorial designs, the effects of certain factors and their interactions
are confounded with one another. In the design of experiments literature this is called effect
aliasing.

Regardless of the reduction strategy employed, designs must maintain full rank in order
to solve for the unknowns representing the measurement of each interaction. Intuitively,
consider a t-way interaction T , and suppose that f is a factor with s values that is not
represented in T . Let S be the set of s values for factor f . By definition, the contribution of
interaction T is equal to the sum of the contributions for the s interactions {T ∪{σ} : σ ∈ S}.
Hence knowing the contribution for T and the contributions for s−1 (t+1)-way interactions
that extend it to factor f , we can compute the last. Thus the number of independent variables
(and hence the rank, and hence the number of tests or runs required) can be calculated as

t∑
i=0

∑
F⊆{1,...,k},|F |=i

∏
f∈F

(sf − 1), (5)

where the empty product is as usual taken to be 1. Indeed distinguishing among interactions
for k factors (having at least two, but at most some fixed number of, levels) requires a number
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of runs that is Θ(kt), and hence experimental designs are usually restricted to few factors
and small interactions.

4.1 Linear Contrasts and Factor Effects

Many techniques exist for computing the effect of the factors in a designed experiment on
their response, among them ANOVA and least-squares estimation. However, the most basic
means of determining factor effects is via linear contrasts.

Generally speaking, a contrast Γ is a linear combination of terms as in equation (6), with
parameter value σij ∈ Si, the result for the ith test case µi and

∑k
i σij = 0.

Γ =
k∑
i

σijµi (6)

Contrast computation is the reason that designed experiments adopt a {-1, +1} notion
instead a standard binary coding. In fact, contrasts prove valuable in vetting any number
of hypotheses regarding a test suite. Contrasts are typically used for testing the effect of a
factors or t-way interactions that have been previously identified as having some significance.
However, Scheffé’s method [63] allows comparisons of all contrasts present in a test suite.
Thus, even for test suites with pass-fail responses, the effects of fault-causing factors and
interactions can be determined, provided the response is coded appropriately.

Speaking very generally, to determine the relative effect of a set of interactions T one
needs only to compare the magnitudes of ΓT the contrast for all T ∈ T with ΓR, where R
is the set of all t-way interactions not in T . Similarly, to determine the effect of a single
interaction T ∈ T , construct the set of interactions R such that {T} = T /R and compare
the magnitudes of ΓT and ΓR.

4.2 Effect Aliasing

Subtracting test cases from full factorial designs is common practice when cost must be min-
imized and a limited number of interactions require examination. However, use of fractional
factorial and other small designs introduces effect aliasing in the design. Wise application
of effect aliasing often helps minimize the number of total test cases in a suite without sac-
rificing its ability to estimate important factors and interactions. Of course, use of reduced
designs can prevent accurate estimation of factors if employed haphazardly.

To understand how aliasing manifests itself in designs, and to determine alias structure
for a given design, we next discuss aliasing and a mechanism for determining aliasing for any
test suite.

Aliasing, as it is understood within DOE, is the confounding (i.e., combining) of a factor
or interaction’s estimated effect with other factors or interactions of the same or higher order.
Mathematically, aliasing occurs when a linear dependence exists among two or more columns
of a test suite. Naturally, such a dependency alters what can be ascertained via either linear
contrasts or least-squares estimation. Reduced designs that contain no confounding among
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factors and interactions of interest are useful tools, and efforts to catalog such designs are
extensive.

Common fractional factorial designs are cataloged by resolution, a notation designed to
indicate the aliasing properties of the design. Designs are typically referred to as being of
resolution III, IV, or V. Resolution III designs confound factor effects with 2-way interactions,
and 2-way interactions with one another. Resolution IV designs confound 2-way interactions
with one another, but main effects are individually estimable. Resolution V designs confound
2-way interactions with 3-way interactions.

While resolution indices are useful for choosing a reduction in runs from the exhaustive
test suite, they require the designer to determine a priori what factors and interactions will
be aliased in the design. Without preexisting information about the aliasing structure of a
design, it can be difficult to grasp what confounding may exist. Moreover, for test suites
with an arbitrary number of cases removed from the exhaustive suite, the resolution scheme
provides no means of determining the alias relationships.

Bisgaard’s work [4] provides a method for computing an alias matrix A, which quantifies
the confounding between the set of factors in a test suite and a set of interactions. The
method is then applied to Taguchi’s [71] designs to illustrate its applicability [5]. While
Bisgaard’s illustrates only the case in which only alias relationship with the set of 2-way
interactions in a design, the technique is applicable to any set of interactions among factors.
The remainder of the section details the method.

Suppose that an N×k design matrix X1 is considered sufficient for a test suite. Let some
numbers of factors F1 . . . Fi and interactions Ij . . . Ik be assigned to the columns of X1. This

assignment presumes that the vector of responses y is a function of the form y = X1β̂1 + ε,
where β̂1 is the 1 × k vector of estimated coefficients for the k factors and interactions
represented in X1. For this model the expected value function for β̂1 is as in equation
(7). The expected value function in (7) illustrates that if the test design represented in X1

encompasses all of the significant factors and interactions in the system, then the coefficients
estimated in β̂1 are correct and unbiased with respect to random error.

E(β̂1) = E[(X′1X1)
−1X′1E(y)] (7)

= E[(X′1X1)
−1(X′1X1)β1 + (X′1X1)

−1X′1ε]

= β1

However, assume that the system in question is affected by the factors and interactions
assigned to the columns of X1 as well as a set of interactions not assigned to columns of X1 .
Then y = X1β1 + X2β2 + ε. Let the values of the unassigned interactions be assigned to the
columns of a second design matrix X2. Then, the expected value function for β̂1 becomes
equation (8).

E(β̂1) = E[(X′1X1)
−1X′1E(y)] (8)

= (X′1X1)
−1X′1X1β1 + (X′1X1)

−1X′1X2β2

= β1 +Aβ2
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Here A = (X′1X1)
−1X′1X2 is the alias matrix. A captures the aliasing between the factors

and interactions in X1 and X2. Equation (9) illustrates the relationship between k factors
and their 2-way interactions, but can be generalized such that F contains the factors and
interactions tested in X1 and F′ the interactions represented in X2.

F + AF′ = (9)
F1

F2
...
Fk

 + A


F1F2

F1F3
...

Fk−1Fk


Bisgaard’s method for identifying alias relationships was developed using a standard

statistical coding (i.e., {-1, 0, +1}) and multiplicative interactions. However, the relationship
between equations (7) and (8) holds no matter the coding or interactions. For instance, our
discussion of (d, t)-detecting/locating designs considers maximum binary interactions. Other
types of interactions are both valid and equally likely to be confounded with the factors
represented in the test suite.

Srivastava [69] pioneered the study of factorial search designs. He identified the obstacle
with many experimental designs that arises from assuming that all higher order effects are
negligible when some few are perhaps non-negligible. In the search designs proposed by
Srivastava, the goal remains to measure the smaller order interactions, but concurrently
to determine whether there are higher order interactions with non-negligible contributions
(again under the assumption that a small number of higher order interactions are to be
“searched”). Katona and Srivastava [41] lay a mathematical foundation for this in the
binary case. Subsequently, there has been substantial research on these search designs; see,
for example, [31, 32, 66]. While this research does introduce the notion of location, it is in
addition to the measurement afforded by a usual factorial design, and hence asks for stronger
properties than we require.

5 Combinatorial Group Testing

Covering arrays are intended to indicate the presence of faults, and designed experiments
to measure and model them; neither is defined so as to simply locate them. In a related
setting, combinatorial group testing, location of faults has been extensively studied. Du and
Hwang [24] provide an excellent textbook discussion of the research on this subject. The
basic combinatorial group testing problem is to isolate exactly d, or at most d, defective
items among a pool of k items. To do so, one is permitted to pool items for testing (i.e.
form a subset of the items), and test the pool; if positive then the pool contains one or more
defective items, if negative it contains none. Of course, there is the possibility in most real
experiments of false outcomes, but we consider the case in which tests on pools are reliable.
As noted by Du and Hwang [24], there is an extensive literature on both the sequential
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(or adaptive) problem in which a pool is formed only after the outcomes of previous tests
are known and on the nonadaptive problem in which all pools are assumed to be run in
parallel. From origins in testing for diseased individuals in the second world war, group
testing was placed on a firm mathematical basis by Sobel and Groll [68]. Applications have
been extensive in communications, networking, genomics, and combinatorial search theory.
As a result, many different sets of terminology have been developed.

Let M be an N×k (0,1)-matrix, and d ≤ k be an integer. Then M is a d-separable matrix
if the superposition sum (also called boolean sum or union, which is the componentwise
maximum) of any set of d columns of M uniquely determines the set of d columns chosen.
It is d-separable if the same holds for all sets of at most d columns. In the testing problem,
rows represent pools while columns represent items; a ‘1’ in the ith row and jth column
indicates that the jth item appears in the ith pool. The superposition sum of the defective
columns forms the experimental outcomes, which must correspond to a single “explanation”
of the defectives. Naturally any column containing a ‘1’ in a row for which the outcome is
‘0’ cannot be defective, but in general this is not sufficient. Hence a stronger condition is
often required. Matrix M is d-disjunct if no superposition sum of d columns covers another
column.

Treating the columns as binary vectors used as codewords in a communications system,
a d-disjunct matrix forms a d-superimposed code. Kautz and Singleton [42] pioneered the
use of superimposed codes.

Instead treat the rows of M as an N -set, and for each column form a subset containing
the indices of the ‘1’ entries in that column, to form a family F of subsets of an N -set.
Then M is d-disjunct if and only if F is d-cover-free; it is d-separable if and only if F is
d-union-free; and it is d-separable if and only if F is d-weakly-union-free. See, for example,
[27].

Primarily based on [42], the following relationships obtain among separable and disjunct
matrices ([24, Table 7.1]):

(d+ 1)-separable ⇒ d-disjunct = d-disjunct
⇓ (delete any row) ⇓

k-separable, k < d ⇐ d-separable ⇐ d-separable

For asymptotic results, see [26, 27, 62] and [24, Chap. 7]. Numerous combinatorial
constructions are available as well.

There are two fundamental differences between our problem in locating defectives and
the underlying hypotheses for disjunct and separable matrices. First and foremost, faults
in our environment arise from faulty interactions, not from defective items. Second, we
are not free to choose arbitrary pools. Let us consider the first problem first. Torney [74]
observed that in certain biological situations, positives arise from interactions among items.
He proposed the extension of combinatorial group testing to sets pooling, locating specific
sets of k items that, when together, form a positive. This has taken the name of group
testing for complexes. Macula and his colleagues have developed two-stage methods for this
problem [48, 49]; however this topic is much less studied than that of defective items.
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However the second difference is the more crucial one. In practice the construction of
pools often dictate constraints on the size or structure of the pools. For example, pools may
be required to be at most a specified size, or an item may be allowed to appear in at most
a specified number of pools. Pools may also be constrained to be among those that can be
constructed by a simple mechanical process. Our restrictions are somewhat different. Pools
are always formed by the selection, for each factor, of exactly one level. While this severely
limits the applicability of specific results from the literature on combinatorial group testing
to our problem, the basic framework remains quite similar. Hence we believe that there
is much value in pursuing the parallels between locating arrays and combinatorial group
testing, especially that for complexes.

6 Examples of Locating and Detecting Arrays

In order to illustrate the many definitions, we provide an extensive collection of examples.
In each case, we suppose that there are six factors. The first has two levels (0 and 1), while
the remaining five have three each (0, 1, and 2). There are 2 · 35 = 486 tests that can be
selected; our goal here is to present relatively small sets of tests.

000000
111111
022222

(a)

000000
111111
022222
100000
011111
122222

(b)

000000
001221
010122
121012
122101
112210

(c)

000000
001221
010122
121012
122101
112210
022011
100122

(d)

001221
010122
021012
022101
012210
102112
120211
112021
111202
121120

(e)

000000
101221
110122
121012
022101
012210
102112
120211
112021
111202
121120
021122

(f)

Figure 1: (a) 1-covering array; (b) 1-orthogonal array; (c) (1,1)-locating array; (d) (1,1)-
detecting array; (e) (2,1)-locating array; (f) 2-covering array that is not (2,1)-locating.

Figure 1 displays some of the simpler arrays. The array in Figure 1(a) contains every 1-
way interaction at least once, and hence is a 1-covering array. It is not (1,1)-locating because
interactions (2,1) and (3,1) appear in the same set of rows, in this case just the second row.
Nor is it an orthogonal array, because level 0 appears twice for factor 1 while level 1 appears
only once. To have equal numbers of occurrences of levels for the first factor, the number of
tests must be even; for the remainder, it must be a multiple of 3. Figure 1(b) therefore gives
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a smallest orthogonal array of strength one, having six rows. It also fails to be (1,1)-locating
for the same reason: interactions (2,1) and (3,1) appear in the same set of rows.

Figure 1(c) gives a (1,1)-locating array, also with six tests. It fails to be (1,1)-detecting,
because the 1-way interaction (1,0) appears in rows {1, 2, 3} while (2,0) appears in {1, 2}, so
the latter interaction is covered by the former. These problems with coverage are remedied
in Figure 1(d) by the addition of two rows to form a (1,1)-detecting array. This array is not
(2,1)-locating; consider the two 2-way interactions (1,1) and (2,2). Collectively they appear
in rows {4, 5, 6, 7, 8}. But interactions (1,1) and (3,2) appear in the same set of rows. Figure
1(e) presents a (2,1)-locating array. It is not (2,1)-detecting because interactions (1,0) and
(1,1) together cover all others. Nor is it a 2-covering array; interaction {(2, 0), (3, 0)} is not
represented.

000000
101221
010122
021012
022101
012210
102112
120211
112021
111202
121120

(a)

000000
001220
002121
101102
102012
100211
011111
012001
010202
112210
110120
111022
022222
020112
021010
120021
121201
122100

(b)

001221
010122
021012
022101
012210
102112
120211
112021
111202
121120
112002
121200
102120
100212
120021
010220
001022
020102
022010
002201

(c)

000000 110000
021100 122200
011010 122010
101210 002020
112120 100220
011220 111001
102101 001201
020011 121111
112211 001021
100121 022121
010221 102002
120102 012102
012012 000112
110212 021212
120022 111122
022222

(d)

022212 022002
022110 020022
020100 021202
021200 021011
021101 002222
002211 002120
002102 000010
001021 001122
012022 012001
010020 010111
011220 011120
122222 122220
122201 122001
120210 120011
121210 121001
102100 100220
100020 100021
100102 100110
101001 101112
112122 112101
112112 110211
110000 110120
111212 111022
111102

(e)

000000 110000
101100 021100
012200 122200
011010 122010
110110 020210
121020 002020
020120 112120
010101 102101
120201 001201
100011 020011
011111 121111
002211 112211
001021 100121
022121 121221
102002 012102
000202 111202
101012 012012
110212 021212
010022 120022
001122 111122
102222 022222

(f)

Figure 2: (a) 2-covering array; (b) 2-orthogonal array; (c) (1,2)-locating array; (d) (1,2)-
detecting array; (e) (2,2)-locating array that is not (1,2)-detecting; (f) (2, 2)-locating array.

Now let us turn to detecting interactions of strength two. Figure 1(f) gives a 2-covering
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array that is not a (2,1)-locating array; interactions (1,1) and (4,1) appear in the same tests
as (1,1) and (6,2). Contrast with Figure 1(e). One is 2-covering but not (2,1)-locating,
while the other is (2,1)-locating but not 2-covering. Figure 1(f) is not an optimal 2-covering;
instead the test suite in Figure 2(a) is an optimal one, with eleven tests [18]. This array is
also (2,1)-locating. It is not (1,2)-locating, however; {(1, 0), (2, 0)} and {(1, 0), (3, 0)} appear
in the same tests (only the first in each case). Nor is it an orthogonal array of strength two;
indeed an optimal orthogonal array, shown in Figure 2(b), has 18 tests [36].

Now Figure 2(c), with 20 tests, is a (1,2)-locating array but is not (1,2)-detecting. Figure
2(d), with 31 tests, is (1,2)-detecting but not (2,2)-locating. Figure 2(e), with 47 tests, is
(2,2)-locating. Despite this it is not (2, 2)-locating, nor is it even (1,2)-detecting. However
Figure 2(f), with 42 tests, is (2, 2)-locating (and hence (2,2)-locating and (1,2)-detecting).

An optimal 3-covering array for these parameters has 33 tests [12], while an optimal
3-orthogonal array has 54 tests [6].

7 Feasibility for Location and Detection

Our goal in providing thumbnail introductions to the three allied areas is to provide a context
for the study of locating and detecting arrays. None of these areas offers a solution, but each
provides both relevant results and a framework for the combinatorial study of locating and
detecting arrays. Naturally the first question is for what parameters a locating or detecting
array can exist at all, no matter how large its number of rows. Throughout this discussion
we consider an N × k array of type (s1, . . . , sk) with 1 ≤ s1 ≤ s2 ≤ · · · ≤ sk. Write
τt =

∑
T⊆{1,...,k},|T |=t

∏
i∈T si, the total number of t-way interactions, and write γt =

∑t
i=0 τt.

Write µt =
∏t

i=1 si and νt = (
∏t−1

i=1 si) · st+1.
We restrict parameters of locating and detecting arrays to nontrivial parameters as fol-

lows. First consider the number of faults. Since there are exactly τt possible t-way inter-
actions, we treat (d, t)-arrays only when 0 ≤ d ≤ τt. Similarly we treat (d, t)-arrays in the
same range; when d > τt, a (d, t)-locating array is precisely a (τt, t)-locating array. The same
observations apply with t in place of t, since the largest independent set of interactions of
strength at most t consists of those of strength exactly t.

Since there are exactly γt possible interactions of strength at most t, (d, t̂)-arrays are
treated only when 0 ≤ d ≤ γt. Similarly (d, t̂)-locating arrays with d > γt are precisely
(γt, t̂)-arrays.

Next consider the number of columns (factors), k. When k < t and d > 0, no (d, t)-
locating array can exist, and any (d, t)-locating array is precisely a (d, k)-locating array.
Hence we treat only cases with k ≥ t.

Lastly we require that s1 > 1 in order to avoid factors that take on unique levels.
To unify the discussion of locating and detecting arrays, a preliminary observation is

useful.

Lemma 7.1. A (d, t)-detecting array is (d, t)-locating and (d, t)-locating; a (d, t)-locating
array is (d− 1, t)-detecting.
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Proof. An array A that is not (d, t)-locating has two sets T1 and T2 of d interactions of
strength t for which ρ(A, T1) = ρ(A, T2). The same sets establish that A is not (d, t)-locating.
Now let T ∈ T2 \ T1. Then ρ(A, T ) ⊆ ρ(A, T1), and hence A is not (d, t)-detecting.

For the second statement, if A is not (d − 1, t)-detecting, consider a set T of d − 1
interactions of strength t, and an interaction T 6∈ T for which ρ(A, T ) ⊆ ρ(A, T ). Then
ρ(A, T ) = ρ(A, T ∪ {T}), and hence A is not (d, t)-locating. �

Lemma 7.1 holds for t̂ in place of t by similar arguments. For t, the argument is slightly
more complicated:

Lemma 7.2. A (d, t)-detecting array is (d, t)-locating and (d, t)-locating; a (d, t)-locating
array is (d− 1, t)-detecting.

Proof. An array A that is not (d, t)-locating has two independent sets T1 and T2 of d
interactions of strength at most t for which ρ(A, T1) = ρ(A, T2). The same sets establish
that A is not (d, t)-locating. SetR1 = T1 andR2 = T2. IfR2\T2 contains an interaction that
is not independent of T2, remove it. Symmetrically, if T2 \R2 contains an interaction that is
not independent of R2, remove it. Repeat until no such dependent interactions remain. If
T ∈ Rx\Ry for {x, y} = {1, 2}, then ρ(A, T ) ⊆ ρ(A,Ry), and hence A is not (d, t)-detecting.
It remains to treat the case that R1 = R2; consider the last interaction T that was removed,
and suppose that it was removed from R1. Since T is dependent on some interaction in R2,
and R1 = R2, we find that T1 is not independent, a contradiction.

For the second statement, if A is not (d − 1, t)-detecting, consider a set T of d − 1
interactions of strength at most t, and an independent interaction T 6∈ T for which ρ(A, T ) ⊆
ρ(A, T ). Then ρ(A, T ) = ρ(A, T ∪ {T}), and hence A is not (d, t)-locating. �

For detecting arrays, certain cases are equivalent. We employ an auxiliary lemma to
explore this.

Lemma 7.3. For an array A and s1 ≤ d ≤ τt, there exists a set T of d independent
interactions each of strength at most t, for which ρ(A, T ) contains all rows of A.

Proof. If s1 ≤ d ≤ s1 +
∑

T⊆{2,...,k},|T |=t
∏

i∈T si, T can be chosen to contain all 1-way in-
teractions involving the first factor, together with the remaining t-way interactions, none
involving the first factor. In general, for m ≤ t when s1s2 · · · sm ≤ d ≤ s1s2 · · · sm +∑

T⊆{1,...,k},|T∩{1,...,m}|<m,|T |=t
∏

i∈T si, T can be chosen to contain all m-way interactions in-
volving the first m factors, together with the remaining t-way interactions, none involving
all of the first m factors. Applying this for m = 1, . . . , t yields the result. �

Lemma 7.4. For d < τt, a (d, t)-detecting array is equivalent to a (d, t)-detecting array and
a (d, t)-detecting array is equivalent to a (d, t)-detecting array. For d < γt, a (d, t̂)-detecting
array is equivalent to a (d, t̂)-detecting array.

Proof. For t and t̂, if there is a set T of at most interactions and an interaction T 6∈ T
for which ρ(A, T ) ⊆ ρ(A, T ), additional interactions other than T and those in T can be
adjoined to T without affecting this inclusion. For t, such additional interactions must be
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independent. If no interaction of strength at most t is independent of T , then ρ(A, T )
contains all rows of A. Lemma 7.3 completes the proof. �

For convenience, we summarize these (together with Lemma 7.6 to follow) in tabular
form (when marked with an asterisk, one requires that d < γt; when marked with a plus
sign, d < τt):

(d, t̂)-detecting ⇒ (d, t)-detecting ⇒ (d, t)-detecting
m* m+ m+

(d, t̂)-detecting ⇒ (d, t)-detecting ⇒ (d, t)-detecting
⇓ ⇓ ⇓

(d, t̂)-locating ⇒ (d, t)-locating ⇒ (d, t)-locating ⇒+ (d− 1, t)-detecting
⇓* ⇓+ ⇓+

(d, t̂)-locating ⇒ (d, t)-locating ⇒ (d, t)-locating ⇒+ (d− 1, t)-locating

To establish existence of locating and detecting arrays, it suffices to consider the inclusion
of every possible test. The exhaustive array is the one having τk distinct rows, every possible
test.

Lemma 7.5. When k = t, the exhaustive array E is a (d, t)-detecting array for all d.

Proof. Every row contains a single interaction. �

7.1 (d, t)- and (d, t)-Arrays

When d = τt, every array is (d, t)-detecting since by hypothesis all of the possible interactions
are known to be faulty. So we treat only cases with d < τt.

Lemma 7.6. Every (d, t)-locating array with τt > d > 0 is a (d− 1, t)-locating array.

Proof. If T andR are different sets of d−1 interactions of strength t with ρ(A,R) = ρ(A, T ),
any interaction in neither R nor T can be added to both without affecting the equality. It
remains to treat the case that R ∪ T contains all τt interactions. When this occurs, their
intersection has size at most d − 2 while their union has size at least d + 1. Therefore T
and R disagree in at least two interactions. Then let T ∈ T \ R and R ∈ R \ T . Then
ρ(A,R∪ {T}) = ρ(A, T ∪ {R}) but R∪ {T} 6= T ∪ {R}. �

Lemma 7.7. If k > t and min(µt + 1, νt) < d < τt, no (d, t)-locating array A exists.

Proof. First we prove the statement for d = µt + 1. For the set T containing all µt t-way
interactions involving factors {1, . . . , t}, ρ(A, T ) contains all rows of A. Choose two different
t-way interactions that are not in T ; adjoining each independently to T does not alter the
rows involved, and hence we have produced two different sets of µt + 1 t-way interactions
generating the same set of rows.

Next consider the case when νt = µt. Form the set R of all νt t-way interactions involving
factors {1, . . . , t−1}∪{t+1}. Then ρ(A,R) contains all rows of A. Then ρ(A,R) = ρ(A, T )
but R 6= T .

Complete the proof by applying Lemma 7.6. �
In fact a much stronger bound holds:
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Lemma 7.8. If k > t and min(s1, s2 − 1) < d ≤ µt, no (d, t)-locating array A exists.

Proof. We first prove the statement for d = s1 + 1. Consider the t-way interactions T =
{(2, v21), . . . , (t + 1, vt+1,1)} and R = {(2, v21), . . . , (t + 1, vt+1,2)}. Form the set T of t-
way interactions {{(2, v21), . . . , (t, vt1)} ∪ {(1, i)} : i ∈ S1}. Then ρ(A, T ) ⊆ ρ(A, T ) and
ρ(A,R) ⊆ ρ(A, T ), and hence ρ(A, T ∪ {R}) = ρ(A, T ∪ {T}).

Next we consider the case when d = s1 = s2. Form T as {{(3, v31), . . . , (t + 1, vt+1,1)} ∪
{(1, i)} : i ∈ S1} and R as {{(3, v31), . . . , (t+ 1, vt+1,1)} ∪ {(2, i)} : i ∈ S2}. Then ρ(A,R) =
ρ(A, T ) but R 6= T . �

Lemma 7.9. Every (d, t)-locating array is (d′, t)-locating for every d′ ≤ min(d, τt).

Proof. This follows immediately from the definitions. �

Lemma 7.10. When k > t ≥ 1 and 0 < d < min(s1 + 1, s2), the exhaustive array E is
(d, t)-locating and hence is a (d, t)-locating array.

Proof. Consider two different sets T and R, each of at most s1 t-way interactions, with
R having at least as many interactions as T . If T has fewer than s1 interactions, consider
an interaction R in R \ T . For every T ∈ T , if R and T are on the same factors, then the
sets of rows in which they occur are disjoint. Otherwise if ` is a factor of T but not R, T can
contain at most 1

s`
of the rows containing R. Since |T | < |R| ≤ d ≤ s1, ρ(E,R) 6⊆ ρ(E, T ).

Otherwise T and R each have s1 interactions. Choose T ∈ T \R and R ∈ R\ T . Every
interaction in T covers at most 1

s1
rows in ρ(E,R), and symmetrically every interaction in

R covers at most 1
s1

rows in ρ(E, T ). Thus all rows can be covered when each accounts for

exactly 1
s1

. Consider the factors shared by T and R. If they are on the same factors, then
they cover disjoint rows. Let α be a factor of T but not R, and β be a factor of R but not T .
Then R covers at most 1

sβ
of those covered by T , and T covers at most 1

sα
of those covered

by R. This necessitates that sα = sβ = s1, and hence since α 6= β that s1 = s2. Since
d ≤ s2 − 1 by hypothesis, T and R do not arise in the same sets of rows. �

Lemma 7.11. When k > t and τt > d ≥ s1, there is no (d, t)-detecting array.

Proof. Form the set T of t-way interactions {{(2, v21), . . . , (t, vt1)} ∪ {(1, i)} : i ∈ S1}.
Then for T = {(2, v21), . . . , (t, vt1), (t+ 1, vt+1,1)}, ρ(A, T ) ⊆ ρ(A, T ). �

Lemma 7.12. When d < s1, the exhaustive array is a (d, t)-detecting array.

Proof. This follows from Lemmas 7.1 and 7.10 except when d + 1 = s1 = s2, so we
treat this case. If T is a set of fewer than s1 = s2 t-way interactions and T 6∈ T is a t-way
interaction, every interaction in T accounts for at most 1

s1
of the tests containing T ; hence

some test containing T contains no interaction in T . �
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7.2 (d, t)- and (d, t)-Arrays

Lemma 7.13. Every (d, t)-locating array with d < τt is (d′, t′)-locating for every t′ ≤ t and
d′ ≤ min(d, τt′).

Proof. Suppose to the contrary that A is (d, t)-locating but not (d′, t′)-locating. Then there
are sets R and T , each containing d′ independent interactions of strength t′, for which
ρ(A,R) = ρ(A, T ). We can adjoin further independent interactions to enlarge each (to get d
interactions), unless in the process we find that ρ(A,R) = ρ(A, T ) contains all rows. Lemma
7.3 completes the proof. �

Lemma 7.14. Every (d, t)-locating array is (d, t′)-locating for every t′ ≤ t and (d′, t)-locating
for every d′ ≤ min(d, τt).

Proof. This follows immediately from the definitions. �

Lemma 7.15. If s1 ≤ d, no (d, t)-locating array A exists.

Proof. When d = s1, form set T to contain the unique 0-way interaction. Form R to contain
all 1-way interactions involving the first factor. Then ρ(A,R) = ρ(A, T ) but R 6= T . �

Lemma 7.16. When t ≥ 1 and 0 ≤ d < s1, the exhaustive array E is a (d, t)-detecting
array.

Proof. Let T be an independent set of at most d interactions of strength at most t. We
show that for every T 6∈ T that is independent of T , there is a test containing T but no
interaction of T . Consider a specific T ′ ∈ T ; if the factors in T ′ all appear in T , or those in
T all appear in T ′, the sets of rows in which they arise are disjoint. So let ` be a factor in T ′

not in T . The rows containing T admit every one of the s` possible levels for factor `, and
hence the rows containing T ′ account for at most 1

s1
of those containing T . Then ρ(E, T ) is

not contained in ρ(E, T ). �

Lemma 7.17. When t ≥ 1, k ≥ 2, and d = s1 < s2, the exhaustive array E is a (d, t)-
locating array.

Proof. Since s2 > d = s1 ≥ 2 and sets of interactions are required to be independent, we
need only consider sets that do not contain the 0-way interaction. Then the proof parallels
that of Lemma 7.10. �

7.3 (d, t̂)-Arrays

Lemma 7.18. Every (d, t̂)-locating array is (d, t)-locating when d < τt, and every (d, t̂)-
locating array is (d, t)-locating.

Lemma 7.19. When 0 < d < γt, no (d, t̂)-detecting array exists.

Proof. The 0-way interaction covers all others. �
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Lemma 7.20. If 2 ≤ d < γt, no (d, t̂)-locating array exists.

Proof. Form set T to contain the unique 0-way interaction and d − 1 others. Form set
R to contain the 0-way interaction and d − 1 others, not identical to those chosen earlier.
Then ρ(A,R) = ρ(A, T ) but R 6= T . �

Let us now dispense with some trivial cases. When d = 0, any array is a (d, t̂)-locating
array for all t, including the array with no rows at all! So suppose that d ≥ 1. When t = 0,
d ≤ 1. Every array with at least one row is (1, 0)-locating (there is, after all, only one
interaction to consider). So suppose henceforth that t ≥ 1.

When d = γt, every array is (d, t̂)-locating since all interactions of strength at most t are
known to be faulty. It remains to treat cases with 0 < d < 2 (that is, d = 1) and k ≥ t ≥ 1
for (d, t̂)-locating arrays, in view of Lemma 7.20.

Lemma 7.21. When k ≥ t ≥ 1 and d ∈ {0, 1}, the exhaustive array E is (d, t̂)-locating and
hence is a (d, t̂)-locating array.

Proof. Consider different interactions T and R, each of strength at most t. There is at
least one row that contains one but not the other. �

7.4 Summary

Type of Array Constraint Lemmata
(d, t)- locating d < min(s1 + 1, s2) or d = τt if k > t 7.8, 7.10

d ≤ τt if k = t 7.5
detecting d < s1 or d = τt if k > t 7.11, 7.12

d ≤ τt if k = t 7.5

(d, t)- locating d < min(s1 + 1, s2) if k > t 7.8, 7.10
any d if k = t 7.5

detecting d < s1 if k > t 7.4
any d if k = t 7.5

(d, t)- locating d < min(s1 + 1, s2) or d = τt 7.8, 7.10, 7.17
detecting d < s1 or d = τt 7.16

(d, t)- locating d < s1 7.15, 7.16
detecting d < s1 7.4, 7.16

(d, t̂)- locating d ∈ {0, 1, γt} 7.20, 7.21
detecting d ∈ {0, γt} 7.19

(d, t̂)- locating d ∈ {0, 1} 7.20, 7.21
detecting d = 0 7.4

It seems that placing just an upper bound on the strength, without requiring indepen-
dence, leads to a relatively uninteresting problem (the t̂ case). At most one fault can be
located, and then only knowing a priori that at most one fault is present. It would be a mis-
take to dismiss this problem so quickly, however. Assume that k ≥ t. Using any t-covering
array, one can examine from the outcomes whether there is no faulty interaction (no tests

24



fail), or whether the 0-way interaction is faulty (all tests fail), or whether some interaction
of strength greater than 0 is faulty (some but not all tests fail). In the latter case, which
interaction is faulty? In order to distinguish, we require that for any two interactions T1, T2

of strength at most t, ρ(A, T1) 6= ρ(A, T2). Now if the strengths of T1 and T2 disagree,
choose without loss of generality a row r ∈ ρ(A, T1) \ ρ(A, T2). Extend T1 to a t-way inter-
action using levels in row r. Extend T2 to a t-way interaction arbitrarily. The inequality
ρ(A, T1) 6= ρ(A, T2) is preserved. So it suffices to require the inequality for every two in-
teractions of strength equal to t. A (1, t̂)-locating array is also a (1, t)-locating array and a
t-covering array; the connection with covering arrays becomes crucial in the next section.

8 Logarithmic Growth

We have characterized the cases in which a locating array can exist, but it tells us little
about the number of tests needed. The size of an array is its number of rows; size directly
determines testing cost by determining the number of tests to be executed. In this section
we establish that for fixed d and t and fixed maximum number of levels per factor, the size
of a minimum detecting array grows logarithmically in the number of factors. This stands
in stark contrast to the analogous situation for designed experiments, and relies on parallel
results for covering arrays. We begin by treating the uniform case in which every factor has
the same number of levels.

Theorem 8.1. Every (d, t)-detecting array with s1 = · · · = sk = d + 1 is a (t + 1)-covering
array.

Proof. Let A be an N × k array in which every column contains d + 1 symbols that is
not (t + 1)-covering. Let T = {(fi, σi) : 1 ≤ i ≤ t + 1} be a (t + 1)-way interaction that
is not covered. Form T = {{(fi, σi) : 1 ≤ i < t} ∪ {(ft+1, s)} : s ∈ Sft+1 \ {σt+1}}. Let
T ′ = T \ {(ft+1, σt+1}. Then ρ(A, T ′) ⊆ ρ(A, T ) and hence A is not (d, t)-detecting. �

One might hope that the converse also holds. Consider the following two covering arrays
of strength two:

0 0 0 0 0 1
0 1 2 0 0 2
0 2 1 0 1 0
1 0 2 0 2 0
1 1 1 1 0 0
1 2 0 1 1 1
2 0 1 1 2 1
2 1 0 1 2 2
2 2 2 2 0 0

2 1 1
2 1 2
2 2 2
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The array on the left is indeed a (2, 1)-detecting array. Although larger, the array on
the right is not. In fact the rows containing the first factor at level 0 are covered by the
union of those containing one of the second or third factors at level 0. Indeed while covering
(t+ 1)-way interactions is necessary, it is far from sufficient:

Theorem 8.2. There exists a CA(N ; t + d − 1, k, v) for d < v and k ≥ d + t that is not
(d, t)-detecting.

Proof. Let A be an arbitrary CA(N ; t + d − 1, k, v). Identify d + 1 sets F1, . . . , Fd+1 each
containing exactly t factors, so that each contains the first t − 1 factors along with one
other. First, for every row of A in which every entry in Fd+1 equals 0, form t rows by
replacing each 0 in turn by a 1. Then the t-way interaction T = {(f, 0) : f ∈ Fd+1} is
uncovered. Now we construct a large collection of additional rows; each contains T . For
1 ≤ i ≤ d, we select a 0 level on the factor in Fi \ Fd+1; then for every 1 ≤ j ≤ d with
j 6= i, we select an arbitrary nonzero levels for the factor in Fj \ Fd+1, and finally we select

arbitrary levels for the remaining k − (d + t) factors. In this way d(v − 1)d−1vk−(d+t) tests
are added. It is easy to verify that the result is another CA(N ′; t + d− 1, k, v) A′. Now let
T = {{(f, 0) : f ∈ Fi} : 1 ≤ i ≤ d}. Then ρ(A′, T ) ⊆ ρ(A′, T ). �

Despite this, some covering arrays of strength t+1 do provide detecting arrays. Consider
a specific t-way interaction T . Suppose that in the (t+ 1)-covering array it appears λ times
(evidently λ ≥ d + 1 since every (t + 1)-way interaction containing T must appear, but λ
may be much larger). For each factor f not appearing in T , let µf be the maximum over
s ∈ Sf of the number of rows in which the (t+ 1)-way interaction T ∪ {(f, s)} appears. For
factor f of T let µf = 0. In the example on the left above with t = 1, λ = 3 and µf = 1 (for
all choices). However in the example on the right, for T = {(0, 0)}, we find that λ = 4 and
µ1 = µ2 = 2. This accounts for the array on the left being (2, 1)-detecting while explaining
in part why the array on the right is not. Using these counts we can provide a sufficient
condition for detection:

Theorem 8.3. Let A be a CA(N ; t+ 1, k, d+ 1). For the t-way interaction T , suppose that
it appears λ times, and for every factor f not in T , the µf values are determined as above.
Then suppose that for every interaction T and every set D of d factors, λ >

∑
f∈D µf . Then

A is an (d, t)-detecting array.

Proof. Interaction T appears in λ rows, and any row containing T and a level for a further
factor f accounts for at most µf of these. �

At first glance this appears to provide a useful converse to Theorem 8.1. However,
the limitation on the number d of faulty interactions to be detected can be quite severe,
depending on the structure of the covering array A. Nevertheless, if we suppose that the
covering array has the much stronger property that every (t+ 1)-way interaction occurs the
same number of times, then we find that for every t-way interaction T occurring λ times,
µf = λ/(d+ 1) (always). Then the hypotheses of Theorem 8.3 are trivially met.

A covering array CA(N ; t, k, v) in which every t-way interaction occurs the same number
(N/vt) times, is an orthogonal array. These have been extensively studied [36] from a number
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of perspectives, not least because they underlie fractional factorial designs. However from
our viewpoint a disappointment is in store. The well-known Rao bounds [36, Theorem 2.1]
show that orthogonal arrays require a large number of rows:

Theorem 8.4. An orthogonal array with k factors each with v levels, having strength t ≥ 2,
has at least N rows where

N =

{ ∑u
i=0

(
k
i

)
(v − 1)i if t = 2u∑u

i=0

(
k
i

)
(v − 1)i +

(
k−1
u

)
(v − 1)u+1 if t = 2u+ 1

The disappointment is that, while orthogonal arrays balance occurrence of (t + 1)-way
interactions, and hence lead to (d, t)-detecting arrays, the number of rows required grows
as a polynomial function of k for fixed strength and number of levels. In fact it is consis-
tent with the use of orthogonal arrays as factorial designs for estimation rather than mere
location. This is unlike the situation for covering arrays, where the number of rows grows
logarithmically in k.

Perhaps we are asking too much when we require the balance of an orthogonal array.
Theorem 8.3 asks for an “approximately” balanced occurrence of (t + 1)-subsets, but does
not require equality. It is time for a positive result:

Theorem 8.5. Every CA(N ; t + d, k, v) with d < v is a (d, t)-detecting array. Indeed for
d < s1 ≤ s2 ≤ · · · ≤ sk, every MCA(N ; t+ d, (s1 · · · sk)) is a (d, t)-detecting array.

Proof. Let T be a t-way interaction, and consider a set T of d other t-way interactions. If
any T ′ ∈ T involves the same factors as T , but T ′ 6= T , then the rows in which they appear
are disjoint. So suppose that no interaction of T involves exactly the same t factors as T .
Choose a set F of d′ ≤ d factors not in T so that every T ′ ∈ T involves at least one factor of
F ; this can be done since T contains d interactions each having a factor not contained in T .
Now for every f ∈ F , choose a level σf that appears in no interaction of T as the level for
factor f ; this can be done because factor f has more than d levels but at most d appear in
interactions of T . Then form the (t+ d′)-way interaction T ′ by adjoining to T the selections
{(f, σf ) : f ∈ F}. Now T ′ is covered in some row of every CA(N ; t + d, k, d + 1), and yet
this row contains none of the interactions in T by construction. �

This appears to be very weak, but it leads to a surprising result:

Theorem 8.6. For fixed d, t, and m, the number of rows N required in a (d, t)-detecting
array with k factors each having at least d+ 1 and at most m levels grows logarithmically in
k.

Proof. The logarithmic growth applies for CA(N ; t+ d, k,m)s [58, 59]. Apply Theorem 8.5.
�

Contrast this with the polynomial growth of N as a function of k for orthogonal arrays
(Theorem 8.4). How does one account for this dramatic difference? Orthogonal arrays
distinguish all subsets of interactions, but detecting arrays only distinguish small subsets
of interactions. While the total number of subsets grows exponentially in the number of
factors, the number of subsets of some fixed size d grows only polynomially in k.
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9 Conclusions

The nonadaptive location of interaction faults in a component-based system has motivated
the introduction of new classes of combinatorial arrays, detecting and locating arrays, to form
fault interaction test suites that permit the location of a specified number of faults of specified
strength. The similarities and differences with covering arrays, designed experiments, and
pooling designs are outlined. Finally basic constraints on feasibility have been presented.

The study of locating and detecting arrays poses challenges in each of the areas outlined.
While covering arrays have been studied with no need to distinguish among interactions,
and designed experiments studied with the need to distinguish all interactions of a specified
strength, detection and location form a middle ground. Of course one wants to combine
the ability of covering arrays to provide small test suites with the ability of designed experi-
ments to distinguish the interactions; techniques from both areas appear to be relevant here.
Perhaps the only mathematical model to follow in determining a specified number of faults
is afforded by combinatorial group testing. While fault detection falls naturally into group
testing for complexes, it limits the structure of complexes to be located in a significant way.
More importantly, the construction of pools in this variant of group testing for complexes
deviates substantially from those previously studied. It is premature to treat the fault loca-
tion problems merely as a special case of any one of these three established areas, and we
believe that each contains tools of value in exploring the location of interaction faults.

We have determined the basic necessary conditions for detecting and locating arrays to
exist when no limit is placed on the number of tests to be performed. Once feasibility is
determined, the natural goal is to minimize the size of the test suite constructed. Here
the contrast between covering arrays and designed experiments is the most stark: As the
number of factors k increases, the number of tests in a covering array grows logarithmically
in k while for a designed experiment it grows polynomially in k. We establish that, in this
regard, detecting and locating arrays exhibit the behaviour of covering arrays; the number
of tests grows logarithmically in k.

Although the asymptotic growth rate is determined, the construction of specific locating
and detecting arrays with fewest tests appears to be a challenging problem. However, the
close connections with covering arrays, pooling designs, and designed experiments provide a
wealth of techniques, both combinatorial and computational, for beginning to explore these
construction problems.
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