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Locating and Tracking Multiple Dynamic Optima by
a Particle S warm Model Using Speciation

Daniel Parrott and Xiaodong Li, Member, IEEE

Abstract—This paper proposes an improved particle swarm
optimizer using the notion of species to determine its neighbor-
hood best values for solving multimodal optimization problems
and for tracking multiple optima in a dynamic environment. In
the proposed species-based particle swam optimization (SPSO),
the swarm population is divided into species subpopulations based
on their similarity. Each species is grouped around a dominating
particle called the species seed. At each iteration step, species seeds
are identified from the entire population, and then adopted as
neighborhood bests for these individual species groups separately.
Species are formed adaptively at each step based on the feedback
obtained from the multimodal fitness landscape. Over successive
iterations, species are able to simultaneously optimize toward
multiple optima, regardless of whether they are global or local
optima. Our experiments on using the SPSO to locate multiple
optima in a static environment and a dynamic SPSO (DSPSO)
to track multiple changing optima in a dynamic environment
have demonstrated that SPSO is very effective in dealing with
multimodal optimization functions in both environments.

Index Terms—Multimodal optimization, optimization in dy-
namic environments, particle swam optimization (PSO), tracking
optima in dynamic environments.

1. INTRODUCTION

N RECENT YEARS, particle swarm optimization (PSO)

has been used increasingly as an effective technique for
solving complex and difficult optimization problems [12], [20],
[21]. However, most of these problems handled by PSOs are
often treated as a task of finding a single global optimum. In
the initial PSO proposed by Eberhart and Kennedy [21], each
particle in a swarm population adjusts its position in the search
space based on the best position it has found so far, and the
position of the known best-fit particle in the entire population
(or neighborhood). The principle behind PSO is to use these
particles with best known positions to guide the swarm popula-
tion to converge to a single optimum in the search space.

How to choose the best-fit particle to guide each particle in
the swarm population is a critical issue. This becomes even more
acute when the problem being dealt with has multiple optima, as
the entire swarm population can potentially be misled to local
optima. One approach to combat this problem is to allow the
population to search for multiple optima (either global or local)
simultaneously. Striving to locate multiple optima has two ad-
vantages. First, by locating multiple optima, the likelihood of
finding the global optimum is increased; second, when dealing
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with real-world problems, for some practical reasons, it is often
desirable for the designer to choose from a diverse set of good
solutions, which may be equally good global optima or even
second best optima.

The uniqueness of PSO’s ability in adaptively adjusting par-
ticles” positions based on the dynamic interactions with other
particles in the population makes it well suited for handling mul-
timodal optimization problems. If suitable particles can be de-
termined as the appropriate neighborhood best particles to guide
different portions of the swarm population moving toward dif-
ferent optima, then essentially we will be able to use a PSO to
optimize over a multimodal fitness landscape. Ideally, multiple
optima will be found. The question is how to determine which
particles would be suitable as neighborhood bests; and how to
assign them to the suitable particles in the population so that
they will move toward different optima accordingly.

An environment that is both multimodal and dynamic such
as that shown in Fig. 1 presents additional challenges. In
fully dynamic multimodal environments, optima may shift
spatially, change both height and shape, or come into or go
out of existence. Hence, the height of the global optimum may
decrease, while the height of a local optimum increases, even-
tually changing not just the position of the global optimum as
optima shift but also the optimum, which represents the global
optimum. An optimum may disappear as it is obscured by a
higher optimum above it, or optima may appear or disappear
entirely. To effectively search such a space requires answers
to two further questions: how can particles update their known
best positions in order to track optima and how can a population
be arranged to balance the need to track existing optima against
the need to distribute particles to search the remaining space
for new optima?

The paper is organized as follows. Section II describes re-
lated work on multimodal optimization, and their relevance to
the proposed species-based PSO (SPSO). Section III presents
the classic PSO. Section IV introduces the notion of species and
its relation to multimodal optimization. Section V describes
the proposed SPSO in a static multimodal environment, in-
cluding the performance measures, test functions, experimental
setup, results, and discussion. These topics are again covered
in Section VI for the dynamic SPSO (DSPSO) in a dynamic
environment. Finally, Section VII draws some conclusions and
gives directions for future research regarding the SPSO.

II. RELATED WORK

Significant research into multimodal optimization and opti-
mization in dynamic environments has been conducted using
evolutionary algorithms (EAs). However, these two fields are
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Fig. 1.
the highest point switches optimum. (a) Before. (b) After.

typically treated separately and only recently have EAs for en-
vironments which are both multimodal and dynamic been pro-
posed (e.g., [2], [4], [6], [18], and [33]). A recent survey on EAs
in dynamic environments has been provided by Jin and Branke
[18].

A. Locating Multiple Optima in a Static Environment

Although multimodal function optimization has been studied
extensively by EA researchers [1], [24], only a few works have
investigated using particle swarm models. In [19], Kennedy pro-
posed a PSO using a k-means clustering algorithm to identify
the centers of different clusters of particles in the population,
and then use these cluster centers to substitute the personal bests
or neighborhood bests. In [19], for a population of 20 particles,
it was arbitrarily decided to use five clusters, and to iterate three
times in order to allow the cluster centers to be stabilized. Some
serious limitations of this clustering approach can be identified.

e In order to calculate the cluster centers, the method re-
quires three iterations over all individuals in the popu-
lation. However, the number of clusters and iterations
must be predetermined. This can be difficult since they
are problem dependent.

e A cluster center identified is not necessarily the best-fit
particle in that cluster. Consequently, using these cluster
centers as [best (or neighborhood best) is likely to lead to
poor performance (see Fig. 2).

Brits ef al. in [8] proposed a nbest PSO algorithm which
defines the “neighborhood” of a particle as its n closest parti-
cles of all particles in the population (measured in Euclidean
distance). The neighborhoodbest for each particle is defined
as the average of the positions of its n closest particles. Like
Kennedy’s k-means clustering PSO, nbest also suffers from
the same problem that the neighborhood best is not always the
best-fit particle in that neighborhood, and the parameter » must
also be prespecified by a user.

(b)

Three peak multimodal environment, before and after movement of optima. Note that the small peak to the right of the figure becomes hidden and that

Cluster A

Cluster B

X

Fig. 2. Cluster A’s center (white circle) performs better than all members of
the cluster A, whereas cluster B’s center performs better than some and worse
than others (see also [19]).

In [29] and [30], Parsopoulos and Vrahitis observed that when
they applied the gbest method (i.e., the swarm population only
uses a single global best) to a multimodal function, the swarm
moved back and forth, failing to decide where to land. This be-
havior is largely caused by particles getting equally good in-
formation from those equally good global optima. To overcome
this problem, they introduced a method in which a potentially
good solution is isolated once it is found (if its fitness is below
a threshold value ¢), then the fitness landscape is “stretched”
to keep other particles away from this area of the search space
(similar to the derating method used in sequential niched ge-
netic algorithm (SNGA) proposed by Beasley et al. in [1]). The
isolated particle is checked to see if it is a global optimum, and
if it is below the desired accuracy, a small population is gen-
erated around this particle to allow a finer search in this area.
The main swarm continues its search for the rest of the search
space for other potential global optima. With this modification,
their PSO was able to locate all the global optima of some se-
lected test functions successfully. A major issue associated with
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the stretching and derating methods is that applying such tech-
niques often introduces new local optima. More detail on this
can be found in [1].

Brits ef al. proposed a niching particle swarm optimization
(NichePSO) algorithm [7], which has a number of improve-
ments over Parsopoulos and Vrahitis’s model. NichePSO
incorporates a cognitive only PSO model and the guaranteed
convergence particle swarm optimization (GCPSO) algorithm
which guarantees a PSO to converge to a local optimum [34].
In NichePSO, multiple subswarms are produced from a main
swarm population to locate multiple optimal solutions in the
search space. Subswarms can merge together, or absorb parti-
cles from the main swarm. Instead of using the threshold € as
in Parsopoulos and Vrahitis’s model, NichePSO monitors the
fitness of a particle by tracking its variance over a number of
iterations. If there is little change in a particle’s fitness over a
number of iterations, a subswarm is created with the particle’s
closest neighbor. The authors used a swarm of population size
of 20-30, and NichePSO found all global optima of the test
functions used within 2000 iterations.

Although numerous niching techniques have been proposed
in the past to tackle multimodal optimization problems, most of
these algorithms have only been tested on problems with two
dimensions and a limited number of optima [1], [7], [29], [32].
Some exceptions are [9] where Brits et al. tested their NichePSO
on the Rastrigin function with up to five dimensions, and [24]
where Li et al. tested their species conserving genetic algorithm
(SCGA) on a Shubert function with up to four dimensions.

In [35], the attractive and repulsive PSO (arPSO) was pro-
posed by Vesterstroem and Riget. In arPSO, the basic PSO’s
velocity equation is modified when the population diversity is
below a threshold. This modification simply corresponds to re-
pulsion of the particles instead of the usual attraction equation.
When the diversity becomes higher than another threshold, the
commonly used PSO equation will be brought back to action
again.

Petrowski in [31] introduced a clearing procedure as a niching
method, and more recently, Li ef al. in [24] introduced a SCGA
for multimodal optimization. Both the clearing procedure and
SCGA adopted a technique for dividing the population based on
the notion of species, which is added to the evolution process of
a conventional genetic algorithm. Their results on multimodal
optimization have shown to be substantially better than those
found in literature.

The notion of species is very appealing. To some extent, it
provides a way of addressing the limitations we identified with
the clustering approach used in the PSO proposed by Kennedy
[19]. This paper describes a SPSO incorporating the idea of
species into PSO for solving the multimodal optimization prob-
lems. At each iteration step, SPSO aims to identify multiple
species (each for a potential optimum) within a population, and
then determines a neighborhood best for each species. These
multiple adaptively formed species are then used to optimize
toward multiple optima in parallel, without interference across
different species. SPSO was first proposed by the authors [25]
and [27]. This paper describes an improved version of SPSO
with a mechanism for removing redundant duplicate particles
in species for better performance efficiency, and also provides
an analysis over the effects of population size and species ra-
dius. We also compare the experimental results between SPSO

and NichePSO (a niche-based PSO algorithm for multimodal
optimization), over a chosen set of benchmark multimodal test
functions.

B. Tracking Multiple Optima in a Dynamic Environment

Most research into particle swarm models for dynamic en-
vironments has been restricted to swarms capable of tracking a
single optimum, with swarm algorithms to track multiple optima
simultaneously being a recent occurrence [4], [27]. Eberhart
and Shi tested the particle swarm model in a dynamic environ-
ment tracking an optimum generated by the parabolic function
in three dimensions [15]. The optimum’s position changed up to
2% with changes occurring every 100 generations. They found
that the particle swarm model compared favorably with other
evolutionary methods for the same number of function evalu-
ations. Carlisle and Dozier [10] noted that the particle swarm
tracked a moving optimum successfully only when movements
in the optimum’s position are small. They adapted the model
to track larger movements of the optimum by causing parti-
cles to replace their best-known positions with current positions.
Periodic and triggered replacements of best-known positions
with current positions were tested and found to result in suc-
cessful tracking of the optimum. Monitoring environments for
changes has also been used by Hu and Eberhart [17]. On detec-
tion of a change, a fixed proportion of particles was rerandom-
ized in order to find the new location of the optimum. In all these
methods, the swarm is modified to track a moving optimum by
causing some particles to lose all knowledge of known optima’s
positions.

Blackwell and Bentley [2], [3] have investigated the use of
swarms of charged particles in environments with one or two
optima, created by the parabolic function in three dimensions,
experiencing severe changes every 100 iterations or less. The
use of charged particles prevents a swarm from converging to
a single point and forces it to remain spread out, enabling it
to better respond to change and relocate moved optima. This,
however, incurs the cost of an O(/N?) calculation of the repul-
sive forces between particles arising from charge. By using a
swarm with 1/2 the particles charged and 1/2 neutral (called an
atomic swarm because of the similarity to electrons circling the
nucleus of an atom), an algorithm with good search and conver-
gence characteristics was arrived at.

The atomic swarm approach has been adapted to track
multiple optima simultaneously with multiple swarms (“multi-
swarms”’) by Blackwell and Branke [4]. The number of swarms
is specified in advance. When swarms approach within a
specified radius of each other the swarm with the worse value
at its attractor or gbest position is randomized. In this way,
multiple swarms are prevented from converging to the same
peak. The atomic swarm approach is also modified to quantum
swarms—rather than use charge-repulsions between particles
to encourage diversity the algorithm uses quantum particles,
whose position is solely based on a probability function cen-
tered around the swarm attractor. O(N?) particle-to-particle
comparisons are thus avoided. The resulting multiquantum
swarm outperforms charged particle and standard particle
swarms on the moving peaks function with ten optima, with
best results are obtained where the number of swarms is equal
or close to the number of optima.
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In the Self Organizing Scouts approach of Branke et al. [6],
the population is divided into a parent population that searches
the solution space and child populations that track known op-
tima. The parent population is periodically analyzed for clus-
ters of partly converged individuals which are split off as child
populations centered on the best individual in the child popula-
tion. Members of the parent population are then excluded from
the child population’s space. The size of child populations is
altered to give large populations to optima demonstrating high
fitness or dynamism.

Ursem has demonstrated a multipopulation method named
the Multinational GA [33]. This method uses multiple GA pop-
ulations known as nations to track multiple peaks in a dynamic
environment, with each nation having a policy representing the
best point of the nation. A “hill-valley detection” algorithm is
used to sample points on a line drawn between policies and
its results used to migrate individuals from one nation to an-
other, to merge nations and to establish new nations on newly
found peaks. It should be noted that the hill-valley detection
algorithm works only on points between policies (known op-
tima)—the remainder of the space remains unsampled unless
by mutation. The Multinational GA was tested using several
methods of moving a pair of peaks in two-dimensional (2-D)
environments.

These last three approaches indicate three key requirements
of an EA operating in a dynamic multimodal environment:

 they find multiple optima in parallel;

» they track optima once located;

» they repeatedly balance the need to exploit known optima

with the need to search for new optima.
In the following sections, we will begin by describing a SPSO
that can accomplish the first of these tasks in a static environ-
ment. This SPSO is then modified to operate in a dynamic en-
vironment by accomplishing the second and third tasks. The
DSPSO is shown to be effective in tracking multiple optima in
dynamic environments.

III. PARTICLE SWARM

The particle swarm algorithm is an optimization technique in-
spired by the metaphor of social interaction observed among in-
sects or animals. The kind of social interaction modeled within
a PSO is used to guide a population of individuals (so-called
particles) moving toward the most promising area of the search
space. In a PSO algorithm, each particle is a candidate solu-
tion equivalent to a point in a D-dimensional space, so the zth
particle can be represented as #; = (z;1,Zi2,...,Z;p). Each
particle “flies” through the search space, depending on two im-
portant factors: p; = (pi1, pia, - --,PiD), the best position the
current particle has found so far; and Py = (pg1,pg2,...,PgD),
the global best position identified from the entire population (or
within a neighborhood). The rate of position change of the zth
particle is given by its velocity ¥; = (vi1, vi2, - . ., vip). Equa-
tion (1) updates each dimension of the velocity for the sth par-
ticle @; for the next iteration step, whereas (2) updates the ith
particle’s position in the search space [20]

via(t) = x(via(t — 1) + @171 (pia — wia(t — 1))
+ para(pga — wia(t — 1))) (D
xia(t) = zia(t — 1) + via(t) )

Randomly generate an initial population
repeat
for i = 1 to Population Size do
if (&) < f(pi) then p; = &;
Dy = Min(Pheighbors):
for d =1 to D do

equation (1);

equation (2);

end
end
until termination criterion is met;

Fig. 3. Pseudocode of a basic PSO for minimization.
where
2 d + > 4.0
X = an p=p1rT P2, ¥ U
12— ¢ — V2 — 4o|
(€)

The constriction factor y produces a damping effect on the
amplitude of an individual particle’s oscillations, and as a re-
sult, the particle will converge over time. ¢; and s represent
the cognitive and social parameters, respectively. 71 and ry are
random numbers uniformly distributed in [0, 1]. The velocity ¥;
is confined within the range of [—Vyax, +Vamax]. It is sug-
gested that using Vjpax in conjunction with the constriction
factor may be a good idea [20], though it is not necessary.

Two common approaches of choosing p,, are known as gbest
and [best methods. In a gbest PSO, the position of each particle
in the search space is influenced by the best-fit particle in the
entire population, whereas a lbest PSO only allows each par-
ticle to be influenced by the best-fit particle chosen from its
neighborhood. The lbest PSO with a neighborhood size set to
the population size is equivalent to a gbest PSO. Fig. 3 shows
the pseudocode of a basic particle swarm algorithm for mini-
mization [12]. Kennedy and Mendes studied PSO with various
population topologies [22], and have shown that certain popu-
lation structures could give superior performance over certain
optimization functions.

IV. IDENTIFYING SPECIES

Central to the proposed SPSO, in this paper is the notion
of species. A species can be defined as a group of individuals
sharing common attributes according to some similarity metric.
This similarity metric could be based on the Euclidean dis-
tance for genotypes using a real-coded representation, or the
Hamming distance for genotypes with a binary representation.
The smaller the Euclidean (or the Hamming) distance between
two individuals, the more similar they are.

The definition of species also depends on another parameter
rs, which denotes the radius measured in Euclidean distance
from the center of a species to its boundary. The center of a
species, the so-called species seed, is always the fittest indi-
vidual in the species. All particles that fall within the r, distance
from the species seed are classified as the same species.
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input : Lgopeq - a list of all particles sorted in decreasing fi tness values
output: S - a list of all dominating particles identifi ed as species seeds
begin
S=0;
while not reaching the end of Lgoricq do
Get best unprocessed p € Lgoried:
found < FALSE;
for all s € S do

it d(s,p) <rs then

found — TRUE;

break;

end
end

if not found then

| let S — SU{p};

end

end
end

Fig. 4. Algorithm for determining species seeds.

A. Determining Species Seeds From the Population

The algorithm for determining species seeds, introduced by
Petrowski in [31] and also Li et al. in [24], is adopted here. By
applying this algorithm at each iteration step, different species
seeds can be identified for multiple species and then used as the
lbest for different species accordingly. Fig. 4 summarizes the
steps for determining the species seeds.

The algorithm (as given in Fig. 4) for determining the species
seeds is performed at each iteration step. The algorithm takes
as an input Lo ted, @ list containing all particles sorted in de-
creasing order of fitness. The species seed set S is initially set to
(). All particles are checked in turn (from best to least-fit) against
the species seeds found so far. If a particle does not fall within
the radius 7 of all the seeds of S, then this particle will become
a new seed and be added to S. Fig. 5 provides an example to
illustrate the working of this algorithm. In this case, applying
the algorithm will identify s1,, s2, and s3 as the species seeds.
Note also that if seeds have their radii overlapped (e.g., s2 and
s3 here), the first identified seed (such as s5) will dominate over
those seeds identified later from the list Lgoyteq. For example,
s dominates s3, therefore p should belong to the species led
by S9.

B. Choosing Neighborhood Bests

Since a species seed is the fittest particle in a species, other
particles within the same species can be made to follow the
species seed as the newly identified neighborhood best (/best).
This allows particles within the same species to be attracted to
positions that make them even fitter. Because species are formed
around different optima in parallel, making species seeds the
new neighborhood bests provides the right guidance for parti-
cles in different species to locate multiple optima.

Since species seeds in S are sorted in the order of decreasing
fitness, the more highly fit seeds first get allocated with particles
before the less fit seeds in S. This also helps the algorithm to
locate the global optima before local ones.

+

f

s

X

Fig. 5. Example of how to determine the species seeds from the population at
each iteration step. s1, s2, and s3 are chosen as the species seeds. Note that p
follows s5.

C. Complexity

The complexity of the algorithm for determining species
seeds (Fig. 4) can be estimated based on the number of eval-
uations of Euclidean distances between two particles that are
required. Assuming there are N individuals sorted and stored
in list Lgorteq, the while loop steps through Lgopteq N times to
see if each individual is within the radius 7, of the seeds in
S. If S currently contains ¢ number of seeds, then at best the
for loop is executed only once when the particle considered is
within 7 of the first seed compared; and at worst the for loop
is executed ¢ times when the particle falls outside of r, of all
the seeds on S. Therefore, the number of Euclidean distance
calculations required for this procedure, T'(V), can be obtained
by the following [24]:

N

N<T(N) <Y (i-1)=

N(N-1)

5 “)
which shows that the worst time complexity of the procedure is
O(N?) when there are N species seeds. However, it is important
to note that a much tighter upper bound, N, - N, can be derived,
where N, is the upper bound of the number of species that will
be found at each iteration. N, can be estimated according to the
size of the search space and r,. Typically, N, < N. In such
a case, the above procedure takes roughly N, - N Euclidean
distance calculations at each iteration. Since N, is determined
by 7 but not the population size N, this procedure in fact has a
linear time complexity of O(N).

Note that the above procedure for determining species seeds
assumes that all particles must have been sorted in decreasing
fitness values at each iteration. The number of comparisons
involved in this sorting procedure follows a complexity of
O(N log N). If the sorting procedure is taken into account,
SPSO’s complexity would be O(N log N).

The k-means clustering-based PSO as suggested by Kennedy
[19] has a complexity of O(K - N - Tter), where K is the pre-
specified number of clusters, N the population size, and Iter
the number of iterations required before the cluster centers be-
come stabilized. The main drawback with the k-means clus-
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input : Lg,req - A list of all particles sorted in decreasing fi tness values
output: S - A list of all dominating particles identifi ed as species sceds

begin
initial Size = Lgorted.size() ;
for i = 1 to initialSize do
if Lgortealt]. fitness = Lgorsed[i]-seedFitness then

| Remove the i-th particle in Lgopteq
end

end/

Add all seeds in S back to Lgorteq ;

while Lgopieq.5ize() < initialSize do
Randomly generate a new particle p’;

Add p'to Lsorted ;
end

end

Fig. 6. Algorithm for replacing redundant particles.

tering technique is the difficulty in predetermining appropriate
K and Iter values.

The average complexity of SPSO and k-means based PSO are
difficult to calculate since they are problem dependent. How-
ever, it can be said that the key advantage of the procedure for
determining species seeds is that it provides a natural and effec-
tive mechanism in determining /best which allows SPSO to lo-
cate multiple optima efficiently. In contrast, the cluster centers
identified via the k-means clustering technique might be mis-
guiding the swarm population most of the time (see Fig. 2).

V. SPECIES-BASED PSO (SPSO)

Once the species seeds have been identified from the popu-
lation, we can then allocate each seed to be the lbest to all the
particles in the same species at each iteration step. The SPSO
accommodating the algorithm for determining species seeds de-
scribed above can be summarized in the following steps.

Step 1) Generate an initial population with randomly gen-
erated particles.

Step 2) Evaluate all particle individuals in the population.

Step 3) Sort all particles in descending order of their fitness
values (i.e., from the best-fit to least-fit ones).

Step 4) Determine the species seeds for the current popula-
tion (see Fig. 4).

Step 5) Assign each species seed identified as the lbest to
all individuals identified in the same species.

Step 6) Replace redundant particles in species (see Fig. 6 in
the next section).

Step 7) Adjusting particle positions according to (1) and
(2).

Step 8) Go back to Step 2), unless the termination condition
is met.

Comparing with Kennedy’s clustering-based PSO [19] (also
discussed in Section II-A), SPSO improves in the following two
aspects.

* SPSO only requires calling the procedure for determining
species once in order to determine the species seeds,

which are used as substitutes for neighborhood bests.
In contrast, identifying the cluster centers in Kennedy’s
PSO would normally require a prespecified number of
iterations. Note that this number can be difficult to de-
termine in advance, in order to have the cluster centers
stabilized.

* SPSO provides a natural and effective mechanism in iden-
tifying species seeds as neighborhood bests, thereby pro-
viding a better guidance to the particle population in lo-
cating multiple optima. In SPSO, an identified species
seed is always the best-fit individual in that species, how-
ever, this is not always the case in Kennedy’s clustering-
based PSO.

A. Removing Redundant Particles in Species

One potential problem with regard to efficiency (as well as
to locating a complete set of global optima) of SPSO is that
toward the end of a run, it is quite common that some parti-
cles within a species may have converged to one optimum be-
fore other species reach convergence on other optima. Any addi-
tional particles that have converged on the same global optimum
(one of multiple global optima needed to be located) are consid-
ered to be redundant since they do not contribute further to the
improvement of convergence. We can make better use of these
redundant particles by replacing them with randomly generated
particles so that other parts of the search space can be better ex-
plored. Since our objective is to locate multiple optima, the sub-
stitution of redundant particles by randomly generated particles
should also increase the likelihood of SPSO in finding more op-
tima than otherwise. Fig. 6 shows the pseudocode of the proce-
dure for removing additional duplicated particles when particles
are identified as having the same fitness with the species seed
within the same species. Once all duplicated particles are re-
moved from L, teq, the species seeds are then first added back
to Lgorted- If there are more space on Lgoyted, then add randomly
generated new particles to Lgo,toq Until its size is resumed to its
initial size.

The procedure shown in Fig. 6 for replacing redundant par-
ticles in species can be called before the normal PSO updating
algorithm given in Fig. 3.

B. Performance Measurements

We assume that the global optima of all test functions are
known a priori. This allows us to focus on our two main goals
in this research, that is to measure how accurately the SPSO
locates multiple optima, as well as its convergence speed. More
specifically, the performance of the SPSO can be measured in
the following two ways.

1) Accuracy: The model is run for a number of fixed itera-
tion steps, and the accuracy, which measures the closeness of
the fittest solutions from all species to all the known optima, is
recorded in the final iteration step. Note that each known op-
timum corresponds only to a different species seed which is the
fittest particle in that species.

2) Convergence Speed: In this mode, an expected accuracy
level is prespecified and the number of evaluations required to
achieve the expected accuracy is recorded.
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Fig. 7.

In addition, we also measure the performance in terms of suc-
cess rate, i.e., the percentage of runs in which all global optima
are successfully located.

Accuracy is calculated by taking the average of the fitness
differences between all known global optima to their closest
species seeds

|opts|

accuracy = Topts] ]2:; [fit(opt;) — fit(seed;)|  (5)

where |opts| gives the number of known global optima. A pair
of opt; and seed; represents that for each optimum opt ;, there
is correspondingly a closest species seed seed; to opt; (since
normally opt; is within the radius 75 of seed;). This seed; can
be identified from S, the set of species seeds. If opt; is not
within 75 of any species seeds of .S’ (which means opt; is not
found by SPSO), then fit(seed;) is simply set to 0, resulting in
|fit(opt ;) — fit(seed; )| being equal to |g¢(opt )],
the overall accuracy value will be degraded. Since a species seed
is always the fittest individual in its species, (5) should give an
accurate indication of how closely the algorithm identifies all
the global optima. Note that suboptima of a test function are
not taken into consideration in computing accuracy. Since our
goal is to find a complete set of global optima, i.e., all the global
optima of interest in a function, we allow the algorithm to run
for 2000 iterations before termination to see if all known global
optima are found.

To measure convergence speed at a required level of accuracy,
we only need to check set S, which contains the species seeds
identified so far. These species seeds are dominating individuals
sufficiently different from each other, however, they could be
individuals with high as well as low fitness values (see Fig. 5).
We can decide if a global optimum is found by checking each
species seed in S to see if it is close enough to a known global
optimum. An expected accuracy acceptance threshold (0 < € <

1) is defined to detect if the solution is close enough to a global
optimum, and the following condition must be satisfied:

—fit(y)] < e (6)

where s, is a set of all known global optima of a multimodal
function, and S is a set of identified species seeds (each should
correspond closely to an optimum toward the end of a run).
min{||z—y]|} returns the closest pair of a global optimum (from
Sopt) and a species seed (from S). Equation (6) states that for
each global optimum =z there must exist a species seed y such
that the fitness difference between z to its closest species seed
y is not greater than e. This condition must be satisfied or the
maximum number of iterations allowed is reached before a run
can be terminated.

Vo € Sopedy € St min{|lz — y||} A |fit(z)

C. Test Functions

The five test functions suggested by Beasley ef al. [1] and the
Rastrigin function (with different dimensions) were used to test
SPSO’s ability to locate a single or multiple maxima.

As shown in Fig. 7, F1 has five evenly spaced maxima with
a function value of 1.0. F2 has five peaks decreasing exponen-
tially in height, with only one peak as the global maximum.
F3 and F4 are similar to F1 and F2 but the peaks are unevenly
spaced. F5 Himmelblau’s function has two variables = and y,
where —6 < z,y < +6. This function has four global maxima
at approximately (3.58,—1.86),(3.0,2.0),(—2.815,3.125),
and (—3.78,—3.28).

F6 Rastrigin function (where —1.5 < z; < 1.5,1 =
1,...,10) has one global minimum (which is (O, 0) for
dimension = 2), and many local minima. The number of
minima increases depending on the dimension. There are only
nine minima (including the global minimum) for dimension 2
[Fig. 7(f)], however, this increases to 27, 81, 243, 729 minima
for dimension 3, 4, 5, and 6, respectively. F6 with a dimension
of 2, 3, and up to 10 variables were used to test SPSO’s ability
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TABLE 1
TEST FUNCTIONS

Function Range Comments

F1(z) = sinS(57x) [0, 1] 5 global optima with an equal height
2

F2(x) = exp <—210g(2) . (’:aAg‘l) )‘sin6(57r:c) [0, 1] 1 global optimum and 4 local optima

F3(x) = sin®(5m(x3/* — 0.05)) [0, 1] 5 global optima unevenly spaced

2
F4(z) = exp <2log(2) . (I&é{;’ig> ).sinG(Sw(m?’/‘l —0.05)) | [0, 1]

1 global optimum and 4 local optima

unevenly spaced

F5(z,y) = 200 — (22 +y — 11)2 — (z + 3% — 7)?

[-6, 6] 4 global optima with an equal height

F6(z) = 31, (z2 — 10cos(27z;) + 10)

[-1.5, 1.5] | 1 global optima and many local optima

TABLE 1I
RESULTS ON ACCURACY AFTER 2000 ITERATIONS SPSO (AVERAGED OVER 50 RUNS). NichePSO RESULTS
WERE QUOTED FrROM [7]. BOTH SPSO AND NichePSO HAVE ACHIEVED 100% SUCCESS RATE

Function Num. of Ts Accuracy (SPSO) Accuracy (NichePSO)
global optima (mean and std err) (mean and std err)

F1 5 0.05 0.00 £ 0.00 7.68E-05 + 3.11E-05

F2 1 0.05 | 4.00E-17 £ 2.26E-17 | 9.12E-02 £ 9.09E-03

F3 5 0.05 | 3.20E-14 £ 3.20E-14 | 5.95E-06 £ 6.87E-06

F4 1 0.05 1.72E-07 £ 0.00 8.07E-02 + 9.45E-03

F5 4 2.00 | 2.19E-09 £ 2.19E-09 | 4.78E-06 * 1.46E-06

in dealing with functions with numerous local minima and of
higher dimensions.

D. Experiment Setups

For the test functions used in this paper, since the exact
number of global optima and the distances between them
are known, the species radius 75 was set normally to a value
smaller than the distance between two closest global optima.
By doing this, SPSO should be able to sufficiently distinguish
two different optima.

For PSO parameters in (1) and (2), ¢1 and @, were set to
2.05, hence a constriction factor x of 0.729844 was obtained
using (3) (see also PSO with Type 17 constriction in [12] and
[22]). £Vinax Was set to be the lower and upper bounds of the
allowed variable ranges (as suggested in [20, p. 342]).

E. Results on Convergence Accuracy

To test the accuracy of SPSO, a swarm population size of 30
was used for all the above test functions. SPSO was run 50 times,
with each run terminated if 2000 iteration steps is reached. Suc-
cess rate was measured by the percentage of runs (out of 50)
locating all the global optima within the 2000 iteration steps,
for the minimum of an expected accuracy ¢ = 0.0001. r5 was
set to 0.05 for F1 to F4, and 2.0 for F5, respectively. To make a
fair comparison with NichePSO [7], we tried to use a setup that
is as close as possible to that of NichePSO.

NichePSO’s performance was measured in the same way as
SPSO in terms of accuracy (i.e., how close the best particles
in all subswarms are to the actual global optima) and success
rate. Table II shows that though both SPSO and NichePSO have

achieved 100% success rate, SPSO produced a better accuracy
than NichePSO for all five test functions.

SPSO also compared well over these five functions to sequen-
tial niched GA (SNGA), proposed by Beasley er al. [1], though
SNGA used a slightly different setting and performance metrics.
SNGA used a population size of 100 and a sequence of multiple
runs in order to locate all the optima, and it achieved a success
rate of 99% on F1, 90% on F2, 100% on F3, 99% on F4, and
76% on F5, respectively (see [1, Table IV]).

Formation of different species in SPSO discourages interac-
tion between particle species located on different optima, hence
once different species converge on their corresponding optima,
they would stay converged.

F. Results on Convergence Speed

To test the convergence speed of SPSO, we set the expected
accuracy (i.e., the accuracy threshold) e to 0.0001. The number
of function evaluations required for finding all the global optima
at the expected accuracy € are averaged over 50 runs. A run is
only terminated if either the required accuracy for all the global
optima or the maximum of 2000 iteration steps is reached. Two
population sizes were used, SPSO-s30 with a population size of
30, and SPSO-s50 with a population size of 50. The reason for
doing so is to show that population size has a significant impact
on SPSO’s performance efficiency, that is, the number of evalu-
ations can be substantially smaller if an appropriate population
size is chosen.

Table III shows the required number of evaluations for con-
vergence for SPSO with a population size of 30 and 50, respec-
tively (at a required accuracy of 0.0001). It can be noticed that
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TABLE III
RESULTS ON CONVERGENCE SPEED AT THE REQUIRED ACCURACY WITH 100% SUCCESS RATE (AVERAGED OVER 50 RUNS)
Function Num. of € rs Num. of evals.(SPSO-s30) [ Num. of evals.(SPSO-s50)
global optima (mean and std err) (mean and std err)
F1 5 0.0001 | 0.05 4116.00 + 494.83 1134.00+ 216.76
F2 1 0.0001 | 0.05 930.60 £ 202.30 587.00 £ 138.13
F3 5 0.0001 | 0.05 4990.80 + 478.85 1068.00 4+ 175.89
F4 1 0.0001 | 0.05 1224.60 + 271.76 733.00 £ 179.06
F5 4 0.0001 | 2.00 10135.80 £ 925.45 3987.00 4 453.54
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Fig. 8. Snapshot of a simulation run of SPSO on F5—Step 1, 4, 10, and 34. (a) Step 1. (b) Step 4. (c) Step 10. (d) Step 34.

a smaller number of evaluations was required for SPSO with a
population size of 50.

Fig. 8 shows that on F5, in a SPSO simulation run with a
population size of 50, many species seeds were identified by
SPSO initially as expected. Over the successive iteration steps,
these species were merged to form new species groups around
the four optima. Eventually, the species seeds in four species
groups reached the required accuracy of 0.0001 to the four op-
tima at step 34.

G. Sensitivity to Population Size

Population size has a significant effect on the efficiency of
SPSO. Using a small population size is not always a good idea

when the task is to locate multiple optima. On the other hand,
if the population size is too large, then the computation may
become very expensive.

Fig. 9 shows the effect of using varying population sizes for
SPSO. It can be observed that to use the smallest number of eval-
vations in order to reach the required accuracy 0.0001, SPSO
should use a population size of around 70. We can also note that
the standard error is reduced as the population size is increased
to around 90.

H. Sensitivity to Niche Radius

SPSO uses the specified niche radius 75 to determine species
and species seeds, therefore it is understandable that 75 plays
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Fig. 9. Average number of evaluations in finding all known global optima
(with the expected accuracy of 0.0001) over 50 runs for F5, with one standard
error bar.

a critical role in the performance of SPSO. If r; is too small,
many small isolated species could be formed at each genera-
tion. A potential problem with this is that small isolated particles
species tend to prematurely converge very quickly. PSO relies
much on the interactions among particles in order to make fur-
ther progress, so if there are not sufficient numbers of particles in
each species, the species will only converge to a local optimum
and become stagnant there. However, if 75 becomes too large,
it is possible that SPSO will include more than one optimum
within a niche radius r,. If this happens, SPSO will have diffi-
culty in distinguishing different optima within a species. When
s is large enough to cover the entire variable range, SPSO de-
generates to a standard PSO, which is commonly used for lo-
cating a single global optimum.

F5 was chosen to test SPSO’s sensitivity to 5. A population
size of 50 was used. r, was allowed to be varied from 0.5 to
4.0. SPSO was run for a maximum of 1000 generations. Fig. 10
shows the results. A noticeable fact is that SPSO is more sensi-
tive to smaller 75 values than larger r; values. When the r, value
is smaller than 1.1, the number of optima that can be found by
SPSO is rapidly reduced. However, it is interesting to see that
when using larger r, values, SPSO still managed to find three
or four optima. When 7 was increased to 6, although SPSO
was expected to only distinguish two distant optima using the
value, it was able to occasionally find one additional optimum
due to the fact that replacing the redundant particles by ran-
domly generated new particles helps to better explore the search
space.

1. Scalability of SPSO

F6 Rastrigin function was used to test how well SPSO per-
forms on problems with higher dimensions and a large number
of optima. Deb and Goldberg proposed a method to compute the
value of niche radius, 7, in a n-dimensional space where there
exist p global optima [13]

Vi o)’
24/p

N

" Solutions Found —+—

Solutions Found

0 1 2 3 4 5 6 7
Species Radius

Fig. 10. Average number of global optima found over 50 runs for F5, with one
standard error bar.

where x! and 2% are the lower and upper bounds on the kth
dimension of the variable vector of n dimensions. Although this
method assumes that the number of global optima is known and
they are evenly distributed in search space, we can use (7) as
the basis to calculate the 7 values depending on the number of
dimensions. Note that in (7) if p is fixed, then r gets larger as
the number of dimensions increases. In the case of F6, there is
only one global optimum, so the 75 values should be larger for
higher dimensions.

Table IV presents the results on F6. Note that 7, is calculated
according to (7), and population size for each dimensional case
is simply set to be four times the number of known optima for F6
with up to five-dimensions as suggested by Brits [9]. A constant
population size of 972 (the same as for dimension 5) was used
for 6, 8, 9, and 10 dimensions, since the population size would
be too large if it was set to be four times of the number of optima.

In this experiment, the same parameter settings were used as
those by the NichePSO [9]. On this Rastrigin function, SPSO
compared better than NichePSO which only achieved 100%
success rate for dimension of 1 and 2, 97.45% and 97.08%
for dimension of 3 and 4, respectively. It can be noted that
SPSO also has increasing difficulty to converge to the required
accuracy, as the dimension is increased to more than 7. This
is because SPSO is essentially designed to encourage forming
species depending on the local feedback in the search space. The
higher dimension and the presence of a large number of local
optima of the Rastrigin function would require SPSO to have
an increasingly larger population in order to locate the global
optimum.

J. Summary for Static Multimodal Function Optimization

By using the concept of species, we have developed a PSO
which allows the swarm population to be divided into different
species adaptively, depending on the feedback obtained from the
fitness landscape at each iteration step during a run. Particles
from each identified species follow a chosen neighborhood best
to move toward a promising region of the search space. Mul-
tiple species are able to converge toward different optima in par-
allel, without interference across different species. In a classic
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TABLE 1V
SPSO’s SUCCESS RATES ON F6 RASTRIGIN FUNCTION (OVER 50 RUNS). r; IS BASED ON (7)

Dimension 2 3 4 5 6 7 8 9 10
Number of optima 9 27 81 243 729 2187 | 6561 | 19683 | 59049
Population size 36 108 324 972 972 972 972 972 972
Species radius rg 2.12 2.60 3.00 3.35 3.67 3.97 4.24 4.5 4.74

Success rate 100% | 100% | 100% | 100% | 100% | 100% | 94% 70% 62%

GA algorithm, crossover carried out over two randomly chosen
fit individuals often produces a very poor offspring (imagining
the offspring are somewhere between two fitter individuals from
two distant peaks). In contrast, SPSO seems to be able to alle-
viate this problem effectively.

Tests on a suite of widely used multimodal test functions have
shown that SPSO can find all the global optima for all test func-
tions with one or two dimensions reliably (with 100% success
rate), and with good accuracy (< 0 - 0001), however, SPSO
seemed to show increasing difficulty to converge as the dimen-
sion of the Rastrigin function was increased to more than 7.
Although increasing the population size can help resolve this
problem to some extent, a larger population size will incur more
computational cost. Comparison of SPSO’s results with other
published works has demonstrated that SPSO is comparable or
better than an existing evolutionary algorithms (SNGA) and a
NichePSO for handling multimodal function optimization, not
only with regard to accuracy and success rate, but also on con-
vergence speed.

VI. THE DYNAMIC SPSO-DSPSO

Now that it has been shown that the SPSO can locate multiple
optima, it is necessary to modify it for operation in dynamic en-
vironments. The SPSO already finds multiple optima in parallel
rather than sequentially, a necessary requirement for operating
in a dynamic environment, and provides a natural mechanism
for particles to join and exit species and for species to join and
split during a run. However, for success in a changing fitness
landscape two further attributes are necessary:

1) the SPSO must be capable of tracking moving optima
once located;

2) part of the population must be distributed throughout the
search space in order to locate new optima or, in strongly
dynamic environments, to relocate moved optima.

In order to track dynamic optima, every iteration each par-
ticle’s pbest fitness value is reevaluated at its recorded pbest
position before it is compared with the particle’s current fit-
ness. Particles thus use current fitness information when deter-
mining their movement, while maintaining spatial knowledge
of an earlier environmental state. It is intended that this strategy
will give the swarm an improved ability to track peaks relative to
methods which reset the pbest location rather than reevaluate fit-
ness values. This is a simple strategy for dealing with a dynamic
environment and in a periodically or infrequently changing en-
vironment performing the extra evaluation every iteration is un-
necessary. In a continuously varying environment, this extra
evaluation is warranted although it doubles the number of fitness
evaluations performed by the algorithm. As the extra evaluations

do not alter the results obtained, it was decided to avoid the ad-
ditional difficulties of implementing a scheme such as triggered
updates [10], [17] needed to eliminate these evaluations.

To encourage the swarm to search the solution space and
to prevent convergence of particles at known optima a max-
imum species population parameter p,,,x Was introduced. Only
the best pnax candidate members will be allocated as mem-
bers of a species. Lower fitness candidate members that would
cause the species population to exceed pn.x are reinitialized
at random positions in the solution space and are not allocated
to a new species until the following iteration. In this way, the
total population can be prevented from focusing its attention
on too few areas and encouraged to explore the total solution
space. A drawback of this scheme is that the particles of a con-
verged species with velocities at or near zero would not automat-
ically increase their velocities again when optima move—they
would need to be provided with new information from a par-
ticle passing within r4 to raise velocities and begin exploring
the changed environment.

A. Dynamic Environment

Morrison and De Jong’s DF1 dynamic test function gener-
ator [14] has been used to generate environments such as that
shown in Fig. 1. This generator is capable of creating a speci-
fied number of optima in two dimensions using the equation

f(X,Y) = max[H; - R - VX = X2+ (Y -Yi)?] 8)

where N gives the number of optima and the :th optimum is
specified by its position (X, Y;), height H;, and slope R;, with
height and slope in the ranges
H’i S [Hbase7 Hbase + Hrange]
Rl S [Rbase; Rbase + Rrange]~

©)
(10)

Optima vary their positions, shapes, and heights. Heights
cycle between a maximum and minimum value creating a
sawtooth profile when height is graphed against iterations for
an optimum. The fitness at a point on the surface is assigned
the maximum height of all optima at that point; the optima with
the greatest height at a point is then said to be visible at that
point. While the number of optima present cannot be altered
once the environment has been specified, the combination of
changing heights and positions causes optima to temporarily
obscure each other so that they vanish and reemerge.

The dynamism of the environment can be specified by a pa-
rameter A in the range [0.0,4.0], used as input to a logistics
function

At:A'At_l'(l_At—l) (11)
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where the output A, is in the range (0, 1). Using as input a value
of A less than 1.0 produces a static environment (once initial
transient values have been worked through), while increasing A
beyond 1.0 produces increasingly dynamic environments with
a pseudorandom or chaotic series of values produced as A ap-
proaches its upper limit of 4.0. A is then multiplied by a scaling
factor S to adapt the output to the environmental space and used
as the step size for changes in the environment.

The direction of each step is randomly chosen for spatial co-
ordinates, with steps that put a peak out of range reflecting at
boundaries. The direction of change in height and slope vari-
ables is initially randomly chosen and continued in that direc-
tion until it exceeds the range, at which time the direction of
change is reversed.

B. Performance Measurement

Measuring the effectiveness of an EA in a dynamic environ-
ment is substantially more difficult than in a static environment.
Traditional measures used in static environments, such as mean
fitness, best current fitness, and time to convergence lose their
relevance when full convergence is not desired and the best pos-
sible fitness is continuously changing. Hence, in order to mea-
sure both the ability to track visible optima generally and the
best optimum specifically, two measures of error were recorded
at each iteration:

1) the best global error since last change e’gt , where ey, is the

error of the fittest particle relative to the global optimum
for that iteration s

12)

eq, =1 —

” hgt

with fg, the best fitness for any particle in the population

and h,; the height of the global optimum at time ¢; e’gi is
the best e, since the last change in the environment

!/

g, = min{e,_,

€} (13)
where 7 is the last iteration at which a change to the en-
vironment occurred;

2) the best average of best “local” errors since the last envi-

€grirr--

ronment change across all N visible optima efivgt calcu-
lated from e,
1
cave, = 3 D (14)
i=1

where e;t is calculated as per (12) and (13) from the best
fitness f;, of a particle at time ¢ on peak ¢ of height h;, so

that e},
e{d\,gt = min{eavg_, Cavg, .1 - -+ Cavg, 1. (15)
From these, the offline errors e’g (offline) and e/, va(offline) AT€
computed, defined as per Branke [5]
1 X
/ _ /
eg(oﬂline) - T Z egf, (16)
t=1
and
1 X
6;vg(oﬂ;lino) = ? Z 6;vgt A7)
t=1

where 1" is the number of iterations so far.

Average local error has been used in order to measure the
ability of the swarm to track multiple peaks in addition to the
global optimum.

For the purpose of determining f;, when calculating eaygt, a
particle is considered to be on an optimum if the optimum is vis-
ible at the location of a particle. If no particle is on an optimum
the error for the optimum is calculated as the magnitude of the
difference between the optimum’s height and the fitness of the
closest particle within the species radius of the optimum’s apex.
If there is neither a particle on an optimum nor within the species
radius of the optimum’s apex, that optimum is not included in
the average of errors across optima e,yg¢. Error has been as-
signed in this fashion due to the lack of an obvious “fair” mea-
sure of error applying to optima that barely protrude above the
surrounding environment and are visible for a relatively small
volume of the solution space.

C. Dynamic Environment Experimental Setup

The purpose of the experiments performed was twofold. First,
it was necessary to determine empirically the effect of the pop-
ulation maximum py,,x and species radius rs on the DSPSO
algorithm’s performance in different environments. Second, the
DSPSO’s performance needs to be compared to that of existing
algorithms. Random search was used to assess when the algo-
rithms’ ability to find a moving optimum ceased. The atomic
swarm [2], [3] was selected as a PSO variant with good per-
formance in dynamic environments. The atomic swarm uses an
additional term in the particle swarm velocity update (1) to in-
troduce a repulsive force between particles

L G4
a; = Z T{rzw Tcore < ,r’L_] <r (18)
j=1 4
and (1) becomes
via(t) = x(via(t = 1) + @171 (pia — z3a(t — 1))
+ @ora(pga — zia(t — 1)) + aia  (19)

where Q; is the charge of particle ¢, 7i; = Z; — @, rij = |74
and r and 7. are the upper and lower limits of distance be-
tween particles for repulsion to occur. Note that as the atomic
swarm algorithm is designed to track only a single peak rather
than multiple peaks, simultaneously it is unfair to compare its
performance with the DSPSO algorithm on the e’avg results;
these results have been included for the atomic swarm algorithm
for completeness only.

The experiments were run in a 2-D environment with range
[—1.0, 1.0] for 1000 iterations. Peaks’ initial positions were as-
signed randomly. Output from the logistics function was scaled
by a factor of 0.4 to reduce the step sizes and dynamism con-
trolled by assigning A a value in {1.2, 3.3, 3.9}, giving, respec-
tively, a constant step size of 0.067, a repeating series of step
sizes of 0.329 and 0.192 and a chaotic series of step sizes. It
should be noted that although the average output of the logistic
function for A = 3.3 (approximately 0.65) is greater than the
average output for A = 3.9 (0.53), while the maximum possible
output arising from A = 3.99 (0.998) is greater than that when
A = 3.3 (0.825). It is therefore not possible to unequivocally
state whether the dynamism for A = 3.99 should be considered
less than or greater than that for A = 3.3 without a formal def-
inition of “dynamism.” The height and shape parameters of the
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TABLE V
EXPERIMENTAL PARAMETER VALUES

Experiment A No. of particles | No. of Optima | Update Interval Pmaz Ts
1 {1.2,3.3,3.99} 60 3 10 {2,5,10,20,40,60} 0.1
2 {1.2,3.3,3.99} 60 3 10 15 {0.1,0.2,0.5,1.0}
3 1.2 60 3 10 {2,5,10,20,40,60} | {0.1,0.2,0.5,1.0}
4 {1.2,3.3,3.99} 60 3 {1,10,100} 15 0.1
5 1.2 60 {1,3,10,100} 10 15 0.1

peaks were limited to H; € [L-0;5-0] and R; € [1-0;5 - 0]
with initial values of H; and R; evenly distributed throughout
the range of allowed values.

PSO parameters were set in line with Clerc’s values for con-
striction [12]-¢1 and @9 were set to 2.05 and the constriction
factor x to 0.729 844. Velocity was not constrained. The pop-
ulation size was set to 60 to allow for tracking multiple peaks.
Electrostatic parameters for the atomic swarm were otherwise
set to be analogous to those given by [3] scaled for the differ-
ence in environment dimensions. Hence, on 1/2 the particles the
charge () was set to 0.5 (1/4 of the side length of the environ-
ment as per [3]) and to 0.0 on the remaining particles. The upper
limit of distance for repulsion r is set to 2/2 to include all of
the environment and the lower cutoff 7. set to 0.03 (approxi-
mately 1/64th of the side length as per [3]).

Five experiments were performed as follows.

1) To test the effect of the population maximum ppax
on the ability of the DSPSO to track moving peaks
the DSPSO algorithm was run with values of puyax
in {2,5,10,20,40 60} were combined with A in
{1.2,3.3,3.9}. The total population was set at 60 parti-
cles and the species radius 75 set to 0.1. The environment
consisted of three peaks updating every ten iterations.

2) To test the effect of the species radius 75 on the ability of
the DSPSO to track moving peaks the DSPSO algorithm
was run with values of r5 in {0.1,0.2,0.5,1.0} were com-
bined with A in {1.2,3.3,3.9}. The total population was
set at 60 particles and the population max pp,,x set at 15.
The environment consisted of three peaks updating every
ten iterations.

3) The relationship between py,ax and species radius r; was
investigated by assigning pmax and 75 the values from
experiments 1 and 2. A population of 60 was used with an
environment of three peaks updating every ten iterations
and A set to 1.2.

4) The ability of the DSPSO relative to the atomic swarm and
random search to cope with different levels of dynamism
was tested by running the three algorithms in environ-
ments with A in {1.2,3.3,3.99} and the update interval
in {1, 10,100}. DSPSO parameters pmax and 75 were set
to 15 and 0.1, respectively. A population of 60 particles
was used.

5) The ability of DSPSO relative to atomic swarms and
random search to cope with large numbers of peaks was
investigated by using environments with 1, 3, 10, or 100
peaks and A set to 1.2. DSPSO parameters were those
used for Experiment 3.

The different parameter combinations for the experiments are
summarized in Table V. Thirty runs were performed for each
combination of settings and the results averaged over the runs.
Optima and particles were assigned random initial positions for
each run and initial optima heights evenly distributed between
the minimum and maximum optima heights in H;.

D. Results

1) Varying Species Population Maximum ppy.x and
A: Results are provided in Fig. 11. Examining the results
shows that a lower population maximum gives better results for
greater levels of dynamism on the environments investigated,
while the average local error e, and global error e, obtained
with pax set to the total particle population is greater than any
error obtained with py,.x set to fewer particles. Average error is
at a minimum with py.x = 10 for A = 1.2 and pypax = 2 for
A =3.99and A = 3.3. Minimum global errors e, are obtained
with pax values greater than those which provide the lowest
€hvg errors for the same A values.

2) Varying Species Radius rs and A: Results are provided
in Fig. 12. The global error e; is shown to be fairly insensitive
to the 7, setting on the investigated environment with slight im-
provements for the high-dynamism cases at 7 = 0.5 and at the
low-dynamism case for r; = 0.2. Average error is at a minimum
with r; = 0.2 for all A investigated.

3) Varying Species Population Maximum ppy,,x and Specia-
tion Radius r;: As shown inFig. 13, the global error ¢, remains
insensitive to 7 across the range of p,,x values except at the
extremes, where a large r¢ value of 1.0 gives best performance
for pmax = 60 and a small r, value of 0.1 gives best perfor-
mance for ppax = 2. Performance is best for py,.x = 20 across
the range of 7 values. Average errors across peaks are generally
less for the r, = 0.1 and r; = 0.2 cases.

Performance on e, suffers as 7, increases and as pmax
moves away from a value of 10.

4) Comparison of DSPSO, Atomic Swarm, and Random
Search at Different Levels of Dynamism: Results, averaged
first over the iterations of each run then averaged across the
30 runs, are shown in Tables VI-VIII for values of A of 1.2,
3.3 and 3.99, respectively. Initial optima and particle locations
for each run are randomly generated, while optima heights
are evenly distributed between the minimum and maximum
allowable heights. Snapshots of the particles of the DSPSO
algorithm for a sequence of iterations are shown in Fig. 14
for A = 3.99 with an update interval of ten iterations. The
case shown features two visible optima with the third optima
obscured. The particles can be seen to congregate around the
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visible optima with a number of particles distributed over the
remaining solution space. The transition from Fig. 14(c) to (d)
shows the peaks moving and losing their attendant swarms.
Figs. 14(e) and (f) show the swarms relocating and exploiting
the two peaks.

Graphs of error e’g(ofﬂine) versus iteration for the three algo-
rithms and e/, ve(offline) VETSUS iteration for DSPSO and random
search are given in Figs. 15 and 16. These show that, in the runs
with an update interval of 100 [Figs. 15(c) and 16(c)], the global
error e’g offline) of the atomic swarm and DSPSO algorithms
are simiiar before the first environmental update but the error
of the atomic swarm algorithm increases as the runs progress
before stabilizing. A similar relationship can be seen between
the DSPSO algorithm and random search for the cases with

A = 3.99 and updates every interval [Fig. 16(a)]—e’g (offline)
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(left) and global error e, (right) across optima versus r with varying dynamism. The error bar represents one standard

is similar for the first 100 iterations before that for DSPSO in-
creases, and then stabilizes between iteration 200 and 400.

Broadly, results are as expected—as A was increased the
DSPSO and atomic swarm algorithms found it increasingly dif-
ficult to track the global optima; increasing the update interval
results in better tracking; the offline error e,mine decreases
initially then stabilizes. Random search results decrease as the
update interval is increased and stay approximately constant as
peak motion is increased by increasing A.

In all cases, DSPSO outperforms the atomic swarm al-
gorithm. Random search only outperforms DSPSO in the
highest dynamism cases with an update interval of 1 and
A = {3.3,3.99} and also outperforms atomic swarm for an
update interval of 10 and A = {3.3,3.99} and performs as well
as atomic swarm with an interval of 1 and A = 1.2.
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TABLE VI
COMPARISON OF ALGORITHMS WITH A = 1.2
Update Algorithm Global error SE of ej Average local | SE of ey,
interval ey EITOT €g4 g
DSPSO 0.058 0.0016 0.079 0.0042
1 Atomic swarm 0.091 0.0076 0.167 0.0159
Random search 0.091 0.0033 0.118 0.0059
DSPSO 0.011 0.0004 0.030 0.0036
10 Atomic swarm 0.035 0.0051 0.131 0.0186
Random search 0.045 0.0014 0.062 0.0035
DSPSO 0.004 0.0004 0.013 0.0017
100 Atomic swarm 0.008 0.0007 0.060 0.0096
Random search 0.016 0.0010 0.023 0.0015
TABLE VII

COMPARISON OF ALGORITHMS WITH A = 3.3

Update Algorithm Global error SE of e; Average local | SE of e/, g
interval eg EITOT €7
DSPSO 0.124 0.0024 0.153 0.0061
1 Atomic swarm 0.141 0.0028 0.191 0.0097
Random search 0.097 0.0020 0.124 0.0053
DSPSO 0.044 0.0010 0.074 0.0057
10 Atomic swarm 0.059 0.0047 0.124 0.0129
Random search 0.050 0.0039 0.066 0.0031
DSPSO 0.008 0.0005 0.022 0.0026
100 Atomic swarm 0.016 0.0020 0.054 0.0073
Random search 0.018 0.0005 0.025 0.0014

As feared, converged DSPSO species would not explore the  for both the DSPSO and atomic swarm as the number of peaks
solution space until provided with new data by a passing par- increases (with the exception of the change from 10 to 100 peaks
ticle but, as this happened rapidly, this did not pose a significant for atomic swarm on ef(wg). The DSPSO performs as well as
problem for the dynamic environment used. the atomic swarm where a single peak is used and outperforms

5) Comparison of Algorithms With the Number of Optima both the atomic swarm and random search in all other cases

Varying: As shown in Table IX, the e}, and ¢, errors increase  investigated. Random search outperforms atomic search for 100
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TABLE VIII
COMPARISON OF ALGORITHMS WITH A = 3.99
Update Algorithm Global error SE of e; Average local | SE of e/, g
interval ey EITor €y,
DSPSO 0.111 0.0017 0.153 0.0080
1 Atomic swarm 0.132 0.0049 0.199 0.0134
Random search 0.090 0.0013 0.125 0.0066
DSPSO 0.034 0.0010 0.062 0.0054
10 Atomic swarm 0.051 0.0039 0.119 0.0133
Random search 0.047 0.0005 0.064 0.0032
DSPSO 0.006 0.0005 0.018 0.0022
100 Atomic swarm 0.010 0.0009 0.055 0.0084
Random search 0.018 0.0007 0.027 0.0018
! ' ' Particle ! Particle "\

Optima
+

Optima

©

Fig. 14. Snapshots from a run with three optima (note that one is obscured), A = 3.99 and an update interval of ten iterations. (a) Iteration 340, immediately
after environment update. (b) Iteration 342, two iterations after environment update. (c) Iteration 349, semiconverged ten iterations after last environment update.
(d) Iteration 350, immediately after environment update. (e) Iteration 352, two iterations after environment update. (f) Iteration 359, semiconverged ten iterations

after last environment update.

peaks and is close for 10 peaks. For the 100 peak instance the

random search has a lower ¢, error than the DSPSO.

E. Discussion of the Results for the DSPSO

The results indicate that the proposed DSPSO algorithm can
successfully track optima in a dynamic 2-D environment. The

DSPSO outperforms the atomic swarm algorithm in the dy-
namic multimodal environments tested. An atomic swarm is ca-
pable of tracking only one peak at a time and must change op-
tima rapidly when the global optimum changes. The DSPSO
is likely to already have a species exploiting the new global
optimum giving it a distinct advantage, where the global op-
timum frequently switches optima as in the environments tested.
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The graphs of runs with environment updates every 100 iter-
ations [Figs. 15(c) and 16(c)] demonstrate this, showing the
atomic swarm performing similarly to the DSPSO before the
first update but worse after. The DSPSO and atomic swarm
achieved very similar e; values, where the environment featured
a single peak which shows that, in some environments at least,
the DSPSO does not gain its ability to track multiple optima by
sacrificing the ability to track a single optimum.

Only at the greatest levels of dynamism tested, A =
{3.3,3.99} and with the environment changing every iteration,
does random search outperform the DSPSO. Intuitively, as
the level of dynamism increases, the value of information de-
scribing the current environmental state for describing the new
environmental state will approach zero, and hence at some level
of dynamism random search will become the best-performing
technique.

The results show how p,ax can affect the swarm’s searching
and tracking abilities. A number of conclusions can be drawn
from the data obtained. The smaller errors achieved with small
Pmax 10 high-dynamism cases indicate that these py,ax settings
provide better search abilities from more particles being reini-
tialized each iteration. However, the increase in error for the
A = 1.2 instance as pp,.x decreases below ten shows that the
smaller species resulting from low pp,,x are less successful at

Iteration

600 800 1000 0 200 400 600 800 1000

Iteration

(b) ©

verus iteration A = 3.99, updates every (a) 1, (b) 10, and (c) 100 iterations.

tracking optima due to their small size. In high-dynamism en-
vironments a lower py,.x value resulted in lower errors. Com-
paring the effect of changing p,.x values observed in environ-
ments updating every ten iterations with those observed in ear-
lier work on the DSPSO [27], which examined the algorithm in
a similar environment updating every iteration, also shows that
larger pax values give lower errors when the update interval is
increased.

This improvement is due to the reduced need for exploration
when optima move less frequently and the improved ability of
larger species to converge on optima. The results show that the
Pmax parameter can be used to balance the tradeoff between
tracking and search abilities. Generally, high-dynamism envi-
ronments favor relatively small species populations which en-
courage exploration without being so small that species lose the
ability to track individual optima effectively. Low-dynamism
environments favor relatively large species to track a single op-
timum well but not so large that the total swarm will not search
for or track multiple optima effectively. In practice, some knowl-
edge of the environment at hand will be necessary to find the
middle ground and set the parameter effectively.

The insensitivity to changes in rs of the DSPSO algo-
rithm’s ability to find the global optimum is surprising. When

the average local error e, is considered as in Fig. 13 the
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TABLE IX
COMPARISON OF ALGORITHMS WITH VARYING NUMBER OF PEAKS; A = 1.2 AND UPDATE INTERVAL = 10

Number Algorithm Global error SE of e}, Average local | SE of eg,,
of peaks ey EITor €4,
DSPSO 0.017 0.0006 0.017 0.0006
1 Atomic swarm 0.017 0.0006 0.017 0.0006
Random search 0.088 0.0027 0.088 0.0027
DSPSO 0.011 0.0003 0.032 0.0041
3 Atomic swarm 0.026 0.0006 0.124 0.0185
Random search 0.045 0.0016 0.061 0.0034
DSPSO 0.017 0.0006 0.045 0.0053
10 Atomic swarm 0.035 0.0013 0.126 0.0169
Random search 0.039 0.0010 0.051 0.0025
DSPSO 0.025 0.0004 0.047 0.0042
100 Atomic swarm 0.033 0.0004 0.080 0.0087
Random search 0.028 0.0003 0.039 0.0022

rs = {0.1,0.2} settings give better results than , = {0.5,1.0},
while the global error e, is very similar. The difference in e,
is caused by the poor resolution of the DSPSO with large
species radii—only one peak can be properly resolved and
tracked within the species radius; other optima are ignored.
That the global error e’g does not suffer as a result of poor local
optima tracking indicates that not just the number of optima
covered is important; the space covered by all species also

plays a role.

VII. CONCLUSION AND FUTURE WORK

This paper has given details of the SPSO algorithm, a particle
swarm model which uses spatial speciation for locating mul-
tiple local optima in parallel, and adaptations to it to create the
DSPSO algorithm for tracking multiple peaks in a dynamic en-
vironment. The results show that the speciation mechanism im-
plemented with a 7, parameter allows the SPSO to locate mul-
tiple optima in parallel. The addition of a crowding mechanism
implemented using ppyax together with a method for updating
the swarm’s knowledge of the environment gives the swarm the
ability to track multiple dynamic optima and adjust the balance
of exploration and exploitation in a 2-D environment.

There are many areas for potential research. In the future, we
will apply SPSO to large and more complex real-world mul-
timodal optimization problems, especially problems where we
have little (or no) prior knowledge about the search space. We
also need to investigate how to best choose the species radius,
for example, perhaps looking at how to adaptively choose the
species radius based on the feedback obtained during the search.

The method used to update particle knowledge in the dy-
namic environment is simple and as noted earlier computation-
ally inefficient in an infrequently updating environment. This
could be improved by applying triggered information updates.
Also, the 2-D environment used to test the DSPSO algorithm
was simple. Further tests in more challenging environments are
necessary, for example, one with more than two dimensions.
Examining behavior in an environment with a small footprint,
steep-sided global optimum, and large footprint, gently sloping

local optima is also necessary to test the phenomena of parti-
cles disproportionately clustering around the global optima and
of converged species remaining static when the environment
changes until new data are provided. More research could look
at self-adaptation of the user-defined p,.x and rs parameters
to adjust to environments where the dynamism itself changes
with time. Combining the DSPSO with algorithms such as the
atomic swarm is also worth investigating—repulsion could be
used within species to better track moving optima.

Animproved and expanded set of metrics is needed to analyze
behavior over the relevant objectives of the algorithm tracking
the global optimum, tracking multiple local optima, and locating
optima. As the ability to achieve each objective is improved by
having more particles dedicated to it these objectives are in com-
petition with each other. Tuning the algorithm’s performance
requires examining the objectives simultaneously and so that a
beneficial balance can be found.

This paper has demonstrated that the SPSO and DSPSO algo-
rithms are effective in some environments. Although this paper
does not fully explore the possibilities of the algorithms, it is
hoped that it may contribute to others’ efforts to further re-
search into evolutionary optimization in dynamic, multimodal
environments.
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