
LOCATING BINARY FEATURES FOR KEYPOINT RECOGNITION USING
NONCOOPERATIVE GAMES ∗

Victor Fragoso Matthew Turk João Hespanha

University of California, Santa Barbara
{vfragoso@cs, mturk@cs, hespanha@ece.}ucsb.edu

ABSTRACT

Many applications in computer vision rely on determining the

correspondence between two images that share an overlapping re-

gion. One way to establish this correspondence is by matching bi-

nary keypoint descriptors from both images. Although, these de-

scriptors are efficiently computed with bits produced by an arrange-

ment of binary features (pattern), their matching performance falls

short in comparison with other more elaborated descriptors such as

SIFT. We present an approach based on noncooperative game the-

ory for computing the locations of every binary feature in a pattern,

improving the performance of binary-feature-based matchers. We

propose a simultaneous two-player zero-sum game in which a max-

imizer wants to increase a payoff by selecting the possible locations

for the features; a minimizer wants to decrease the payoff by se-

lecting a pair of keypoints to confuse the maximizer; and the payoff

matrix is computed from the pixel intensities across the pixel neigh-

borhood of the keypoints. We use the best locations from the ob-

tained maximizer’s optimal policy for locating every binary feature

in the pattern. Our evaluation of this approach coupled with Ferns

shows an improvement in matching keypoints, in particular those

with similar texture. Moreover, our approach improves the matching

performance when fewer bits are required.

1. INTRODUCTION

Determining the correspondence between two images that share an

overlapping region is an important task in computer vision. Many

applications rely on this correspondence, e.g., image stitching [1],

tracking by detection [2], and others.

One way to establish this correspondence is by matching key-

points on both images, where every keypoint is represented by a de-

scriptor that captures information of the keypoint’s surrounding pixel

neighborhood (patch). A keypoint then is matched by determining

the closest or similar keypoint using their descriptors.

Many applications that demand real-time processing, e.g., [3,

4], require a fast keypoint description and matching. SIFT [5] has

shown a great performance in describing keypoints for matching,

however its computational cost is high. To alleviate this cost, Lepetit

et al. [6] proposed the use of binary features

f(I, p1, p2) =

{

1 if I(p1) > I(p2)
0 otherwise

(1)

where p1 and p2 are two pixel locations, and I(p1) and I(p2) are

their pixel intensities. We can efficiently describe and match an im-

age patch by concatenating the bits produced by several binary fea-

tures in a pattern [6, 7].

Ideally, a unique binary descriptor per patch is desired, as it will

guarantee a low matching error rate. Although these features are

∗THIS IS A PREPRINT VERSION PUBLISHED BY THE AUTHORS.

easy to compute and match, they cannot capture enough discrim-

inative information for matching keypoints accurately, and we are

interested in improving them.

One way to increase their performance is to select the best lo-

cations of every binary feature in the pattern for capturing more dis-

criminative information. In other words, to make the matching more

accurate, we need to select p1 and p2 of every feature in the pattern

to produce disjoint keypoint descriptions.

Our problem of selecting the best pixel locations for the pattern

can be formulated as an optimization problem. In particular, the best

pixel locations can be seen as an optimal game strategy for a player

that wants to recognize keypoints given their image patches. There-

fore, we can use the mathematical tools that game theory provides to

find such optimal strategy.

In this work, we present an approach based on noncooperative

games for finding the locations of every binary feature used in a

pattern for keypoint recognition. We designed a game that enforces

the use of informative pixel pairs in a pattern. We show that the

feature locations found improve the recognition of keypoints across

certain image distortions.

2. RELATED WORK

Recent literature shows three different manners of locating binary

features in a pattern used by a keypoint matcher: randomly, heuris-

tically, and generatively. The available locations for the features are

constrained by the size of the patch and the number of bits to use,

i.e., the number of binary features in the pattern.

Lepetit et al. [6] and Ozuysal et al. [7] used a pattern containing

binary features randomly located. Both approaches train a classifier

that learns to recognize keypoints by using the bits produced after

evaluating the pattern with the training patches. Generating the pat-

tern randomly is easy and fast. However, the pattern does not guar-

antee an arrangement of features that capture the most discriminative

information.

Calonder et al. [8] presented experiments that evaluated several

patterns formed heuristically. The best pattern that they found was

produced by locating the features following an isotropic Gaussian

distribution. Their pattern is also easy and fast to generate. However,

the paper did not justify the nature of such pattern, leaving questions

open about their optimality.

Leutenegger et al. [9] presented a radial-symmetrical pattern.

The pattern has spaced single pixel locations that are on concen-

tric circles centered on the keypoint. The locations used are deter-

mined by computing those pixel pairs whose distance is less than

a threshold. Nonetheless, Leutenegger and colleagues did not pro-

vide a derivation of the constraints that determine the topology of

the pattern.

Rublee et al. [10] presented a methodology that learns the best

pixel locations that present high variability and means close to 0.5

across a large training set. However, the authors used those locations

as the optimal pattern for any keypoint matching problem. This im-

plies a risk of a bad generalization that can decrease the matching

performance. These motivated us to create a different method, based

on noncooperative games, to compute an optimal pattern.

3. THE GAME

3.1. Review of Zero-Sum matrix games

In these games two players confront each other. Each player pos-

sesses a finite set of actions or an action space Γ. The outcome of

a game is quantified by a function that takes in the actions played.

This function can be represented by a matrix A = [aij], where the

i-th row corresponds to the i-th action taken by one player, and the

j-th column corresponds to the j-th action played by the opponent.

Each player in the game has an objective: one player wants

to minimize the outcome by selecting rows, whereas the opponent

wants to maximize it by selecting columns. The game can be played

simultaneously which means that each player decides which action

to play without knowing the other player’s action.

A mixed policy is a probability distribution over the actions of

a player, describing a game strategy that a player follows, ideally,

according to his objective. It is assumed that both players play inde-

pendently. Therefore, we can compute the expected outcome of the

game

J = y
T
Az =

|Γ1|
∑

i=1

|Γ2|
∑

j=1

aijyizj (2)

where yi is the probability that the minimizer selects action i and zj
is the probability that the maximizer selects action j. A pure policy

is a game strategy that suggests to execute a single action k at each

step. Therefore, a pure policy can be described with a mixed policy

by indicating to perform action k with probability of 1.

Mixed saddle-point equilibrium policies (y⋆, z⋆) determine

“optimal” strategies yielding on average a good course for both

players throughout the game. A mixed saddle-point equilibrium is

achieved when both players play optimally, and any deviation from

the optimal strategy brings a worse expected outcome: the outcome

increases when the minimizer plays with a non optimal strategy

y, and it decreases when the maximizer plays with a non optimal

strategy z. This can be stated more formally as follows:

y
⋆T

Az ≤ y
⋆T

Az
⋆ ≤ y

T
Az

⋆
(3)

Therefore, we are interested in computing mixed saddle-point equi-

librium policies for our problem, which can be found by solving

appropriate linear programs [11].

3.2. Locating Binary Features

To guarantee a better keypoint recognition rate we must create pat-

terns that produce disjoint binary descriptors given a set of patches to

describe, i.e., produce a unique descriptor per patch as much as pos-

sible. Hence, we must analyze every patch in order to find the best

locations for every binary feature in the pattern. An ideal pair of

pixels for locating a binary feature present a high intensity variation

across all patches. This intensity variation implies a high likelihood

of producing disjoint descriptors when we concatenate the generated

bits.

Therefore, we can define a simultaneous zero-sum matrix game

in which a player wants to maximize his payoff by selecting pixel

pairs that present high variation across patches, while the opponent

wants to reduce such a payoff by selecting patch pairs. Hence, we

Fig. 1. Payoff matrix computation. The entry aij is computed using

the actions (Im, In)i and (pr, ps)j . A high payoff is returned when

the two pixel locations provide a high variation across patches Im
and In, and a low payoff is returned when the variation is low.

need to design a payoff function that returns a high payoff if a pixel

pair has high intensity variation across patches, and a low payoff if

the variation is low. We are interested in obtaining the optimal policy

for the maximizer as it determines the pixel pairs that we can use in

a pattern for improving the keypoint recognition rate.

We define the structure of this game more formally by defining

the action spaces and the payoff function. The minimizer has the

2-combination set of the patches set I as his action space, i.e., a set

formed of pairwise combinations of patches

Γ1 =

(

I

2

)

(4)

The maximizer has the 2-combination set of the pixel locations set

P as his action space, i.e., a set formed of pairwise combinations of

pixel locations

Γ2 =

(

P

2

)

(5)

The payoff matrix therefore is built as follows

aij = |D1(i, j)−D2(i, j)|

= |Iim(pjr)− I
i
m(pjs)− I

i
n(p

j
r) + I

i
n(p

j
s)| (6)

where (Im, In)i ∈ Γ1 and (pr, ps)j ∈ Γ2. The terms D1(i, j) and

D2(i, j) evaluate the difference of the pixel intensities at a particu-

lar patch, and by subtracting them, we measure the variation across

patches (see Fig. 1). This payoff function enforces the desired ob-

jectives: the maximizer will select pixels that are different within the

patch and vary across patches.

We are interested in computing the best strategy for the maxi-

mizer, i.e., z⋆, a mixed saddle-point equilibrium policy. Our pri-

mary goal is to obtain the best feature locations from the solution.

After solving the game, we sort the elements in the computed policy

using their probabilities, and pick the required number of locations.

We generate the pattern randomly when no solution or a pure policy,

i.e., a single location with high variation, is found.

The players in the described game can be interpreted in a very

intuitive manner. The minimizer can be pictured as an agent that

controls the nature of the patches in order to confuse the opponent,

while the maximizer can be pictured as an agent that wants to se-

lect the pixel pairs carefully to recognize the keypoints better. The

mixed policies found to this game assume that each participant plays

rationally, which is not entirely true in the minimizer case.

Fig. 2. The keypoint patches are splitted into chunks, and they are

introduced to a game solver. After finding the mixed policy for each

chunk, a selector extracts the best locations for the features. Subse-

quently, the pattern is formed.

Fig. 3. Each game produces a bit region specialized in recognizing

a subset of the keypoints. We concatenate the L solutions of each

game to form the final arrangement of n bits. In this figure, only 3

bits were computed per game.

3.2.1. Computational issues and their solutions

Computing the action spaces Γ1 and Γ2 is computationally in-

tractable as the memory required to store them can be high. There-

fore, by reducing the sets P and I we can produce action spaces

with a lower cardinality, and that are therefore memory efficient.

We reduce the memory complexity by partitioning the problem

into subproblems: we can form a pattern by coupling the solutions

of several games, whose solutions provide the best binary features

specialized in recognizing a subset of the patches (see Fig.2 for an

overview). We partition the set of patches into L subsets, i.e., I =
∪L

l=1Il, and we formulate L games, each generating a pattern for

a specific subset Il. Hence, Γ1 is now defined over the pixel pairs

constrained by Il for each game. To reduce Γ2 we add a distance

constraint on the pixel pairs for each game, i.e.,

||pr − ps|| ≤ ǫ (7)

where ǫ is a threshold in pixels.

The solutions to these new games are still valid, because the

arrangements of the binary features are bit concatenations. The final

concatenation of bits therefore contains sections that are specialized

in recognizing a subset of the keypoints (see Fig. 3). Furthermore,

the proposed architecture (see Fig. 2) allows to solve the games and

select the features in parallel which can speed up the process.

Mixed saddle-point equilibrium policies usually are sparse.

However, in order to fulfill the fixed number of bits required for

each game, we trim the found policy by ranking the actions with its

probabilities and select the best actions accordingly. When a pure

policy or no solution is found, then the best strategy is to generate

the locations randomly.

4. EXPERIMENTAL RESULTS

We used the ferns-matcher [7] for evaluating our approach. This

matcher trains a classifier that learns to recognize keypoints after

observing the generated binary codes produced by using a randomly

computed pattern and a training set of patches. We integrated our

approach to generate a pattern before training the classifier, and we

Fig. 4. Graffiti dataset (top row) and Wall dataset (bottom row).

Left column holds the reference images while right column holds a

distorted image. These datasets contain five images of the reference

image varying the viewpoint.

compared its performance with another classifier trained with a ran-

domly generated pattern.

The ferns-matcher divides the generated binary codes into s

chunks of bits (fern) for training, and there are k ferns that produce

n = k × s bits total. We adapted the solutions discussed in Sec.

3.2.1 as follows: a single game is solved to find the feature locations

per fern, and Γ1 is formed after partitioning the training keypoint

set in L = k subsets and Γ2 is formed after adding the distance

constraint, eq. (7) with ǫ = 5.

The experiments were implemented in C++ with the use of the

libraries OpenCV 2.3 for vision tasks and GLPK 4.47 for solving the

linear programs that find the mixed saddle-point equilibrium policy.

We extended the OpenCV class that matches keypoints using ferns

by including our approach to find the pattern before training.

We used the Wall and Graffiti datasets (see Fig. 4) from the

widely used Affine Covariant Features dataset [12] for our experi-

ments. These two datasets contain a reference image and five images

that show different viewpoints of the same scene. The used datasets

provide the transformations (homographies) that map the reference

image to the distorted images.

To detect keypoints we used the OpenCV implementation of the

ORB keypoint detector [10]. We matched the 500 keypoints with

several matchers and determined a successful match when ||xD −
HxR|| < δ, where xD is a keypoint detected on a distorted image;

H is the homography; and xR is the reference keypoint. We used

δ = 5 pixels to tolerate the pixel error implied in the transformation,

and the default patch size from OpenCV (31× 31 pixels).

Fig. 4 shows a performance comparison between GTFL-Ferns,

a ferns-matcher coupled with our approach, and a regular ferns-

matcher with different bit sizes (450 = 50fern × 9bits/fern and

256 = 32fern × 8bits/fern bits). The x-axis shows the image in-

dices ranging from 1 to 6, where image 1 is the reference image

(used for training) and the remaining images are sorted denoting an

increase in the viewpoint. The y-axis shows the fraction of keypoints

correctly matched.

We can observe in Fig. 5(a) that GTFL-Ferns performed com-

petitively when 450 bits were used, and better when 256 bits were

used. We can notice from 5(b) an improvement for 450 and 256

bits when the patches to recognize present a similar texture. Further-

more, our approach improved the recognition considerably even on

the training image (see Image 1 in Fig. 4), which confirms the gen-

eration of more disjoint binary descriptors. Moreover, we can see an

overall gain in the tolerance of an increasing viewpoint angle even

though we never accounted for that distortion.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Image

R
e
c
o
g
n
it
io

n
 R

a
te

 (
In

lie
rs

)

Matching Performance (Graffiti Dataset)

GTFL-Ferns 450 bits
Ferns 450 bits
GTFL-Ferns 256 bits
Ferns 256 bits

(a)

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

Image

R
e
c
o
g
n
it
io

n
 R

a
te

 (
In

lie
rs

)

Matching Performance (Wall Dataset)

GTFL-Ferns 450 bits
Ferns 450 bits
GTFL-Ferns 256 bits
Ferns 256 bits

(b)

Fig. 5. Performance evaluation in matching keypoints with increasing viewpoint using Ferns and GTFL-Ferns. Although the computed

mixed policy is not fully applied (see 3.2.1), GTFL-Ferns presents an overall improvement, in particular when the patches have a very similar

texture.

5. CONCLUSIONS AND FUTURE WORK

We presented a simultaneous zero-sum matrix game that models an

interaction between the nature of the image patches enclosing a key-

point and a player that wants to find good locations for computing

binary features. The game, which is built and solved automatically,

is designed for computing binary feature locations that capture more

discriminative information for better recognizing keypoints. We an-

alyzed the computational issues and described the solutions that this

approach presents. Moreover, our proposed solution can be paral-

lelized for computing the binary feature locations faster.

We showed an evaluation of our approach coupled with a ferns-

matcher [7]. Our experiments showed an improvement on the recog-

nition rate (keypoints correctly matched), and specially an improve-

ment when fewer bits are required to recognize keypoints and when

the patches to describe present a similar texture. In addition, our re-

sults also indicate that there is a gain in the tolerance of an increasing

viewpoint angle even though we never accounted for that distortion.

Although, binary features are simple and efficient to match,

these features have a lower capacity of capturing representative in-

formation for recognizing keypoints accurately. A more significant

improvement can be achieved if more information is included in the

game, e.g., patch appearance after rotation and scale changes.

We plan to extend our evaluation of our algorithm on patches

that are previously rectified using the main keypoint orientation, and

compare the results with recent approaches that do not train a clas-

sifier and use the binary code produced by the pattern itself, such as

ORB [10] and BRISK [9].

Acknowledgments: Victor Fragoso would like to thank UC

MEXUS-CONACYT for the funding (Fellowship 212913).

6. REFERENCES

[1] M. Brown, R. Szeliski, and S. Winder, “Multi-image matching using
multi-scale oriented patches,” in Proc. IEEE Conf. on Computer Vision

and Pattern Recognition, 2005, vol. 1, pp. 510–517.

[2] M. Ozuysal, V. Lepetit, F. Fleuret, and P. Fua, “Feature harvesting
for tracking-by-detection,” in European Conf. on Computer Vision, pp.
592–605. Springer Berlin / Heidelberg, 2006.

[3] G. Klein and D. Murray, “Parallel tracking and mapping on a cam-
era phone,” in Proc. IEEE Intl. Symposium on Mixed and Augmented

Reality, Oct. 2009, pp. 83–86.

[4] D. Wagner, A. Mulloni, T. Langlotz, and D. Schmalstieg, “Real-time
panoramic mapping and tracking on mobile phones,” in Proc. IEEE

Virtual Reality Conference, March 2010, pp. 211–218.

[5] David G. Lowe, “Distinctive image features from scale-invariant key-
points,” Intl. Journal of Computer Vision, vol. 60, no. 2, pp. 91, Nov.
2004.

[6] V. Lepetit, P. Lagger, and P. Fua, “Randomized trees for real-time key-
point recognition,” in Proc. IEEE Computer Vision and Pattern Recog-

nition, 2005, vol. 2, pp. 775–781.

[7] M. Ozuysal, M. Calonder, V. Lepetit, and P. Fua, “Fast keypoint recog-
nition using random ferns,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 32, pp. 448–461, March 2010.

[8] M. Calonder, V. Lepetit, and P. Fua, “Brief: Binary robust indepen-
dent elementary features,” in European Conf. on Computer Vision, vol.
6314, pp. 778–792. Springer Berlin / Heidelberg, 2010.

[9] S. Leutenegger, M. Chli, and R. Siegwart, “Brisk: Binary robust invari-
ant scalable keypoints,” in Proc. IEEE Intl. Conf. on Computer Vision,
2011.

[10] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: an efficient
alternative to sift or surf,” in Proc. IEEE Intl. Conf. on Computer Vision,
2011.

[11] João P. Hespanha, “An introductory course in noncooperative game the-
ory,” Available at http://www.ece.ucsb.edu/˜hespanha/
published, 2011.

[12] K. Mikolajczyk and C. Schmid, “Scale & affine invariant interest point
detectors,” Intl. Journal of Computer Vision, vol. 60, pp. 63–86, Octo-
ber 2004.

