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Locating induced earthquakes 
with a network of seismic stations 
in Oklahoma via a deep learning 
method
Xiong Zhang  1, Jie Zhang1*, Congcong Yuan1, Sen Liu2, Zhibo Chen  2 & Weiping Li2

The accurate and automated determination of small earthquake (ML < 3.0) locations is still a 
challenging endeavor due to low signal-to-noise ratio in data. However, such information is critical 
for monitoring seismic activity and assessing potential hazards. In particular, earthquakes caused by 
industrial injection have become a public concern, and regulators need a solid capability for estimating 

small earthquakes that may trigger the action requirements for operators to follow in real time. In 
this study, we develop a fully convolutional network and locate earthquakes induced during oil and 

gas operations in Oklahoma with data from 30 network stations. The network is trained by 1,013 
cataloged events (ML ≥ 3.0) as base data along with augmented data accounting for smaller events 
(3.0 > ML ≥ 0.5), and the output is a 3D volume of the event location probability in the Earth. The 
prediction results suggest that the mean epicenter errors of the testing events (ML ≥ 1.5) vary from 
3.7 to 6.4 km, meeting the need of the traffic light system in Oklahoma, but smaller events (ML = 1.0, 
0.5) show errors larger than 11 km. Synthetic tests suggest that the accuracy of ground truth from 
catalog affects the prediction results. Correct ground truth leads to a mean epicenter error of 2.0 km in 
predictions, but adding a mean location error of 6.3 km to ground truth causes a mean epicenter error 
of 4.9 km. The automated system is able to distinguish certain interfered events or events out of the 
monitoring zone based on the output probability estimate. It requires approximately one hundredth of 
a second to locate an event without the need for any velocity model or human interference.

Locating earthquakes constitutes a fundamental problem in seismology1,2. In particular, the reporting of earth-
quake locations (or hypocenters) in real time helps provide an assessment of potential hazards in local areas. For 
moderate to large earthquakes, such real-time reporting could lead to the issuance of early warnings to the public 
prior to the arrival of destructive and deadly seismic waves; for small earthquakes, it helps characterize subsurface 
activities and delineate fault movements. An earthquake occurs when two blocks within the earth suddenly slip 
past one another. In addition to tectonism, seismicity can be induced by the addition or removal of either surface 
water or groundwater and by the injection or removal of �uids due to industrial activity3,4. In Netherlands, there 
have been over 1000 induced earthquakes in the Groningen gas �eld since 1986. An ML 3.6 event on 16 August 
2012 caused building damage and led to serious public concern5. In China, along with increasing seismicity, sev-
eral moderate earthquakes (ML 4.4-5.7) occurred in the shale gas production �eld in Sichuan Basin. �ree recent 
earthquakes of ML 4.4-4.9 on 24 and 25 February 2019 in the �eld caused two deaths, 12 injuries, and damage 
to 1,091 houses. In Oklahoma, US, approximately 900 widely felt M ≥ 3.0 earthquakes occurred in north-central 
region in 2015, while only one M ≥ 3.0 earthquake occurred in Oklahoma on average each year before 20094,6. It 
is now widely recognized that this almost 900-fold increase in earthquake occurrence is related to the widespread 
disposal of saltwater being coproduced with oil in seismically active areas3,4. In addition, the largest earthquake 
reported to date to be induced by �uid injection is the 2016 M 5.8 Pawnee, Oklahoma earthquake7. Oklahoma 
regulators launched a tra�c-light system in 2016 requiring operators to take action if an event of ML ≥ 2.5 occurs, 
which was further lowered to ML ≥ 2.0 in 20188. Oklahoma regulators also realized that they need to build an 
automated system capable of reporting earthquakes 24 hours a day to meet the protocol, but the current practice 
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is to verify earthquakes manually by an analyst during normal business hours8. Similar tra�c-light protocols were 
also developed in several other states in the US or other countries where induced earthquakes are concerned3,7. 
�erefore, there is a strong demand for technology that can timely and accurately report small earthquakes auto-
matically, providing regulators with a �rm scienti�c foundation for establishing requirements under which indus-
try operates, and giving public assurance that the regulations are adequate and are being followed3.

Earthquakes are conventionally located through a process composed of detecting events, picking the arrival 
times of P-waves, and estimating the hypocentral parameters from the arrival times using a velocity model. 
Picking the �rst arrivals may also serve as event detection. Moreover, picks of P-wave arrival times from two or 
more seismic stations are needed to locate an event. Utilizing arrival times to locate earthquakes as opposed to 
waveforms simpli�es the problem considerably; the corresponding methods, which include travel time inver-
sion9, grid search10, and double-di�erence techniques11, are implemented in many di�erent forms. However, 
conventional arrival time methods su�er from uncertainties in the time picks, especially for events with lower 
magnitude (M < 3). �us, the dependence on human veri�cation o�en delays the availability of the results.

�ree-component waveform data should contain more earthquake information than only the arrival times of 
P-waves. Signi�cant advance has been made in utilizing waveform data in seismological studies. �ese include 
many recent e�orts of applying arti�cial intelligence to detect events or signals12–21 and pick seismic phases22–24. 
However, utilizing waveform data to locate earthquakes in a large area is challenging because numerous param-
eters in�uence seismic data in addition to the hypocentral parameters. Current e�orts for locating earthquakes 
with machine learning methods are either limited to data from a single station21,25 or a small area with a few 
labels15,26,27. Among limited e�orts to develop an automated detection system for a general earthquake location 
problem, an earthquake search engine method that applies fast search algorithms in computer science was intro-
duced to �nd the best match for an earthquake waveform from a preset synthetic database, thereby returning 
the source information from the matched synthetic within a second28. �is method is robust for dealing with 
long-period data at a large recording scale, but it is di�cult to implement for regional or local earthquake mon-
itoring, since the waveform data for which are highly sensitive to structural heterogeneities. Recently, another 
attempt was performed to apply arti�cial intelligence, speci�cally, the convolutional neural network (CNN) 
method, to detect seismic events from streaming waveform data21. �is method can detect more than 17 times 
more earthquakes than a catalog by using single-station data in real-time applications, and it also outputs the 
probabilistic locations of detected events. However, CNN methods that implement the multilabel classi�cation of 
training data from single-station waveforms could only approximately map induced seismicity in Oklahoma into 
six large areas. Unfortunately, while these probabilistic surface locations are helpful, they are not comparable to 
the hypocenter accuracy required for earthquake catalogs29.

In this study, we focus on real-time earthquake location problems for small earthquakes by accessing seismic 
waveform data from a regional network of 30 stations in Oklahoma. Motivated by the recent success of applying 
CNNs to solve inverse problems in medical imaging30, we design a novel architecture, namely, the fully convolu-
tional network (FCN), which can predict a 3D image of the earthquake location probability in the Earth from a 
volume of input data recorded at multiple network stations. �e FCN is initially developed for image segmenta-
tion31,32, medical image reconstruction33, and synthesizing high-quality images from text descriptions34, where 
the output is also a pixel image representing the recognized object position in the input. �is approach is di�erent 
from the typical application of CNNs to classi�cation tasks, where the output for the input data is a single class 
label. Instead, the output of our network includes a large number of pixels representing a 3D image, in which the 
peak value corresponds to the most likely source location in the Earth. A deep learning approach for locating 
small earthquakes is appealing because it does not need picking.

To monitor the induced seismicity in Oklahoma, 1,013 cataloged earthquakes (ML ≥ 3.0) are used as base 
training samples, and further constructed data (5 times of the base data) from these training samples are aug-
mented in the training set to account for smaller events (3.0 > ML ≥ 0.5). We tested events in four separate mag-
nitude groups: (1) ML ≥ 3.0; (2)3.0 > ML ≥ 2.0; (3)2.0 > ML ≥ 1.5; and (4) ML = 1.0, 0.5. We shall discuss the 
location errors by testing synthetics and real data in various situations, comparing with the conventional location 
method, and comparing the resolution with other seismic networks with di�erent station intervals. �e testing 
results suggest that the machine learning method is capable of meeting the standard of Oklahoma regulations for 
reporting events of ML ≥ 2.0 in real time to guide the action of local operators in the shale gas production �eld.

Results
Data.  �e sharp increase in the occurrence frequency of small- to moderate-sized earthquakes in Oklahoma, 
USA, since 2009 has drawn elevated concerns regarding the potential for earthquake hazards in this area3,4. Many 
studies have shown that the sharp increase in seismicity in Oklahoma is principally caused by the large-scale 
injection of saltwater into the Arbuckle group35,36. To monitor the induced seismicity in Oklahoma, the tem-
porary Nanometrics Research Network consisting of 30 broadband seismic stations operated by Nanometrics 
Seismological Instruments was deployed in this region from 10 June 2013 to 31 March 2016. �e seismic network 
covers an area of approximately 320 km × 270 km in Oklahoma. �e minimum station interval varies from 14 to 
30 km, and the signals are recorded from 0.1 Hz to 30 Hz on all three components. A bandpass �lter of 2.0–8.0 Hz 
is applied to process all of the data for our application.

We selected 1,013 events with magnitudes ranging from ML 3.0 to ML 4.9 as cataloged by the U.S. Geological 
Survey (USGS) along with �ve times of the events augmented as additional data for accounting for smaller events 
to train the neural network. �e augmentation approach will be introduced in the following. Each event is in a 
90 s time window as a continuous record. �e starting time of the window for each event is the �rst break point 
of the event at the very �rst recording station. To account for uncertainty of the starting time, we add another 
training set of the same 1,013 events by applying an arbitrary shi� (<10 s) to the starting time. To simulate the 
real situation, we use the early events as training samples (from 10 June 2013 to 6 November 2015) and the latest 
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events as testing samples (from 7 November 2015 to 31 March 2016). In a later section, di�erent numbers of 
events in training and testing groups are also tested to study the performance of the neural network.

Current catalog for earthquakes in Oklahoma mainly documents events of ML ≥ 2.5 along with a small num-
ber of smaller events (2.5 > ML ≥ 1.5). However, lowering the event magnitude threshold for detection and loca-
tion to below ML 3.0 is critical for following regulations in Oklahoma. We found 200 events of 3.0 > ML ≥ 2.0 and 
53 events of 2.0 > ML ≥ 1.5 in the catalog, and chose them as testing events. But the system needs training events 
for this magnitude range as well. �erefore, one of our e�orts is to construct additional training set for locating 
and testing smaller events with magnitude below ML 3.0. Taking the 1,013 training events (ML ≥ 3.0) as base 
data, we scale down the amplitudes of these events to the magnitude randomly ranging from ML 0.5 to ML 3.0 
according to the Richter scale for earthquake magnitude but adding with the normal level of noise recorded at 
the corresponding stations37. �is approach is more e�ective than directly using smaller events, since the ground 
truth of smaller events is subject to larger uncertainty due to lower signal-to-noise ratio. �is process is regarded 
as data augmentation in deep learning, creating new training dataset from base data by making minor alterations. 
We also repeat the above process for creating testing data in the lower range of 1.5 ≥ ML ≥ 0.5 by scaling the 200 
moderate size of testing events (ML ≥ 3.0) and make up missing events in this lower range in the catalog. With 
these e�orts, we should be able to establish capability of the system to locate events in a broad magnitude range 
of ML ≥ 0.5.

To further test the system and understand its reliability, we also generate synthetic seismograms using the 
source information of 870 training events and 200 testing events. We demonstrate the advantage of applying the 
machine learning method over the conventional grid search method for dealing with small events. �e testing 
procedure and results are provided in the Supplementary Information. �e system is capable to detect inter-
fered events that are not in the interest zone or a record of just random noise. Examples are presented in the 
Supplementary Information as well.

3D location image.  In machine learning problems, we need to pair the input data and the output results in 
a quantitative manner. Due to the underlying physics, there is a nonlinear relationship between the seismogram 
data and event location parameters in an earthquake location problem. Accordingly, instead of generating a single 
class label for the earthquake location, our FCN model outputs a 3D image volume that represents the probability 
of the event location in the subsurface, as shown in the bottom plot of Fig. 1a. �e point within the image with 
the largest magnitude marks the most likely event location. �e details of the network architecture illustrated 
in Fig. 1a will be elaborated in the section of Methods. �rough numerical studies with a grid search method to 
calculate the mis�t of the arrival times of an event in the subsurface, we �nd that the distribution of the mis�t 
somewhat re�ects a Gaussian probability for the event location, where the minimum mis�t corresponds to the 
most likely location. �erefore, we represent the ground truth of the event location by a 3D Gaussian function, 
the peak point of which marks the event location, and the peak value is 1.0. Testing examples with real data reveal 
that the output may not maintain the shape of a Gaussian function, and the peak value may vary depending on the 
uncertainty in the result. As shown in Supplementary Information, the peak value will be signi�cantly lower if the 
true event location of the testing data is outside the 3D volume (see Supplementary Fig. S7). Moreover, the result 
is expected to be more accurate for higher peak values. �erefore, we are able to eliminate false results using a 
preset threshold of the probability value. False results may include events outside the interest zone, random noise, 
or waveform data that do not signi�cantly resemble any event in the training dataset (see Supplementary Fig. S8).

To monitor induced seismicity in Oklahoma, the volume range of our output is constrained by our zone of 
interest bounded by the latitude range from 34.975° to 37.493°, the longitude range from −98.405° to −95.527°, 
and the depth range from 0 km to 12 km. As designed in our network, the output volume is 80 × 128 × 30 
grids, representing a study area with dimensions of 2.518° (Latitude) × 2.878° (Longitude) × 12 km or 
280 km × 259 km × 12 km. �is means that the grid spacing in the 3D pixel volume is 0.0315° in latitude (3.5 km), 
0.0225° in longitude (2.0 km), and 0.4 km in depth. �e number of input and output grids is coupled with the 
number of layers in the network structure. Synthetic tests show that slightly di�erent grid size in latitude and 
longitude in this study produces acceptable resolution in both dimensions (see Supplementary). �e ground truth 
is obtained from the USGS earthquake catalog. To train the network, we utilize 200 epochs with a batch size of 4, 
and apply 10% of the training data as the validation set in the training phase. Fig. 1b,c show the event epicenters 
of the 1,013 training samples and the convergence of the loss function, which approaches zero a�er 10 epochs. 
Consequently, the trained model with the smallest validation loss is ready to predict the locations for the new data 
with arbitrary starting time.

Testing with relatively large events (ML ≥ 3.0).  To assess the location performance of our deep learn-
ing algorithm, we �rst test the 200 relatively large events (ML ≥ 3.0) in Oklahoma with the FCN model. �e net-
work takes in three-component data recorded at 30 stations in the form of the RGB color model and produces an 
output consisting of a 3D location image for each event. In the computer image recognition problem, the input of 
a color image is represented by the intensity values of the image in three primary colors: red, green, and blue. We 
correspond our three components of earthquake data to the three primary colors, and convert 3 C seismograms 
to a color image. Figure 2 shows a testing example with an event that occurred on 5 March 2016, with a magnitude 
of ML 3.0. �e input data are displayed in Fig. 2a, and the predicted 3D location image is shown in Fig. 2b. �e 
value of the peak point is 0.9, and the predicted location is approximately 4.0 km away from the catalog location 
marked by the white star (Fig. 2c). In this example, the instrumentation of station 14 and 29 might incorrectly 
function. However, the results are not nearly a�ected. �is is one of the advantages using data from a network as 
opposed to a single station. It also demonstrates the bene�ts of applying a deep learning method to work on the 
patterns in data rather than the precise amplitude values. Figure 3 presents the location results for all of the 200 
testing events; the ground truth is illustrated in Fig. 3a, and the testing results are provided in Fig. 3b, in which the 
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size of red circle denotes the epicenter error. �e ground truth of these 200 testing events is also obtained from 
the earthquake catalog produced by conventional processing using time picks. �e predicted results suggest that 
the mean epicenter error is about 3.7 km, and the mean depth error is about 1.1 km. However, these numbers may 
not re�ect the true prediction errors since the calculation uses catalog locations as ground truth with expected 
errors. �e synthetic test in the Supplementary Information suggests that the true prediction error should be only 
about half of the calculated error referenced to the catalog locations with this system, i.e., about 1.9 km for the 
mean epicenter error in this case.

We further evaluate the performance of the FCN model with a number of di�erent training samples. We use 
the same 200 testing events to calculate the mean errors of the predicted locations for the FCN model trained with 
a di�erent number of samples in base data. As shown in Fig. 3c, the epicenter errors decrease with an increase 
in the number of training samples. �e depth errors are generally small over the di�erent number of training 
samples (Fig. 3d); this may be because most of the training events are in the depth range from 4.0 to 7.0 km in 
Oklahoma. �erefore, in this study, we primarily focus on the epicenter error in prediction. With approximately 
1,000 training events, the location errors seem acceptable and the error curves on Fig. 3c,d suggest more training 
samples may continue to improve the results. A training set with about 1,000 samples is considered a very small 
amount of training data in deep learning applications. If we apply the CNN classi�cation method to solve the 
earthquake location problem with a similar resolution and take each possible location pixel as a class, several hun-
dreds of thousands of classes are needed, and thus, an enormous number of samples would be required to train 
the network for such a large-scale classi�cation problem. In an image classi�cation example with 1,000 classes, 
approximately 1.2 million images are required for training38.

Testing with small events (3.0 > M ≥ 0.5).  It is important to detect and locate smaller events less than 
ML 3.0 for monitoring induced earthquakes. As stated before, Oklahoma regulators require operators to take 

Figure 1. �e neural network architecture and network training. (a) �e sizes of the input and output data are 
labeled on the le� side of the network architecture, and the depth (channel) of the data is labeled to the right. 
�e images of eight selected channels from some of the layers are displayed. (b) �e red box marks the region 
of interest, and 1,013 cataloged events (ML ≥ 3.0) (blue dots) are selected for the training set. (c) �e loss curve 
during the training is displayed.
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action if any event of ML 2.0 or above occurs, and operators must be capable of detecting such small events 
by themselves. In general, the occurrence rate of small events (ML < 3.0) should be much higher than large 
events (ML ≥ 3.0) in induced seismicity. (3) However, there are not many small events of ML ≤ 2.5 in the USGS 
catalog for this particular network during its operating periods. Existing methods for processing small events 
require substantial human e�orts. As mentioned before, we found 200 events of 3.0 > ML ≥ 2.0 and 53 events of 
2.0 > ML ≥ 1.5 in the catalog, and chose them as testing events. As described in Data section, we then scaled down 
the amplitudes of 200 relatively large events (ML ≥ 3.0) to the magnitudes ML = 1.5, 1.0, and 0.5, respectively, and 
created smaller testing events.

�e vertical components of a small event of ML 1.5 over 30 stations on 30 November 2015 are displayed in 
Fig. 4a. Noise is substantial, and two stations (3 & 17) might malfunction. Its predicted epicenter with the highest 

Figure 2. �e prediction results for a testing event (ML 3.0). (a) �e three components of the input waveform 
for an earthquake on 5 March 2016. (b) �e true and predicted labels; the red triangles for seismic stations. 
(c) �e true and predicted epicenters; the white triangles for seismic stations; the black and white stars for the 
predicted and true epicenters, respectively; the color image for the location probability in panel c extracted from 
the 3D volume in panel b.
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probability in the Earth is marked by the black star in Fig. 4b, and the white star is the location from the catalog. 
�e epicenter error is 4.0 km in this case. However, the epicenter errors for events of ML 1.5 could vary greatly 
depending on data quality and relative event location within the network, which will be further tested in the 
following. �e catalog locations of 53 testing events of 2.0 > ML ≥ 1.5 are plotted in Fig. 4e, and the testing results 
along with prediction errors are shown in Fig. 4f. �e mean epicenter error of the 53 events is 4.1 km. On the 
other hand, for the slightly larger events of 3.0 > ML ≥ 2.0 (Fig. 4c), the mean epicenter error of the 200 events 
is 5.3 km (Fig. 4d). Slightly larger magnitude does not necessarily lead to smaller prediction error. Because of 
di�erent event locations, these results may not be directly comparable, but indicating an approximate range of 
3.7-5.3 km in the prediction error. As discussed in synthetic testing, considering the location errors in the catalog, 
this actual error range may be smaller.

Testing smaller events of 1.5 ≥ ML ≥ 0.5 is more challenging for predicting accurate results. In general, smaller 
events present weaker signals and su�er from relatively larger noise impact. �e subsurface environments in 
Oklahoma are also highly noisy due to over 200,000 active wells operating in the state. As an example, the vertical 
component of an earthquake of ML 3.6 is displayed in Fig. 5a, and scaled events of ML 1.5, 1.0, and 0.5 from the 
event of ML 3.6 are also displayed in Fig. 5b–d. �e same level of regular noise is added to the simulated events, 
thus events with smaller magnitude show larger noise. By scaling down all of the 200 testing events (ML ≥ 3.0) to 
a lower magnitude each time and repeatedly testing the predictions, we generate a plot of epicenter error versus 
event magnitude (Fig. 5e). For the simulated events with ML 1.5, 1.0, and 0.5, the epicenter error of the prediction 
is 6.4, 11.5, and 26.1 km, respectively. �ese results suggest predicting smaller events of 1.5 > ML ≥ 0.5 with data 
from this network in Oklahoma is di�cult. A denser station network is needed to record higher quality of data 
within shorter distances.

Figure 3. �e prediction results for 200 testing events (ML ≥ 3.0). (a) �e true epicenters of the 200 testing 
earthquakes (blue dots). (b) �e predicted epicenters and errors of the 200 earthquakes in (a), and the mean 
epicenter error is 3.7 km. (c) �e mean epicenter error versus the number of training events employed in the 
FCN. (d) �e mean depth error versus the number of training events employed in the FCN.
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Figure 4. �e prediction results for small earthquakes (3.0 > ML ≥ 1.5) in the catalog. (a) Z component of 
the input waveform from an earthquake (ML 1.5) on 30 November 2015. (b) �e probability distribution of 
predicted location for the earthquake (ML 1.5) on 30 November 2015; the white triangles for seismic stations; 
the black and white stars for the predicted and true locations. �e color image for the probability of the 
predicted location. (c) �e true epicenters of 200 earthquakes (3.0 > ML ≥ 2.0) in the catalog from 29 December 
2015 to 17 February 2016. (d) �e predicted epicenters for the 200 earthquakes in (c), and the mean error is 
5.3 km. (e) �e true epicenters of 53 earthquakes (2.0 > ML > 1.5) in the catalog from 30 June 2013 to 9 March 
2016. (f) �e predicted epicenters of the 53 earthquakes in (e), and the mean error is 4.1 km.
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Discussion
We propose a fully convolution network to predict the hypocentral locations of small earthquakes in the form 
of 3D probabilistic distribution images and apply the approach to monitor induced seismicity in Oklahoma. �e 
testing results suggest that the system is capable of locating small events of ML ≥ 2.0 with a mean epicenter error 
of 4-6 km, meeting the demand of Oklahoma regulations for monitoring induced earthquakes. Considering the 
station interval in the seismic network in this study varies from 14 to 30 km, we believe these results are fairly 
reasonable39. To further improve the results and reduce the location errors, we must install denser seismic stations 
in the area. Nevertheless, this study demonstrates that the machine learning approach is promising to deal with 
a large amount of data in a real-time fashion, and to o�er a robust solution for monitoring small induced earth-
quakes, which has been a challenging task even for human processing.

�e limitation of the method is the accuracy of ground truth and the coverage of the training set. �e ground 
truth from catalog may include errors. Improvement on the ground truth could be made by further re�ning 
time picks manually and applying relative location methods such as the double di�erence approach to minimize 
the in�uence of velocity heterogeneities11. �e number of training samples is important, but the coverage of the 
training samples in the interest zone is also essential. We observed that the large location errors are mainly in the 
areas without many training samples. �e deep learning method requires training data, which means a newly 
installed network cannot apply the method with cataloged events. For a monitoring system that has been already 

Figure 5. Simulating smaller events by scaling amplitude and testing prediction errors. (a) Vertical 
seismograms of an event of ML = 3.6. (b) A simulated event of ML = 1.5. (c) A simulated event of ML = 1.0. (d) A 
simulated event of ML = 0.5. (e) A plot of event magnitude versus epicenter error is produced through repeated 
prediction testing for 200 simulated events at each selected magnitude.

https://doi.org/10.1038/s41598-020-58908-5


9SCIENTIFIC REPORTS |         (2020) 10:1941  | https://doi.org/10.1038/s41598-020-58908-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

trained for a seismic network, a couple of malfunction traces do not seem a�ecting results much (see Fig. 2), but 
the system does not allow adding new stations arbitrarily. A potential e�ort is to apply synthetics as a training set, 
which warrants further study.

�e study area (280 km × 259 km) is relatively large with 1,013 training samples. Both the size of the study 
area and the number of training samples a�ect the accuracy of the predicted locations. Our extensive tests suggest 
that �ner grids in the output image do not necessarily help produce higher resolution for location due to limited 
training samples. However, the induced earthquakes in Oklahoma mostly occur in a small depth range of 2-8 km. 
Testing the neural network with a small depth interval seems producing accurate depth results, but the ground 
truth of depth from the training data is o�en subjective due to limited physical constraints in data. �erefore, the 
depth resolution and accuracy is only relative to the ground truth of the training data.

In Supplementary Information, we demonstrate the e�ects of a number of factors in our approach with 
synthetics and real data, including noise, uncertainty in the initial arrival time, partial data, and the radius of 
Gaussian distribution. We also tested the network with interfered events and noise, and compared the deep learn-
ing method with the conventional grid search method. �e deep learning method does not require picking the 
�rst arrivals, thus, it can handle small earthquakes with low signal-to-noise ratio. It utilizes both phase and ampli-
tude information from data in training, validation, and testing.

Nevertheless, this study demonstrates that the machine learning approach is promising to deal with a large 
amount of data in a real-time fashion, and to o�er a robust solution for monitoring massive small induced earth-
quakes, which has been a challenging task even for human processing. �e use of the machine learning approach 
for event location and many other applications in seismology simply develops a new path that integrates and 
connects the data and knowledge obtained between the present and the deep past, to gain new insights instantly.

In this application, there are 21 layers in the network architecture, which means the number of trainable 
parameters is large and the network model may be over-parameterized. However, the over-parametrization is 
widely adopted in deep learning because it can help the generalization for neural networks as shown in recent 
studies40,41. �e mapping from waveforms to the location image is complex, therefore, the prediction function 
should be represented by a deep neural network. On the other hand, for the large size networks, the global optima 
are in a sense ubiquitous when training the networks, and the over�tting problem caused by the large size net-
works can be prevented by the strong regularizations. �e use of machine learning in solid Earth geosciences 
is growing rapidly, but is still in its early stages42. In this study, we intend to solve the small earthquake location 
problem by applying the fully convolutional network, which directly bene�ts implementing the tra�c light sys-
tem for monitoring induced earthquakes. �e approach could be further applied to help make new discoveries in 
seismology by processing large datasets associated with small earthquakes.

Methods
�is study assumes that seismic events have been already detected, and the input to our neural network is an event 
within a selected time window. Event detection is a unique problem in seismological studies, which has been well 
studied12–21. In practice, detection continues to calculate in real time, but event location is executed only when 
selected data is provided, an approach similar to all other automated methods. Our location method constitutes a 
fully convolutional network (FCN) that takes in a window of three-component waveform data from multiple sta-
tions as volumetric input and predicts the earthquake location with a 3D image as the output. We propose the use 
of a 3D Gaussian distribution in the subsurface to delineate the probability distribution of an earthquake location, 
where each pixel represents a label with a probabilistic value. �e peak position in the output volume represents 
the most likely earthquake location, and the magnitude of the peak value represents the probability of the result.

For each training event, we label the input data with the following Gaussian distribution:
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where x y z( , , )0 0 0  denotes the location parameters of the earthquake, the ground truth is obtained from the U.S. 
Geological Survey earthquake catalog, Rx, Ry, and Rz are the dimensional limits of the 3D zone of interest, and r 
is the radius of the Gaussian function.

Network architecture.  Our network is mainly composed of convolutional layers, and the fully connected 
layer is abandoned in comparison with the convolutional neural network (CNN) classi�cation method. �e fully 
connected layer is commonly used as the �nal layer to output a vector of classi�cation probabilities in image 
classi�cation problems38. However, for an earthquake location problem, thousands of classes are required if each 
location pixel is set as a class, and such a large-scale classi�cation problem may require an enormous number of 
training samples to achieve an accep` accuracy; unfortunately, the number of cataloged earthquakes is limited. 
�erefore, similar to the methods used in image segmentation32, we choose to directly utilize the �nal convolu-
tional layer to output a 3D volume of pixels representing the probability of an earthquake location.

�e convolutional layer in the network architecture (Fig. 1a) is formulated as follows:
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where y l is the output of the layer l; w contains the weights for the �lters in the current convolution layer; the 
output and input channels are indexed with c and ′c , respectively; the number of channels in layer l is Cl; the kernel 
size of the �lter is ×m n; and σ is the nonlinear activation function. �e input and output of the convolutional 
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layer in Eq. (2) are both 3D arrays with dimensions of width, length and channel, and each channel of the layer 
output is obtained by convolving the channels of the previous layer with a bank of 2D �lters applied in the width 
and length directions, as shown in Eq. (2) We utilize the zero-padded convolutional layer in the whole network; 
therefore, the width and length of the input are the same as those of the output. We utilize 21 convolutional layers 
in the neural network, as shown in Fig. 1a. �e input of the network contains three-component waveform data 
normalized with the maximum amplitude, and each component corresponds to a channel of a color image simu-
lating one of the RGB colors. �e total number of seismic stations is 30, and the number of time samples of an 
event extracted from a data trace is 2048. �erefore, the input data are represented by a 3D volume (184,320 
points) with dimensions of 2048 (time samples) by 30 (stations) by 3 (components). We set the kernel size ×m n 
of all convolutional layers to be 3 × 3. �e number of channels of features is increased from 3 to 1024 and then 
decreased from 1024 to 30. �e output feature size of a convolutional layer is also determined by the number of 
channels in the current layer, and the weights w are also related to the number of channels of the input feature 
according to Eq. (2) We utilize the recti�ed linear unit (ReLU) activation function in each layer, but the sigmoid 
function is utilized in the �nal convolution layer to output the �nal Gaussian distribution image.

In our application, we also apply downsampling (maxpooling) and upsampling to the output of some of the 
intermediate convolution layers. �e maxpooling layer is utilized to extract useful information from the wave-
form data. However, the input size (30 × 2048 × 3) is very di�erent from the output size (80 × 128 × 30) in our 
application. �e maxpooling and upsampling operations are also able to adjust the width and length of the fea-
tures in the intermediate layers of the network, as shown in Fig. 1a. For example, we set the pooling size to be1,4 in 
the �rst maxpooling operation for the output of the 3rd convolutional layer, the width remains unchanged, and the 
length is decreased 4 times. �e width and length of the features become 5 × 8 a�er the four maxpooling opera-
tions with pooling sizes of, (1, 4), (1, 4), (2, 4) and (3, 4) To obtain the �nal location image, we utilize upsampling 
to increase the size of the features; the sizes for the three upsampling operations are, (4, 2), (2, 2) and, (2, 2) which 
means we repeat the rows and columns of the data by the two values of the size, respectively. Finally, the width and 
length of the features are increased to 80 × 128 a�er the three upsampling operations.

We output the 2D features by selecting eight channels from the 3D outputs in some of the layers to show how 
the waveform is transformed into the location image through each layer (Fig. 1a). Because the maxpooling layer 
is used to extract the features that are sensitive to the earthquake location, the features from the layers before the 
�nal maxpooling layer are similar to the input. However, the features are gradually transformed into the �nal 
Gaussian image as the layers become deeper.

Objective function of the training.  We utilize a set of three-component waveform data from 30 seismic 
stations labeled with 3D probabilistic location images to train the network, and we adopt the binary cross-entropy 
loss function as follows:
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where p and q are the predicted and true location image labels in this study; N  is the number of training samples; 
and D is the assemblage of grid nodes in the location image. Because both the waveform data and the location 
image label require a substantial amount of memory for training, we minimize the loss function Ψ using a batched 
stochastic gradient descent algorithm. �e samples are shu�ed prior to training, and then we divide the samples 
into several batches. At each training step, we feed the neural network a batch of samples and minimize the loss 
function to obtain the updated FCN model. �is process is repeated until all samples are fed into the neural net-
work, and then the current epoch is �nished. We utilize 200 epochs to train the neural network with about four 
hours for 1,013 samples. �e prediction is fast, and the total time use for the 200 earthquakes (200 waveform 
windows) are 3.017 s by GPU computation (GeForce GTX 1080), which means one hundredth of a second per 
event.

We perform the tests based on TensorFlow43, and the Adam algorithm is utilized to optimize the loss function 
for each batch at each epoch44. �e learning rate is set to 10−4, and the other parameters are set to the default val-
ues recommended by the authors of the Adam algorithm. We also utilize two dropout layers a�er the 8th and 10th 
convolutional layers respectively to regularize the training to avoid over�tting the data, and the rates for the two 
dropout layers are 0.5. We also utilize 10% of the samples used for training as validation set to select the neural 
network models and prevent the over�tting problem.

Data availability
�e data used in this study can be requested from IRIS website: http://ds.iris.edu/ds/. �e information of the 
seismic network is described by the website: http://www.fdsn.org/networks/detail/NX. �e ground truth of the 
earthquake events are obtained from USGS website: http://earthquake.usgs.gov/earthquakes/search/ We open the 
source codes, please contact corresponding author.
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