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ABSTRACT 8 

To reduce greenhouse gas emissions in transportation sector, battery electric vehicle (BEV) is 9 

a better choice towards the ultimate goal of zero-emission. However, the shortened range, 10 

extended recharging time and insufficient charging facilities hinder the wide adoption of 11 

BEV. Recently, a wireless power transfer technology, which can provide dynamic recharging 12 

when vehicles are moving on roadway, has the potential to solve these problems. The 13 

dynamic recharging facilities, if widely applied on road network, can allow travelers to drive 14 

in unlimited range without stopping to recharge. This paper aims to study the complex 15 

charging facilities location problem, assuming the wireless charging is technologically 16 

mature and a new type of wireless recharging BEV is available to be selected by consumers 17 

in the future other than the traditional BEV requiring fixed and static charging stations. The 18 

objective is to assist the government planners on optimally locating multiple types of BEV 19 

recharging facilities to satisfy the need of different BEV types within a given budget to 20 

minimize the public social cost. Road users’ ownership choice among multiple types BEV 21 

and BEV drivers’ routing choice behavior are both explicitly considered. A tri-level 22 

programming is then developed to model the presented problem. The formulated model is 23 

first treated as a black-box optimization, and then solved by an efficient surface response 24 

approximation model based solution algorithm.  25 

 26 

Keywords 27 

Wireless charging, Battery electric vehicle, Charging station location, Vehicle choice, Multi-28 

class user equilibrium, tri-level programming. 29 

1. Introduction 30 

The global climate change due to air pollution stimulates the revolution of the transportation 31 

sector. A transition from fossil fuel to cleaner and more energy efficient alternative fuel 32 

vehicles is a vital step in reducing the road transportation greenhouse gas emission. Among 33 

all the available technologies, electricity has received much attention to substitute the fossil 34 
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fuel due to its high energy efficiency, as well as the existing widespread electricity grid. The 1 

adoption of electric vehicle (EV) grows very fast ever since the introduction of models by 2 

global manufacturers, including all-electric or Battery Electric Vehicle (BEV), Plug-in 3 

Hybrid Electric Vehicle (PHEV) and other low-emitting electric vehicles. Although the latter 4 

two types of EVs have lower emissions as compared to the conventional internal combustion 5 

engine vehicle (ICEV), the BEV is a better choice towards the goal of zero-emission to 6 

protect the environment. However, the BEV is currently facing several barriers, which 7 

include the high purchasing price, extended recharging time and reduced driving range 8 

compared to ICEV or even PHEV, as well as lacking of charging facilities.  9 

The most common charging method for BEV is static conductive charging via a cable and a 10 

vehicle connector when a BEV is parking. Those chargers can be divided into different 11 

classifications according to the power rate used and nationally available power level 12 

(Haghbin et al., 2010). Yilmaz and Krein (2013) defined three levels with power rate ranging 13 

from 1.4kW to 100kW and the recharging time ranging from more than ten hours to less than 14 

half an hour. Apparently, even the expensive level 3 charger, also referred to as fast charging, 15 

can hardly compete with the conventional ICEV that could usually be refilled in several 16 

minutes. Another type of charging method is battery swapping, which can replace the 17 

depleted battery with a fully charged one in less than five minutes. Battery swapping requires 18 

huge space for heavy swapping machines, swapping chargers and a few extra EV batteries 19 

(Adler and Mirchandani, 2014). More importantly, it requires battery of EV to be easily 20 

swapped, which means it should be removable and standardized. However, since the core 21 

technologies of BEV lie in its battery packs, it seems very unrealistic for EV companies to do 22 

so. In addition to the extended recharging time, the limited range also restricts the public 23 

from purchasing BEV. Reports show that the expectations of consumers on alternative fuel 24 

vehicle range is at least 300 miles (Deloitte, 2011), while the current BEV battery capacities 25 

can generally provide about 100 miles, which cannot satisfy the needs of general consumers 26 

(Fuller, 2016).  27 

The existing limitations lead to the studies of other possible charging technologies for BEV, 28 

wherein one option is inductive charging or wireless charging. BEVs adopting this 29 

technology do not need a cable for recharging and thus are viable for not only static charging 30 

(i.e., charging when parking) but also dynamic charging (i.e., charging when moving). 31 

Dynamic wireless charging extends driving range and reduces BEVs’ charging time. If the 32 

dynamic charging system is widely applied on network, the potential of unlimited driving 33 

range may be achieved; other than this, the risk of electric shock will be completely removed 34 

(Chawla and Tosunoglu, 2012). Besides, the battery packs capacity may be reduced because 35 

the EV can directly get energy from roadway (Wu et al., 2011), and also the speed of EV can 36 

be increased due to reduced weight of heavy battery packs. What’s more, dynamic wireless 37 

recharging do not require extra urban space, which is extremely desirable for cities with 38 

limited land resources, such as Singapore and Hong Kong (Riemann et al., 2015). Because of 39 

the advantages of wireless charging, it has attracted much attention from researchers recently 40 

but mainly on technical aspects (Budhia et al., 2013; Chen et al., 2015a; Chen et al., 2015b; 41 

Onar et al., 2013; Pelletier et al., 2014; Wu et al., 2011; Yilmaz and Krein, 2013).  42 
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Only a few existing research works deal with the operational problems related to the practical 1 

implementation of wireless charging facilities. Based on the introduction of a wireless 2 

charging electric transportation system that was developed at Korea Advanced Institute of 3 

Technology (KAIST), a series of researches (Jang et al., 2015; Jang et al., 2012; Jang et al., 4 

2016; Ko and Jang, 2013; Ko et al., 2012; Ko et al., 2015) described the system design and 5 

system architecture issues, developed mathematical models to optimize key design 6 

parameters in the system, including allocating the power transmitters and evaluating the 7 

battery size; and also discussed on the recent advances, commercialization process and 8 

further development of wireless charging EV under the background of ITS. What’s more, the 9 

benefit in the perspective of energy logistics was analyzed qualitatively and economic design 10 

optimization models were also developed separately for wireless charging electric transit bus 11 

system in closed and open systems. Assuming that high-power, high-efficiency wireless 12 

power transfer technologies are mature in the near future, He et al. (2013b) presented 13 

mathematical models to determine the optimal prices of electricity and roads to pursue the 14 

maximum social welfare. Riemann et al. (2015) investigated optimal locations of a given 15 

number of wireless power transfer facilities, aiming to capture the maximum traffic flow on 16 

network while considering the road users’ routing behavior. Chen et al. (2016) formulated a 17 

deployment model with consideration of user equilibrium condition to optimize the locations 18 

of wireless charging lanes for a given budget. Fuller (2016) presented a flow-based set 19 

covering problem to determine how much dynamic charging facilities are needed in 20 

California.  21 

As was in He et al. (2013b), we envision that the wireless recharging technology would be 22 

mature in the near future and a new type of wireless recharging BEV is available to be 23 

selected by customers. In this situation, when the government authorities plan for locations of 24 

the charging facilities for BEV, they should consider deploying different types of charging 25 

facilities to meet the need of different BEV types, with considerations of the behaviors of 26 

road users. In fact, there are two types of choice behaviors to be taken into consideration: first, 27 

as there are multiple types of BEVs in the market, the road users will first decide which type 28 

of BEV to purchase; second, road users usually tend to select routes incurring minimum cost 29 

for their trips (i.e., travelers’ routing behavior). To our best knowledge, no previous research 30 

papers in the literature have addressed this charging station location problem considering 31 

vehicle ownership of multiple types of BEVs and heterogeneous types of charging facilities. 32 

This study aims to fill in this research gap by proposing a tri-level programming approach to 33 

explicitly model and solve the location plan of multi-type charging facilities for different 34 

BEVs. 35 

Conventional methods in the literature modeled the charging facilities location problems as 36 

maximal covering location problem (MCLP) (Church and ReVelle, 1974; Daskin, 2008; 37 

Farahani et al., 2012; Hale and Moberg, 2003), flow-capturing location model (FCLM) 38 

(Hodgson, 1990), flow-refueling location model (FRLM) (Kuby and Lim, 2005, 2007; Lim 39 

and Kuby, 2010), capacitated flow-refueling location model (Upchurch et al., 2009), 40 

deviation-flow refueling model (Huang et al., 2015; Kim and Kuby, 2012, 2013), the arc 41 

cover path-cover FRLM (Capar et al., 2013), flow-based set covering model (Wang and Lin, 42 

2009) and so on. These location problems do not include the travelers’ routing choice 43 
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behavior. Indeed, only several papers in the literature include transportation network 1 

equilibrium in the location problems. He et al. (2013a) allocated a given number of public 2 

charging stations for PHEV with consideration of interaction between transportation and 3 

power system. He et al. (2015) explored optimally locating public charging stations for BEV 4 

considering a tour-based network equilibrium. Lee et al. (2014) developed a model for 5 

locating rapid charging stations while considering batters’ state of charge and traveling 6 

behavior. Besides, a few studies only explored the network equilibrium problem related to 7 

EV (He et al., 2014; Jiang and Xie, 2013; Jiang et al., 2014; Jiang et al., 2012). More recently, 8 

Nie et al. (2016) presented a mathematical framework for optimizing publicly funded 9 

incentive polices on the adoption of plug-in EV. 10 

Specifically, this paper attempts to study the location problem of multiple types of BEV 11 

charging facilities, including different levels of plug-in charging stations, static and dynamic 12 

wireless charging facilities, with explicit consideration of consumers’ choice of multiple 13 

types of BEV and multiple classes of BEV users’ routing choice behavior. The study aims to 14 

assist government planners in determining locations of multiple types of BEV charging 15 

stations within a given budget to minimize the public social cost, i.e., maximize the social 16 

welfare. A tri-level programming is then developed to model the presented problem. The 17 

consumers’ choice between different BEV types are described in a logit model, with a utility 18 

function related to the government’s decision plan on charging facilities location, the income 19 

weighted price of different BEV types and the total cost of road users’ selected path to 20 

accomplish their trip tours. Assuming that travelers select the path with minimum travel cost, 21 

as in Wardrop’s first principle (Wardrop, 1952), a multi-class user equilibrium (UE) is 22 

developed to describe the travelers’ routing choice. The pure travel time, recharging time and 23 

consumers’ income weighted recharging fee are all included in the traveler’s total travel cost. 24 

Besides, considering that in practice travelers usually utilize dwelling time at destination 25 

nodes to recharge BEV (He et al., 2015), we adopt a tour-based approach, which defines a 26 

tour as a series of several sequential visited destinations, in the user equilibrium to predict 27 

road users’ possible recharging.  28 

The developed tri-level model is inherently very difficult to solve. In this paper, we present a 29 

novel solution algorithm to solve the developed tri-level programming problem. The model is 30 

treated as a black-box optimization problem with a very expensive objective function. The 31 

term ‘black-box optimization’ here refers to a class of optimization problems, where 32 

derivative information is unavailable due to lack of explicit functions or high computational 33 

cost for derivatives calculation. Then a response surface model based approach, specifically, 34 

stochastic radial basis function based algorithm is presented to solve the black-box model, as 35 

was introduced in the research of Regis (2011) and Regis and Shoemaker (2007). The 36 

response surface models, also called surrogate models, are promising approaches to solve 37 

black-box optimization problems. The basic idea of the method is to develop the response 38 

surface approximation model for the expensive black-box function, thus the information from 39 

the response surface model can be utilized to guide the search for the optimum of the original 40 

problem. This type of solution algorithm belongs to the category of derivative-free 41 

optimization and have been applied in many research areas ranging from finite-element or 42 

partial-differential equation systems, to groundwater supply, to supply chain optimization and 43 
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so on (Boukouvala et al., 2015; Fowler et al., 2008; Wan et al., 2005). Chen et al. (2014) 1 

applied surrogate-based approaches to solve highway toll charges problem in transportation 2 

network. The presented response surface model based algorithm is very efficient in solving 3 

the developed model, because it only needs to evaluate the expensive black-box function 4 

once in each iteration while the majority of computational time is consumed in black-box 5 

function evaluation. The expensive black-box function evaluation procedure embedded in 6 

each iteration of the algorithm, is solved by a fixed-point method for the EV choice model 7 

and an MSA based method for the lower-level user equilibrium problem. Two sub-problems 8 

are developed for wireless charging EV and plug-in charging EV, respectively, to generate 9 

the shortest path plans with minimum travel cost in the process of solving the network 10 

equilibrium. We contend that the proposed response surface model based solution algorithm 11 

can be easily extended to solve other complex transportation problems with equilibrium 12 

constraints, which are usually formulated as multi-level mathematical programming.  13 

The following sections are organized as follows. In Section 2, the tri-level model is 14 

developed for the proposed multiple types EV charging station location problem. Section 3 15 

presents the stochastic radial basis function surrogate model based solution algorithm to solve 16 

the developed model. The expensive black-box evaluation is also stated in this section. 17 

Numerical examples and results are described in Section 4. Finally, Section 5 concludes the 18 

paper. 19 

 20 

2. Model formulation 21 

The following notations are utilized in the model formulation section. 22 

Decision variables: 23 

ax  Traffic flow on link a .  

at  Travel time on link a .  

,

,

p q

m vt  Travel time of path p  of tour q  for class m  users choosing EV type v .  

,

,

p q

m vs  Recharging delay on path p  of tour q  for class m  users choosing EV type v . 

,

,

p q

m vc  Recharging fee of path p  of tour q  for class m  users choosing EV type v . 

,

plu

iy  Whether a plug-in charging station of type   should be built at node i . 

, 1plu

iy   if a station should be built; otherwise , 0plu

iy  . The same binary 

relationship is applied to 
wlss

iy  and 
wlsd

ay . 

wlss

iy  Whether a wireless static charging station for wireless EV should be built at 

node i . 
wlsd

ay  Whether a dynamic charging lane for wireless EV should be built on link a .  

,

q

m vu  Utility of tour q  users choosing EV type v . 

,

q

m v  Probability of tour q  users choosing EV type v . 



6 

 

,

,

p q

m vf  Path flow on path p  of tour q  for class m  users choosing EV type v . 

 1 

Sets, index, coefficients and parameters: 2 

o

mw  Average wage rate in unit of dollar per hour of class m  users.  

y

mw  Average income per year of class m , which is equal to 40 52y o

m mw w   .  

g  The coefficient for vehicle price in the logit model, should be non-positive. 

,t m  The coefficient for total traveling cost of each class of users, including travel 

time, recharging delay and recharging fee, should be non-positive. 

q  The constant that incorporates other tour related cost and is regardless of 

vehicle choice 

vG  Purchasing cost of EV type v , including vehicle price 
car

vg  and charging 

equipment cost 
equ

vg .  

vl  Average life time of EV type v . 

q

m  /  ,q q q

m md d m q    is a given ratio of class m  users to the tour q  demand. 

  The tour plan with minimum total travel cost.  

  Set of feasible types of plug-in charging stations; {1,2,3}   , where 1, 2 

and 3 refer to the level 1, 2, and 3 charging stations, respectively. 

N  Set of nodes on the network. 

1N  Set of candidate nodes where plug-in charging stations can be built. 

2N  Set of candidate nodes where stationary wireless charging stations can be built. 

A  Set of links on the network. 

1A  Set of candidate links for building dynamic wireless charging lanes.  

  Government budget limit for building EV charging facilities. 

,

plu

ib  Cost of building a plug-in charging station of type   at node i . 

wlsd

ab  Cost of building dynamic wireless charging facilities on link a .  

wlss

ib  Cost of building a stationary wireless charging station at node i .  

  The weighted factor of EV trip failure cost. 
qd  Total travel demand of tour q . 

,

q

m vd  Travel demand of class m  travellers using vehicle v  traveling along tour q   

0

at  Free-flow travel time of link a . 

, ,

, ,

OD p q

m v a  An indicator equals to 1 if link a  is on a path p  connecting an OD along a tour 

q  for class m  travellers using EV type v , and 0 otherwise. 

,

q

m vP  Set of available paths for class m  users of tour q . 

 3 
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In this problem, the government authorities make decisions on where and which type of EV 1 

recharging facility to be located aiming to minimize the social cost. The resulting location 2 

plan has a significant impact on consumers’ choices of EV type and thus their routing choices. 3 

For the road users, it is assumed that all the travelers tend to purchase one type of EV first. 4 

They will seek to pay least to finish their own usual tour schedules. To this end, the travelers 5 

will consider both the government’s investment on EV recharging facilities and their own 6 

tour when choosing a type of EV with different charging methods. Finally, as road users, they 7 

will select the route with minimum travel cost, including travel time, recharging fee and delay 8 

time. The relationship between these three decisions is illustrated in Figure 1. The 9 

government plays as a leader in the upper-level and make decision on EV recharging facility 10 

location plan. The road users then act in the middle-level and decide which type of EV to 11 

purchase. In the lower-level, a user equilibrium model is then applied to describe the road 12 

users’ choice of route and recharging plan with minimum individual travel cost. Apparently, 13 

the upper-level location plan impacts the decision of traveler’s choice of EV type and tour 14 

route. In turn, the road users’ choice of tour routes in the lower-level will affect the 15 

government’s decision on locating EV charging stations and the users’ own EV type choice. 16 

To explicitly describe the relationship, a tri-level mathematical programming approach is 17 

then applied as below to model the problem, whose resultant solution would assist the 18 

government to make better decision.  19 

 20 

Government EV 

charging station location 

plan

Vehicle choice 

model

User equilibrium

Upper-level

Middle-level

Lower-level

 21 

Figure 1 The relationship between the three levels. 22 

 23 

2.1 Upper-level programming for EV location decision 24 

The government locates the multiple types of EV charging facilities to pursue the maximum 25 

the social welfare, i.e., minimum the social cost. Hence, the objective function of the whole 26 

model is represented by (1), which is a weighted function of total travel cost and penalty fee 27 

of failed trips. The first term is the total travel cost of all finished trips, including driving time, 28 

income weighted recharging fee and extra delay time due to recharging behavior in the tour 29 

of all user classes choosing different types of EVs, where ax  and at  represent the traffic flow 30 

and travel time on link a  respectively; A  is the set of links on the network; ( )VMQ y  is the 31 
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set of finished trips for each combination of EV type v , user class m  of tour q  given a 1 

location plan ,=( , , )plu wlss wlsd

i i ay y yy . , ,plu wlss

i iy y  and 
wlsd

ay  are all binary variables which indicate 2 

whether or not a type of charging station is built at a specific location; ,

plu

iy  represents 3 

whether a plug-in charging station of type   should be built at node i ;   is the set of 4 

feasible types of plug-in charging stations, {1,2,3}   , where 1, 2 and 3 refer to the 5 

level 1, 2, and 3 charging stations, respectively; 
wlss

iy  defines whether a wireless static 6 

charging station for wireless EV should be built at node i ; 
wlsd

ay  stands for indicator whether 7 

a dynamic charging lane for wireless EV should be built on link a . 
q

mP  refers to the set of 8 

available paths for class m  users of tour q . Here, classes of users are categorised by initial 9 

state of charge of EV battery, buffer range, and average income; while the type of EV is 10 

classified by charging method, that is, plug-in or wireless recharging. ,

,

p q

m vf  is the path flow of 11 

path p  of tour q  for class m  users choosing EV type v ; ,

,

p q

m vt  is the travel time of path p ;12 

,

,

p q

m vs  and ,

,

p q

m vc  stand for recharging delay and recharging fee on path p  of tour q  for class m  13 

users choosing EV type v , respectively. The original dwelling time at destination nodes is 14 

not counted in the delay time here. This is more reasonable in practice, for example, people 15 

will recharge their EV when they are working or shopping. The second term represents the 16 

penalty fee for all failed trips. Here, it is assumed that the government stands for the public 17 

interests and it is desirable that all trip demands are satisfied.   is the weighted factor of 18 

penalty fee for all failed trips, up to the government for the purpose of adjusting the balance 19 

between the two terms. ,

q

m vd  is the travel demand of class m  travellers using vehicle v  20 

traveling along tour q ; ,

q

m v  is the penalty fee for class m  users of tour q  choosing vehicle 21 

type v  if they fail to complete their tour. 22 

Constraint (2) is the budget limit of the government, where   represents the total budget for 23 

construction cost of all types of EV charging facilities to be built at candidate locations; ,

plu

ib  24 

is the cost of building a plug-in charging station of type   at node i ; 
wlsd

ab  represents the 25 

cost of building dynamic wireless charging facilities on link a ; 
wlss

ib  is the cost of building a 26 

stationary wireless charging station at node i ; 1N  defines the set of candidate nodes where 27 

plug-in charging stations can be built; 2N  is the set of candidate nodes where stationary 28 

wireless charging stations can be built; 1A  is the set of candidate links for building dynamic 29 

wireless charging lanes. It is assumed that two types of EVs are considered in this paper, the 30 

plugin charging EV and the wireless charging EV. The plugin charging EV can be recharged 31 

via level 1, 2, or 3 charges at charging station, while the wireless charging EV can be 32 

recharged via either static inductive charger at charging stations or dynamic recharging when 33 

driving on special charging links. Constraint (3) indicates the binary constraint for the 34 

decision variables. All the information needed in (1), including link flow, link travel time, 35 
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travel cost for each class of users, demand assignment for different EV types, as well as 1 

whether or not a trip is failed, is derived from the middle-level and lower-level programing.  2 

 
,

, , ,

, , , , ,

, , ( ) , , ( )( )

min   (1 ) /
q

m v

p q p q p q o q q

a a m v m v m v m m v m v

a A v m q VMQ v m q VMQp P

x t f s c w d  
  

 
    

 
 
   

y yy

 (1) 

Subject to: 3 

1 2 1

, ,

plu plu wlss wlss wlsd wlsd

i i i i a a

i N i N a A

b y b y b y 

   

       (2) 

 , , ,    0,1  , ,plu wlss wlsd

i i ay y y i a    (3) 

 4 

2.2 Middle-level programming for consumers’ EV choice 5 

In the middle-level programming, road users’ choice of different EV types is considered, that 6 

is whether to buy a plug-in charging EV or a wireless charging EV. Constraint (4) calculates 7 

the probability of tour q  road users m  choosing vehicle type v  following the logit function, 8 

where ,

q

m v  is the probability of class m  users of tour q  choosing EV type v  and ,

q

m vu  is the 9 

utility of class m  users choosing EV type v  in tour q . The definition of utility ,

q

m vu  is stated 10 

in constraint (5), which consists of average income weighted purchasing price of a type of EV 11 

and the total travel cost of each class users by using this type of EV to finish tour q . In this 12 

constraint, g  in the first term represents the coefficient for EV purchasing price, while ,t m  13 

in the second term stands for the coefficient for total travel cost of user class m , and q  in 14 

the last term can incorporate other tour related cost regardless of vehicle choice. Note that all 15 

the coefficients should be non-positive. vG  is the purchasing cost of EV type v , including 16 

vehicle price 
car

vg  and its charging equipment cost 
equ

vg , that is, 
car equ

v v vG g g  . Here, it is 17 

assumed that, if wireless charging EV is selected, charging equipment, which is required 18 

either in stationary charging station or on dynamic charging lane, both need to be purchased 19 

by the EV users. vl  stands for the average life time of EV type v . 
y

mw  represents the average 20 

income per year for class m  users and 
o

mw  is the average wage rate in unit of dollar per hour 21 

for class m  users; the relationship 40 52y o

m mw w    exists between the two parameters. The 22 

term v

y

v m

G

l w
 stands for the average income weighted yearly purchasing price of EV type v  23 

over its life expectance vl  for class m  users.   in constraint (5) is the tour plan with 24 

minimum total travel cost of class m  user of tour q  driving EV type v . This plan is obtained 25 

from the lower-level programing of user network equilibrium. Finally, the demand ,

q

m vd  of 26 

each class m  using vehicle type v  of tour q  can be calculated through the following 27 
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equation (6), where 
qd  is the total travel demand of tour q  and 

q

m  is the percentage of class 1 

m  users of tour q , which can be obtained via statistical data in practice. 2 

 3 

,

,

,

exp( )
    , ,

exp( )

q

q m v

m v q

m v

v V

u
m v q

u




 


  (4) 

,

,, ,

, , , ,= +     , ,

q

g v m vq q q

m v t m m v m v qy o

v m m

G c
u t s m v q

l w w



 


 
 

     
 

  (5) 

, ,     , ,q q q q

m v m m vd d q m v    (6) 

 4 

2.3 Lower-level programing for network equilibrium with multiple classes of users 5 

In the lower-level programming, a user equilibrium model is developed for multiple classes 6 

of users’ routing choice behavior with different types of EVs. Not only travel time and EV 7 

drivers’ range anxiety, but EVs’ recharging fee and delay time are also considered in this 8 

routing choice model. For each type of EV, a trip can be finished if there is at least one viable 9 

path existing that either the EV has enough electricity stored in its battery or it can be 10 

recharged with sufficient electricity to complete the path. It is reasonable to assume that the 11 

road users can hardly predict the relationship between energy consumption and traffic flow 12 

on link, that is, they assume the amount of electricity consumed on a link is fixed to make 13 

their decisions rather than calculate the accurate energy consumption via complicated 14 

calculation process. (The readers who are interested in the network equilibrium considering 15 

flow-dependent energy consumption can refer to He et al. (2014).) Under this assumption, the 16 

amount of electricity needed to complete a given path is a known constant, which can be 17 

calculated in priori. It is also reasonable to assume that the recharging fee and recharging 18 

time are both linear functions and strictly increasing with respect to the electricity recharged, 19 

depending on which type of charging facility utilized.  20 

Another interesting aspect that is also considered in the lower-level user equilibrium is the 21 

adoption of sequential trips rather than single trips. Conventional user equilibrium deals with 22 

trips between different OD pairs separately, assuming there is no relationship between the 23 

trips. However, this is not true because trips between different OD pairs may be finished by 24 

the same traveler. Thus the user’s behavior at the first destination node and also the second 25 

origination node is not correctly considered if traditional user equilibrium is adopted. In 26 

practice, traveler may sequentially visit different destinations and utilize their dwelling time 27 

at these nodes to recharge their EV batteries. For example, people will charge EV at their 28 

work place or when they are shopping. In this situation, the recharging time that is less than 29 

the users’ original dwelling time should not be counted in the recharging delay. Considering 30 

this aspect in the UE model will helps the government to better locate the EV charging 31 

stations so as to satisfy the need of the public. 32 
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Suppose road users always choose the path with minimum travel cost to finish their trips, 1 

where the travel cost consists of pure travel time, recharging delay and recharging fee. Hence, 2 

following the rule of Wardrop’s first principle (Wardrop, 1952), we can define the multi-class 3 

users’ network equilibrium as below. At equilibrium, for the same class of travelers using the 4 

same type of EV, the tour travel costs of all utilized paths are equal to the minimum travel 5 

cost of this tour. The unutilized paths are either unviable because of there is not enough 6 

recharging facilities to complete the tour for the class of users, or their travel cost is no less 7 

that the minimum travel cost for this class of users to complete the tour. Hence, the nonlinear 8 

complementarity problem (NCP) form of the multiple classes of users’ equilibrium is 9 

developed as follow: 10 

,

, ,0    , , ,p q q

m v m vf p P m q v    (7) 

, , , ,

, , , , , ,/ 0    , , ,OD p q p q p q o q q

m v a a m v m v m m v m v

a

t s c w T p P m q v        (8) 

, , , , ,

, , , , , , ,/ 0    , , ,p q OD p q p q p q o q q

m v m v a a m v m v m m v m v

a

f t s c w T p P m q v
 

      
 
  (9) 

where constraint (7) describes the non-negativity of path travel flow for each class of users 11 

m  choosing EV type v  to finish the tour q  via path p , where ,

q

m vP  represents the set of 12 

available paths for class m  users of tour q  choosing EV type v . In constraint (8), , ,

, ,

OD p q

m v a  is 13 

an indicator, which equals to 1 if link a  is on a path p  connecting an OD along a tour q  for 14 

class m  travellers using EV type v , and 0 otherwise; ,

q

m vT  stands for the minimum available 15 

travel cost for class m  users to complete tour q  by using vehicle type v ; thus, to satisfy 16 

equation (9), path flow 
,

, 0p q

m vf   only if 
, , , ,

, , , , ,/OD p q p q p q o q

m v a a m v m v m m v

a

t s c w T    , which implies 17 

that the traffic flow is assigned to paths with minimum travel cost between the same tour 18 

origination and destination. Indeed, the NCP formulation has been widely applied in the 19 

literature to describe user equilibrium with multi-class or heterogeneous users (Du and Wang, 20 

2014; Farahani et al., 2013; Wang and Du, 2013; Wang and Du, 2016), which can be 21 

transformed into a more general variational inequality problem form (Jiang et al., 2016). 22 

The multi-class user equilibrium also needs to satisfy the travel demand conservation 23 

equation (10) and the balance relationship (11) between link traffic flow and path traffic flow, 24 

which are written as follows: 25 

,

,

, ,     , ,
q

m v

p q q

m v m v

p P

f d q m v


   
(10) 

,
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, , ,     
q q

m v

p q OD p q

a m v m v a

v V m M q Q p P OD

x f a
    

     
(11) 

The travel time function adopted in this paper follows the Bureau of Public Roads (BPR) 26 

function, which is expressed in (12) as below: 27 
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 
40 1 0.15 /     a a a at t x C a   

 
  (12) 

Where 
0

at  is the free-flow travel time and aC  is the link capacity. 1 

Note that for a specific EV type, a fixed path and a specific user class with certain anxiety 2 

range, the minimum recharging delay 
,

,

p q

m vs  and recharging cost 
,

,

p q

m vc  can be calculated as a 3 

constant regardless of link flow. The solution procedure for the multiple classes’ UE is rather 4 

complicated, which is explained in details in the next section.  5 

 6 

3. Solution algorithm 7 

In this section, we present a novel solution algorithm for this multi-type EV charging 8 

facilities location problem. Inspired by some recent researches (Regis, 2011; Regis and 9 

Shoemaker, 2007) on solution algorithms for derivative-free optimization of expensive black-10 

box objective functions, a heuristic solution algorithm is presented to solve this rather 11 

complicated tri-level problem without using derivatives of either objective or constraint 12 

functions. In fact, the tri-level model can be treated as an optimization problem with a very 13 

expensive black-box objective function, which can be described in the following form: 14 

 

min  ( )

. .    

0,1

Z

s t



 

y

y

y

 (13) 

Where y  represents a construction plan for EV charging stations. Since a government plan on 15 

charging station location can impact the consumers’ choices on types of EVs and the drivers’ 16 

routing choice behaviour on network, ( )Z y  is the expensive black-box objective function, 17 

which calculates the upper-level objective function value, i.e., the total social cost, given a 18 

specific government construction plan. Apparently, the main input variables of the black-box 19 

evaluation in this problem is the government construction plan y , i.e., how and where to 20 

locate different types of EV charging facilities; while the output of the black-box is the total 21 

social cost of this construction plan. The goal of this problem is to find a feasible construction 22 

plan that will lead to the minimum social cost.  23 

Given a specific government construction plan, the middle-level and the lower-level can be 24 

solved through conventional methods. Here, a fixed-point iterative method for the middle-25 

level and a method of successive averages (MSA) for the lower-level network equilibrium 26 

model are employed, and thus the corresponding social cost can be obtained. The detailed 27 

process of how to calculate ( )Z y  given a known y  is elaborated in the subsection 3.3. As the 28 

evaluation of the black-box can be obtained while no information of derivatives is required, 29 

solving the original problem is indeed how to search the optimized construction plan through 30 

limited evaluations of the expensive black-box function.  31 
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The basic idea of the presented solution algorithm is that we use the radial basis function 1 

(RBF) surrogate model to approximate the expensive black-box objective function and thus 2 

to identify the point to be evaluated for the black-box function in next iteration. The 3 

advantage of this method is that only one black-box function evaluation is needed in each 4 

iteration, which significantly reduces the computational load because usually the black-box 5 

evaluation comprises the majority part of computational effort. The algorithm is designed to 6 

obtain good solutions after a relatively small number of iterations. The performance of the 7 

solution algorithm is shown in the numerical study section.  8 

3.1 Steps of stochastic RBF-based solution algorithms 9 

The following describes the detailed procedure of stochastic RBF-based solution algorithm: 10 

Step 1: Initialization.  11 

Step1.1 Initial starting points. Find a set of initial starting points 
00 1 2{ , ,.... }nI  y y y  that 12 

contains one feasible plan 1y . The other points do not have to be feasible. For each 13 

initial starting point, evaluate the black-box objective function value at this point, i.e.,14 

( )iZ y , and find the best feasible solution besty  among the set 0I . Set the iteration 15 

number 0n n  and the set of evaluated points 0nI I .  16 

Step 1.2: Initial probability of perturbing a dimension of the current best feasible 17 

solution when generating random candidate points, denoted by slctp . Initialize the 18 

counters for consecutive successes 0succC   and failures 0failC  . 19 

Step 2: Iteration. While the termination condition is not satisfied, do: 20 

Step 2.1: Fit or update the response surface model ( )nS y  for the expensive objective 21 

function ( )Z y  by using data points {( , ( )), }n i i i nB Z I y y y . Noted that infeasible 22 

initial points are also used here to fit the response surface model. 23 

Step 2.2: Randomly generate t  candidate feasible points 1{ ,..., }n tE  x x  for prediction. 24 

For each , 1,...,j j tx ,  25 

Step 2.2.1: Select dimensions of besty  to perturb. Randomly generate d  uniformly 26 

distributed numbers 1u ,…, du  in [0,1], where d  is the dimension of y . Select the 27 

index i  of iu  into the set { |  , [1, ]}pert i slctI i u p i d   . If pertI  , uniformly 28 

random select an index i  from the set {1,…, d } and let { }pertI i . For each index 29 

perti I , 
( ) ( )1i i

j best x y ; for index perti I , 
( ) ( )i i

j bestx y .  30 

Step 2.2.2: Make jx  satisfy the government budget constraint. Calculate the 31 

construction cost of jx , while jx  do not satisfy the budget constraint, randomly 32 
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select a dimension {1,..., }i d  where 
( ) 1i

j x  and let 
( ) 0i

j x . Calculate the 1 

construction cost and check the budget constraint again. Stop and obtain the feasible 2 

point jx  when the constraint is satisfied or repeat this process until the condition is 3 

satisfied. End this for iteration. 4 

Step 2.3: Using the response surface model for the objective function ( )nS y  to select 5 

the function evaluation point from the generated t  candidate feasible points.  6 

Step 2.3.1: Calculate ( )nS x  for each candidate plan nEx , also calculate 7 

min min{ ( ), }n nS S E x x and 
max max{ ( ), }n nS S E x x . Then compute score for 8 

the response surface criterion, for each nEx , if 
max minS S , 9 

min max min( ) ( ( ) ) / ( )S

n nV S S S S  x x ; otherwise ( ) 1S

nV x . 10 

Step 2.3.2: Calculate minimum distance from previously evaluated points. For each 11 

nEx , this distance is defined as 1( ) min ,n i n i i nD I   x x y y . The symbol   12 

stands for the Euclidean norm. Also calculate 
min min{ ( ), }n nD D E x x  and 13 

max max{ ( ), }n nD D E x x . Then compute the score for the distance criterion, for 14 

each nEx , the score 
max max min( ) ( ( )) / ( )D

n nV D D D D  x x  if max minD D ; 15 

otherwise ( ) 1D

nV x . 16 

Step 2.3.3: Determine the weights for response surface and distance respectively. 17 

Set the weight for response surface criterion 0mod( , ) 0 if mod( , ) 0

            otherwise

n n kS

n

k

v n n k
w

v

  
 


 18 

and the weight for the distance criterion 1D S

n nw w  , where k  is an integer and iv  is 19 

a series of weights, which satisfy the condition 10 ... 1kv v    . Compute the 20 

final weighted score ( ) ( ) ( )S S D D

n n n n nV w V w V x x x for each nEx  and select the 21 

plan *x  with the minimum weighted score as the next plan to be evaluated in the 22 

black box function. Let 
*

1n y x . 23 

Step 2.4: Evaluate 1ny  by using the black-box objective function, which will be 24 

explained in details in the next subsection. Here, we simply assume that we have 25 

already known how to solve the black-box objective function.  26 

Step 2.5: Update current best feasible solution 1best ny y  and set the counters for 27 

consecutive successes 1succ succC C  , consecutive failures 0failC   if 1ny  is feasible 28 

and 1( ) ( )n bestZ Z y y ; otherwise set 1fail failC C   and 0succC  .  29 
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Step 2.6: Adjust the perturbing probability slctp  via 0.5slct slctp p  if 
max

fail failC C , where 1 

max

failC  is a given integer parameter, and then set 0failC  . Otherwise if 
max

succ succC C , 2 

adjust the probability 2slct slctp p  and set 0succC  . 3 

Step 2.7: Update the set of evaluated points 1 1{ }n n nI I  y  and the iteration index 4 

1n n  . End the while iteration. 5 

Step 3: When the stopping criterion is satisfied, stop and return the current best feasible 6 

location plan besty . 7 

In the literature (Regis, 2011; Regis and Shoemaker, 2007), the decision variables are 8 

continuous variables, thus the step size parameters are adjusted to control the size of the 9 

neighborhood of the current best solution to be checked. While in this paper, the decision 10 

variables in the problem is mainly binary rather than continuous, which means the variable 11 

value is either be 0 or 1, and therefore, adjusting the step size is insignificant when generating 12 

the random candidate points to be predicted in the response surface model. To solve this 13 

problem, the perturbing probability slctp  is utilized to adjust the average number of 14 

dimensions perturbed from the current best solution besty . If the number of consecutive 15 

successes is larger than a given constant, slctp  is doubled to enlarge the checking area. In case 16 

of the number of consecutive failures is larger than a given maximum value, slctp  is halved to 17 

shrink the checking neighborhood. Then, the value of selected perturbed dimensions of besty  18 

will be directly changed to the other number in {0,1} . In this way, we can obtain random 19 

candidate points much more efficiently.  20 

In Step 1, a set of initial starting points 
00 1 2{ , ,.... }nI  y y y  that includes one feasible solution 21 

1y  is needed for fitting the initial response surface model. By default, the number of initial 22 

starting points 0 1n d  . The feasible solution 1y  can be firstly generated via a random 23 

procedure, and then processed via Step 2.2.2 to make it satisfy the budget constraint. If the 24 

solution is also evaluated feasible in the black-box function (detailed procedure in the next 25 

subsection), this solution can be set as 1y  and be applied to generate all other starting points. 26 

Define 1{ ,..., }de e  as the natural basis of d , the other d  starting points 
02{ ,.... }ny y  can be 27 

defined as 
01 1{| |,...,| |}n de e y y . This is only one example of the viable methods of 28 

generating initial points, while other methods can also be proposed and applied. Please note 29 

that it is required that the initial points are affinely independent in fitting the initial response 30 

surface model. 31 

In Step 2.3, the evaluation point is selected with minimum weighted score among the set of 32 

random generated points. The score is a combined consideration of the two criteria, which is 33 

the value of the predicted response surface model value and the minimum distance from 34 
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previously evaluated points. The second criteria is included because the point with low RBF 1 

value is usually near the current best solution besty  and this criteria can promote global search 2 

on the feasible region. Besides, the point far away from besty  can also improve the fitting of 3 

RBF for the objective function.  4 

3.2 RBF interpolation model  5 

In the presented algorithm, an RBF model as introduced in Powell (1992) and Regis (2011) is 6 

employed for the approximation of the expensive black-box objective function, which is 7 

equivalent to a form of kriging interpolation like dual kriging method (Cressie, 2015). 8 

Kriging is one of the widely used interpolation methods in geostatistics, spatial analysis and 9 

computer in the past few decades. It considers the statistical relationships among the 10 

measured points when creating the surface, which makes it most appropriate for the data case 11 

where spatially correlated distance or directional bias exists. The RBF method is briefly 12 

stated below. 13 

In Step 2, given evaluated data points {( , ( )), }n i i i nB Z I y y y , the RBF interpolation model 14 

is in form of 
1

( ) ( ) ( )
n

n i ii
S l 


  y y y y , where y  is a d  dimensional variable, 15 

, 1,...,i i n   is a series of coefficient to be determined,   is Euclidean norm, and ( )l y  is a 16 

linear polynomial in d  variables to be determined. In kriging interpolation, the function ( )r  17 

has several available choices, including a linear form ( ( )r r  ), a thin plate spline 18 

(
2( ) logr r r  ), a cubic form (

3( )r r  ) and so on. Each of them can be used in the RBF 19 

interpolation and for simplicity, here the last one 
3( )r r   is adopted in ( )nS y . Since the 20 

points iy  and their objective function value ( )iZ y  are known, the coefficient vector of cubic 21 

RBF interpolation model can be obtained by solving the following equality: 22 

( 1) ( 1) 1
0 0d d d

L Z

L c



   

    
    

    
 (14) 

Where   is an n n  matrix and ( , ) ( ), , 1,...,i ji j i j n   y y , L  is defined as 

11

1

T

T

n

 
 
 
 
 

y

y

 23 

and 1( ( ),..., ( ))T

nZ Z Z y y . The coefficient vector to be determined consists of 24 

1( ,..., )T

n    and 1 1( ,..., )T

dc c c  ; the latter indeed contains the coefficients of the linear 25 

polynomial function ( )l y . The coefficient vector ( )Tc  can be calculated if and only if 26 

rank( ) 1L d   (Powell, 1992). This is also the reason why the initial starting points are 27 

required to be affinely independent in the initialization step of the solution algorithm.  28 

3.3 Evaluation of the black-box function 29 
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In this section, the evaluation of the expensive black-box function ( )Z y  is presented, which 1 

is applied in both Step 1.1 and Step 2.4 of the presented stochastic RBF-based algorithm. It is 2 

equivalent to solving a combination of the middle-level constraints and the lower-level user 3 

equilibrium to obtain the travel system performance index, i.e., the objective function of the 4 

original problem, given a known EV charging station location plan y . In fact, the evaluation 5 

process of the black-box objective function is quite complicated and consumes dominant 6 

computational time in the whole presented solution algorithm. 7 

There are two main steps included in the evaluation of the black-box objective function. First, 8 

an MSA solution method for the restricted user equilibrium is stated, through which the 9 

network equilibrium can be calculated for a specific EV charging station plan y  and demand 10 

,

q

m vd . Second, a fixed-point iteration method is presented to solve the users’ selection 11 

between different EV types by incorporating the MSA solution process as the sub-problem. 12 

Details of the evaluating procedure are stated below.  13 

3.3.1 MSA solution method for the lower-level user equilibrium 14 

Given a known EV charging station location plan y  and a known customers’ demand ,

q

m vd  of 15 

different EV types, an MSA method is employed in this subsection to solve the tour-based 16 

network equilibrium model. We assume that the recharging delay time function is linear, the 17 

maximum recharging energy on a specific wireless recharging link is a fixed value and the 18 

energy consumption is irrelevant of traffic flow. These assumptions are used to simplify the 19 

problem and may compromise the model description of realistic practice, which are indeed 20 

worthy of special studies in the future. For example, EV energy recharged on a wireless 21 

recharging link is actually related to the driving time on this link according to the researches 22 

of Jang et al. (2015), Ko et al. (2015) and Chen et al. (2016). However, to ensure the major 23 

topic of this study can be focused and addressed and the model solution is more tractable, we 24 

adopt the simplified assumptions in this paper and leave the extended and more practical 25 

assumptions to be investigated in the future studies. When the location plan y  is known, the 26 

minimum recharging time is actually fixed and unique for specific class m  travelers using 27 

vehicle type v  traversing a tour path p . In addition, the BPR link travel time function is also 28 

strictly increasing. According to the work of Dafermos (1971, 1972), the multi-class traffic 29 

assignment problem can be reformulated as a nonseparable single class network equilibrium 30 

problem. The nonseparable problem, when the Jacobian matrix of travel cost function is 31 

symmetric, can be reduced to a minimization problem. In the developed model, it is obvious 32 

that one class travellers using a type of EVs on one link has the same impact on another class 33 

of users as much as the latter class on this link impact the former one, which means the 34 

Jacobian matrix is symmetric. Hence, the equilibrium link flow is unique for this tour-based 35 

network equilibrium model.  36 

Once the EV charging station location plan is given, all the paths for any specific class m  37 

travelers using vehicle type v  can be enumerated. In this way, the lower-level network user 38 

equilibrium problem can be directly solved by applying conventional solution methods for 39 

UE, such as Frank-Wolfe algorithm and MSA method. In this subsection, the MSA is used to 40 
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solve the network user equilibrium. However, the path enumeration considering EV charging 1 

activity is complicated and takes considerable time in the computational process. Here, the 2 

method of restricted version of UE, which is presented in He et al. (2014), is applied in 3 

solving the lower-level problem. This method avoids the tedious path enumeration procedure 4 

while still guarantees the exact solution of the original UE. The basic idea of this method is 5 

that, rather than enumerating all the paths, a sub-problem is invented to generate a shortest 6 

path in each iteration, which is stored in a set of shortest paths, and then the original user 7 

equilibrium is solved with all these generated shortest paths. The iterative process terminates 8 

when the new generated path is no shorter than all the paths stored in the subset for the same 9 

user class. The key point of this method is to develop the shortest-path-finding sub-problem 10 

for each user class and specific situation. In this section, two shortest-path-finding sub-11 

problems for wireless and plug-in charging EVs are developed below, respectively. The first 12 

one of the two sub-problems is a mixed-integer linear programming (MILP) and the second 13 

one is nonlinear, which can be further transformed into equivalent MILP by applying 14 

reformulation-linearization technique (RLT) (Sherali and Adams, 1999). Thus, both of the 15 

two problems can be directly solved by conventional methods for MILP or using commercial 16 

solvers like CPLEX and Gurobi. 17 

Given the EV charging station location plan and the current link flow solution (… a …), the 18 

sub-problem, i.e., the shortest usable tour path finding problem for the restricted lower level 19 

network equilibrium problem can be formulated as follows for each combination of user class 20 

m , EV type v  and tour q . For wireless charging EV, the shortest-path-finding problem is 21 

developed as below: 22 

2 2 1

, , ,

, , ,min ( ) /
q q c q c q c

wlss wlss wlsd

a a a i m i m a m

a

o

A i N i N a A

mR wt x K R   

   


      

 
    

 
        (15) 

s.t.  

    q     x E  (16) 

, , , , , , ,     ,( , )q

j m v i m v a j m v a m aS S e F I i j a A               (17) 
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a m a mMI a A       (22) 

 , 10,1     ,c q

a m a A      (23) 

0

,0     , q

a m aI I a A       (24) 
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0

( ), , ,     , ( ) ( )q

O m v m vS S O O q

       (25) 

1 2

1 2( ), , ( ), , 1 2 1 2=     , ( )= ( )q q

D m v O m vS S D O 

       ，  (26) 

max

, , , , 2/     , , ( ), ( )q c

i m v i m vF B i N i D O          (27) 

 , , 20,1     , , ( ), ( )q c

i m v i N i D O         (28) 

 0,1     , q

ax a A      (29) 

,

, , , 2    ,wlss wlss q c

i m i i m vR r F i N     
 

(30) 

,

, , , , , 2    , , ( ), ( )wlss s wlss q c

i m i i m v i i m vK F i N i D O            
  

(31) 

,

( ), ( ) ( ), , ( )     , ( ) ( )wlss wlss q q

D m D D m v DK F T D D q 

         
 

(32) 

,

( ), 0    , ( ) ( )wlss q

D mK D D q

     
 

(33) 

,

, , 1    ,wlsd wlsd c q

a m a a mR r I a A     
 

(34) 

, , , 1(1 )     ( , ) ,c q

i m v a a a m m vS e M x M G L i j a A            
 

(35) 

, , 1(1 )     ( , ) ,c q

i m v a a m vS e M x G L i j a A          
 

(36) 

 1 

The objective is to minimize the tour path travel cost, including the pure travel time under 2 

this traffic flow ( )
q

a a a

a A

t x






 , recharging fee 

2 1

, ,

, , /
q c q c

wlss wlsd

i m a

A

o

mm

i N a

R wR 

    

 
  

 
     3 

measured in terms of time and recharging delay because of wireless static recharging 4 

2

,

,
q c

wlss

i m

i N

K

 

  , wherein binary variable ax
 indicates whether or not link a  is on the current 5 

shortest useable path of an OD pair   on tour q , q  is the set of OD pairs included in tour 6 

q , 
,

,

wlss

i mR
 is the stationary wireless recharging cost at node i  of class m  drivers choosing 7 

wireless charging EV traveling between an OD pair  , 
,

,

wlsd

a mR
 is the dynamic recharging 8 

cost on link a  of class m  drivers choosing wireless charging EV traveling between an OD 9 

pair  , and 
,

,

wlss

i mK
 defines the delay time of stationary wireless charging behavior at node i  10 

of class m  drivers choosing wireless charging EV traveling between an OD pair  . 2

cN  11 

denotes the set of nodes where stationary wireless charging stations are built in the current 12 

location plan and 1

cA  is the present set of links with dynamic wireless charging lanes.  13 

Constraint (16) describes the traffic flow conservation on the whole network, wherein 14 

[ ]ax x  is a column vector with a length of A .   is the node-link incidence matrix with a 15 

size of N A  and n

a     , where 1n

a   if node n  lies at the entrance of link a , 16 
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1n

a    if node n  lies at the exit of link a , and 0n

a   otherwise. A column vector E  is 1 

defined with a length of N  between each OD pair  , wherein the elements equals to 1 at 2 

the origin node, -1 at the destination node and 0 otherwise. Constraints (17) and (18) ensure 3 

the conservation of energy, which is an equivalent relationship between the pure consumed 4 

energy and the loss of EV battery charge on any utilized link, while unrestricted for any 5 

unutilized link. For each link ( , )i j a A  , , ,i m vS
 stands for the status of battery power at 6 

node i  of class m  drivers choosing EV type v  traveling between an OD pair  ; if node i  is 7 

a recharging station, , ,i m vS
 refers to the status of battery power after recharging. ae  is the 8 

amount of electricity consumed on the link. , ,i m vF
 is the amount of electricity charged at node 9 

i  and ,a mI  represents the amount of electricity charged when driving on link a . a

  is a 10 

variable, which equals to zero if link a  is on the currently shortest path, otherwise a

  is 11 

unrestricted. M  in constraint (18) is a large enough positive number. Constraints (19), (20) 12 

and (24) are the bound constraints for the amount of electricity charged at node i  , ,i m vF
, state 13 

of EV battery charge at node i  , ,i m vS
 and the amount of electricity charged by using wireless 14 

charging lane on link a  ,a mI , respectively, where iB  is the upper bound of electricity that an 15 

EV can charge at node i , vL  is the battery size of an EV of type v , and 
0

aI  represents the 16 

upper bound of electricity that a wireless charging EV can charge on link a . Constraints (21)17 

-(23) are used to indicate whether a wireless recharging lane on link a  is employed, binary 18 

variable , 1a m

   if this lane is used by the specific user class and 0 otherwise. Constraint (25) 19 

describes the state of charge of EV battery at starting node of the tour and constraint (26) 20 

ensures that there is no loss of charge of EV battery between two consecutive trips. ( )O   and 21 

( )D   represents the origin point and the destination point of a trip or a tour, respectively. 
0

,m vS  22 

is the starting status of battery power of class m  drivers choosing EV type v . Constraints (27) 23 

and (28) indicate whether a static wireless charging station at note i  is employed, where 24 

, , 1i m v

   if the wireless charging station is used and 0 otherwise; 
max max ( )i N iB B . The 25 

binary variable ax
 in constraint (29) is the key variable in this sub-problem, which is used to 26 

indicate the shortest path of the tour under this current traffic flow situation. Static wireless 27 

charging cost and dynamic wireless charging cost are calculated in constraints (30) and (34) 28 

respectively. Here, it is assumed that the charging fee is a linear function of the amount of 29 

recharging electricity. 
wlss

ir  is the unit price of stationary wireless charging at node i  and 
wlsd

ar  30 

is the unit price of dynamic wireless charging on link a . Since the static wireless charging 31 

also results in travel delay for the tour, constraints (31)-(33) are developed to calculate the 32 

delay time 
,

,

wlss

i mK
, which is also a linear function of the amount of recharging electricity 33 

minus the planned stopping time at this node of the tour. 
s

i  represents the fixed time for 34 

stopping and starting an EV at node i  for recharging and 
wlss

i  defines the time for wireless 35 
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charging EV recharging a unit amount of electricity at node i . ( )

q

DT   refers to the dwelling 1 

time of tour q  travelers at node ( )D  . Constraints (35) and (36) describe the impact of range 2 

anxiety of class m  user on the EV battery state of charge in the cases of recharging on link a  3 

and not recharging on link a , respectively, where mG  refers to the buffer range rate of class 4 

m  drivers. It is clear that the shortest-path-finding sub-problem for wireless charging EV is 5 

an MILP, which can be solved through various commercial solvers, such as CPLEX and 6 

Gurobi. 7 

For plug-in charging EV, the shortest-path-finding problem is similar to the sub-problem for 8 

wireless charging EV except for those constraints related to the employment of different 9 

levels of charging stations at one node. The sub-problem is developed as following: 10 

1 1

, ,

, ,min ( ) /
q q c q c

plu plu

a a a i m i m

a A i N i

o

m

N

t x K wR  

  


    

 
    

 
      (37) 

s.t.  

(16), (18)-(20), (25), (26), (29)  

, , , , , ,     ,( , )q

j m v i m v a j m v aS S e F i j a A              (38) 

max

, , , , 1/     , , ( ), ( )q c

i m v i m vF B i N i D O          (39) 

 , , 10,1     , , ( ), ( )q c

i m v i N i D O         (40) 

, , , , 1    , , ( ), ( )q c

i m i m v i N i D O 




    


      
(41) 

 , , 10,1     , , , ( ), ( )q c

i m i N i D q O q

         (42) 

,

, , , , , 1    , , ( ), ( )plu plu q c

i m i i m v i mR r F i N i D q O q  




 


      
(43) 

,

, , , , , , , , 1    , , ( ), ( )plu s plu q c

i m i i m v i i m v i mK F i N i D O   

 


      


       
(44) 

,

( ), , ( ) ( ), , , ( ), ( ) 1    , ( ) , ( ) ( )plu plu q q c

D m D D m v D m DK F T D N D D q  

      


    


       
(45) 

,

( ), 10    , ( ) , ( ) ( )plu q c

D mK D N D D q

         (46) 

, , (1 )     ( , ) , q

i m v a a m vS e M x G L i j a A            (47) 

Here, 
,

,

plu

i mK
 represents the delay time of recharging behavior at node i  of class m  drivers 11 

choosing plug-in charging EV traveling between an OD pair   and 
,

,

plu

i mR
 is the recharging 12 

cost; 
plu

ir  is the price of plug-in charging at node i ; binary variable , ,i m



  indicates whether 13 

or not class m  travelers using plug-in charger of type   at node i ; ,

plu

i  is the recharging 14 

time for plug-in EV charging a unit amount of electricity through type   charger at node i . 15 
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Constraint (38) describes the conservation of energy. Compared to constraint (17), the term 1 

of electricity recharged on wireless charging link is removed from this constraint. Constraints 2 

(39) and (40) state whether plug-in charging EV of user class m  recharge at node i , which 3 

belongs to the set of plug-in charging station locations 1

cN . Constraints (41) and (42) 4 

introduce a new variable to indicate whether a level    charging facility is utilized by 5 

class m  users, where   is the set of charging facility levels that the given government 6 

location plan is planning to construct. Constraint (43) calculates the recharging fee, which is 7 

also a linear function of the amount of electricity recharged. The recharging fee is transferred 8 

into equivalent time cost in the objective function of the sub-problem. Delay time because of 9 

plug-in recharging behavior is calculated through constraints (44)-(46). The last constraint 10 

(47) describes the effect of range anxiety on state of EV battery charge in this plug-in 11 

charging EV case. However, since constraints (43)-(45) contains a common bilinear term 12 

, , , ,i m v i mF 

 , these constraints are nonlinear and lead to the nonconvex property of the whole 13 

sub-problem. If the sub-problem is directly solved by conventional methods for nonlinear 14 

problem, the solution path may not be the shortest path under the current traffic flow situation. 15 

To guarantee the path solved be shortest path, the RLT (Sherali and Adams, 1999) is applied 16 

here to facilitate the transformation of the nonconvex sub-problem into an equivalent MILP. 17 

The latter problem can be directly solved by commercial solvers and the solution is 18 

guaranteed to be global optimal, that is, the shortest path in the current situation. 19 

To linearize the bilinear term, for each 1, , , ( ), ( )q ci N i D q O q     , let 20 

, , , , , ,i m i m v i mF  

   . Thus plug-in charging cost can be rewritten as: 21 

,

, , , 1    , , ( ), ( )plu plu q c

i m i i mR r i N i D q O q 





 


      
(48) 

Delay time because of plug-in recharging behavior can be rewritten as: 22 

,

, , , , , , 1    , , ( ), ( )plu s plu q c

i m i i m v i i mK i N i D O  

 



      


        
(49) 

,

( ), , ( ) , ( ), ( ) 1    , ( ) , ( ) ( )plu plu q q c

D m D D m DK T D N D D q 

     



    


       
(50) 

Following the rules of RLT, , , , , , ,i m i m v i mF  

    is equivalent to the following linear constraints: 23 

, ,

, , , ,

, , , ,

, , , , , ,

0

0

0

0

i m

i m i m i

i m i m v

i m i m v i i m i

B

F

F B B





 

 

 



  

 



 



 



 

 

   

 (51) 

To prove the equivalence between these two, we can separately let , ,i m



  equal to 1 or 0 and 24 

plug it into (51). In this way, we have, 25 
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, ,

, ,

, , , , , ,

, , , ,

, , , ,

0

1

i m

i m i

i m i m i m v

i m i m v

i m i m v

B
F

F

F







  

  



 






 





 
 

 
    

 
 

 

 (52) 

, ,

, ,

, , , ,

, , , ,

, , , ,

0

0
0 0

( ) 0

i m

i m

i m i m

i m i m v

i m i i m v

F

B F







 

  



 






 





 
 

 
    

 
 

   

 (53) 

This proves the equivalent between the bilinear term , , , , , ,i m i m v i mF  

    and the set of linear 1 

constraints (51). So far, by applying RLT technique, the shortest-path-finding sub-problem 2 

for plug-in charging EV can be transferred into the following equivalent MILP form: 3 

1 1

, ,

, ,min ( ) /
q q c q c

plu plu

a a a i m i m

a A i N i

o

m

N

t x K wR  

  


    

 
    

 
      (37) 

s.t.  

(16), (18)-(20), (25), (26), (29)  

(38)-(42), (46)-(51).  

The steps of the MSA method for the restricted user equilibrium is stated below: 4 

Step 1: Initialization. Set flag=1, iter=0, set of shortest path P   . 

Step 2: while flag>0 

          Set iter=iter+1 

Step 2.1: if iter>1 

Solve the multiclass restricted user equilibrium using current set of 

shortest paths found for each user class and EV type on each tour: 

 Step 2.1.1: Set iteration index 0n  , all link flow equal to 0. Find the path 

with minimum travel cost and assign all travel demand on the path. 

Obtain the current link flow 
0

a . 

  

Step 2.1.2: 

 

 

while err>tolerance 

          Calculate the link travel time and assign all travel demand on 

the shortest path to obtain the feasible direction of link flow 

n

a . 

 Step 2.1.3: 

 

 

Update current link flow 
1 ( ) /n n n n

a a a a n        for all 

links and calculate err. Let 1n n  . 

end. 

 Step 2.1.4: Return the current link flow and the minimum path travel cost. 

  end. 

Step 3: Set flag=0 
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for each combination of user class and EV type 

      Solve the shortest-path-finding sub-problem directly. 

      if the travel cost of the new shortest path solved is smaller than the current 

minimum travel cost 

Add this path to the set of shortest path P   

Set flag=1 

end 

end 

end 

Step 4: Return the current link flow as the equilibrium link flow. 

 1 

Here, the words ‘travel cost’ includes pure travel time, the delayed time due to recharging 2 

behavior, and the unit wage weighted recharging fee.  3 

 4 

3.3.2 Fixed-point iteration method for the EV type selection  5 

Because the users’ selection between different EV types in the middle-level is both related to 6 

the location of EV charging station plan in the upper-level and the users’ equilibrium tour 7 

travel cost in the lower-level, hence, solving this problem is very complicated. Since in 8 

section 3.3.1 the solution method for the lower-level is given, here, it is incorporated in the 9 

iterations of fixed-point method in this sub-section as a sub-problem to assist calculating of 10 

users’ probability of choosing different EV types. In this section, the goal is to solve the road 11 

user’s choice probability of multiple EV types, supposing the location plan of multiple EV 12 

charging stations are given.  13 

The solution algorithm for this problem is inspired by the classical fixed-point iteration 14 

method for solving nonlinear equations. The basic idea of this numerical method is to, first 15 

convert the equations into the form of ( )x f x , which is a fixed-point of x ; second, using a 16 

starting point 0x  to calculate 1 0( )x f x  and then repeat this process until the stopping 17 

condition is satisfied. In this problem, the probability 
q

v  is treated as the fixed-point, while 18 

the lower-level user equilibrium traffic assignment (7)-(12) and the  calculation of equations 19 

(4)-(6) are treated as the function ( )f x . In details, the procedure of the fixed-point iteration 20 

method for the EV type selection can be stated as follows: 21 

Step 1: Initialize a starting probability 0λ  for each type of EV (e.g. both from 0.5 for the two 22 

types). Set iteration number 1n  .  23 

Step 2: Use equation (6) and the current nλ  to calculate the travel demand ,

q

m vd  for each user 24 

class m  of tour q  choosing EV type v . Plug the starting travel demand into the lower-level 25 

user equilibrium and solve the user equilibrium by using the presented MSA algorithm in the 26 

3.3.1. 27 
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Step 3: Use the travel cost from the lower-level problem and equations (4)-(5) to calculate the 1 

new probability 1nλ .  2 

Step 4: Check the convergence of the sequence ( )n . Go to step 5 if it converges, otherwise 3 

let 1n n   and go to step 2. 4 

Step 5: Return the probability nλ  as the final solution of customers’ choice of different EV 5 

types, and the current equilibrium link flow from the lower-level MSA solution result.  6 

So far, with the given the specific EV charging station location plan, the key part of the 7 

black-box problem is solved, that is, the customers’ choice of different EV types in the 8 

middle-level and the resultant user equilibrium traffic flow can be obtained. Then these 9 

results can be used to calculate the objective function value of (1), which is returned as the 10 

value of the black-box objective function ( )Z y  and utilized in the RBF-based solution 11 

algorithm. 12 

Note that the solution of the fixed-point method is related to the initial starting point, and 13 

different starting points can be tried if the ( )n  sequence does not converge. From the testing 14 

results of our numerical examples, starting from the point 0.5 for each type can lead to the 15 

final solution in almost every cases. In the worst case, where the probability solution cannot 16 

be calculated, the black-box problem is marked as infeasible and the current best location 17 

plan in the RBF based solution algorithm will not be updated, but the whole algorithm can 18 

still continue and search for a better location plan. This indicates one of the prominent merits 19 

of the RBF-based solution algorithm, that is, it can tolerate fault in the solution process, 20 

which is very important especially for computer-aided calculation or simulation.  21 

 22 

4. Numerical examples 23 

 24 
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Figure 2 The Nguyen-Dupuis network. 2 

In this section, numerical examples are conducted to test the validity of the proposed model 3 

and performance of solution algorithms. As our major objective in this paper is to propose a 4 

mathematical model and solution algorithm for locating various types of EV charging stations, 5 

a small and a larger network are used in this section to illustrate the concept, application 6 

method and performance of the model and solution algorithm. In this section, first, we show 7 

the result of the small network and then test the impact of different government budget on 8 

locating charging stations. Second, solution performance of the presented solution algorithm 9 

is demonstrated. What’s more, result of the presented model is compared with that of the 10 

model without the middle-level programing. Finally, results of the larger network are 11 

reported and analyzed.  12 

4.1. The Nguyen-Dupuis network 13 

The following set of tests are conducted on the Nguyen-Dupuis network (Nguyen and Dupuis, 14 

1984) as the benchmark example. In the literature, this network only contains one direction of 15 

roads, i.e., there is no path back to the starting point; however, as the proposed model is tour-16 

based and it is ideal that all the testing tours could end at their starting nodes (traveler 17 

commutes from home in the morning and back home in the evening), the number of links on 18 

the network is doubled by considering two directions of roads in the new network, as is 19 

shown in Figure 1. All the nodes and links are labeled with an index number. In total, this 20 

network contains 13 nodes, which indicate 13 intersections, and 38 links, which represent 21 

both two directions of 19 roads. All the nodes are available for locating all types of charging 22 

stations, including both wireless and traditional wired charging stations. All the links are 23 

available for constructing a special wireless charging lane. The two ways of each road will be 24 

considered at the same time because one road is usually treated as a whole in practice. 25 
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Certainly, the presented model and solution algorithm do not require it to be so, and the two 1 

directions of the road can be considered separately.  2 

Table 1 lists the link input parameters for the Nguyen-Dupuis network, including link free 3 

flow travel time, link capacity and length, and each pair of links shares the same settings. 4 

Assume there are two tours in total for the test. The demand of each tour, the OD pairs and 5 

dwelling time at each destination node is listed in Table 2. For each tour, there are two 6 

choices of EV types as mentioned in the above text and three classes of road users with the 7 

same share of travel demand. We assume the three classes of travelers are frequent, average 8 

and modest travelers. The initial states of charge of their EVs are 1.0, 0.8 and 0.6 of the EV 9 

battery capacity, which is set as 24 kWh. The buffer ranges of the three classes are 0.2, 0.1 10 

and 0 of the EV battery capacity, respectively. The hourly wage rate of each class is $80, $40 11 

and $15 and the annual income of each class is set equal to the unit income 40 52  . The 12 

coefficients of travel cost in the middle-level vehicle choice model in this study are set as -13 

0.0375, -0.0625 and -0.0875, based on the suggested coefficients in Nie et al. (2016), i.e., -0.3, 14 

-0.5 and -0.7 for each consumer class, multiplied by a logit model parameter 0.125, 15 

representing the travel cost perception variations. The purchasing price vG , which contains 16 

vehicle cost and charging equipment cost, is set as $40 thousand and $31 thousand (Nie et al., 17 

2016) for wireless and plug-in charging EVs respectively. The life expectance of each type of 18 

EV is assumed to be 10 years. The coefficient of EV purchasing cost in the vehicle choice 19 

model is set as -1 and it is assumed that there is no other tour related cost thus q  is set as 0. 20 

The construction cost for the levels 1, 2 and 3 plug-in charging stations are $1.19, $4.25 and 21 

$8.5 million respectively (He et al., 2015), while the construction cost of the wireless 22 

charging is assumed to be $6 million for wireless static charging and $4 million per mile for 23 

dynamic charging on link (Fuller, 2016). Set the fixed delay time for charging 5mins

i  , 24 

and 41.76min, 10min and 0.76minplu

i   respectively for level 1, 2 and 3 (He et al., 2015). 25 

The recharging fee for each level is $0.08, $0.2 and $0.3 per kWh. The delay time and 26 

recharging fee for wireless static charging are assumed to be the same with level 2 charging; 27 

the recharging cost is set as $0.5 per kWh and there is no delay time for wireless dynamic 28 

charging. In the objective function, the inconvenience cost for each unfinished trip of a tour is 29 

equal to 1000 min delay and weighted factor of EV trip failure cost   is set equal to 0.5.  30 

The experiments are performed on a Windows platform with a 64-bit Windows 10 Pro 31 

operating system, an Intel(R) Xeon(R) CPU E5 2609 0 @2.40 GHz,2.40 GHz (two 32 

processors) and 32 GB RAM. The free toolbox YALMIP R20150908 (Löfberg, 2004) 33 

together with MATLAB R2013b is adopted to model the example. The commercial 34 

optimization solver Gurobi optimizer v6.0.5 (Gurobi Optimization, 2016) is used as an 35 

external solver of YALMIP to solve all MIP problems to their global optimal solutions. 36 

Table 1  37 

Link free-flow travel time and link capacity for the test network. 38 

Link 

pairs 
Free-flow travel 

time (min) 
Capacity 

(veh/h) 
Length 

(mile) 
Link 

pairs 
Free-flow travel 

time (min) 
Capacity 

(veh/h) 
Length 

(mile) 

1, 20 7 300 8.75 11, 30 9 500 11.25 

2, 21 9 200 11.25 12, 31 10 550 12.5 
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3, 22 9 200 11.25 13, 32 9 200 11.25 

4, 23 12 200 15 14, 33 6 400 7.5 

5, 24 3 350 3.75 15, 34 9 300 11.25 

6, 25 9 400 11.25 16, 35 8 300 10 

7, 26 5 500 6.25 17, 36 7 200 8.75 

8, 27 13 250 16.25 18, 37 14 300 17.5 

9, 28 5 250 6.25 19, 38 11 200 13.75 

10, 29 9 300 11.25         

 1 

Table 2 2 

Tour input parameters for the test network. 3 

Tour 1     Tour 2   

Demand (veh/h) 100 
 

Demand (veh/h) 50 

OD pairs Dwelling time (min) 
 

OD pairs Dwelling time (min) 

(1,6) 30 
 

(4,7) 10 

(6,3) 5 
 

(7,2) 5 

(3,1)     (2,4)   

 4 

4.1.1 Result of the Nguyen-Dupuis network 5 

Given budget as 150 million, the location plan we obtained from the presented solution 6 

algorithm is shown in Table 3. The result locates five level 3 stations for plug-in recharging, 7 

as well as two wireless charging lanes for dynamic recharging. The objective function value, 8 

i.e. the social welfare, and the probabilities of customers’ choice of different types of EVs are 9 

reported in Table 4. The objective value is 6773.80 with no missed tour in this test example. 10 

Table 5 shows the equilibrium traffic flow if the obtained EV charging station location plan is 11 

applied. Figure 3 compares the minimum travel costs, including travel time, delay time due to 12 

recharging and wage weighted recharging cost, between wireless and plug-in charging EVs 13 

for three different classes of travelers of each tour. It shows that, the Class 1 and 2 travelers 14 

of tour 1 choosing wireless charging EV will have a smaller travel cost, while the Class 3 15 

travelers of tour 1 and all the tour 2 travelers will not choose wireless charging EV, because 16 

using plug-in charging EV under this EV charging station location plan will have a smaller 17 

travel cost.  18 

Table 3 19 

EV charging station location plan when budget=150 (million). 20 

  Plug-in charging Wireless charging 

Node No. Level 1 Level 2 Level 3 Node Link 

2 
  

√ 
 

10 

3 
  

√ 
 

29 

5 
  

√ 
  6 

  
√ 
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7 
  

√ 
   1 

Table 4 2 

Objective function value and customers’ choice of EV types when budget=150 (million). 3 

Optimal objective value 

  EV choice probability 

 
Tour 1 

 
2 

 
User class 1 2 3 

 
1 2 3 

6773.80  
Wireless Charging EV 0.53 0.51 0 

 
0 0 0 

  Plug-in charging EV 0.47 0.49 1   1 1 1 

 4 

Table 5 5 

Network equilibrium link traffic flow (veh/h) when budget=150 (million). 6 

Link Flow Link Flow Link Flow 

1 100.0 14 0.0 27 0.0 

2 0.0 15 0.0 28 50.0 

3 50.0 16 100.0 29 100.0 

4 0.0 17 0.0 30 50.0 

5 150.0 18 0.0 31 0.0 

6 0.0 19 0.0 32 0.0 

7 150.0 20 100.0 33 0.0 

8 0.0 21 0.0 34 0.0 

9 50.0 22 50.0 35 100.0 

10 100.0 23 0.0 36 0.0 

11 50.0 24 150.0 37 0.0 

12 0.0 25 0.0 38 0.0 

13 0.0 26 150.0     

 7 

 8 

Figure 3 Minimum traveling cost of each tour and each class user. 9 
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Figure 4 illustrates the recharging plans of tour 1 Class 2 travelers using different types of 1 

EVs, who choose the same route as shown in this figure, where the numbers beside nodes or 2 

links represent the amount of electricity recharged at this node or via the wireless recharging 3 

link, the number in parenthesis represents the delay time due to recharging behavior. Note 4 

that the delay time does not include the original dwelling time at destination nodes. It can be 5 

observed that plugin charging EV tend to utilize the original dwelling time at destination 6 

nodes to recharge their batteries, for example, at node 6 and node 3. Besides, wireless 7 

charging EVs prefer dynamic recharging when they are driving on links because there is no 8 

recharging delay. What's more, only level 3charging stations are employed in this example, 9 

which indicates that plugin charging EV drivers prefer fast charging even though the 10 

charging price is higher. Finally, we notice that in this example, with a sufficiently high value 11 

of budget, wireless EVs may reduce the recharging delay to zero, i.e., they can fully utilize 12 

dynamic recharging via wireless recharging lane.   13 

1 35 76 11
14.6 kWh

15 kWh

Wireless recharging plan:

Plug-in recharging plan:

1 35 76 11

12.05 kWh

Level 3

15.95 kWh

Level 3

1.60 kWh

Level 3

(5.69 min)

(6.07 min)
  14 

Figure 4 Recharging plans of tour 1 class 2 travlers using different EV types. 15 

 16 

Figure 5 Comparison of construction investment assignments with different budgets. 17 

Figure 5 compares the construction investment assignment results for three different budget 18 

cases, where the budget is set as $20 million, $40 million, and $150 million, respectively. 19 
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level 3 stations at both node 7 and 11. No wireless charging facilities are planned and the 1 

final objective function value is 8049.22. When budget is 40, the obtained solution locates 2 

level 3 stations at node 2, 3, 6, and 7 respectively. There is no wireless charging facilities 3 

located in this case neither, thus all customers choose to use plugin charging EV. The final 4 

feasible objective function value is 6880.26. It can be observed that, similar with the result 5 

when budget is set as 150, the investment plan has its priority to construct higher level 6 

charging stations, probably because road users prefer recharging at higher level stations to 7 

avoid extra recharging delay. . What’s more, in the highest budget case, the construction cost 8 

of wireless dynamic charging facilities is much more expensive, which is almost two times of 9 

the construction cost of plug-in charging stations. However, it does reduce the recharging 10 

delay time as shown in Table 6, where the average income weighted recharging cost and 11 

average recharging delay with the three given budget cases are demonstrated. Generally, 12 

higher budget can greatly reduce the plugin EV recharging delay and slightly reduce the 13 

income weighted recharging cost for class 1 users. Second, when budget is set to be 150, the 14 

income weighted recharging cost for wireless recharging EV is about 71.4%, 70.9% higher 15 

than those of plug-in charging EV for class 1 and 2 users, respectively. Meanwhile, the 16 

average recharging delay of wireless recharging EV is 0, however, plugin EV users who still 17 

have to spend extra time for recharging. Finally, it is also found that the Class 1 travelers 18 

using plugin EV have more recharging delay than Class 3 travelers, which is probably due to 19 

their higher range anxiety. In contrast, the average income weighted recharging cost of Class 20 

1 is much lower than Class 3 users, because Class 1 users have a higher wage. It should be 21 

noted that, the result is obtained under the current setting of travelers’ income, recharging 22 

prices and construction fee for multiple types of EV recharging stations. Changing of these 23 

parameters may lead to a far different result. The impact of charging price is beyond the 24 

focus of this paper and may be studied in future research.  25 

 26 

Table 6 27 

Average income weighted recharging cost and average recharging delay with different 28 

budgets. 29 

Budget EV type 

Average wage weighted recharging cost   Average recharging delay 

Class 1 Class 2 Class 3 
 

Class 1 Class 2 Class 3 

20 Plug-in EV 6.15 12.94 37.40 
 

23.81 24.19 25.79 

40 Plug-in EV 6.01 13.10 37.82 
 

11.91 10.79 5.26 

150 Plug-in EV 5.95 12.99 37.82 
 

11.12 10.29 5.26 

  Wireless EV 10.20 22.20 0 
 

0.00 0.00 0.00 

 30 

4.1.2. Performance of the presented solution algorithm 31 

The performance of the presented solution algorithm is shown in this section. The parameters 32 

adopted in the test are show as follows. The number of binary variables in the example is 71, 33 

thus the dimensions of y  is 71 and set 0 72n  . For a better global search at beginning, the 34 
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perturbing probability is initialized as 0.8slctp  . The maximum number for counters are set 1 

as 
max 5succC   and 

max 5failC  . 30000t   candidate points are randomly generated in each 2 

iteration. The serie 1 2 3( , , ) (0.8,0.9,0.95)v v v   is adopted in determining the weight of 3 

response surface and distance.  4 

Figure 6 shows the obtained best feasible objective function value so far from the 1st iteration 5 

to the current iteration when the presented solution algorithm is applied to the test network 6 

when budget is given at $150 million. The first feasible best objective function value is equal 7 

to a random found best feasible objective function value 8130.31 in the initialization step, 8 

which is apparently not desired. In the first iteration, a much better objective 7263.11 is 9 

immediately achieved than the one in the initialization step, which is improved by 11.9%. 10 

This is because the evaluation of 1d   affinely independent points in the initialization step 11 

contributes significantly to get the initial picture of the black-box objective function by the 12 

RBF interpolation. Then the best feasible objective function value slowly converges with the 13 

iteration progress. The algorithm stops after the 37
th

 iteration and the final solution is 14 

obtained at the 15
th

 iteration.  15 

 16 

Figure 6 Objective function values of best feasible solution within 40 iterations. 17 
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 1 

Figure 7 Comparison of objective function values between approximated value via RBF 2 

interpolation and real value via black-box function evaluation. 3 

 4 

Figure 7 compares the approximated objective function value from the RBF interpolation 5 

with the real value from black-box objective function evaluation in each iteration. At first, the 6 

RBF model is indeed a crude approximation for the true objective. The difference between 7 

the two is quite large within the first several iterations. However, with the progress of 8 

solution procedure the approximation of RBF interpolation is improved gradually, because 9 

the new evaluation point updates the fitting in each iteration. Finally, the two lines are very 10 

close to each other in the last several iterations, which indicates that the RBF model can 11 

approximate the black-box objective function very well in the near feasible region of the 12 

current best solution.  13 

The total calculation time for the test is about 13.47 hours, among which 93.5% is the 14 

evaluation time of the expensive black-box function. In the test example, each black-box 15 

evaluation costs about 7.53 minutes, while other procedures of the presented solution 16 

algorithm, including fitting and random points generation, costs about 0.53 minute in each 17 

iteration. It shows that the computational load for stochastic RBF-based algorithm excluding 18 

black-box function evaluation only is much lower in contrast to the evaluation of expensive 19 

black-box function.  20 

The test network is only an illustrative example. In real world, the traffic network is much 21 

more complex, thus each evaluation of the black-box function is much more expensive than 22 

the example, which may cost hours to run the black-box function each time. In that case of 23 

situation, the presented solution algorithm should be more applicable than conventional meta-24 

heuristic algorithms, such as genetic algorithm; basically, by using a reasonably accurate 25 

surrogate model to replace the original one, the problem is more analytically tractable and 26 

computationally cheap.  27 

4.1.3. Comparison with result without considering EV type choice 28 
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In the tri-level programming formulation in this study, the travelers’ EV type choice is 1 

explicitly considered in the middle-level program. The EV type choice, on one hand, changes 2 

after the charging facilities location plan; on the other hand, affects the resultant traffic flow 3 

pattern and thus the charging facilities siting plan. Therefore, it is essential to include it into 4 

the model formulation. To show the significance of middle-level programming, which 5 

incorporates electric vehicle demand and infrastructure interactions into the charging 6 

facilities location problem, a model without the middle-level programming is tested. The 7 

amounts of different types of electric vehicles are no longer variables but fixed constants 8 

given in priori. In this test, without loss of generality, the probabilities of choosing different 9 

types of EVs of each user class are simply set to be equal, i.e., half of each class users choose 10 

wireless recharging EV and the other half choose plug-in recharging EV. The obtained 11 

locational plan is shown in Table 7 with given budget of $150 million. The objective function 12 

value of this location plan is 7583.12, which is 11.95% higher than the result from the 13 

presented model considering EV type choice. Since both wireless and plug-in charging EVs 14 

are to be used in all tours, the location plan need siting wireless and plug-in charging 15 

facilities for both the two types of EVs. However, in this situation, the travel cost for some 16 

travelers is much higher than that of choosing another type of EV, as shown in Figure 8. For 17 

example, class 3 users of tour 2, the travel cost of using wireless EV is 54.1% higher than 18 

using plug-in charging EV. Hence, in practice, the class 3 travelers of tour 2 will probably not 19 

choose the wireless charging EV, and thus the result may be inaccurate. This test, from 20 

another aspect, justifies the necessity of considering the interactions between the EV type 21 

choice and recharging facilities location.  22 

Table 7 23 

EV charging station location plan when budget=150 (million) considering fixed EV choice. 24 

  Plug-in charging Wireless charging 

Node No. Level 1 Level 2 Level 3 Node Link 

2 
  

√ √ 10 

3 
  

√ 
 

29 

6 
  

√ √ 
 7       √   

 25 
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 1 

Figure 8 Minimum traveling cost of each tour and each class user with fixed EV choice. 2 

4.2. The Sioux Falls network 3 

The second example is tested on the well-known Sioux Falls network, which has 24 nodes 4 

and 76 links and is usually adopted as larger benchmark network in many transportation 5 

network design problems (LeBlanc, 1975; Liu and Wang, 2015; Liu et al., 2015; 6 

Suwansirikul et al., 1987). The link related input parameters of Sioux Falls network are 7 

shown in Table 8; tour information, which includes O-D pairs and dwelling time at each 8 

destination node, is listed in Table 9. The demand corresponding to each tour is set as 1000. 9 

Government budget in the test is assumed as $80 million. Link pairs between nodes (6,8), 10 

(7,8), (9,10), (10,16) and (13,24) are available for locating dynamic charging lane on both 11 

directions. The set of nodes  6,11,13,15,21  are available for locating both wireless charging 12 

stations and traditional plug-in charging stations of all levels. The other parameters and 13 

assumptions related to user classes, EV types and charging facilities are set identical to the 14 

parameters in the Nguyen-Dupuis test network. This test is run on a laptop with MacOS 15 

Sierra (Version 10.12.2) platform, a 2 GHz Intel Core i5 processor and 8 GB RAM. The 16 

YALMIP R20150908 with MATLAB R2014b is used to model the example and the 17 

academic version commercial solver Mosek 8 is used as an external solver of YALMIP to 18 

solve all MIPs in the test.  19 

 20 

Table 8  21 

Link capacity (10
3
 veh/h) and free flow travel time (min). 22 

Link Capacity  0

at   Link Capacity  0

at  Link Capacity  0

at  

1-2 4.8986 1.6 10-11 5.0501 8 17-16 4.9935 6.4 

1-3 4.8986 1.6 10-15 5.0458 4 17-19 5.2299 1.6 

2-1 7.8418 2.4 10-16 10.0000 4 18-7 4.8239 1.6 

2-6 7.8418 2.4 10-17 5.0501 8 18-16 23.4034 1.6 

3-1 13.9158 2.4 11-4 10.0000 4 18-20 19.6798 2.4 

73.7 
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3-4 13.9158 2.4 11-10 13.5120 4.8 19-15 23.4034 3.2 

3-12 5.1335 4 11-12 4.9935 6.4 19-17 15.6508 3.2 

4-3 5.1335 4 11-14 4.9088 4.8 19-20 4.8239 1.6 

4-5 5.0913 3.2 12-3 10.0000 4 20-18 5.0026 3.2 

4-11 5.0913 3.2 12-11 4.9088 4.8 20-19 23.4034 3.2 

5-4 25.9002 4.8 12-13 4.8765 3.2 20-21 5.0020 3.2 

5-6 23.4034 3.2 13-12 23.4034 3.2 20-22 5.0599 4.8 

5-9 25.9002 4.8 13-24 4.9088 4.8 21-20 5.0756 4 

6-2 4.9581 4 14-11 25.9002 2.4 21-22 5.0599 4.8 

6-5 23.4034 3.2 14-15 25.9002 2.4 21-24 5.2299 1.6 

6-8 17.1105 3.2 14-23 4.8765 3.2 22-15 4.8853 2.4 

7-8 23.4034 3.2 15-10 5.1275 4 22-20 10.3149 3.2 

7-18 17.1105 3.2 15-14 4.9247 3.2 22-21 5.0756 4 

8-6 17.7827 1.6 15-19 13.5120 4.8 22-23 5.2299 1.6 

8-7 4.9088 4.8 15-22 5.1275 4 23-14 5.0000 3.2 

8-9 17.7827 1.6 16-8 15.6508 3.2 23-22 4.9247 3.2 

8-16 4.9479 3.2 16-10 10.3149 3.2 23-24 5.0000 3.2 

9-5 10.0000 4 16-17 5.0458 4 24-13 5.0785 1.6 

9-8 4.9581 4 16-18 5.2299 1.6 24-21 4.8853 2.4 

9-10 4.9479 3.2 17-10 19.6798 2.4 24-23 5.0785 1.6 

10-9 23.4034 1.6             

 1 

Table 9 2 

Tour information of the Sioux Falls network. 3 

Tour 
Origin 

node 

Destination 

node 

Dwelling time 

(min) 
Tour 

Origin 

node 

Destination 

node 

Dwelling time 

(min) 

1 1 7 72 3 4 7 60 

 

7 8 180 

 

7 4 - 

 

8 16 70 

    

 

16 22 113 4 8 9 60 

 

22 1 - 

 

9 10 110 

     

10 8 - 

2 8 16 120 

    

 

16 10 15 5 20 13 36 

 

10 15 53 

 

13 11 151 

 

15 17 120 

 

11 3 7 

  17 8 -   3 20 - 

 4 

The optimal location plan of various types of EV charging facilities obtained through the 5 

developed model and presented solution algorithm is shown in Figure 9. Within the given 6 

budget, one pairs of dynamic charging lanes are located between nodes (7,8) and two static 7 
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charging stations are planned for wireless charging EVs; while two level 3, two level 2 and 1 

one level 1 plug-in charging stations are located for traditional plug-in charging EVs. There 2 

will be 2103 travelers, about 42% of all travelers, choosing wireless charging EVs and the 3 

others choosing plug-in charging EVs. The optimal objective function value, i.e., total social 4 

cost, is about 9.838E+4 under this construction plan. 5 

 6 

Figure 9 EV charging facilities optimal location plan of Sioux Falls network. 7 

 8 

Figure 10 shows the percentage of wireless charging EV and plug-in charging EV users of 9 

each user class traveling on tour 1, 3 and 5. Figure 11 shows the corresponding minimum 10 

path cost of each class users. Figure 12 reports the wage weighted unit recharging fee for 11 

different user classes. Generally, the minimum path cost of class 3 users is higher than the 12 

other two class users of the same tour, because the initial state of battery and the wage rate of 13 

this class users are both lower than the other two classes and the low wage rate makes this 14 

class users more sensitive to the recharging cost, as clearly illustrated in Figure 12. Hence, it 15 
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seems that the class 3 users tend to choose EV type with less path cost, though the other two 1 

class users also have the same tendency, but not as prominent as class 3 users. The difference 2 

of numbers of two EV type users for class 3 is generally bigger than that for the other two 3 

class users, as shown in Figure 10.   4 

 5 

 6 

Figure 10 Percentage of users choosing different EV types of Tour 1, 3 and 5. 7 

 8 

 9 

Figure 11 Minimum path cost of each class users of Tour 1, 3 and 5. 10 
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 1 

Figure 12 Wage weighted unit recharging fee for different user classes of Tour 1, 3 and 5. 2 

 3 

 4 

Figure 13 Percentage of different classes of each EV type users.  5 

Figure 13 reports the ratio of different classes of each EV type users to the whole system. 6 

There are about 35% of wireless EV users are class 1 users, which is the most among the 7 

three classes; on the contrary, 35% of plug-in EV users are class 3 users, which is also the 8 

most of the three classes. Figure 14 illustrates the amount of electricity recharged through 9 

different types of EV charging facilities. For wireless charging EV, about 83.9% of electricity 10 

are obtained via dynamic charging on a wireless charging lane; as for plug-in charging EV, 11 

54.8% of electricity are recharged through level 2 charging stations and 42.7% through level 12 
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3 charging stations. Hence, it seems that consumers would like to choose higher level 1 

charging stations from the result of this test. The calculation time of this test is about 8 hours.  2 

 3 

Figure 14 Amount of electricity (kWh) recharged through different types of EV charging 4 

facilities. 5 

 6 

 7 

5. Conclusions 8 

In this paper, we propose a modeling framework for locating multiple types of BEV charging 9 

facilities that aims to assist the government planners to make better decisions. The presented 10 

model considers the recently fast developing wireless static and dynamic charging in the 11 

decision procedure. Besides, two types of road users’ behavior, i.e., vehicle choice between 12 

different types of BEVs and different classes of BEV users’ routing choice, are considered in 13 

the model framework. The presented complicated tri-level model is then treated as black-box 14 

optimization and solved by an efficient stochastic radial basis function response surface 15 

model based algorithm. The inherent time-consuming black-box function is solved by 16 

applying a combined fixed-point method and an MSA method. Two shortest-path-finding 17 

sub-problems for wireless charging EV and plug-in charging EV, respectively, are developed 18 

and embedded in the MSA solution procedure. Numerical tests show that the location plan 19 

can be obtained from the developed model and the presented solution algorithm.  20 
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