
Locating Objects in a Wide-area System

Gerco Ballintijn

Copyright c© 2003 By Gerco Ballintijn.

VRIJE UNIVERSITEIT

Locating Objects in a Wide-area System

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan

de Vrije Universiteit Amsterdam,

op gezag van de rector magnificus

prof.dr. T. Sminia,

in het openbaar te verdedigen

ten overstaan van de promotiecommissie

van de faculteit der Exacte Wetenschappen

op donderdag 30 oktober 2003 om 15.45 uur

in de aula van de universiteit,

De Boelelaan 1105

door

Gerco Christiaan Ballintijn

geboren te Zaandam

promotoren: prof.dr. A.S. Tanenbaum

prof.dr.ir. M.R. van Steen

Contents

1 Introduction 1

1.1 Locating Resources in Large Distributed Systems 1

1.2 The Globe Project . 3

1.3 Naming in Globe . 3

1.4 Existing Naming Systems . 5

1.5 A Two-level Naming Scheme . 8

1.6 Research Questions . 10

1.7 Contributions and Outline of this Dissertation 10

2 Architecture 13

2.1 Interface . 13

2.2 Design Principles . 15

2.3 Basic Design . 16

2.3.1 Distributed Search Tree . 17

2.3.2 Invariants on the Search Tree 21

2.3.3 Specific Problems . 23

2.4 Search Tree Operations . 24

2.4.1 Communication in the Search Tree 25

2.4.2 Notation . 25

2.5 Simplified Lookup Operation . 27

2.5.1 General Structure . 27

2.5.2 Optimizing for Locality . 28

2.5.3 Implementation . 29

2.6 Simplified Insert Operation . 30

2.6.1 General Structure . 30

2.6.2 Design Principles Used . 33

2.6.3 Implementation . 33

2.7 Simplified Delete Operation . 38

2.7.1 General Structure . 38

2.7.2 Design Principles Used . 38

2.7.3 Implementation . 41

i

ii CONTENTS

3 Load Distribution 43

3.1 Scalability Problems . 43

3.2 Node Partitioning . 44

3.3 Nearby Communication . 47

3.3.1 Physical Node Placement . 47

3.3.2 Hashing . 48

3.3.3 Forcing Locality . 50

3.3.4 Internal Structure of the Object Handle 53

3.4 Simulation Results . 54

3.4.1 Methodology . 55

3.4.2 Results . 59

3.4.3 Comparison with the Home-based Approach 64

3.5 Implementing Physical Node Selection 67

3.5.1 Requirements . 69

3.5.2 General Implementation . 69

3.5.3 An Array-based Implementation 70

3.6 Location Awareness Revisited . 71

4 An Efficient Lookup Operation 73

4.1 Preventing Tree Traversal . 73

4.1.1 Problem . 73

4.1.2 Location Caching . 74

4.2 Stable Address Location Management 76

4.2.1 Stable Address Location Identification 76

4.2.2 Moving the Stable Address Location Upward 79

4.2.3 Moving the Stable Address Location Downward 80

4.3 Location-cache Management . 87

4.4 The New Lookup Operation . 90

4.5 Simulation Results . 95

4.5.1 Methodology . 95

4.5.2 Results . 98

4.5.3 Conclusion . 101

4.6 Distinguishing Replicas . 101

5 Availability and Fault Tolerance 107

5.1 Failures . 107

5.2 External Failures . 108

5.2.1 Problem Analysis . 108

5.2.2 Concurrency . 110

5.2.3 View Series . 112

5.3 Internal Failures . 118

5.3.1 Problem Analysis . 118

5.3.2 Crash Recovery . 120

CONTENTS iii

5.3.3 Correctness . 127

5.4 Media Failures . 129

5.5 Implementation . 130

5.5.1 Design . 130

5.5.2 Insert Operation . 131

5.5.3 Delete Operation . 135

5.5.4 Move-down Operation . 135

6 Security 141

6.1 Goal . 141

6.2 Object Model . 143

6.3 Secure Communication . 145

6.4 Object Ownership . 151

6.5 Update Policy . 155

6.6 Access Control . 155

7 Tree Management 159

7.1 Dealing with Change . 159

7.2 Tree Information Service . 161

7.3 Node Partitioning Changes . 163

7.4 Search Tree Changes . 167

7.4.1 Example Changes . 168

7.4.2 Basic and Composite Changes 169

7.4.3 Implementing Search Tree Changes 173

7.4.4 Open Issues . 180

8 Prototype Implementation 181

8.1 Building a Location Service Prototype 181

8.2 Assessing the Performance of the Prototype 182

8.3 Prototype Implementation . 182

8.4 Overall Measurement Methodology . 185

8.4.1 Measurement Approach . 185

8.4.2 Physical Setup . 186

8.5 Measuring Update Operations . 187

8.5.1 Determining Measurement Cases 187

8.5.2 Measurement Methodology . 188

8.5.3 Results . 190

8.6 Measuring Lookup Operations . 191

8.6.1 Determining Measurement Cases 191

8.6.2 Measurement Methodology . 192

8.6.3 Results . 196

8.7 Discussion of Results . 200

iv CONTENTS

9 Related Work 203

9.1 Naming and Directory Services . 203

9.2 Home-location based Systems . 205

9.2.1 HLR/VLR Systems . 206

9.2.2 Mobile IP . 208

9.3 Search-tree based Systems . 210

9.3.1 Next-generation Mobile-phone Systems 210

9.3.2 NLS . 212

9.4 Pointer-chain based Systems . 214

9.5 Uniform Resource Names . 215

9.6 Peer-to-peer Systems . 216

9.7 Summary . 219

10 Summary and Conclusions 221

10.1 Summary . 221

10.2 Lessons Learned . 224

10.3 Future Work . 226

Bibliography 229

Index 235

Samenvatting 237

Epilogue 243

Chapter 1

Introduction

In a large distributed system, locating files and other objects poses a major challenge.

This challenge and its solution is the subject of this dissertation. This chapter starts the

dissertation with a general description of the location problem and its close relation to

naming. It then provides a short description of the Globe project, which is the context

of the research presented in this dissertation. It shows how current name services do not

meet the naming requirements of Globe, and proposes a new naming scheme. In this

new scheme, one of the key challenges is locating resources. The final sections of this

chapter identify the research questions for a scheme to locate resources, summarize our

main contributions, and provide a road map for the rest of this dissertation.

1.1 Locating Resources in Large Distributed Systems

The current Internet provides its users with many services, including ones that provide

information on a wide range of topics. For instance, the World Wide Web (WWW), prob-

ably the Internet’s most popular application, allows people to find information on topics

ranging from world affairs to cooking. The Internet also allows the distribution of free

software, and has enabled the emergence of e-commerce, allowing consumers to buy and

sell goods over the Internet. Another important service provided by the Internet is the abil-

ity for users to communicate with other users. In fact, communication is an integral part

of the Internet, with e-mail allowing people to form virtual communities based on shared

interests and Internet chat rooms allowing users to exchange up-to-the-minute news.

The last ten years have seen an explosive growth of the Internet. This growth can

be seen in both the number of users and the number and range of available information

sources and services (from here on collectively referred to as resources). Furthermore,

the Internet has grown from a network covering only the USA to a network connecting

the far corners of the world and everything in between. In short, the Internet has become

both a regular part of society and a phenomenon on a worldwide scale.

1

2 CHAPTER 1. INTRODUCTION

Also in this period, portable computers, such as laptops, have initiated a new trend

in computing: the support for mobile computing. Computers are no longer stationary

objects with a fixed connection to the Internet. Instead, they accompany users on their

travels, allowing them to use their functionality anywhere and at anytime. This mobility

is visible both with users connecting their portable computers to the Internet over different

dial-up connections and the increasing availability and use of wireless network technol-

ogy.

Unfortunately, the large scale use of many resources has also introduced scalability

problems. With many users wanting to use the resources on the Internet, servers that

provide these resources are in danger of becoming overloaded. They simply cannot handle

the huge number of requests for these resources. Also, while it is possible on the Internet

to retrieve information from the other side of the world, this is frequently undesirable

given the inherent delay in communication over such distances.

To solve both these scalability problems, resource providers have started to replicate

resources at multiple locations in the Internet. Replication allows different users to use

different replicas of the same resource, thereby spreading the load over multiple servers.

Furthermore, by spreading the replicas over the Internet, replication also enables users

to use a nearby replica of the resource, reducing communication latency and limiting the

load on the network.

To communicate with a resource on the Internet, a user needs to know the network

location of the resource (i.e., its IP address). Unfortunately, since resources no longer

exist at a fixed location with the introduction of mobility, we cannot be sure a resource

will be available at the same location in the future. Likewise, since resources no longer

consist of a single copy with the introduction of replication, we also cannot be sure that the

current nearest replica remains the nearest replica in the future. What we therefore need

is a way to track the locations of the replicas of a resource, or preferably, the location of

the nearest replica.

Location tracking is traditionally done by general purpose name services, such as

DNS [Mockapetris, 1987; Albitz and Liu, 1992]. These name services can store a wide

variety of information on a named resource, including its location. By allowing users to

refer to a resource by a name instead of its location, these name services shield users from

the problems of where the resource is located, whether it consists of more than one copy,

and whether it can move. In other words, name services provide location transparency,

replication transparency, and migration transparency, respectively.

Unfortunately, current name services are not equipped to deal efficiently with huge

numbers of mobile and replicated resources distributed worldwide. Therefore, to enable

more applications to use replicated resources and mobile hardware, we desire a new lo-

cation tracking service on a worldwide, Internet scale. In this dissertation, we examine

this problem of tracking and locating huge numbers of mobile and replicated resources

in a worldwide network. We are specifically interested in finding the location of nearby

resources where possible. The solution proposed in this dissertation is the Globe location

service.

1.2. THE GLOBE PROJECT 3

1.2 The Globe Project

The Globe location service is implemented as part of the Globe project [Homburg, 2001],

but its design is applicable outside of Globe. The name Globe stands for GLobal Object

Based Environment. The goal of the Globe project is to develop a software framework

to ease the building of wide-area distributed applications, such as the World Wide Web.

The design goals of the Globe project are ambitious. One goal is to support up to 1012 re-

sources. This number corresponds to 109 clients with each having 1,000 shared resources

on average. Another goal we desire is that the Globe software supports resources dis-

tributed worldwide. As a consequence, the Globe software must avoid communication

over long distances where possible.

To achieve these goals, the Globe model provides comprehensive support for replica-

tion. A resource in Globe consists of (potentially) multiple replicas. These replicas are

located on different hosts distributed across the network. An application uses the resource

by communicating with one of its replicas. To simplify the Globe software model, how-

ever, the replicas work together to provide the illusion of simply using a single object.

In Globe, we therefore consider the set of replicas to constitute a single, virtual object.

The set of replicas that implement an object is not fixed during its lifetime. For instance,

resource providers can add new replicas to an object to provide extra load capacity and

remove existing ones when their functionality is no longer required.

Globe also uses a naming system to provide location, replication, and migration trans-

parency. Every resource (and thus object) has an object name, and users refer to resources

using these object names. To use a resource, a user application gives the Globe naming

system the name of the resource, and the naming system selects the replica the application

should communicate with. To enable efficient communication, the naming system takes

special care to select a replica that is near the host running the application.

An object is called mobile in Globe when it frequently changes its associated (net-

work) location. A location change happens either because the object itself moves from

one host to another, for instance, if it implements a mobile agent [Harrison et al., 1995],

or because the object is located on a host that migrates from one network to another (e.g.,

a laptop). The Globe naming system does not distinguish between both forms of mobility,

however, since they both simply result in a new locations being associated with the name

of the mobile object.

1.3 Naming in Globe

In Globe, object names refer to resources implemented as Globe objects. Since object

names are used by people, they must be human friendly. Human-friendly names are usu-

ally easy to construct and remember. They frequently carry semantic information to im-

prove their usefulness. Object names are often location independent since the location of

a named object is generally irrelevant to a user.

Since different users might have different associations with a resource, they may want

4 CHAPTER 1. INTRODUCTION

to use different names for the object implementing that resource. To support this goal, a

Globe object can have multiple names. This support is comparable to WWW users having

a personal list with bookmarks for WWW resources they found earlier. Each entry in a

bookmarks list has a name chosen by the user for easy remembrance.

To use a resource, a user application, such as a Web browser, communicates with one

of the replicas implementing the resource. To perform this communication, the application

needs to know the network locations of at least one of the replicas. In Globe, the network

location of a replica is described by a contact address. An example of a simple contact

address is an Internet address, which is the combination of IP address and port number.

Given the fact that a contact address describes a location in the network, contact addresses

are inherently location dependent. In fact, throughout this dissertation, the terms replica

location and contact address can be considered synonymous.

Since object names are used to refer to objects but contact addresses are used to ac-

tually communicate with the object, we need to translate the object name into a contact

address of one of the replicas of the named object. Providing this translation is the re-

sponsibility of the naming system in Globe. Since an object can have more than one name

and more than one replica, the naming system must support an N-to-M mapping of object

names to contact addresses. Moreover, this mapping must be frequently changeable since

a mobile object changes its contact address every time its moves its location.

Since the naming system is an integral part of Globe, it has the same scalability re-

quirements as Globe as a whole. The naming system should thus be able to store the

contact addresses of up to 1012 objects. Furthermore, since an object can have repli-

cas distributed throughout the Internet, contact addresses are distributed worldwide. To

remain scalable, however, the Globe naming system must avoid long distance communi-

cation where possible. We refer to this goal as “exploiting locality.”

In the Globe system, we can define locality using a number of metrics. Some of these

metrics are network-oriented, such as the number of routing hops or the communication

latency, but we can also use a metric based on, for instance, geographical distance. Since

all these metrics can be useful in the naming system at different times, we cannot simply

choose one over the other, instead we chose to let the naming system to define its own

locality metric. The only requirement for this metric is that it should be both derived

from and provide a reasonable estimate of the example metrics. If other distance metrics

become important in the future, these should be incorporated as well.

The naming system can exploit locality in several ways. For instance, when requesting

a contact address of an object, a user is interested in the address of a nearby replica.

Furthermore, we would like the naming system to use only nearby name servers to find

nearby contact addresses, that is, the process of retrieving the contact address of a nearby

replica should not involve servers located at the other side of the world. Nearby name

servers should also be used when updating the set of contact addresses of an object. For

example, if a replica moves between two nearby locations, the naming system must use

only servers near these two locations for the update operation. As a consequence, the

naming system needs to have its name servers distributed throughout the network.

1.4. EXISTING NAMING SYSTEMS 5

Table 1.1: Main requirements of the Globe naming system.

Provide human-friendly naming

Provide an N-to-M mapping

Support for replication

Support for mobility

Support for 1012 objects

Support for objects distributed worldwide

Support for exploiting locality

1.4 Existing Naming Systems

Table 1.1 summarizes the main requirements of the Globe naming system. Unfortunately,

existing naming systems do not (completely) fulfill these requirements. This section sum-

marizes four types of existing systems that allow users to track and query the current

location of an object and discusses their problems. Note that Chapter 9 provides a more

thorough description of related work.

Name and directory services

An obvious candidate for a worldwide naming system for Globe is an existing name or

directory service, such as the Domain Name System (DNS) [Mockapetris, 1987; Albitz

and Liu, 1992]. DNS is the Internet’s name system, and scales successfully to millions of

resources. DNS is a good candidate because it has a proven ability to store information,

such as IP addresses (i.e., network locations), for a large number of hosts. For instance,

as of January 2002, DNS stores 1.5×108 names [Internet Software Consortium, 2002].

Host names and e-mail destinations in DNS are collectively known as domain names.

Domain names are organized into a tree-shaped name space, similar to present-day file

systems. A domain name consists of a sequence of labels separated by the dot (“.”)

character. The sequence represents a path through the name space starting at a common

root, called the root domain.

DNS resolves a domain name by visiting a sequence of name servers with each name

server able to resolve more labels than the previous one. For instance, to resolve the

domain name www.intel.com, DNS starts at the server for the root domain, and, in

turn, visits the name servers responsible for resolving names ending in .com and for

names ending in .intel.com. The latter name server resolves the complete host name

www.intel.com into an IP address.

DNS attains its scalability through the use of partitioning, replication, and caching.

DNS partitions its name space into a large number of disjoint zones (i.e., sets of related

domains) and distributes these zones over separate name servers. DNS increases its avail-

ability and fault tolerance by replicating the information in a zone over multiple servers.

To improve the efficiency of name resolution, name servers also cache intermediate and

6 CHAPTER 1. INTRODUCTION

end results of name resolution operations. To ensure replication and caching is effective,

however, DNS requires the domain name to address mapping to change only infrequently.

While DNS can store location information on a large number of resources, it is unclear

whether DNS can support the required 1012 named resources. This number of names

requires DNS to store 10,000 times as much (location) information as it currently does.

One source of problems with this many domain names is the average frequency with

which a domain name is looked up. If almost all domain names are looked up only

infrequently, caching can no longer be effective since the intermediate and end results

that are cached are no longer reused by subsequent name lookups. It is unclear whether

the average frequency of lookups on a domain name in DNS with 1012 names is large

enough to provide a similar amount of reuse of cached results as found in DNS with only

108 domain names.

The main source of problems when using a name services, like DNS, in Globe, how-

ever, is the requirement to support frequent mobility. Frequent mobility requires DNS to

frequently update its name to address mapping. These frequent updates render both the

caching and replication in DNS inefficient since these updates invalidate cache entries and

require communication to propagate to all affected name servers. Directory services, such

as X.500 [Radicati, 1994], are equally unsuitable for use in Globe since they too rely on

replication and caching to provide scalable naming.

A partial solution to the problem of supporting frequent mobility is disabling the

caching and replication of location information for only those resources that are frequently

mobile. This approach ensures that the location information of a mobile resource is stored

in only a single name server. The approach turns DNS, however, into a home-location

based system, with all the associated problems of exploiting locality, as is described next.

Home-location based systems

Home-location based systems are a straightforward solution to the location problem, and

are used in many distributed systems, for instance, Locus [Butterfield and Popek, 1984]

and MOS [Barak and Litman, 1985]. In a home-location based system, each mobile

object is associated with a single server (i.e., its home location) that is responsible for

maintaining the location of the object. For efficiency, the location of the server is usually

part of the object name. When a process wants to use the mobile object, its current location

is looked up at the home location; and when the mobile object moves, its location is

updated at the home location. Home-location based systems easily support large numbers

of mobile objects since object locations are not centrally stored, and new home-locations

can easily be added.

Unfortunately, home-location based systems cannot easily exploit locality, which

makes them unsuitable for use in a worldwide naming system. Since the current location

of an object is available only at the home location, processes located far from the home lo-

cation may have to communicate over long distances to find the object’s current location.

The same applies when an object moves and its location needs to be updated at the home

location. When a mobile object is located far from its home location, all communication

1.4. EXISTING NAMING SYSTEMS 7

needed to keep the home location up-to-date is over a long distance. Furthermore, home-

location based systems usually have no support for replication. A more general problem

is the fact that home-location based systems have no support for human-friendly naming.

Pointer-chain based systems

Pointer-chain based systems have been successfully used in local-area systems that sup-

port object mobility, such as Emerald [Jul et al., 1988], and have been proposed for use

in wide-area systems, such as Location Independent Invocation (LII) [Black and Artsy,

1990] and SSP chains [Shapiro et al., 1992].

In a pointer-chain based system, clients refer to an object by referring to its last known

location. To ensure clients can keep in contact, an object leaves behind a forwarding

address when it moves to a new location. When an objects moves past several hosts, it

leaves behind a trail of forwarding addresses (i.e., a chain of pointers) ending in its current

location. To avoid the inefficiencies associated with long chains of pointers, a chain-

reduction mechanism is employed, usually as part of a remote invocation mechanism.

Since the (potentially long) chains are susceptible to crashes of nodes in the chain, a

fall-back mechanism, such as broadcasting or a name service, is used to increase fault

tolerance.

Pointer-chain systems are unsuitable for the Globe naming system for a variety of rea-

sons. The most significant problem is that pointer-chain based systems lack the locality

needed in a wide-area system. Since the nodes on the chain of forwarding pointers can be

located everywhere, communicating with an object can take a request all over the world

before ending up at the object’s current location. Furthermore, ensuring both the connec-

tivity and regular reduction of the chain of pointers is a complex task. The techniques

used to ensure availability and reduce chains limit the scalability of pointer-chain systems

even further. Finally, like home-location based systems, pointer-chain based systems lack

support for replication and human-friendly naming.

Search-tree based systems

Location tracking systems also play an important role in cellular mobile phone systems.

While the currently existing mobile phone systems use home-location based tracking sys-

tems, researchers, such as [Wang, 1993], have proposed to use location tracking systems

based on a distributed search tree for next generation mobile phone systems.

In this approach, the area covered by the location system is divided into a hierarchy of

service areas. The lowest level of the hierarchy is formed by leaf service areas that record

the location of locally present mobile phones. A search tree is formed by combining

the small leaf service areas into larger service areas until there is a root level covering

the whole service area. Every service area forms a node in the search tree that stores

information about which mobile phones are present in that area.

There are two main problems with this approach. The first problem is that the scheme

focuses on mobile phones only, and it thus does not support replication. The second

8 CHAPTER 1. INTRODUCTION

Object

Handle Address

Contact
Name

Service

Location

Service

Name

Figure 1.1: Name resolution in Globe consists of two steps: first the naming step,

then the location step.

problem is that the scheme does not support human-friendly naming, that is, it does not

allow users to easily refer to and identify mobile phones. These problems can be solved,

however, as the rest of this dissertation shows. In fact, the location service proposed in

this dissertation also uses the distributed search tree approach. Our research can thus be

considered to run parallel to research on locating mobile phones.

1.5 A Two-level Naming Scheme

To simplify the naming and location problem in Globe, we divide the problem into two

separate problems: object naming and object location. Using this division, we can use a

separate name service to identify objects and a separate location service to identify the

current location(s) where an object resides. By using separate services for both problems,

we can optimize the name service for naming objects in a human-friendly fashion and

optimize the location service for locating nearby replicas of objects.

Name resolution in Globe thus becomes a two-step process, as shown in Figure 1.1. In

the first step, the name service resolves an object name to an object handle; in the second

step, the location service resolves the object handle to a contact address. An object handle

is an additional type of name that is used solely to identify objects, thereby allowing us to

combine the functionality of naming and location services.

In the Globe naming scheme, object handles play the important role of proper iden-

tifiers [Wieringa and de Jonge, 1995]. Proper identifiers have the following properties:

• Each object handle refers to exactly one object.

• Each object has exactly one object handle.

• An object handle is never reused.

• An object keeps its initial object handle.

As a consequence of these properties, once a user has obtained the object handle of an

object, it can use the object handle as a reference for as long as it desires, without having

to worry that the reference might become outdated or that it might refer to another object.

The object itself might cease to exist, however.

1.5. A TWO-LEVEL NAMING SCHEME 9

Contact Address3Contact Address1 Contact Address2

Object Handle

Object Name1 Object Name2 Object Name3 Object Name4

Figure 1.2: The two-level naming scheme used in Globe to map multiple object

names to multiple contact addresses. In this scheme, the dynamic N-to-M mapping

is split into a stable N-to-1 mapping and a dynamic 1-to-M mapping.

The introduction of the object handle allows us to effectively separate the dynamic

N-to-M mapping of object names to contact addresses into a relatively stable N-to-1 map-

ping (stored by the name service) and a dynamic 1-to-M mapping (stored by the location

service), as shown in Figure 1.2. We expect the object name to object handle mapping

to be relatively stable since mobility affects only the object handle to contact address

mapping.

Since the object name to object handle mapping is expected to be stable, we can use

existing name services to store this mapping. They can easily replicate and cache the

object name to object handle mapping. The problem of maintaining the dynamic 1-to-M

mapping of the location service, however, is not as easily solved. This dissertation thus

ignores the problem of naming objects in a human-friendly way, and focuses solely on the

problems of the location service.

It is the task of the location service to track the current locations of all (available) repli-

cas of all objects in Globe. Users should be able to query the location service and retrieve

the contact address of a nearby replica of an object using the object’s object handle. The

main functionality of the location service is thus to look up one or more contact addresses

of an object handle. To ensure the currency of the set of contact addresses associated with

an object, the location service must update the set every time a replica is added, deleted,

or moved.

The scalability requirements of the Globe naming system, described in Table 1.1,

apply also directly to Globe location service. The location service must support at least

1012 object handles, and contact addresses can refer to network locations all over the

world. Furthermore, as indicated in Section 1.3, to exploit locality, the location service

must consist of servers placed near its clients.

10 CHAPTER 1. INTRODUCTION

1.6 Research Questions

The general research question examined in this dissertation is:

How can we build a worldwide location service?

What are the problems we encounter while designing such a service, and how can we solve

them? To answer this general question, we divide it into several more-specific research

questions:

1. What architecture combines scalability with flexibility?

The architecture of the location service has to be scalable to allow the service to be

scalable as a whole. Furthermore, since finding solutions to specific problems, such

as fault tolerance, is difficult, we might need to try several solutions. Therefore, the

architecture has to be flexible enough to support different solutions because once

the architecture is established, it will be difficult to change.

2. How do we avoid centralized components in our architecture?

Centralized components are potential scalability and reliability bottlenecks and

should thus be avoided.

3. How do we ensure availability in a huge system such as our location service?

The location service plays a pivotal role in communication with objects but is vul-

nerable to faults given its large size. The service must therefore mask the occurrence

of faults in the components of the service.

4. What kind of security is needed for the information stored in the location service

and how do we provide it?

Given that the location service plays a pivotal role in communication with objects,

it is also a prime target for attack.

5. How do we ensure that the location service can deal with changes in its environ-

ment?

Once in use, the location service might exist for a long time (e.g., DNS is well

within its second decade). During this time, significant changes will surely occur in

the operating environment of the location service. To deal with these changes, the

location service should be adaptable, preferable without interrupting its service.

1.7 Contributions and Outline of this Dissertation

The general contribution of this dissertation is a comprehensive design of a worldwide lo-

cation service. The design is comprehensive in the sense that it covers all critical aspects of

a location service. This general contribution can be subdivided into several more-specific

contributions based on the specific research questions posed in the previous section. We

describe our specific contributions per chapter.

1.7. CONTRIBUTIONS AND OUTLINE OF THIS DISSERTATION 11

Chapter 2 — Architecture Chapter 2 introduces the architecture of the Globe location

service, which is based on a distributed search tree. Its working is explained by providing

simplified versions of the algorithms used to lookup and update location information in

the search tree. Enhanced versions of these algorithms are provided in later chapters. This

chapter provides the conceptual framework needed for the rest of the dissertation.

Chapter 3 — Load Distribution Chapter 3 extends the conceptual model of the dis-

tributed search tree, introduced in Chapter 2, by providing a method to deal with a poten-

tial scalability problem associated with the root node of the search tree. The effectiveness

of the method is evaluated using simulation experiments, which show that we can solve

the scalability problem of the root node.

Chapter 4 — An Efficient Lookup Operation Chapter 4 describes how the efficiency

of lookup operations can be improved, especially in the face of mobility. It shows why

normally caching does not work in the location service, and provides an alternative form

of caching. The effectiveness of this new form of caching is evaluated using simulation

experiments, which show that our alternative form of caching improves the performance

of lookup operations. The research described in this chapter was done in cooperation with

Aline Baggio.

Chapter 5 — Availability and Fault Tolerance Chapter 5 describes how the locations

service deals with various types of failures, thereby ensuring high availability. This chap-

ter focuses specifically on a crash recovery method that masks and corrects inconsistencies

in the distributed state of the location service that were caused by failures.

Chapter 6 — Security Chapter 6 describes our security goals in the location service,

and the techniques employed to achieve them. It specifically focuses on the problem of

securing communication between nodes in the search tree and preventing unauthorized

clients from performing update operations. The research described in this chapter was

done in cooperation with Bogdan Popescu.

Chapter 7 — Tree Management Chapter 7 examines some management issues of the

location service, and provides an outlook on methods to adapt the distributed structure

of the search tree in a changing environment. The research described in this chapter was

done in cooperation with Aline Baggio and Spyros Voulgaris.

Chapter 8 — Prototype Implementation Chapter 8 describes a prototype implemen-

tation of the Globe location service. It focuses on some preliminary measurements of

its performance, and examines these results in the light of the scalability requirements of

the location service. The examination of the prototype performance shows that a scalable

location service can be built.

12 CHAPTER 1. INTRODUCTION

Chapter 9 — Related Work Chapter 9 describes eight systems related to the Globe

location service. It identifies several categories of related work based on similarity in

functionality and the techniques used, and compares typical examples of these categories

using the issues raised in Chapters 2–7.

Chapter 10 — Summary and Conclusions Chapter 10 concludes this dissertation. It

provides a summary of our work on the Globe location service, and presents some global

observations. The chapter finishes with our thoughts on future work.

Chapter 2

Architecture

This chapter describes the basic design of the Globe location service. It starts with a

description of the interface provided by the location service, and introduces some design

principles that are used to guide the location service design. This chapter then presents

the main data structures of the Globe location service, and shows how simplified lookup

and update operations use these data structures. Later chapters enhance the data structures

and operations to implement the complete functionality of the Globe location service.

2.1 Interface

The Globe location service provides its clients with an interface consisting of three op-

erations: lookup one or more contact addresses, insert a contact address, and delete a

contact address. The signature of these three operations is shown in Listing 2.1. To ease

our description of the location service interface, the listing does not include a mecha-

nism for communicating error conditions, such as return values or exceptions, which will

obviously be present in a real-life implementation.

The lookupAddresses operation retrieves the contact addresses of one or more replicas

near the client. It is in general useful to retrieve more than one contact address during

a lookup operation because a nearby replica might not support the same communication

protocol as the client or because the replica might be temporarily unavailable due to a net-

work failure. Allowing the lookupAddresses operation to look up more than one contact

address at once avoids the overhead of multiple invocations of the lookupAddresses oper-

ation. Since we expect the desired number of contact addresses to vary among different

types of client applications, we let the client specify this number instead of the location

service.

The client specifies the number of desired contact address using the min and max

parameters. The min parameter specifies the minimal number of contact addresses guar-

anteed to be returned if available. If fewer contact addresses are available, only those will

13

14 CHAPTER 2. ARCHITECTURE

(1) procedure lookupAddresses(oh : ObjectHandle; min : Integer; max : Integer)
(2) returns set of ContactAddress;

(3) procedure insertAddress(oh : ObjectHandle; addr : ContactAddress);
(4) procedure deleteAddress(oh : ObjectHandle; addr : ContactAddress);

Listing 2.1: Client interface of the Globe location service.

be returned. The max parameter specifies the maximal number of contact addresses the

client can, or wants to, handle. When the location service has found a number of contact

addresses between min and max, it can determine itself whether to continue searching or

not, taking into account, for instance, the amount of extra work involved.

The insertAddress operation adds a new contact address to the set of contact addresses

associated with an object handle. This operation is invoked when a new replica is added

to the specified object. When the insertAddress operation is finished, the location service

guarantees that subsequent lookup operations can find the new contact address, assuming

no failures occur. The deleteAddress operation removes a contact address from the set

of contact addresses associated with an object handle. This operation is invoked when an

existing replica is removed from the object. When the deleteAddress operation is finished,

the location service guarantees that subsequent lookup operations can no longer find the

contact address. Note that, throughout this dissertation, the insert and delete operations

are together referred to as update operations.

Mobility is supported in the location service by the combined use of the insertAddress

and deleteAddress operations. When a mobile object moves from one location to the next,

the insertAddress operation is used to inform the location service that the object is present

at its new location and the deleteAddress operation is used to inform that the object is no

longer present at its old location. The order in which the insertAddress and deleteAddress

operations are invoked depends upon whether the mobile object stays available at its old

location during its move. If the object stays available, the new contact address is inserted

before the old one is deleted. If the object is unavailable during its move, however, the old

contact address is deleted before the new one is inserted.

The semantics chosen for the insertAddress and deleteAddress operations is to make

their changes immediately visible. We chose this strict semantic to decrease the load

placed on the location service by lookup operations. If we would have chosen a more

relaxed semantic, for instance, by guaranteeing that a contact address would only eventu-

ally disappear after a deleteAddress operation, the users of the location service would be

faced with a large number of outdated contact addresses in the case of highly mobile or

highly replicated objects. These outdated entries, in turn, would require users to invoke

the lookupAddresses operation with large min and max values in the hope of finding at

least one valid contact address. By providing our strict semantics, and thereby minimiz-

ing the risk of finding outdated contact addresses, users have to look up only one or a few

contact addresses.

Our object model assumes that the set of replicas implementing one object is com-

pletely independent of the set of replicas implementing another object. The associations

2.2. DESIGN PRINCIPLES 15

between object handles and their contact address sets are therefore also independent. The

location service can thus handle operations on different object handles independently, that

is, an insert operation for one object does not interfere with, for example, the delete oper-

ation for another object.

2.2 Design Principles

From the general goal to design a worldwide location service that supports up to 1012

objects, we have extracted some design principles to achieve that goal. These design prin-

ciples are variants of a single basic rule: Minimize everything that uses system resources,

such as storage, processing, and communication. The central notion is that since the lo-

cation service already has to use all the available resources to support a huge number of

objects across a huge geographical area, we should avoid adding other features that might

also require these resources.

Locality

As described in the previous chapter, a primary design principle is to exploit locality in

the location service where possible. This means that we want to store and process location

information, such as contact addresses, near the users of that information. For instance,

if a client looks up a contact address of an object and the object has a replica in the

vicinity of the client, the location service should return the contact address of that replica;

furthermore, the process of finding the address should not require communication with

hosts located far away.

Our design is therefore guided by two forms of locality: externally visible locality,

which is finding a nearby replica; and internally visible locality which is using only nearby

location servers to find a replica. Given our goal to support a worldwide system, however,

achieving these goals is not always possible. To provide clients with local access to the

location service throughout the network, the location service must be a distributed service

itself, consisting of multiple location servers located everywhere in the network.

Idempotency

We desire the operations in the location service to be idempotent. The result of perform-

ing an idempotent operation several times is the same as performing it once. Idempotency

is a useful characteristic since it enables the location service to redo an operation, for

example, if it forgot whether it already performed the operation due to a server crash.

The location service therefore does not need to go to great lengths (i.e., use expensive

resources) to guarantee that it will remember it performed the operation in the first place.

For instance, the fact that an object in our model has a set of contact address already sim-

plifies the implementation of the update operations since operations on a (mathematical)

set are idempotent by nature.

16 CHAPTER 2. ARCHITECTURE

Independence

We also desire that the location data is organized into a collection of relatively small, sim-

ple, mutually independent, and self-contained records. In that case, a lookup or update

operation will always have to deal with only a single record. This principle has two re-

lated consequences. First, these self-contained records improve efficiency by simplifying

the partitioning of the workload load (i.e., the set of records) and distributing it over mul-

tiple machines. Second, these self-contained records simplify the isolation of concurrent

operations within one machine since we do not have to worry about atomically updating

complex data structures.

Simplicity

Since we do not know what the actual characteristics (e.g., the average number of replicas

or the mobility patterns) of our objects will be, we do not yet know how to optimize our

location service, apart from general optimizations such as the exploitations of locality.

We therefore do not focus on optimizations for specific situations, and support only the

most basic operations needed (i.e., our lookup and update operations) and consider only

the most basic replication and mobility patterns.

Best-effort Guarantees

The location service provides only minimal guarantees on its operations, that is, it pro-

vides a guarantee only when needed, otherwise the location service just does its best to

get a (good) result. For instance, the lookup operation might return the contact address

of a nearby replica, instead of the nearest replica. Guaranteeing the nearest replica would

require much more resources, and possibly take longer to complete. The location ser-

vice does, for instance, guarantee that when a delete operation has finished (successfully)

that the deleted contact address can no longer be found since this guarantee results in a

performance increase for the lookup operation.

Modularity

The location service has to support various requirements. To ease the implementation

of the location service, we want to separate these requirements, and deal with them in-

dependently. We therefore desire a modular design with specific modules or layers that

deal with specific problems and requirements, and that interact through small, simple, and

well-defined interfaces.

2.3 Basic Design

In this section we describe the basic design of the Globe location service, and present the

problems that are dealt with in the following chapters.

2.3. BASIC DESIGN 17

2.3.1 Distributed Search Tree

To exploit locality in our location service, we partition the underlying wide-area network

into a hierarchy of domains. The domains cover regions of the network chosen on geo-

graphical, network-topological, and administrative boundaries. For instance, a domain at

the lowest level, called a leaf domain, might cover a city, while the next level up might

cover a state or country. The highest-level domain, called the root domain, covers the

whole network.

We associate a directory node with every domain in the hierarchy. The directory node

is responsible for storing location information, such as contact addresses, of the objects in

its domain. The directory nodes together form a distributed search tree. All lookup and

update operations are initiated at the leaf nodes of the search tree, which provide clients

with local access to the location service.

The distributed search tree represents a distance metric on the underlying network.

The lookup and update operations use this metric to improve the locality of the way they

search and store contact addresses. The central notion is that all contact addresses located

within a domain can be considered to be equally far away from a client located in that same

domain, and that by moving up the search tree the domains get bigger and the distances

larger. To be efficient, the lookup and update operations should operate in the smallest

domain possible.

Figure 2.1 shows, as an example, a part of a domain hierarchy and its distributed

search tree. The example shows six European cities as leaf domains. The leaf domains

are contained in three country domains. The country domains are, in turn, contained in

the European domain, which is part of the World domain. A contact address in Paris is

therefore located simultaneously in the Parisian, French, European, and World domains.

The structure of the search tree of Figure 2.1 is determined solely by geography. The

choice of using only geography in this figure is based on didactical grounds. We could

also have depicted a search tree based only on network topology, with a root domain cov-

ering the whole Internet, divided into child domains for all autonomous systems (AS), and

the AS domains divided into domains for the areas inside the AS domains. To simplify

our discussions and examples, however, we continue using search trees based on geog-

raphy throughout this dissertation since the geographical relations between the various

continents, countries, and cities can be considered common knowledge.

A directory node maintains a separate contact record to store the location information

(e.g., contact addresses) for each object in its domain. The contact record is divided into

a set of contact fields, one for every child node of the directory node. A contact field

contains the location information of the object related to the field’s child domain. In

the case of a leaf domain, a contact record has one contact field that contains location

information for the whole leaf domain. A contact field is either empty, stores one or more

contact addresses, or stores a single forwarding pointer. A contact record is said to be

empty if all of its contact fields are empty. A directory node discards a contact record

once it becomes empty.

The presence of a forwarding pointer in a contact field indicates that there are contact

18 CHAPTER 2. ARCHITECTURE

European domain

World domain

French domain

Parisian domain

Paris London

World

Rennes Glasgow

France UK Netherlands

Europe

RotterdamAmsterdam

Figure 2.1: Example of a domain hierarchy with its associated search tree.

addresses located in the associated child domain. The forwarding pointers of an object

together form a collection of paths of forwarding pointers in the search tree, each path

starting at the root node and ending in a directory node that actually stores a contact

address. Since there is such a path for every contact address, an address can always be

found by following its path starting at the root node.

Figure 2.2 shows an example of a contact record from the Europe node. The contact

record consists of three contact fields: the left contact field for the French domain, the

middle contact field for the UK domain, and the right contact field for the Netherlands

domain. The French contact field contains the contact addresses of three replicas located

in France. The UK contact field contains a forwarding pointer, indicating that contact

addresses can be found in the UK domain, either at the UK node or one of its children.

The Netherlands contact field is empty, meaning that the object does not have replicas in

the Netherlands.

Following our design principles, we ensure that all changes made to a contact record

by an update operation are idempotent. We distinguish four types of changes:

• Adding a contact address

• Removing a contact address

• Adding a forwarding pointer

2.3. BASIC DESIGN 19

NLUKFR

Contact Record

address2

address3

address1

(empty)

Figure 2.2: Example of a contact record from the Europe node.

• Removing a forwarding pointer

All four changes modify only a single contact field. The contact field behaves like a (math-

ematical) set when it comes to storing contact addresses, neither adding the same contact

address a second time nor removing the same contact address a second time changes the

contact field. The same applies to a forwarding pointer, adding or removing a forwarding

pointer a second time does not change the contact field.

Figure 2.3 shows our example search tree with the contact records of a single object.

Since the contact address sets of different objects are independent, the different contact

records stored by a directory node are also independent. To simplify our figures, we

therefore always show a search tree with the contact records of only a single object.

In the figure, the object consists of two replicas, one located in Paris and the other in

Glasgow. While the contact address of the replica in Paris is stored directly at the Paris

leaf node, the address of the replica in Glasgow is actually stored one level higher, at the

UK node. A contact address is usually stored in the directory node of the leaf domain in

which it resides, but it can also be stored in a directory node higher in the tree. Storing

contact addresses higher in the tree can improve the efficiency of the location service

when the associated object is mobile, as we discuss in Chapter 4. Other nodes, like the

Netherlands node, do not contain a contact record for this object since such a contact

record would be empty.

In our example, both addresses can be found by following a path of forwarding point-

ers. For the contact address in the Parisian domain this path consists of the World,

Europe, France, and Paris nodes. For the contact address in the Glasgow domain

this path consists of the World, Europe, and UK nodes. Notice that the two paths of

forwarding pointers share the forwarding pointer from the World node to the Europe

node.

Consider what would happen in our example when a client in Rennes would be in-

terested in using the object. The client would go to the directory node of its leaf domain

to contact the location service, and initiate a lookup operation. Given our locality goal,

the client would like the lookup operation to return the contact address in the Parisian

domain. Furthermore, we would like the lookup operation to use only resources in the

20 CHAPTER 2. ARCHITECTURE

London GlasgowRennes RotterdamAmsterdam

A

A

A

Contact Field with Forwarding Pointer

Contact Field with Contact Addresses

Empty Contact Field

World

Europe

NetherlandsUKFrance

Paris

Figure 2.3: Example of a search tree with the contact records of a single object.

French domain (i.e., the France, Paris, and Rennes nodes). The method to achieve

our locality goal is described later in this chapter, in Section 2.5.

Since a directory node has to store a contact record for every object in its domain, it

has to maintain a contact record database. Figure 2.4 shows a typical contact record

database. The contact record database is simply a persistent table indexed by the object

handles that identify the objects. All contact records in the database have the same number

of fields because this depends on the number of children of the directory node.

The database is queried and modified by lookup and update operations. Since there is

no (consistency) relation between the contact records stored in the database, the database

has to support the reading and writing of single contact records only. It does not need

to support complicated queries or atomic group modifications on multiple records. Fur-

thermore, since the contact records are independent, the reading and writing of contact

records can also be handled concurrently.

A directory node associates a lease [Gray and Cheriton, 1989; Duvvuri et al., 2000]

with every contact address stored in its contact record database. When this lease runs

out, the node automatically initiates a deleteAddress operation for the associated address.

This operation removes the contact address from the contact record database, and will

also remove the path of forwarding pointers to the contact address from the search tree,

if needed. A client is thus forced to regularly extend the contact address leases to ensure

the addresses remain stored. We use these contact address leases to enable the location

service to avoid storing a large number of invalid or useless object handles and contact

addresses, which clients have forgotten to remove. The lease system is also used for fault

tolerance and tree management purposes, as discussed in Chapters 5 and 7, respectively.

Comparing Figure 2.5 with Figure 2.3 shows the effects of an insert operation on

2.3. BASIC DESIGN 21

(empty)

address

(empty)address

(empty)

domain1 domain2 domain3

address

Object

Handle

OH1

OH2

OHn

Contact Record

Figure 2.4: Example of the persistent contact record database maintained by a di-

rectory node. The database contains the contact records of n objects. The database

is indexed by object handle only.

the search tree. Our example object has a new replica in Amsterdam, and a contact ad-

dress has therefore been inserted at the Amsterdam leaf node. The result of the insert

operation is the creation of a new contact record with the new contact address at the Am-

sterdam leaf node, the creation of a new contact record with a forwarding pointer at the

Netherlands node, and the addition of a forwarding pointer at the Europe node.

Comparing Figure 2.6 with Figure 2.5 shows the effect of a delete operation on the

search tree. The replica in Glasgow of our example object has disappeared, and its contact

address has therefore been deleted at the Glasgow leaf node. The result of the delete

operation is the removal of the contact record storing the contact address at the UK node,

and the removal of a forwarding pointer at the Europe node.

2.3.2 Invariants on the Search Tree

To implement the lookup and update operations correctly, we need to know precisely

what a valid search tree is. For instance, we need to know what an operation can expect

from the rest of the search tree when it finds a contact address or forwarding pointer in a

node. We use the following three conditions to specify the structure of a valid search tree.

The conditions must be true when there are no changes taking place in the search tree

(i.e., no running update operations) and no failures have occurred. Chapter 5 examines

the structure of the search tree in the presence of failures. In the three conditions (and

in the rest of this chapter), we use the notation dir(D) to denote the directory node of a

domain D, and the notation dom(N) to denote the domain of a directory node N.

22 CHAPTER 2. ARCHITECTURE

World

Europe

Amsterdam Rotterdam

AA

A

A

Empty Contact Field

Contact Field with Contact Addresses

Contact Field with Forwarding Pointer

GlasgowLondonRennesParis

NetherlandsUKFrance

Figure 2.5: The search tree example of Figure 2.3 with a new contact address from

the Amsterdam leaf domain inserted.

Paris Rennes Amsterdam Rotterdam

A

A

A

Empty Contact Field

Contact Field with Contact Addresses

Contact Field with Forwarding Pointer
World

Europe

France UK Netherlands

GlasgowLondon

Figure 2.6: The search tree example of Figure 2.5 with the contact address from

the Glasgow leaf domain deleted.

2.3. BASIC DESIGN 23

C1 A contact address from a leaf domain D is stored at dir(D), or at the directory node

of an enclosing (higher-level) domain of D.

This condition implies that a contact address from leaf domain D can be stored only

at a directory node that lies on the path from leaf node dir(D) up to the root node.

C2 For each node N, the contact record for object O at node N stores a forwarding

pointer to a child node of N if and only if the contact record for O at that child is

not empty.

This condition states that we do not accept dangling forwarding pointers in our

search tree. This condition has two important consequences. First, if we follow a

path of forwarding pointers, we will eventually reach a contact record containing

one or more addresses. Second, if a node has a nonempty contact record, there

exists a path of forwarding pointers from the root down to this node.

C3 A contact field can contain either a forwarding pointer or a set of contact addresses,

but not both.

Together with the previous conditions, this condition implies that as soon as we

encounter a contact field containing addresses, we can be sure that we have found

all contact addresses that lie in the child domain represented by that contact field.

When these three conditions are met, the search tree is said to be globally consistent. An

update operation needs to ensure it leaves the search tree in a globally consistent state.

2.3.3 Specific Problems

In the current design, the root of the distributed search tree is the source of an obvious

scalability problem. Since every object has paths of forwarding pointer from the root

node down to every node that stores a contact addresses, all known objects have a contact

record stored at the root. Given that we want to support 1012 objects worldwide, the root

node has to store and process lookup and update requests for 1012 contact records. This

load is clearly too much to handle for a single physical machine. Chapter 3 describes a

way to use the independence design principle to extend the current design, and solve this

problem.

At any time, there will be a huge number of lookup and update operations in progress

in the search tree. To ensure efficient use of its resources, the location service must handle

these operations concurrently where possible. However, concurrency should be used care-

fully, or otherwise there is the risk of inconsistent data structures due to race conditions.

Fortunately, we can handle most operations concurrently with little effort since the contact

records of different objects are independent and no inconsistencies can arise. However,

we still have to deal with concurrent operations on the same object, especially concurrent

update operations.

The usual way to avoid race conditions is to prevent concurrency temporarily using

locking mechanisms, allowing only one operation to access a data structure at a time.

Unfortunately, this method should be used only on small data structures since it would

24 CHAPTER 2. ARCHITECTURE

otherwise prevent concurrency in the tree. In other words, we do not want to use a lock-

ing scheme where parts of the search tree are temporarily unavailable. Luckily, contact

records from different object handles can be locked independently, given the indepen-

dence principle. We have increased concurrency further by devising a method to handle

update operations on the same object concurrently. We describe this method in Chapter 5.

Since we are dealing with a large number of resources, such as networks, hosts, stor-

age, we expect faults to occur regularly in the location service. However, since the location

service plays a pivotal role in the way clients access objects, we need to ensure it remains

available as much as possible. Furthermore, failures are not allowed to lead to inconsis-

tencies in the search tree. Ensuring consistency in the face of failures is especially difficult

when dealing with concurrent update operations. In Chapter 5, we describe our method

to make the location service fault tolerant and ensure availability. The method is based on

the idempotency design principle.

Since the location service plays an important role in the process of contacting an ob-

ject, it is also an important target for malicious clients wanting to compromise this process.

We therefore want to protect the mapping from object handle to set of contact addresses

from tampering. Without protection any client can remove valid contact addresses and

insert phony ones. Providing access control to contact records is, however, not enough.

Even with the protection of the update operations, we still have to protect the communica-

tion between directory nodes, and between leaf nodes and clients, to ensure that messages

are not altered. For instance, without protection, a malicious client can alter a location

service reply to a lookup request, introducing incorrect results. These security problems

and their solutions are dealt with in Chapter 6.

The distributed search tree is not static. We expect that the search tree will be re-

structured regularly to continue to provide locality in a changing (network) environment.

Examples of these changes are the addition and removal of leaf nodes and the splitting

and merging of domains. To maintain consistency, these changes require that contact

addresses and forwarding pointers will be moved and copied between tree nodes. Further-

more, since we cannot simply stop all the lookup and update operations in the location

service, these search tree changes have to be made concurrently with normal tree opera-

tions. These, what we call, tree management methods are discussed in Chapter 7.

2.4 Search Tree Operations

In the following three sections we describe simplified versions of the lookup and update

operations. These versions are meant to explain only the overall structure of the oper-

ations. We ignore issues like concurrency, fault tolerance, and security, and focus on

how the current design exploits locality. Before diving into the details, however, we first

introduce the communication mechanism and the notation used.

2.4. SEARCH TREE OPERATIONS 25

2.4.1 Communication in the Search Tree

The search tree is implemented as a set of independently running processes, each imple-

menting a single directory node. These processes execute procedures that implement the

lookup and update operations. The processes communicate with each other using remote

procedure calls (RPCs) [Birrell and Nelson, 1984]. In the RPC model, a directory node

(the caller) can start the execution of a procedure at an other node (the callee).

To start the execution of a procedure, the caller sends a message with an RPC request

to the callee. When the callee receives this RPC request, it will start executing the spec-

ified procedure. The execution of a procedure can result in the callee starting a remote

procedure in a third directory node. When the callee has finished executing the procedure,

it sends back to the caller a message with the RPC reply containing a return value, for

instance, the contact addresses found during a lookup operation. We examine the failure

semantics of the RPC system in Chapter 5, and assume for now reliable communication

and nodes that do not crash.

We use node identifiers in our algorithms to refer to directory nodes in the search

tree. For instance, every directory node records the node identifier of its parent and child

nodes. Node identifiers are universally unique identifiers that can be passed around freely

within the location service. We always add the node identifier of the sending node to the

parameter list of the RPC request. The receiving node uses this parameter, for instance,

during a lookup operation to determine how to continue traversing the search tree.

A client starts a lookup or update operation in the location service by sending an RPC

request to a leaf node, usually the leaf node of the domain in which the client resides.

The leaf node needs to handle this RPC request slightly differently since a client does not

have a node identifier. Since we do not want to make the distinction between the caller

being a client or another directory node in our lookup or update procedures, we let the

RPC system deal with this problem. When an RPC request comes from a client, the RPC

system at the leaf node uses the leaf node’s own node identifier in the parameter list. The

procedure uses this node identifier as if it were the identifier of another directory node,

unaware it is its own node identifier and that the request actually came from a client.

2.4.2 Notation

We specify our procedures in high-level Ada-like pseudocode. This allows us to focus on

the structure of the operations, instead of getting distracted by implementation details. A

directory node invokes a procedure in another node by using an explicit RPC statement.

An RPC statement is expressed by the following construct.

call invocation at nodeid;

Where invocation consists of the name of the procedure to be executed and the actual

parameters to be used. The node identifier nodeid specifies at which node to execute the

operation. The following is an example of an RPC statement.

26 CHAPTER 2. ARCHITECTURE

(1) type ObjectHandle is opaque;

(2) type ContactAddress is opaque;

(3) type NodeID is opaque;

(4) type ContactField is

(5) record

(6) addrSet : set of ContactAddress := /0; −− Addresses in subdomain

(7) isPtr : Boolean := false; −− Forwarding pointer to child node

(8) end record;

(9) type ContactRecord is set (NodeID) of ContactField := /0;

Listing 2.2: Data types used in the example code.

call insertAddress(oh, addr, thisNode) at parent;

In this example, a node invokes the procedure insertAddress at its parent node. It provides

an object handle as the first, a contact address as the second, and its node identifier as the

third parameter.

Listing 2.2 shows the main data types used in our procedures. The ObjectHandle,

ContactAddress, and NodeID type (lines 1–3) are opaque. Values of an opaque data type

can be compared for equality and used as an index value. The ObjectHandle type is

further defined in Chapter 3. The NodeID type is also used as a domain identifier since

there is a 1-to-1 mapping between directory nodes and domains. The ContactRecord and

its constituent the ContactField are defined in lines 4–9. A ContactField itself consists

of two fields: addrSet, a set of contact addresses (line 6); and isPtr, a boolean value

indicating the presence of a forwarding pointer (line 7). Both fields have a defined initial

value: addrSet is given the empty set as an initial value, and isPtr is initialized to false.

Line 9 defines a ContactRecord as an indexed set of contact fields. An indexed set

provides a mapping from keys to values. In the case of a contact record, the node identifier

is the index type that maps to a contact field. The node identifier identifies the child

domain associated with the contact field. At a leaf node, a contact record consists of a

single contact field. This contact field is associated with the node identifier of the leaf

node itself. This practice is consistent with the standard node identifier parameter in an

RPC request sent by a client, as described above.

Listing 2.3 shows the variables used by the procedures. The variables are global with

respect to the directory node in which they are used. Line 1 declares the contact record

database crDatabase. This global variable is an indexed set of contact records that uses

the object handle as index type. The object handle identifies the object to which the

contact record belongs. If an unknown object handle is used to index the database, the

indexing operation returns the NIL value. The fact that the contact record database is

persistent is not visible in this declaration. Line 2 declares the node identifier thisNode

that stores the identifier of the local directory node. Line 3 declares the node identifier

parent that identifies the parent of this directory node. Line 4 declares children, a set of

node identifiers that identify the children of this directory node.

2.5. SIMPLIFIED LOOKUP OPERATION 27

(1) crDatabase : set (ObjectHandle) of ContactRecord;

(2) thisNode : NodeID;

(3) parent : NodeID;

(4) children : set of NodeID;

Listing 2.3: Global variables used in the example.

2.5 Simplified Lookup Operation

The goal of the simplified lookup operation is to provide a client with a single contact

address from the set of contact addresses associated with the specified object. The client

specifies the object using its object handle. The lookup operation should retrieve the

contact address of a replica near the client. To lessen the impact of the operation on the

location service, it should preferably use only resources located near the client requesting

the lookup operation. The client initiates the lookup operation at the leaf node of the

domain in which it resides.

2.5.1 General Structure

The simplified lookup operation can, in principle, be divided into two parts. In the first

part, the lookup operation checks for the presence of a contact record of the specified

object, while traveling from the leaf node toward the root. When a contact record is

found, the second part starts. In the second part, the lookup operation follows the path

of forwarding pointers, starting in the contact record, downward to a contact record that

stores a contact address.

Figure 2.7 shows the execution of a simplified lookup operation in our running exam-

ple. A client located in Amsterdam wants to use the object and starts a lookup operation

by sending a lookup request to the Amsterdam node, in step 1. In response, the Am-

sterdam node checks whether it knows the object. Since it does not know the object,

the Amsterdam node sends, in turn, a lookup request to the Netherlands node, in

step 2. This time the Netherlands node checks whether it knows the object, and the

object is again unknown. The Netherlands node therefore sends a lookup request to

the Europe node, in step 3. The object is known in the European domain.

The Europe node has associated with the object a contact record with two forward-

ing pointers. The node therefore needs to decide which forwarding pointer to follow.

Since the both forwarding pointers can be considered equivalent (both point indirectly to

contact addresses in the European domain), the lookup operation can follow either one. In

our example, the Europe node follows the UK forwarding pointer by sending a lookup

request to the UK node, in step 4. This node finally finds a contact address, and the lookup

operation returns with this address, in step 5–7, along the reverse path it traveled. The

contact address is returned to the client in step 8.

28 CHAPTER 2. ARCHITECTURE

UK Netherlands

GlasgowLondonRennesParis

France

81

Amsterdam Rotterdam

A

A

A

7

6

5 4

3

2

Empty Contact Field

Contact Field with Contact Addresses

Contact Field with Forwarding Pointer
World

Europe

Figure 2.7: The execution of the simplified lookup operation in our example search

tree. The operation is initiated by a client in Amsterdam.

2.5.2 Optimizing for Locality

As mentioned in the previous section, the distributed search tree represents a distance

metric on the underlying network. The lookup operation uses this distance metric to

improve the locality of the way it searches for contact addresses in the following way.

The lookup operation starts searching for the object in a leaf domain, and by trying the

smaller (lower level) domains first, the lookup operation effectively searches in the nearby

regions before trying regions located farther away. If no contact address is found in a

domain, the lookup operation extends its search in progressively larger enclosing domains

until an address is found. This method of searching finds nearby contact addresses first,

and uses only nearby resources when possible. This use of locality is similar to the use of

expanding ring searches in multicast networks.

Unfortunately, when there is no locality (i.e., the client and contact address are located

far apart), the simplified lookup operation will need to visit the root node to find the path of

forwarding pointers, and follow the pointers down toward a contact address. What is even

worse is that when the client sends the same lookup request a second time, the simplified

lookup operation will follow the same path in the search tree. We want to avoid this

kind of tree traversal when possible since it uses a large amount of resources throughout

our system. In Chapter 4, we describe a caching technique that avoids unnecessary tree

traversals.

2.5. SIMPLIFIED LOOKUP OPERATION 29

(1) procedure lookupAddress(oh : ObjectHandle;

(2) caller : NodeID) returns ContactAddress is

(3) addr : ContactAddress; −− contact address found

(4) cr : ContactRecord; −− contact record found

(5) begin

(6) −− Retrieve a copy of the contact record from the database

(7) cr := crDatabase(oh);
(8) if cr �= NIL then

(9) −− The contact record contains addresses or forwarding pointers

(10) choose any child with cr(child).addrSet �= /0;

(11) if child �= NIL then

(12) −− The contact record contains addresses

(13) choose any addr with addr ∈ cr(child).addrSet;

(14) return addr;

(15) end if;

(16) −− Apparently the contact record contains only forwarding pointers

(17) choose any child with cr(child).isPtr;

(18) return call lookupAddress(oh, thisNode) at child;

(19) elsif parent �= NIL then

(20) −− The object is unknown at this node, try the parent

(21) return call lookupAddress(oh, thisNode) at parent;

(22) else

(23) return NIL; −− The object is even unknown at the root

(24) end if;

(25) end lookupAddress;

Listing 2.4: The simplified lookupAddress procedure.

2.5.3 Implementation

Listing 2.4 shows the procedure lookupAddress, used to implement the simplified lookup

operation. The procedure takes two parameters, the object handle oh for which the client

wants a contact address, and the standard parameter caller, specifying the directory node

that sent the lookupAddress request, as shown in lines 1–2. The lookupAddress procedure

returns a single contact address. It uses two local variables, as shown in lines 3–4. Contact

address addr stores the contact address found, and contact record cr temporarily stores the

object’s contact record.

The lookupAddress procedure starts by retrieving the locally stored contact record of

the object, in line 7. If the contact record exists, the object is known in this domain. The

procedure uses the location information stored in the contact record to retrieve a contact

address, in lines 9–18.

The procedure first checks if the contact record has one or more contact addresses, in

lines 10–11. If the record has addresses, the procedure picks one at random, in line 13, and

returns it, in line 14. Otherwise, the contact record apparently contains only forwarding

pointers. The lookupAddress procedure picks a forwarding pointer at random, in line 17,

30 CHAPTER 2. ARCHITECTURE

and uses it to retrieve a contact address at the child node associated with that pointer, in

line 18. Given a globally consistent search tree, this should always succeed.

If the object is unknown at this directory node, no contact record was found in line 7.

In this case, the lookup operation should continue at the parent node. If the parent node

exists, the procedure sends a lookupAddress request to the parent and awaits its reply, in

lines 19–21. If no parent node exists, the lookup operation has arrived at the root without

finding the object. To indicate that the object is unknown, the NIL value is returned, in

line 23.

2.6 Simplified Insert Operation

The goal of the insert operation is to add a new contact address to the set of contact

addresses associated with a specified object. The client specifies the object using its object

handle. A contact address always belongs to a specific leaf domain, and it needs to be

stored in one (and only one) of the directory nodes located on the path from the associated

leaf node to the root node. To ensure the contact address can be found, the insert operation

also needs to add a path of forwarding pointers from the root node down to the node that

stores the contact address. The insert operation should also preferably use only nearby

resources to lessen its impact on the location service.

2.6.1 General Structure

The insert operation uses a distributed decision-making process to decide at which di-

rectory node to store the contact address. This process (potentially) involves all nodes

from the leaf node up to the root node. In this distributed process, every node first makes

a preliminary decision whether it wants (or needs) to store the contact address itself, and

based on this decision tentatively modifies its contact record. The decision depends on

the mobility pattern of the object, as further explained in Chapter 4. The node then asks

its parent node for approval of the modification. The parent node can override the node’s

decision and decide to store the contact address itself, in which case the node has to undo

its tentative modification. The parent can also agree with the node’s preliminary decision,

and the node’s tentative modification becomes permanent. The execution of an insert op-

eration can therefore be divided in an upward and a downward half. In the upward half of

the insert operation, the nodes decide tentatively to store the contact address or a forward-

ing pointer; and in the downward half the modifications are undone or made permanent.

Figure 2.8 shows the start of the upward half of an insert operation in our running

example. A client located in Amsterdam wants to insert a new contact address into the

set of contact addresses associated with the object. The client starts the insert operation

by sending an insert request to the Amsterdam leaf node, in step 1. The Amsterdam

leaf node decides (by default) that it wants to store the new contact address. Since the

object was previously unknown, a new contact record has to be made to tentatively store

the contact address. Tentative data is shaded gray in our example figures.

2.6. SIMPLIFIED INSERT OPERATION 31

A A

A

A

1

RotterdamAmsterdam

Empty Contact Field

Contact Field with Contact Addresses

Contact Field with Forwarding Pointer
World

Europe

France UK Netherlands

GlasgowLondonRennesParis

Figure 2.8: In step 1 of the execution of the simplified insert operation (initiated at

the Amsterdam leaf node), a contact address is inserted at the Amsterdam leaf

node.

Since the object was previously unknown, the Amsterdam node sends an insert re-

quest to the Netherlands node to obtain that node’s approval for the tentative change,

as shown in step 2 in Figure 2.9. The Netherlands node approves the request and ten-

tatively stores a forwarding pointer. To store the forwarding pointer, a new contact record

is also created at this node.

Since the object was also unknown at the Netherlands node, this node asks ap-

proval for its tentative change from the Europe node, as shown in step 3 in Figure 2.10.

The Europe node agrees with the Netherlands node, and stores a forwarding pointer

to that node. Since the object was already known at the Europe node, there exists a

path of forwarding pointers to the Europe node (conform consistency rule C2), and the

upward half of the insert operation stops here.

Figure 2.11 shows the downward half of the insert operation. Since the object was

already known at the Europe node, its tentatively inserted forwarding pointer becomes

permanent immediately. The Europe node then sends its approval back to the Nether-

lands node, in step 4. Based on this approval, the Netherlands node knows its for-

warding pointer is permanent as well, and sends back its approval to the Amsterdam

node, in step 5. The Amsterdam node then knows the contact address is permanently

stored, and, in step 6, informs the client that the insert operation was successful.

32 CHAPTER 2. ARCHITECTURE

Empty Contact Field

Contact Field with Contact Addresses

RotterdamAmsterdam

2

A

A

A

A

World

Europe

NetherlandsUKFrance

GlasgowLondonRennesParis

Contact Field with Forwarding Pointer

Figure 2.9: In step 2 of the execution of the simplified insert operation (initiated at

the Amsterdam leaf node), a forwarding pointer is inserted at the Netherlands

node.

A A

RotterdamAmsterdam

Contact Field with Forwarding Pointer

Contact Field with Contact Addresses

Empty Contact Field

3

World

Europe

NetherlandsUKFrance

GlasgowLondonRennesParis

A

A

Figure 2.10: In step 3 of the execution of the simplified insert operation (initiated at

the Amsterdam leaf node), a forwarding pointer is inserted at the Europe node.

2.6. SIMPLIFIED INSERT OPERATION 33

Empty Contact Field

Contact Field with Contact Addresses

Contact Field with Forwarding Pointer

4

RotterdamAmsterdam

6

AA

A

A

World

Europe

NetherlandsUKFrance

GlasgowLondonRennesParis

5

Figure 2.11: In the second half, step 4–6, of the execution of the simplified insert

operation (initiated at the Amsterdam leaf node), the nodes send their RPC replies.

2.6.2 Design Principles Used

The insert operation also uses the locality design principle to improve scalability. When an

object is already known in domain D (the European domain in our example), there is a path

of forwarding pointers established from the root down to domain D. The insert operation

therefore does not need to travel further up to the tree than directory node dir(D), and

the resources used by the insert operation are confined to domain D. This property is the

result of the upper part of the path of forwarding pointers being shared.

Given our design principle of using a best-effort approach, we cannot guarantee when

the location service completes the insert operation. We therefore do the next best thing,

which is making the result of the insert operation (i.e., the contact address) visible in the

search tree as soon as possible. We do this by tentatively inserting the contact address

or forwarding pointer at a node before the node gets an approval from its parent. This

enables concurrent lookup operations to find the contact address. We can safely insert the

contact address or forwarding pointer since the answer from the parent only determines

where in the tree the contact address is eventually stored; a client is interested only in the

contact address itself.

2.6.3 Implementation

The implementation of the simplified insert operation is divided over two procedures,

insertAddress shown in Listing 2.5, and insertPointer shown in Listing 2.6, each with its

34 CHAPTER 2. ARCHITECTURE

own RPC request. We use two separate requests (and procedures) because a directory node

can make two different types of request. An insertAddress request indicates that a child

node wants its parent to store a contact address, and an insertPointer request indicates that

a child node wants its parent to store a forwarding pointer, implicitly asking the parent’s

approval for storing an address. This division is also present in more advanced versions of

the insert operation that we discuss in later chapters. A client initiates an insert operation

by sending an insertAddress request to a leaf node.

The insertAddress Procedure

The insertAddress procedure takes three parameters, as shown in lines 1–3 of Listing 2.5.

Object handle oh identifies the object of which the contact address set should be modified.

Contact address addr specifies the address that should be inserted. The standard parameter

caller specifies the directory node that sent the insertAddress request. This parameter

specifies a child node of the receiving node if the procedure executes at an intermediate

node, or the receiving node itself if the procedure executes at a leaf node (i.e., the request

came from a client).

The insertAddress procedure returns a boolean value that tells the caller whether it is

supposed to store the contact address or not. The simplified version of the insertAddress

procedure always returns the boolean value false, as seen in line 33. The reason for this

is that when a caller sends an insertAddress request, the contact address is always stored

at the receiving node, or higher in the tree. The caller therefore never needs to store the

address itself. In later versions of the insertAddress, the procedure can return true as well.

The insertAddress procedure uses two variables, as shown in lines 4–5. The contact

record variable origCR stores the original contents of the contact record in the contact

record database. The boolean variable approved stores the RPC reply from the parent

node. This reply tells whether this node is allowed to store the contact address or not.

The insertAddress procedure starts by retrieving a copy of the contact record from

the database using the object handle, in line 8. If the object is unknown in this directory

node, there is no contact record in the contact record database (line 9), and a new contact

record needs to be created and initialized, in lines 10–11. The procedure initializeCR

initializes the contact record by inserting empty contact fields for all the children. If the

procedure executes at a leaf node (indicated by the children parameter set to the empty

set), one empty contact field is inserted using thisNode as node identifier. The procedure

then (tentatively) adds the contact address to the contact record in the database, in line 14.

The original contact record origCR is left unchanged, so we can use it later to undo the

change.

To determine whether approval is needed from the parent, the procedure checks, in

line 16, whether the contact record was originally empty (i.e., did not store contact ad-

dresses or forwarding pointers) and a parent node exists. If contact with the parent is

needed, the procedure needs to determine its own desired final state: storing the contact

address or not. This is determined by the doStoreHere function

The doStoreHere function returns true when the node wants to store the contact ad-

2.6. SIMPLIFIED INSERT OPERATION 35

(1) procedure insertAddress(oh : ObjectHandle;

(2) addr : ContactAddress;

(3) caller : NodeID) returns Boolean is

(4) origCR : ContactRecord; −− original contact record

(5) approved : Boolean; −− parent approves address insert

(6) begin

(7) −− Retrieve a copy of the contact record, or create one, if needed

(8) origCR := crDatabase(oh);
(9) if origCR = NIL then

(10) origCR := new ContactRecord;

(11) initializeCR(origCR, children, thisNode);
(12) end if;

(13) −− Add the address (possibly temporarily) to the record.

(14) crDatabase(oh)(caller).addrSet := origCR(caller).addrSet + {addr};

(15) −− Ask the parent for approval, if needed

(16) if isEmpty(origCR) and parent �= NIL then

(17) −− Determine our own desired action, and ask the parent for approval

(18) if doStoreHere(origCR) −− See Chapter 4

(19) then approved := call insertPointer(oh, addr, thisNode) at parent;

(20) else approved := call insertAddress(oh, addr, thisNode) at parent;

(21) end if;

(22) else

(23) approved := true; −− No approval needed

(24) end if;

(25) −− Undo the local modification, if the parent does not approve

(26) if not approved then

(27) if isEmpty(origCR)
(28) then delete crDatabase(oh); −− Remove temporary record

(29) else crDatabase(oh) := origCR; −− Restore original record

(30) end if;

(31) end if;

(32) −− The contact address is stored here, or higher in the tree

(33) return false;

(34) end insertAddress;

Listing 2.5: The simplified insertAddress procedure.

36 CHAPTER 2. ARCHITECTURE

dress, and false otherwise. We describe the design of the doStoreHere function in Chap-

ter 4. Here we can simply assume that the function returns by default true in leaf nodes

and false everywhere else, resulting in contact addresses being inserted in the leaf nodes.

Depending on the value of doStoreHere, the procedure requests the parent node for ap-

proval for storing the contact address, in line 19, or requests the parent node to store the

contact address, in line 20.

If the contact record already contained information or the parent node does not exist,

no approval is needed (line 23). The parent’s response, stored in approved, ultimately

determines, in line 26, whether the contact address is inserted. If the parent node did not

allow this node to store the contact address, the tentative change made in line 14 is undone,

in lines 27–30, either by removing the contact record, if the contact record was originally

empty, in line 28, or by copying the original contact record back into the contact record

database, in line 29. In all cases, the contact address is stored at this node or higher in the

tree, and the caller is not allowed to store the contact address, as reported in line 33.

The insertPointer Procedure

The insertPointer procedure takes the same parameters at the insertAddress procedure,

as shown in lines 1–3 in Listing 2.6. The insertPointer procedure also returns a boolean

value, telling the caller whether it is allowed to store the contact address or not. However,

in contrast to the simplified insertAddress procedure, insertPointer returns true or false.

This return value tells whether the calling node is allowed to store the contact address or

not.

The insertPointer procedure uses three variables. The contact record variable origCR

stores the original contents of the contact record in the contact record database. The

boolean variable storedAddress shows whether the directory node has stored the contact

address or a forwarding pointer. The boolean variable approved stores the RPC reply from

the parent node.

The insertPointer procedure starts by retrieving a copy of the contact record from the

database using the object handle, in line 9. If the object is unknown in this directory

node, there is no contact record in the contact record database (line 10) and a new contact

record needs to be created and initialized, in lines 11–12. The procedure first determines,

in lines 15–16, what it actually can and wants to do given the state of the contact field.

If the contact field already stores contact addresses, the procedure is forced by the con-

sistency requirements to store the new address as well. If the contact field already holds

a forward pointer, the requirements forces the procedure to store a forwarding pointer.

Only when the contact field is empty can the procedure decide what it wants to do, using

the doStoreHere function, in line 15. The actual modification of the database is done in

line 18 or line 20. The performed modification is recorded in storedAddress.

The change still needs to be approved by the parent node. This approval is needed if

the original contact record was empty and the parent exists (lines 23–26). If the parent

did not approve the change (line 28), it is necessary to undo the tentative changes made

in lines 17–20. The node either removes the contact record, if the contact record was

2.6. SIMPLIFIED INSERT OPERATION 37

(1) procedure insertPointer(oh : ObjectHandle;

(2) addr : ContactAddress;

(3) caller : NodeID) returns Boolean is

(4) origCR : ContactRecord; −− original contact record

(5) storedAddress : Boolean; −− address or forwarding pointer

(6) approved : Boolean; −− parent approves address insert

(7) begin

(8) −− Retrieve a copy of the contact record, or create one, if needed

(9) origCR := crDatabase(oh);
(10) if origCR = NIL then

(11) origCR := new ContactRecord;

(12) initializeCR(origCR, children, thisNode);
(13) end if;

(14) −− Add the address or pointer (possibly temporarily) to the record

(15) if origCR(caller).addrSet �= /0 or (not origCR(caller).isPtr and

(16) doStoreHere(origCR))
(17) then crDatabase(oh)(caller).addrSet := origCR(caller).addrSet + {addr};

(18) storedAddress := true;

(19) else crDatabase(oh)(caller).isPtr := true;

(20) storedAddress := false;

(21) end if;

(22) −− Ask the parent for approval, if needed

(23) if isEmpty(origCR) and parent �= NIL

(24) then approved := call insertPointer(oh, addr, thisNode) at parent;

(25) else approved := true; −− No approval needed

(26) end if;

(27) −− Undo the local modification, if the parent does not approve

(28) if not approved then

(29) if isEmpty(origCR)
(30) then delete crDatabase(oh); −− Remove temporary record

(31) else crDatabase(oh) := origCR; −− Restore original record

(32) end if;

(33) return false; −− The contact address is stored higher in the tree

(34) end if;

(35) −− The caller can store the contact address if we did not

(36) return not storedAddress;

(37) end insertPointer;

Listing 2.6: The simplified insertPointer procedure.

38 CHAPTER 2. ARCHITECTURE

originally empty (line 30), or copies the original contact record back into the contact

record database (line 31). Either way, the contact address is stored higher in the tree, and

the caller is not allowed to store the contact address, in line 33. If the parent did approve

the modification, the node needs only to tell the caller what it is allowed to do, in line 36.

The caller does the opposite of this node, that is, it stores the contact address if and only

if this directory node does not.

2.7 Simplified Delete Operation

The goal of the delete operation is to remove an existing contact address from the set of

contact addresses associated with a specified object. The client specifies the object using

its object handle. The contact address was originally inserted at a certain leaf node, and

must be deleted at the same leaf node. The delete operation needs to find the directory

node storing the contact address, delete the contact address at this node, and remove those

forwarding pointers that are no longer needed. The delete operation should also preferably

use only nearby resources to lessen its impact on the location service.

2.7.1 General Structure

Figure 2.12 shows the start of the delete operation. It shows a client wanting to delete

an existing contact address from the Glasgow domain. To start the delete operation, the

client sends a delete request to the Glasgow leaf node, in step 1. Since the object is

unknown in this directory node, the directory node has nothing to do, and sends a delete

request to the UK node, in step 2 in Figure 2.13. The UK node stores the contact address,

and therefore removes the contact address. Since the contact record at the UK node has

become empty, the node removes the contact record completely.

Since the UK node no longer stores a contact record, the Europe node needs to re-

move its forwarding pointer to the UK node. The UK node therefore sends a delete request,

in step 3 in Figure 2.14. The Europe node removes the forwarding pointer upon receiv-

ing this request. The delete operation stops at the Europe node since its contact record

has two other forwarding pointers remaining. Figure 2.15 shows the replies to the delete

requests being sent, in step 4–5. The Glasgow node then informs the client that the

delete operation was successful, in step 6.

2.7.2 Design Principles Used

The delete operation also uses locality to improve scalability. When the object being

modified remains known in domain D (the European domain in our example), the path of

forwarding pointers to directory node dir(D) may not be deleted. The delete operation

therefore does not need to travel further up the tree. This is again the result of the upper

part of the path of forwarding pointers being shared.

2.7. SIMPLIFIED DELETE OPERATION 39

A

A

A

1

RotterdamAmsterdam

Empty Contact Field

Contact Field with Contact Addresses

Contact Field with Forwarding Pointer
World

Europe

NetherlandsUKFrance

GlasgowLondonRennesParis

A

Figure 2.12: In step 1 of the execution of the simplified delete operation (initiated

at the Glasgow leaf node), no contact record is found at the Glasgow node.

Contact Field with Forwarding Pointer

Contact Field with Contact Addresses

RotterdamAmsterdam

2

AA

A

World

Europe

NetherlandsUKFrance

GlasgowLondonRennesParis

Empty Contact Field

Figure 2.13: In step 2 of the execution of the simplified delete operation, (initiated

at the Glasgow leaf node), the contact address is deleted at the UK node.

40 CHAPTER 2. ARCHITECTURE

A A

RotterdamAmsterdam

3

Empty Contact Field

Contact Field with Contact Addresses

Contact Field with Forwarding Pointer
World

Europe

NetherlandsUKFrance

GlasgowLondonRennesParis

A

Figure 2.14: In step 3 of the execution of the simplified delete operation (initiated

at the Glasgow leaf node), the forwarding pointer is deleted at the Europe node.

Contact Field with Contact Addresses

Contact Field with Forwarding Pointer

Empty Contact Field

4

6

RotterdamAmsterdam

AA

A

World

Europe

NetherlandsUKFrance

GlasgowLondonRennesParis

5

Figure 2.15: In the second half, step 4–6, of the execution of the simplified delete

operation (initiated at the Glasgow leaf node), the nodes send their RPC replies.

2.7. SIMPLIFIED DELETE OPERATION 41

Like the insert operation, we follow our best-effort approach design principle by per-

forming the delete operation on the contact record database without waiting for the par-

ent’s reply. In a real scenario this means that a concurrent downward-going lookup op-

eration might find the path of forwarding pointers pointing to an empty directory node.

Since this situation is difficult to avoid without using global locking mechanisms, a more

sophisticated lookup operation therefore has to deal with inconsistent search trees.

2.7.3 Implementation

Listing 2.7 shows the procedure deleteAddress, used to implement the simplified delete

operation. The procedure takes three parameters, as shown in lines 1–3. Object handle oh

identifies the object of which the contact address set should be modify. Contact address

addr specifies the address that should be removed. The standard parameter caller spec-

ifies the directory node that send the deleteAddress request. This parameter specifies a

child node of the receiving node if the procedure executes at an intermediate node, or the

receiving node itself if the procedure executes at a leaf node (i.e., the request came from

a client). The deleteAddress procedure has no return value. It always succeeds. When

the delete operation is ready, the contact address is no longer part of the contact address

set. The procedure uses the variable cr, defined in line 4, to store and modify the contact

record.

The deleteAddress procedure starts by retrieving a copy of the contact record from

the contact record database, in line 6, using the object handle. If the object handle has a

contact record, the contact record is modified in lines 9–23. To modify the contact record,

the procedure first checks the contents of the contact field of the calling (child) node. If the

contact field stores the contact address, the procedure removes it, in line 11. Otherwise,

the procedure checks if the forwarding pointer is set in the contact field, in line 12. If it is

set, the procedure clears the forwarding pointer, in line 13.

The changes are committed in lines 16–19. If the contact record has become empty,

the contact record is removed from the contact record database, in line 17. Otherwise,

the contact record still contains location information, and it is saved back into the contact

record database, in line 18.

The procedure then checks, in line 21, whether it has to send a deleteAddress request

to its parent. If the contact record has become empty and the node has a parent, the

forwarding pointer at the parent has become dangling, violating consistency constraint

C2. The procedure therefore sends a deleteAddress request to the parent, in line 22.

Lines 24-27 deal with the case that the object is unknown at this node. If a parent node

exists, the delete operation is continued there (line 26). Otherwise, the delete operation

has reached the root node without finding a contact address, and the operation is finished.

42 CHAPTER 2. ARCHITECTURE

(1) procedure deleteAddress(oh : ObjectHandle;

(2) addr : ContactAddress;

(3) caller : NodeID) is

(4) cr : ContactRecord;

(5) begin

(6) cr := crDatabase(oh);
(7) −− Check whether the object is known

(8) if cr �= NIL then

(9) −− Modify the local contact record

(10) if addr ∈ cr(caller).addrSet then

(11) cr(caller).addrSet := cr(caller).addrSet−{addr};

(12) elsif cr(caller).isPtr then

(13) cr(caller).isPtr := false;

(14) end if;

(15) −− Remove the complete contact record, if needed

(16) if isEmpty(cr)
(17) then delete crDatabase(oh);
(18) else crDatabase(oh) := cr;

(19) end if;

(20) −− Tell the parent to remove its forwarding pointer, if needed

(21) if isEmpty(cr) and parent �= NIL then

(22) call deleteAddress(oh, addr, thisNode) at parent;

(23) end if;

(24) elsif parent �= NIL then

(25) −− The object is unknown, try the parent

(26) call deleteAddress(oh, addr, thisNode) at parent;

(27) end if;

(28) end deleteAddress;

Listing 2.7: The simplified deleteAddress procedure.

Chapter 3

Load Distribution

In this chapter we focus on a scalability problem and a related efficiency problem that are

most apparent at the root node and its associated domain. While the scalability problem

arises from the huge number of contact records located at the root node, the efficiency

problem arises from the large geographical area covered by the root domain. We discuss

these problems in terms of the root node, but they actually occur in all high-level nodes and

domains in the search tree. We present a method that solves both problems by allowing

us to distribute the contact records of the overloaded root node over multiple hosts, and to

choose the most efficient host to store each contact record.

3.1 Scalability Problems

In the previous chapter we stated that every contact address of every object was reachable

from the root node through a path of forwarding pointers. As a consequence, the root

node has to store a contact record and handle lookup and update requests for every object

currently in use. Given the goal to support 1012 objects worldwide, the root node will

need to store and handle requests for 1012 contact records. This goal puts huge storage

and processing requirements on the root node and is obviously a scalability problem.

A simple calculation can quantify these requirements. We first consider the storage

requirements of the root node. We assume that the average amount of persistent storage

required for an object handle and contact record is 512 bytes. This amount of storage

allows us to store the object handle, contact addresses, forwarding pointers, and some

administrative information. In this case the total amount of storage space required at the

root node is 512 terabytes. Currently, storage space of this magnitude is provided only by

off-line storage media, such as magnetic tapes. However, since all the storage space needs

to be accessible all the time to deal with lookup and update operations, off-line storage

space is clearly not appropriate to store location information.

The ability of the root node to process lookup and update requests fast enough is an

43

44 CHAPTER 3. LOAD DISTRIBUTION

even bigger problem. We can look at this from the viewpoint of the insert or the lookup

operation. First, we consider the insert operation. If we assume that we want to fill the

location service in three years, there are no other update and lookup operations, and most

objects have only one contact address, then we need to perform 1012 insert operations

during those three years. Since every insert operation inserts the first contact address of

an object, every insert operation ends up creating a new contact record with a forwarding

pointer at the root node. This means that we need to handle 1.1×104 insert requests per

second at the root. The processing of an insert request should thus take no longer than 95

µs on average.

The lookup operation poses an even bigger problem. Even if every contact record

at the root node is accessed on average only once a month by a lookup operation, the

root node still needs to handle approximately 3.9×106 lookup requests per second. This

means that a lookup operation can last at most 0.26 µs! We should note that one lookup

access per month per object might be considered a low estimate. Given the storage and

processing requirements described above, it is clearly impossible to implement the root

node on a single host with current hardware. A scalable implementation of the root node

has to consist of multiple hosts.

In the previous chapter we also stated that the root domain covered the whole underly-

ing network. Since the root domain consists of (disjoint) child domains that are distributed

all over the world, the child nodes associated with these domains are also distributed all

over the world. Using a single location for the root node would therefore imply long-

distance communication for at least a subset of its children, resulting in increased use of

network resources. This increase is clearly undesirable and forms the basis of our effi-

ciency problem.

Consider, for example, a distributed search tree with the root node located in London

and the root node’s children representing continents and major countries. In this search

tree, lookup and update operations from Australia will need to travel half way around

the world to reach the root node in London, incurring communication delays and using

network resources. Unfortunately, every other single location for the root node will have

the same problem. There will always be child nodes located far away from the single root

node. We want to avoid this situation and ensure that the contents of the root node will be

available locally to all its child nodes.

3.2 Node Partitioning

The basic solution to both problems is to use multiple hosts to implement the root node.

We can solve the scalability problem by distributing the workload of the root node over

multiple hosts, and we can solve the efficiency problem by placing parts of the workload

at hosts in such a way that it shortens the communication distance. In our discussion we

use the term logical node to refer to a directory node in the search tree as discussed in

the previous chapter. We use the term physical node to refer to a host that is part of the

implementation of a logical node.

3.2. NODE PARTITIONING 45

The workload of a logical (tree) node consists of the set of contact records it stores.

We partition this set of contact records into disjoint subsets, and assign a subset to each

physical node that is part of the implementation of the logical node. Each physical node

needs to store and handle the update and lookup requests only for those contact records

that have been assigned to it. If we can ensure an even distribution of the contact records

over the physical nodes and devise a method to quickly determine at which physical node

a contact record is stored, we have solved our scalability problem. We can simply add

extra physical nodes when more storage or processing capacity is required.

Figure 3.1 shows the European part of a partitioned search tree with the contact records

for one object. In the figure the physical nodes that make up a logical node are depicted

inside the logical node. The physical nodes that are responsible for storing contact records

for that object (when present) are shown as a rectangle with a solid line; the other physical

nodes of a logical node are shown as a rectangle with a dashed line. In the search tree,

the logical Europe node is implemented using six physical nodes, but only the rightmost

physical node of the Europe node actually stores a contact record for the object. The

logical France, UK, and Netherlands nodes are implemented using two physical

nodes each. For the object, the right physical node of the France node and the left

physical node of the UK node store a contact record. If the Netherlands node would

store a contact record for the object, the right physical node would be responsible for it, as

indicated by the solid line. The six leaf nodes all consist of a single physical node. These

physical leaf nodes are therefore responsible for storing the contact records of the object,

but only the physical node implementing the logical Paris leaf node actually stores one.

The independence design principle, as described in Chapter 2, provides the two rea-

sons why contact records form a convenient unit of workload. First, we do not need

to maintain consistency between contact records of different objects since operations on

different objects are unrelated. We can therefore use different physical nodes to handle

requests for different contact records, without requiring extra communication to maintain

consistency. Second, a contact record is a self-contained data structure; all relevant loca-

tion information for an object is stored in one place. Contact records can thus easily be

moved from one physical node to the next, which is needed when a physical node is added

to or removed from a logical node. The process of adding and removing physical nodes

is described in Chapter 7.

Since communication with a logical node, such as a parent or child, actually means

communicating with a specific physical node of the logical node, we need a way to de-

termine at which physical node the contact record of an object is (or should be) stored.

This determination should be done quickly, preferably without communicating with other

hosts, to avoid slowing down the actual communication. The object handle contains spe-

cific information to aid in this determination. The object handle thus consists of two parts:

an object identifier and a selection field. This is shown in Figure 3.2. The object iden-

tifier is solely responsible for identifying the object, but is an invisible part of the object

handle in most of the location service. The extra information needed to quickly determine

which physical node to use is stored in the selection field of the object handle. The exact

use and internal structure of the selection field is explained later in this chapter.

46 CHAPTER 3. LOAD DISTRIBUTION

A

Physical node NOT responsible

for the object

Physical node responsible for the

object, with a contact record

Physical node responsible for the

object, without a contact record

RotterdamAmsterdamGlasgowLondonRennesParis

NetherlandsUKFrance

Europe

A

A

Figure 3.1: The European part of the search tree with logical tree nodes partitioned

into physical nodes. Only four of the physical nodes that are responsible for storing

a contact record for the object actually store a contact record.

Object Identifier Selection Field

Figure 3.2: Two parts of an object handle.

3.3. NEARBY COMMUNICATION 47

We can estimate the number of physical nodes needed to implement the (logical) root

node in the three cases described above using the hardware characteristics of current hard-

ware. We first look at the storage requirements. If a physical node is capable of efficiently

storing up to 500 gigabytes, we require at least 1,000 physical nodes to implement the

root. In the second case we look at the insert requirement, that is, filling the location ser-

vice in three years. If we assume that handling an insert request consists mostly of reading

a random contact record from disk and writing it back synchronously, an insert operation

will last on average 30 milliseconds (assuming typical disk properties in 2002). In this

case we require at least 300 physical nodes to implement the logical root node. In the third

case the root receives one lookup request per contact record per month. If we assume that

a lookup request mainly consists of reading a random contact record from disk, a physical

node can handle a lookup request in on average 15 milliseconds. In this case we require

around 58,000 physical hosts to implement the root. Given these calculations, we expect

the root node may grow till 103 to 105 physical nodes.

3.3 Nearby Communication

In the rest of the chapter we deal with the problem of choosing a physical node to store a

contact record of a particular object in such a way that it avoids long-distance communica-

tion for that object. By devising such a method, we solve the efficiency problem that deals

with long-distance communication at the root of the search tree. The main requirement

for choosing a placement strategy is that we desire communication between nearby phys-

ical nodes where possible. However, this requirement should not interfere with the main

scalability requirement of evenly distributing the load of the logical node over its physical

nodes. To simplify our discussion, we assume all physical nodes have the same storage

and processing capabilities. Before we can discuss the placement of contact records at

physical nodes, we first need to discuss the placement of physical nodes in the network.

3.3.1 Physical Node Placement

We have, in principle, complete freedom in where in the network to place the physical

nodes that make up a logical node. However, the most logical place for these nodes is

within the domain of the logical node they implement. For example, the physical nodes

that implement the Europe node are located within the European domain. That way

the European physical nodes are at least near the physical nodes that implement the child

nodes, for example, the physical nodes implementing the logical France node. If the

domain associated with a logical node is small, there is not much choice in where to place

its physical nodes. If we consider the root domain, however, we can place its physical

nodes all over the world.

We use a two-phase strategy to place physical nodes in a domain. In the first phase, we

distribute physical nodes evenly over the domain. This phase ensures that there is always

a physical node in the proximity of a child node. There are, however, places in the domain

48 CHAPTER 3. LOAD DISTRIBUTION

where more objects are located than in other places, for instance, in and around densely

populated areas, such as cities. In the second phase, we therefore add extra physical nodes

in those places in the domain to increase the local storage and processing capacity. The

second phase is necessary to avoid overloading local physical nodes. In short, we ensure

that there is a minimum density of physical nodes in the domain, with increased density

where needed. To determine the right number and placement of physical nodes for a

logical node, the location service needs to gather statistics on the origin and frequency of

lookup and update operations (see also Chapter 7).

3.3.2 Hashing

A naive (but effective) approach to placing contact records at physical nodes is to assign

them randomly to physical nodes. This can be done by inserting a random value in the

selection field of the object handle, and using this value to index the list of physical nodes.

This is basically a hashing scheme. This approach has excellent load-balancing charac-

teristics since it can provide a uniform work distribution. It therefore provides a basic

solution for our scalability problem.

Unfortunately, this approach has poor communication patterns in large domains. Con-

sider a three level search tree with a state (or country), continent, and world level, and

focus on the part of the search tree that covers North America. This search tree is shown

in Figure 3.3(a) and the geographical placement of its physical nodes is shown in Fig-

ure 3.3(b). In the search tree, there are two leaf nodes, located in Atlanta and San Fran-

cisco that both consist of a single physical node. Their parent, the logical North Amer-

ica node, consists of two physical nodes, one located in Seattle and one in Washington

DC. The logical root node consists of a number of physical nodes distributed worldwide

with one of them located in New York City and another located in San Diego. Now con-

sider what could happen when the first contact address of a new object is inserted at the

Atlanta leaf node and its contact records would be placed at physical nodes using the

hashing scheme described above.

To create a consistent search tree, forwarding pointers need to be inserted at the logical

North America and World nodes. Let us assume that for the logical North Amer-

ica node, the selection field of the object handle hashes to the physical node in Seattle

resulting in a contact record with forwarding pointer being stored at the Seattle node.

For the logical World node, the selection field hashes to the physical node in New York

City, and the root contact record is stored there. With this scheme, the insert operation

therefore visits physical nodes in Atlanta, Seattle, and New York City (in that order) to

insert the contact address and create a path of forwarding pointers.

This example shows an inefficient communication pattern, performing first an RPC

from the east coast to the west coast (step 1 in the figure) and then back again (step 2 in the

figure). We would like to avoid this erratic crisscross pattern. In fact, we simply want to

use the physical node in Washington DC, not the physical node in Seattle. In more general

terms, for a contact address that is inserted in Atlanta, we would like to use physical nodes

in the general vicinity of Atlanta. To ensure this, we need a load-distribution scheme

3.3. NEARBY COMMUNICATION 49

California Georgia

North America

World

San Francisco

physical node in

in Seattle

physical node

in San Diego

physical node physical node in

New York City

physical node in

Washington DC

physical node

in Atlanta

1

2

(a)

A

1

2

Atlanta

New York City

Seattle

(b)

San Francisco

San Diego

Washington DC

Figure 3.3: An insert operation crosses North America twice while it is going up

in the search tree. Note that the forwarding pointers in figure (a) are drawn small to

simplify the figure.

50 CHAPTER 3. LOAD DISTRIBUTION

that promotes short-distance communication by placing contact records at neighboring

physical nodes, instead of placing the contact records at random.

3.3.3 Forcing Locality

To explain our method for ensuring nearby communication, we look at communication

patterns in the search tree, specifically at the geographical locations of the physical nodes

involved in an operation and the order in which they are used. We first look at the com-

munication pattern caused by the insert operation of the first contact address of an object,

and show how our method shortens the communication distances. We then generalize our

solution to include all possible communication patterns caused by the insert, delete, and

lookup operations.

First Insert Communication Pattern

When inserting the first contact address of an object, the insert operation creates new

contact records at every logical node on the path from the leaf node up to and including the

root node. The central notion of our placement method is that we want these newly created

contact records stored at physical nodes that are geographically near to each other. By

using physical nodes that are geographically close by, we can avoid using long-distance

networks and keep the distance traveled during the insert operation small. This approach

improves the efficiency of our location service by keeping the use of network resources

low.

We make the assumption that a large geographical distance between physical nodes

implies a large network distance. By avoiding communication over large geographical

distances, we reduce the risk of communicating over large network distances. There is, of

course, still the possibility that two geographically close physical nodes will have a large

network distance due to some inefficient local network topology. We ignore such patho-

logical cases. We assume that in current wide-area networks our assumption is realistic

when talking about large distances, for instance, in the order of a 1,000 km or more.

We expect that this assumption will become valid for smaller distances in the fu-

ture for the following three reasons. First, computer networks are becoming increasingly

prevalent. Second, existing networks are becoming increasingly inter-connected, as has

happened in the public phone system in the past. Third, with the increased use of fiber

optics for nonlocal communication and the decreasing delays in the nonfiber part (e.g.,

signal amplifiers) of these communication networks, the propagation speed in computer

networks is approaching the speed of light. The network latency will thus be increasingly

dominated by the actual geographical distance traveled. We revisit this assumption in

Section 3.6.

The reason for trying to shorten the communication distance using geographical dis-

tance as a distance metric, instead of using some form of network distance directly, is

based on the notion that the information used to compute distances should be durable.

Since objects are allowed to exist for long periods of time, we can expect object handles

3.3. NEARBY COMMUNICATION 51

GermanyUK

A

2

1

virtual column
physical node in

New York City

physical node in

Washington DC

physical node

in Atlanta

World

EuropeNorth America

California Georgia

Figure 3.4: A virtual column in a partitioned search tree formed by the physical

nodes used to store the contact records for one object located in Georgia.

and the information in their selection fields to have a life span longer than a single config-

uration, and maybe even implementation, of the location service. The information used

to compute distances should therefore be usable in different configurations of the search

tree and the underlying network in general. Geographical locations and distances provide

a stable distance metric since the distances between geographical locations do not change

over time, at least not significantly.

By placing the new contact records, located at different levels in the tree, at physical

nodes that are in each other’s general vicinity, we create a kind of virtual column through

the tree, as shown in Figure 3.4. This virtual column is formed by the leaf node where the

contact address was stored combined with the intermediate and root physical nodes where

the forwarding pointers are stored. In our example, the location of the virtual column is

determined by the Atlanta leaf node, and the virtual column is thus located on the east

coast of North America.

We create the virtual column by having the geographical location of the leaf node

determine the physical nodes used at every logical node on the path from leaf to root.

We do this by placing the geographical location of the leaf node (i.e., its longitude and

latitude) in the selection field of the object handle. When a client creates a new object

handle, it takes the geographical location of the leaf node where the first insert will take

52 CHAPTER 3. LOAD DISTRIBUTION

place and provides that location to the procedure that creates the new object handle.

The placement strategy then places a contact record at the physical node closest to this

location. When a physical node wants to send an RPC request to a logical node, it uses

the placement strategy to determine which physical node is responsible for storing the re-

quested contact record and to which physical node it should thus send its request message.

The placement strategy is implemented by computing the geographical distances between

the geographical location in the selection field and every physical node of a logical node

and selecting the physical node with the shortest distance. An efficient way to determine

the physical node closest to the location in the selection field is described in Section 3.5

General Communication Patterns

The virtual column notion is specific to the insert operation of the first contact address

of an object since it uses the geographical location of the initial leaf node. The notion of

avoiding the crisscross communication pattern by using the nearest physical node is more

general, however, and can be applied to all communication in the search tree. The vicinity

requirement can be generalized informally by saying that the communication between

levels in the tree should not switch geographic direction when communicating over longer

distances.

If a leaf node and physical root node are far apart, the geographical path traveled from

the leaf to the root node should always go toward the geographical location of the physical

root node. In other words, an operation should home in on the physical root node. This

is the most direct (i.e., shortest) route between the leaf node and physical root node. By

going up one level in the search tree, the physical node used at the higher level should

either be closer to the object’s physical root node, or stay in the general vicinity of the

physical node at the lower level. This means that we would like the physical nodes used

to be on or near the line connecting the locations of the physical leaf node and physical

root node.

Consider, for example, the search tree shown in Figure 3.5. The object handle used in

this figure stores in its selection field the geographical location of Atlanta. The physical

node in New York City is therefore selected to store a contact record for the logical World

node. In the figure a client near the Germany leaf node wants to insert a contact address.

The contact address is stored at the physical node in Berlin since the leaf node consists of

only a single physical node. For the logical Europe node, our placement strategy must

choose between the physical nodes in London or in Moscow. It selects the physical node

in London since that physical node is closest to Atlanta. The physical node in London

communicates, in turn, with the physical root node in New York City. The insert operation

thus travels toward the west.

It is important to realize that by adding a geographical location to the object handle

we did not endanger the object handle’s location independence nor the inherent locality

of the search tree. The object handle can still be used to insert contact addresses at every

leaf node in the search tree. The location is used solely to determine the most efficient

place in the search tree to store the data. The inherent locality of the search tree is not

3.3. NEARBY COMMUNICATION 53

A

World

westward communication direction

North America Europe

GermanyUKGeorgiaCalifornia

physical node in

New York City

physical node

in London

physical node

in Moscow

physical node

in Berlin

2

1

Figure 3.5: The communication direction toward the west of an insert operation

while it is going up in the search three. Note that the leaf node and physical root

node are located far away from each other.

endangered since it is determined by the hierarchy of domains, not where in the domain

a physical node resides. From the viewpoint of the (logical) search tree, the geographical

location is just some random bits of the object handle.

The choice of which geographical location to place in the selection field was obvious

for the virtual column case. For the general case, however, it is less clear which location

to use. The geographical location is in fact a hint on where the object generally resides

in the world. The efficiency of our placement scheme depends on the accuracy of this

hint. In our current system, we use the geographic location of the leaf node where the

first insert took place. We consider the use of the location of this leaf node, however, only

a heuristic that a client should be able to overrule when it knows that another location is

more appropriate.

3.3.4 Internal Structure of the Object Handle

As mentioned before, the object handle consists of two parts: the object identifier and

the selection field. The internal structure of the object handle is shown in Figure 3.6. The

54 CHAPTER 3. LOAD DISTRIBUTION

RandomLatitudeLongitude

Selection Field
Object Identifier

Figure 3.6: Internal structure of an object handle.

object identifier is (still) responsible only for identifying the object, and can be considered

an opaque bitstring. The selection field consists of three fields: longitude, latitude, and

random. The longitude and latitude specify the geographical location of the object, that

is, the location where the first contact address was inserted. The random field contains

the value used to break ties when multiple physical nodes use the same location, which is

explained next.

When we discussed the placement of physical nodes in the network in Section 3.3.1,

we discussed the possibility that there could be too much load at a single location and that

we could add extra physical nodes to deal with this increased load. However, since these

extra physical nodes would share the exact same location with the original physical node,

our placement strategy is not able to distribute the load among them. We therefore keep the

random value in the selection field. Using the hashing scheme, the random value allows

us to distribute the load evenly over physical nodes that share the same location. We adapt

our location-aware load-distribution scheme as follows. It first takes the geographical

distances into account to select the physical node nearest to the location in the selection

field. When multiple physical nodes share the same location, the strategy uses the random

value to select a single physical node.

When the selected geographical location is placed in the selection field, the object

handle is fixed and cannot be changed anymore. This inability to change the object han-

dle might become a problem when many objects change the location where they reside

permanently since their virtual column will no longer be in the right place. We think we

can solve this problem by associating a lease [Gray and Cheriton, 1989; Duvvuri et al.,

2000] with the location information in the object handle to force clients to keep the object

handle up-to-date, but we have not looked at this solution in detail.

3.4 Simulation Results

To investigate the load-balancing and distance-shortening characteristics of the location-

aware load-distribution scheme, we performed a simulation experiment. In the experiment

we measured the workload experienced by physical nodes and the geographical distance

traveled by lookup and update operations. In the investigation, we also measured the

load and distances resulting from other load-distribution schemes, and compared these

results with the load and distances resulting from the location-aware load-distribution

scheme. To ensure a fair comparison between the various load-distribution schemes, we

used the same logical search tree and the same number of physical nodes to implement

logical nodes in all simulations. The hypothesis of the experiment was that the location-

3.4. SIMULATION RESULTS 55

aware load-distribution scheme leads to short communication distances and a reasonable

load balance. To investigate the general usefulness of the hierarchical location service

approach, we also compared the best performing load-distribution scheme with the home-

based location service approach.

3.4.1 Methodology

To perform our simulation experiment, we had to decide on several aspects of the exper-

iment, such as, what tree structure to use and what quantities to measure. In this section

we look at these aspects.

Tree Structure

We constructed a real-life search tree using the World Cities Population Database1

(WCPD) [Rhind, 1991]. This database lists all the country capitals and those cities in the

world with more than 100,000 inhabitants in the year 1987. For every city the database

stores its population, country, and geographical coordinates. In our experiment we used

only cities with more than 100,000 inhabitants (capital or not), resulting in 2,299 cities

with a total population of little under a billion.

Using the WCPD, we constructed a (logical) search tree consisting of four levels: a

single root domain, eight subcontinent domains, 122 country domains, and 2,299 city

domains. Since no subcontinent information was given in the database, we grouped coun-

tries into subcontinents by hand. Table 3.1 shows the characteristics of the subcontinent

domains.

Every city in the database had a corresponding leaf domain and also contributed a

physical node to every domain it was a part of. For example, the city of Amsterdam had

a leaf node and contributed a physical node to the logical Amsterdam, Netherlands,

Europe, and root nodes. Since there are 2,299 cities and every city supports four physical

nodes (i.e., one for every level in the tree), the search tree consists of 9,196 physical nodes

in total. In the simulation, we assumed that all physical nodes had the same storage and

processing capabilities.

Load-distribution Schemes

In the experiment we compared four load-distribution schemes: the hashing scheme, the

location-aware scheme, a hybrid hashing/location-aware scheme, and the logical scheme,

as shown in Table 3.2. The hashing scheme used the random value in the selection field of

the object handle to pick a physical node from a logical node. The location-aware scheme

used the geographical location in the selection field of the object handle to pick the nearest

physical node in a logical node. To see if we could get the best characteristics of both these

schemes (i.e., load distribution and distance shortening), we also added a hybrid hashing

and location-aware scheme. In this hybrid scheme, we used the location-aware scheme at

1These data are available at http://www.grid.unep.ch/data/grid/gnv29.html

56 CHAPTER 3. LOAD DISTRIBUTION

Table 3.1: Information on the subcontinent domains used in the simulation experi-

ment.

Subcontinent Countries Cities Population

North America 11 274 98,029,259

South America 13 240 96,418,651

Europe 29 436 142,158,983

Africa 32 124 40,157,801

East Asia 4 493 271,493,831

South Asia 17 336 130,192,023

North Asia 2 287 112,019,100

Australasia 14 109 49,271,682

Total 122 2,299 939,741,330

Table 3.2: The four load-distribution schemes examined.

Mapping Description

Hashing For domain D, select a city in D using the

random value in the object handle.

Location-aware For domain D, select the city in D closest to the

geographical location in the object handle.

Hybrid Use the location-aware mapping for level 0 and 1

and the hashing mapping for level 2 and 3.

Logical For domain D, select the city nearest to the

center of domain D.

the root and subcontinent levels and the hashing scheme at the country and city levels. We

added the logical scheme to measure the load and distances of a nondistributed scheme.

In the logical mapping scheme, we used the city nearest to the center of the associated

domain to store all contact records of the logical node. We determined this center by

computing the distances between all the cities in a domain and choosing the city with the

smallest aggregated distance to all other cities.

Workload Generation

In the simulation, activity was generated by two types of events: an object moving and a

client looking up a contact address. Since we assumed these events to be unrelated, we

used two separate patterns to model objects: a mobility and a lookup pattern. The mobility

and lookup patterns chosen for a specific object determined at which leaf nodes its update

or lookup operations were initiated. We used two types of mobility and lookup patterns:

3.4. SIMULATION RESULTS 57

a global and a local pattern. Objects with a global mobility and lookup pattern move over

long distances and have clients that are located far away; objects with a local mobility and

lookup pattern move only over small distances and have clients that are located nearby.

We created the global and local pattern using the following method. We started by

associating a mobility probability and a lookup probability with every level in the search

tree. To determine the destination of a move operation given a starting location, we used

the mobility probabilities to randomly pick a level in the tree and determined the domain

that contained the starting location at that level. We then randomly chose a city in that

domain as the destination for the move, using a uniform distribution. For example, if our

object resided in Amsterdam and we chose for the move the subcontinent level at random,

the destination address would be a city in Europe, for instance, Madrid.

To determine the location of a client performing a lookup operation given the location

of the object, we used a similar method. We used the lookup probabilities to randomly

pick a level and determined the domain in which the object resided at that level. We then

randomly chose a city in that domain as the client location, using a uniform distribution

weighted by the population size of each city. For example, if our object resided in Madrid

and we chose for the client location the root level at random, the location of the client

would be a city in the world. However, the big cities, such as Mexico City and Tokyo,

would be more likely to be chosen than small cities.

To simplify our simulation, we chose three combinations of mobility and lookup pat-

terns, and called these combinations object models. Table 3.3 shows the object models

with their associated probability distributions. The combination GM-GL (Global Mobil-

ity - Global Lookups) models a globally moving object with globally distributed clients.

The combination LM-GL (Local Mobility - Global Lookups) models a locally moving

object with globally distributed clients. The combination LM-LL (Local Mobility - Local

Lookups) models a locally moving object with locally distributed clients. In the table,

level 0 refers to the root level and level 3 refers to the leaf level. The global distribution is

created by associating the same probability with all four levels (i.e., 25%), making all lev-

els equally likely. The local pattern is created by associating larger probabilities with the

lower level (e.g., 50% for the leaf level) and smaller probabilities with the higher levels

(e.g., 10% for the root level), making the smaller domains more likely to be picked.

In the experiment we focused on the load and distances generated by a simple mobile

object. Since we did not consider replicated objects, all objects had only a single contact

address. Furthermore, to best measure and compare the resulting load and distances, we

did not use any optimizations, for instance, such as those described in Chapter 4. Using

optimizations would make the comparison of simulation results more difficult. Contact

addresses were therefore always stored in leaf nodes and no caching was done during

lookup operations.

Quantities Measured

In the simulation we looked at the load experienced by individual physical nodes, the

total geographical distance traveled by update and lookup operations, and at the frequency

58 CHAPTER 3. LOAD DISTRIBUTION

Table 3.3: The probability distributions of the three object models used in the simu-

lation experiment. G refers to global domains, and L refers to local domains. Model

LM-GL thus stands for mobility only in the local domain and lookup operations

initiated in the global domain.

Model ↓ Mobility Lookup

Level → 3 2 1 0 3 2 1 0

GM-GL 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

LM-GL 0.50 0.25 0.15 0.10 0.25 0.25 0.25 0.25

LM-LL 0.50 0.25 0.15 0.10 0.50 0.25 0.15 0.10

distribution of the distances traveled by operations. The simulation ignored the dynamic

behavior of the network (e.g., congestion) since we were interested only in the overall

load distribution and the distance traveled.

We measured the load in a physical node by the number of update and lookup pro-

cedures executed. To simplify the simulation, we combined the load of the four physical

nodes in a single city and recorded only the combined load per city. We measured the ge-

ographical distance traveled (in kilometers) as the combined distances between physical

nodes involved in the operations. To measure the frequency distribution, we maintained a

frequency table indexed by distance. The size of the bins in this table was 100 km, that is,

the first bin recorded the frequency of distances between 0 km and 100 km.

Execution of the Simulation

We performed the simulation as follows. For every object model, we generated 100 mil-

lion events, with an event either being a move operation or a lookup operation. For every

event, we first determined whether it was a move or lookup operation. In the simulation

we used a fixed ratio of one move operation per four lookup operations. We then randomly

picked the home location of the object used by the operation. The city used as home lo-

cation was picked using a uniform probability distribution weighted by the populations of

the cities.

If the event was a move operation, the source and destination cities of the move needed

to be determined. The source city was determined by using the mobility pattern and the

home location of the object as the starting location. The destination city was also deter-

mined by the mobility pattern, but in this case using the source city as the starting location.

When source and destination of the move were known, we simulated an insert operation

starting at the destination city and a delete operation starting at the source city. We deter-

mined the physical nodes used by the update operations, and registered the execution of an

update procedure at these nodes. We also determined the geographical distances between

these physical nodes, and added these distances to the total geographical distance covered

by update operations. We also used the geographical distances to update the frequency

distribution table.

3.4. SIMULATION RESULTS 59

If the event was a lookup operation, the locations of the object and the client needed

to be determined. The location of the object was determined by using the mobility pat-

tern and the home location of the object as the starting point. The location of the client

was determined by the lookup pattern and using the location of the object as the starting

point. When locations of the object and the client were known, we simulated the lookup

operation. As for a move operation, we determined the physical nodes used by the lookup

operation, and registered the execution of a lookup procedure with those nodes. We de-

termined the geographical distances between the physical nodes, and added those to the

total geographical distance covered by lookup operations. We also used the geographical

distances to update the frequency distribution table.

3.4.2 Results

We compare the results of the various load-distribution schemes by first considering their

load-balancing characteristics. We then examine their distance-shortening characteristics.

Load Balancing

To examine the load-balancing aspect, our simulation program generated a table listing

the total number of executed procedures per city for each load-distribution scheme. To

best compare the different load-distribution schemes, we sorted this table starting with the

heaviest loaded city and plotted the percentage of the total load experienced by the first N

cities in the table. The resulting graphs are shown in Figures 3.7–3.9. Since the figures

show similar results, we focus on the results depicted in Figure 3.7.

A perfect load balancing scheme where all physical nodes are evenly loaded would

result in a straight diagonal line from 0% load at 0 cities to 100% load at 2,299 cities

since every city would add the same amount of load. On the other hand, a load-distribution

scheme that results in vast differences in the load experienced by different cities, would

result in a strongly arched graph since heavily loaded cities would be sorted to the start of

the table. To ease the understanding of the figures, we also indicate the number of cities

that support 50% of the load. A perfect load balancing scheme would have 1,149 cities

experiencing 50% of the total load.

In all three figures the hashing scheme results in the arc that is nearest to the diagonal.

This scheme thus has the best load-balancing characteristics, as expected. Since only

753 cities experience 50% of the total load (instead of 1,149), it still does not provide

perfect load balancing. The reason for this imbalance is the fact that the client locations

for lookup operations were chosen using a uniform distribution weighted by population

size. Leaf nodes of big cities started therefore more lookup operations than leaf nodes of

small cities, leading to the imbalance. As expected, the logical load distribution (i.e., no

load distribution) performs the worst, with only 19 cities supporting 50% of the load.

The location-aware load-distribution scheme does not have a particularly good load

distribution with only 245 cities supporting 50% of the load. It is, however, still better

than the logical distribution scheme. As conjectured, the hybrid location-aware/hashing

60 CHAPTER 3. LOAD DISTRIBUTION

500 1000 1500 2000 2500

245 (Location aware)

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
L

o
a

d

Number of Cities (sorted by load)

565 (Hybrid)

19 (Logical)

753 (Hashing)

0.5

0

1

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

0

Figure 3.7: Load distribution generated by globally distributed lookup operations

on a globally moving object (Model GM-GL). The graph shows the total load expe-

rienced by the first N cities.

500 1000 1500 2000 2500

40 (Logical)

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
L

o
a

d

512 (Hybrid)

299 (Location aware)

738 (Hashing)

Number of Cities (sorted by load)

0.5

0

1

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

0

Figure 3.8: Load distribution generated by globally distributed lookup operations

on a locally moving object (Model LM-GL). The graph shows the total load experi-

enced by the first N cities.

3.4. SIMULATION RESULTS 61

500 1000 1500 2000 2500

40 (Logical)

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
L

o
a

d

557 (Hybrid)

364 (Location aware)

Number of Cities (sorted by load)

669 (Hashing)

0.5

0

1

0.9

0.8

0.7

0.6

0.4

0.3

0.2

0.1

0

Figure 3.9: Load distribution generated by locally distributed lookup operations on

a locally moving object (Model LM-LL). The graph shows the total load experi-

enced by the first N cities.

scheme has a load-balancing effect that falls between the location-aware and hashing

schemes, with 50% of the total load experienced by 565 cities.

Distances Traveled

To examine the distance-shortening characteristics and the resulting locality, our simula-

tion program also recorded the total geographical distance traveled by all operations and

the number of operations that traveled a particular distance. Figure 3.10 shows the result-

ing total geographical distance traveled. The percentages in the table of Figure 3.10 are

relative to the distances of the hashing scheme.

As expected, the hashing scheme results in the largest total distance traveled for all

object models. The location-aware scheme improves this distance with 19% and 26% de-

pending on the object model. The improvement of the location-aware scheme is stronger

for the local object model since all operations are initiated around the home location, as

explained in the previous section. Since most operations are handled locally in smaller do-

mains, the effect of the improvement at the root level is not diminished by other operations

initiated far away, as is the case with, for instance, the LM-GL object model.

It is less obvious why the logical scheme results in the shortest total distance, that

is, shorter than the location-aware scheme. The main reason is that the logical scheme

makes a conservative choice when choosing the city to place a contact record. By placing

contact records at the city in the center of a domain, it avoids choosing a city located far

away from other cities at the center of their domains, such as the parent or child domains.

Note also that the location-aware scheme is most useful with stationary objects since it

62 CHAPTER 3. LOAD DISTRIBUTION

GM-GL LM-GL LM-LL

Object Model

0.0e+00

2.0e+11

4.0e+11

6.0e+11

8.0e+11

D
is

ta
n

ce
 (

k
m

)

Hashing

Location aware

Hybrid

Logical

Load-distribution Scheme

Model GM-GL LM-GL LM-LL

Abs. Rel. Abs. Rel. Abs. Rel.

Hashing 6.9e11 100% 3.3e11 100% 3.4e11 100%

Location aware 5.6e11 81% 2.7e11 81% 2.5e11 74%

Hybrid 5.8e11 84% 2.8e11 84% 2.7e11 81%

Logical 5.1e11 73% 2.4e11 73% 2.4e11 73%

Figure 3.10: The total absolute and relative geographical distances traveled by

update and lookup operations using the three object models and different load-

distribution schemes.

3.4. SIMULATION RESULTS 63

5,000 10,000 15,000 20,000 25,000 30,000

Maximum Distance Traveled (km)

P
er

ce
n

ta
g

e
o

f
A

ll
O

p
er

a
ti

o
n

s

Hashing

Hybrid

Location aware

Logical

0
0

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 3.11: Distribution of the distances traveled by lookup operations showing

differences in locality (Model LM-GL).

most strongly optimizes the first insert operation. Since the simulation does not consider

completely stationary objects, that improvement is not visible.

The hybrid scheme results in distances comparable to the location-aware load-

distribution scheme. It can therefore indeed be considered as an attractive compromise

between load balancing and distance shortening. Unfortunately, the optimization of the

total distances with the hybrid scheme is relatively small: between 16% and 19% for our

object models.

To examine the locality of the search tree with the different schemes further, we also

plotted the distribution of the distances traveled by operations. Figure 3.11 shows the

distance distribution of lookup operations for the LM-GL object model. We show only a

figure for this model since the figures for the other models are similar. The figure plots

the accumulative number of operations for a given distance, as a percentage of the total

number of operations. Strong locality is visible as a high percentage of the operations at

small distances since that means that a large number of operations needed to travel only

a short distance. Weak locality would result in a slowly rising percentage since only few

operations would travel a short distance. To ease the interpretation of the figure, we also

added the 75% mark.

The distribution of distances is roughly the same for all schemes, with the logical

scheme performing only slightly better. Apparently, for the types of objects simulated,

the locality of the search tree is not very dependent on the load-distribution scheme. With

the logical scheme, 75% of the lookup operations traveled less than 2,200 km; for the other

schemes, the operations traveled less than 3,100 km. Only 10% of the lookup operations

traveled more than 6,500 km. Since the circumference of the Earth at the equator is

slightly over 40,000 km, the operations experience reasonable locality.

64 CHAPTER 3. LOAD DISTRIBUTION

Conclusion

From the simulation results it is clear that the location-aware load-distribution scheme

leads to shorter communication distances. It does, however, not lead to a reasonable load

balance. If we also want to ensure a reasonable load balance, we need to use the hybrid

load-balancing scheme.

3.4.3 Comparison with the Home-based Approach

To examine the effectiveness of our hierarchical location service in general, we also com-

pared our location service using the hybrid scheme with the results of a home-based lo-

cation service. In a home-based location service every object has a single server at the

object’s home location that stores its current location (i.e., a contact address). Home-

based location services are used in Mobile IP [Perkins, 1998] and mobile phone systems

[Mohan and Jain, 1994]. In our simulation every city provided a home location for its

objects. This home location needed to be contacted for all lookup and move operations.

Load Distribution

We first compare the differences in load balancing. Figure 3.12 shows the load balancing

for both types of location services. As in the previous load-balancing figure, we added

the 50% mark. The figure shows that the hierarchical location service has better load-

balancing characteristics. This figure is, however, somewhat misleading. The reason is

that the absolute load is smaller in the home-based location service. This is clearly visible

when comparing the absolute load, as shown in Figure 3.13. This figure shows that even

though the load balance might be less, the load per city is smaller for the home-based.

The reason that the hierarchical location service generates more load is that it consists of

four times as many nodes as the home-based location service.

Distances Traveled

Figure 3.14 shows the total distance traveled by update and lookup operations for both

types of location service. Depending upon the object model, the hierarchical or the home-

based location service performs better. The home-based approach performs better when

there is no locality in the request or very high locality (object model GM-GL and LM-LL,

respectively). This is expected, with no locality all operations are global, and no locality

can be exploited by the hierarchical location service; with very strong locality, we can

place the home location in the area where the requests come from, allowing the home-

based location service to exploit locality. The hierarchical location service provides better

performance when there is variable locality, as with object model LM-GL.

Figure 3.15 show a comparison of the locality of lookup operations of the LM-GL

object model for the two types of location services. An important difference between both

types is that the home-based location service has a maximum distance that can be traveled

of around 20,000 km, which is half the circumference of the Earth. This is apparent in the

3.4. SIMULATION RESULTS 65

512 (Hierarchical)

263 (Home-based)

0 500 1000 1500
0

2000 2500

P
er

ce
n

ta
g

e
o

f
T

o
ta

l
L

o
a

d

Number of Cities (sorted by load)

0.6

1

0.9

0.8

0.7

0.5

0.4

0.3

0.2

0.1

Figure 3.12: Comparison of the load balancing of the hierarchical and home-based

location services showing differences relative to the total load (Model LM-GL).

1000 1500 2000 2500

Hierarchical

A
b

so
lu

te
T

o
ta

l
L

o
a

d

Number of Cities (sorted by load)

Home-based

0
5000

2.5e+08

2e+08

1.5e+08

1e+08

5e+07

Figure 3.13: Comparison of the load balancing of the hierarchical and home-based

location services showing absolute differences (Model LM-GL).

66 CHAPTER 3. LOAD DISTRIBUTION

GM-GL LM-GL LM-LL

Object Model

0.0e+00

2.0e+11

4.0e+11

6.0e+11

D
is

ta
n

ce
 (

k
m

)

Hierarchical

Home-based

Location Service

Model GM-GL LM-GL LM-LL

Abs. Rel. Abs. Rel. Abs. Rel.

Hierarchical 5.8e11 100% 2.8e11 100% 2.7e11 100%

Home-based 4.6e11 80% 3.5e11 123% 2.5e11 92%

Figure 3.14: Comparison of the total distance traveled by operations in the hierar-

chical and home-based location services.

3.5. IMPLEMENTING PHYSICAL NODE SELECTION 67

4721 (Home-based)

2975 (Hierarchical)

5,000 10,000 15,000 20,000
0

25,000 30,000

P
er

ce
n

ta
g

e
o

f
O

p
er

a
ti

o
n

s

Distance Traveled

0.6

0

1

0.9

0.8

0.7

0.5

0.4

0.3

0.2

0.1

Figure 3.15: Comparison of the locality of the hierarchical and home-based loca-

tion services using the distribution of the distances traveled by lookup operations

(Model LM-GL).

figure by the fact that for the home-based approach all (100%) distances are 20,000 km or

less. In contrast, the hierarchical location service has a few distances larger than 20,000

km. The hierarchical location service has better locality, that is, more lookup operations

travel a shorter distance. For instance, 75% of the lookup operations travel up to 2,975 km

in our hierarchical location service but up to 4,721 km in the home-based location service.

This is not as bad as it seems since only 13% of the lookup operations in the home-based

approach travel between 2,975 km and 4,721 km.

Conclusion

From the simulation results it is unclear whether our hierarchical location service per-

forms better. Given the object models simulated, the hierarchical location service seems

to perform on average similar to the home-based location service. Simulations of the hi-

erarchical location service, including the optimizations of Chapter 4, with real world data

on mobility and replication patterns will have to determine which approach will provide

better performance.

3.5 Implementing Physical Node Selection

The location service is implemented using physical nodes that are grouped together to

form logical nodes that, in turn, form the distributed search tree of the location service.

The design of a physical node can be divided into three layers: the algorithm, distribution,

68 CHAPTER 3. LOAD DISTRIBUTION

Algorithm Layer

Distribution Layer

Network

Communication Layer

Figure 3.16: Layering in the design of a physical node.

and communication layer (see Figure 3.16). The algorithm layer contains the implemen-

tation of the update and lookup procedures, as described in Chapter 2. The procedures use

only the logical search tree and have no knowledge of node partitioning. The distribution

layer provides an RPC interface to the algorithm layer. It contains, however, only the code

responsible for selecting the physical node that stores the contact record of an object. The

communication layer is responsible for the actual communication.

The algorithm layer uses logical node identifiers to identify nodes in the search tree,

such as the parent. The distribution layer takes a logical node identifier and an object han-

dle and converts those to the physical node identifier that identifies the physical node that

stores the contact record for the object identified by the object handle. The communica-

tion layer implements the RPC semantics by exchanging messages with the physical node

selected by the distribution layer. The communication layer is responsible for resolving

the physical node identifier to the network address of the physical node.

The distribution layer works conceptually as follows. When a procedure in the algo-

rithm layer needs to communicate with a certain logical node, for instance, the parent, the

procedure invokes the RPC primitive provided by the distribution layer. The distribution

layer computes for every physical node of the logical parent node the distance between

the location of the physical node and the location in the selection field of the object han-

dle. When the distances to all physical nodes are known, the distribution layer selects

the physical node with the shortest distance. If multiple physical nodes exist at the same

location, the random field is used to choose which physical node to use. The distribution

layer subsequently initiates a message exchange by invoking the RPC algorithms in the

communication layer. To compute the distances, the distribution layer needs to know the

geographical location of all the physical nodes of the logical nodes with which it will

communicate, such as, the parent and child nodes.

3.5. IMPLEMENTING PHYSICAL NODE SELECTION 69

3.5.1 Requirements

To come to an efficient implementation, the location-aware selection method has to fulfill

the following requirements.

R1 The selection process should be deterministic and unique.

As long as the search tree does not change, the same physical node should be se-

lected. Moreover, since it is inefficient to have to check multiple physical nodes,

we should avoid ambiguity and select only one physical node.

R2 The location information should occupy a small number of bits in the object handle.

Since object handles are used as general object references in our system, a large

number of them will be used. Object handles are therefore not allowed to become

too big.

R3 The selection process should be fast.

Since the physical node selection process is on the critical path for communication,

it should have a small overhead, that is, take as little time as possible.

R4 It should be easy to add, remove, or move physical nodes.

Since we can imagine the logical tree and its partitioning being adapted regularly to

suit the current situation, these modifications should not require much work or have

a large impact on the search tree as a whole.

R5 The storage overhead introduced by partitioning and selecting a physical node

should be reasonable.

R6 The communication overhead in both bandwidth and latency, should also be rea-

sonable.

Requirements R5 and R6, basically state that the extra storage and communication

overhead should not endanger the usability of the location service.

3.5.2 General Implementation

In principle, we can recompute the distances for the same or similar locations every time

a particular geographical location is used in communication. However, if we consider

that the logical root node might have between 103 and 105 physical nodes, computing all

distances every time is clearly undesirable, given requirement R3. We can, however, take

the distance computation out of the critical communication path, by creating a location-

mapping table off-line and using the location as an index in this table.

We create the location-mapping table, as follows. We divide the surface of the earth

into a large number of small disjoint elementary areas. This division is independent of the

partitioning used by the search tree. Consider a logical node N that has been partitioned

into k physical nodes PN1, . . . ,PNk. We assign physical node PNi to elementary area A if

PNi is the closest physical node to A. Each tuple (A,PNi) forms an entry in the mapping

70 CHAPTER 3. LOAD DISTRIBUTION

Figure 3.17: The mapping table for the world domain with a logical root node

consisting of eight physical nodes placed in Surabaya, Sao Paolo, Seoul, Mexico

City, Moscow, Tokyo, Bombay, and London.

table of logical node N. The mapping table of node N is distributed to all physical nodes

that may need to communicate with node N. When a physical node is added to or removed

from the set of physical nodes, the mapping table of node N needs to be recomputed and

distributed again. This recomputation and distribution is described in detail in Chapter 7.

Figure 3.17 shows, as an example of a mapping table, the mapping table of the root

node. The figure shows the mapping table projected on top of a map of the world. In this

example the root node consists of eight physical nodes placed at eight major cities in the

world. In the figure the eight cities are represented as dots. The area surrounding a city

consists of all the elementary areas that will be mapped to that particular city. The areas

surrounding the cities are distorted because the distances are computed using a sphere to

approximate the surface of the Earth and the figure shows the Mercator projection of the

Earth onto a flat surface.

3.5.3 An Array-based Implementation

A straightforward way to create elementary areas on the surface of the earth is by laying a

grid on the surface using longitude and latitude. The longitude ranges from 180◦ west to

180◦ east of Greenwich and the latitude ranges from 90◦ north to 90◦ south of the equator.

If we use, for example, 1◦× 1◦ degree areas, this results in 64,800 elementary areas for

the complete surface of the earth. We implement the mapping table using a 2-dimensional

array, using the (longitude,latitude) coordinates of an elementary area as an index in the

array.

3.6. LOCATION AWARENESS REVISITED 71

This implementation fulfills most requirements easily. The mapping table ensures that

the selection process is deterministic and unique, fulfilling requirement R1. The second

requirement (size of location information) depends heavily on the resolution (size of an

elementary area) used. In the example above the size is at least 17 bits. Requirement R3

(fast execution) is fulfilled by using an efficient table-indexing operation. Since adding

or removing a physical node simply requires recomputing and redistributing the mapping

table, requirement R4 is easily met. Adding or removing a physical node also requires the

redistribution of the contact records over the physical nodes. This redistribution process

is described in Chapter 7.

Meeting requirement R5 and R6 (small storage and communication overhead) de-

pends, just like R3, heavily on the resolution used. If we use a 4-byte physical node

identifier, the example above gives mapping tables with a size of 64,800×4 = 253 kilo-

bytes. Given that a 1◦×1◦ elementary area is at most in the order of 100 km × 100 km, a

mapping table of this resolution will provide a resolution in line with our assumption that

geographical distances provides a good metric at distances over 1,000 km.

3.6 Location Awareness Revisited

In retrospect, there is reason to reconsider our geography-based load distribution scheme.

The main goal of the location-aware load-distribution scheme is to provide a shorter com-

munication distance than the hashing load-distribution scheme. Unfortunately, under the

examined object models, the scheme results in an improvement of only 20% of the geo-

graphical distance traveled. The main difficulty with this improvement is that, while it is

a reasonable improvement for the geographical distance, it is unclear how much of that

improvement will find its way into the actual network distance.

This problem is compounded by the results of a small experiment we performed af-

ter developing the location-aware load-distribution scheme. In the experiment, fully de-

scribed in [Ballintijn et al., 2000], we examined the network and geographical distances

between 19 cities distributed across the world. When we compared the network and geo-

graphical distance between pairs of cities, we found that there is currently no correlation

between their geographical and network distance in the Internet.

This basically means that the location-aware load-distribution scheme cannot be ap-

plied in the current Internet. We still expect the network distance to become more pro-

portional to the geographical distance in the future. This expectation is built on the fact

that within the USA and Europe network distances show significantly more correlation

with geographical distance than on a worldwide scale. We could also try to find another

distance metric that has a correlation with network distance and still has the same char-

acteristics as the geographical distance (i.e., is a metric space), but whether such a metric

actually exists is unknown. Fortunately, we can still use the hashing load-distribution

scheme to avoid the workload scalability problem in the root node.

72 CHAPTER 3. LOAD DISTRIBUTION

Chapter 4

An Efficient Lookup Operation

This chapter looks at two separate methods for improving the efficiency of the lookup

operation. The first method forms the main part of this chapter. It consists of a caching

technique that decreases the load in the location service and shortens the duration of the

lookup operation. The second method is discussed in the final section of this chapter. It

is an extension to our basic search tree that allows us to efficiently distinguish different

types of replicas during a lookup operation.

The focus in this chapter is on traversal in the logical search tree only. The physical

search tree, as described in the previous chapter, plays no part since node partitioning is

completely transparent to lookup operations. To ease our discussion, we assume in this

chapter that mobile objects are never replicated. A mobile object is thus always present at

only a single location.

4.1 Preventing Tree Traversal

In this section we describe the efficiency problem of using general tree traversal to search

for contact addresses in the location service tree, and provide a caching method to improve

efficiency.

4.1.1 Problem

The simplified lookup operation, as described in Chapter 2, is inefficient when dealing

with nonlocal contact addresses. To retrieve these kinds of addresses, the operation needs

to travel up to the root node and down again. This kind of general tree traversal is un-

desirable for two reasons. First, a general tree traversal visits a large number of nodes,

increasing the workload at every node. This load increase is particularly apparent at higher

level nodes, and endangers the scalability of the location service. Second, visiting a large

number of nodes also results in the simplified lookup operation taking a long time to com-

73

74 CHAPTER 4. AN EFFICIENT LOOKUP OPERATION

plete. Long delays endanger the usefulness of the location service since no client wants to

wait a long time to get a contact address to actually start using an object.

General tree traversal is, however, unavoidable when dealing with unpopular objects

that are located far away. What is more problematic is that when two lookup operations

for the same nonlocal object are started in the same leaf domain both lookup operations

will perform the same costly tree traversal. We clearly would like to avoid the same tree

traversal in the second lookup operation. The usual way to avoid performing the same

operation twice is to store the result of a previous operation (a contact address in our case)

in a cache and reuse the result when needed. This approach is described in the context of

wide-area naming systems in [Lampson, 1986; Cheriton and Mann, 1989].

Unfortunately, caching contact addresses is ineffective when dealing with mobile ob-

jects. Caching contact addresses would require a stable mapping from object handle to

contact address, but having a stable mapping is impossible since mobile objects frequently

change location and thus contact address. Every time a mobile object moves, it inserts the

contact address of its new location in the location service and deletes the contact address

of the old location. Since the results stored in a cache become invalid when the object

moves, the reuse of the results stored in the contact address caches is precluded. A similar

problem occurs when contact addresses would be replicated at other tree nodes, which is

proposed in [Jannink et al., 1997].

A commonly proposed solution is to cache contact addresses only when they are sta-

ble [Pitoura and Samaras, 2001]. This situation is indicated by a high lookup-to-mobility

ratio. Unfortunately, this solution is not a good one since it ensures only that contact ad-

dresses for highly mobile object are not cached. It does not provide an alternative method

to prevent tree traversal in the case of highly mobile objects. Fortunately, a different view

on the mobility problem allows us to take a different approach, resulting in a caching

technique called location caching.

4.1.2 Location Caching

The general principle behind every caching scheme is that by saving a value that required

a significant amount of work, we can avoid doing that work a second time when the value

is needed some time in the future. To be useful in the future, the value saved in the cache

must be stable. The instability of contact addresses made them unsuitable for caching.

We can, however, search for different kinds of values that are stable and also allow us to

avoid traversing the search tree.

To arrive at such a stable value, we introduce the mobility domain. The mobility

domain of a mobile object is the smallest domain in which the object is continuously

present. For instance, if a mobile object divides its time evenly over Amsterdam, London,

and Paris, its mobility domain would be Europe. Even though the object is mobile, its

presence in the European domain is stable.

The directory node associated with the mobility domain always stores a contact record

for the object. The contents of that contact record, however, changes every time the object

moves. In our example, the Europe node always stores a contact record for our mobile

4.1. PREVENTING TREE TRAVERSAL 75

object, and depending on whether the object is currently located in Amsterdam, London,

or Paris, the contact record stores a forwarding pointer to the Netherlands, UK, or

France node, respectively.

A reference to a stable node, such as the Europe node, is a stable value that we can

use in a caching scheme. To introduce caching in the location service, we add location

caches to all the directory nodes in the search tree. In these location caches we save a

reference to the stable node of an object. We can now shorten the tree traversal of the

lookup operation by using the cached references to continue the lookup operation directly

at the stable node. We thereby avoid visiting tree nodes located higher in the tree when

they have been visited recently.

We shorten the tree traversal even further by storing the current contact address of

an object at the stable node itself instead of at the leaf node where the object currently

resides. The lookup operation can now retrieve the contact address directly at the stable

node instead of having to travel downward to the leaf node. We call the stable directory

node the stable address location for the mobile object since the node is the location where

the current contact address for the mobile object is always present. A location cache thus

stores references to stable address locations.

Figure 4.1 shows a part of the search tree for an example mobile object. The mobility

domain of the mobile object is the UK domain and its stable address location is thus the

UK node. The current contact address of the mobile object is therefore stored at the UK

node, even though the object currently resides in the Glasgow domain. In the example,

the location caches at the Amsterdam and Netherlands nodes store, for this mobile

object, references to its stable address location. A lookup operation started at the Ams-

terdam node would use the reference to directly retrieve the current contact address at

the UK node.

In the optimal case, the lookup operation consists of two steps, as shown by the exam-

ple. First, the lookup operation will visit the local leaf node, which stores a reference in

its cache. Second, using the reference, the lookup operation will visit the stable address

location to retrieve the current contact address. Moreover, lookup operations started at

adjacent leaf nodes are also optimized. For example, in Figure 4.1, we can see that a

lookup operation initiated at the Rotterdam node is also improved. The operation finds

a cached node reference at the parent of the Rotterdam node (i.e., the Netherlands

node), and avoids visiting the Europe node.

The location caches are filled as a side effect of the lookup operation. We extend the

lookup operation to return, besides a contact address, also a reference to the node where

that contact address was found. The lookup operation stores this reference in the cache of

every node it has visited. For instance, in our example, the cached node reference at the

Netherlands and Amsterdam nodes were installed by a previous lookup operation

started at the Amsterdam node. To reference nodes, we simply use our normal (logical)

node identifier.

76 CHAPTER 4. AN EFFICIENT LOOKUP OPERATION

Paris Rennes London Glasgow

France UK Netherlands

Europe

World

A

Stable address location

Cached node references

Amsterdam Rotterdam

Figure 4.1: Cached location pointers at the Amsterdam and Netherlands

nodes point to the stable address location of the object, in this case, the UK node.

4.2 Stable Address Location Management

For location caching to be effective, the contact address of a mobile object must be stored

at its stable address location. In this section we describe the methods to achieve this

requirement. We assume for the rest of this chapter that the movement of a mobile object

is visible in the location service as an insert operation followed by a delete operation, in

that order. The mobile object thus remains accessible at its old location during its change

of location.

4.2.1 Stable Address Location Identification

In the rest of this chapter we use the following, more formal definition of the term stable

address location. The stable address location for a mobile object is the lowest directory

node in the search tree where a contact record for the object is continuously present. Since

the object is mobile, we expect the contents of this contact record to change frequently.

New contact addresses will be inserted in the contact record and old contact addresses

will be deleted. Using this definition, the stable address location for nonmobile objects

becomes the leaf node, as desired.

We specifically use the lowest directory node in the search tree that corresponds to

the smallest domain where the object is mobile. Even though directory nodes higher up

in the tree (i.e., enclosing domains, such as the root domain) would also provide a stable

node, it is undesirable to choose the high-level nodes as the stable address location since

it prevents the locality of the lookup and update operation.

4.2. STABLE ADDRESS LOCATION MANAGEMENT 77

Unfortunately, we cannot determine in advance whether an object is mobile, and if

so, what its stable address location is. We need to determine this dynamically during

the lifetime of the object. We therefore initially assume that an object is located at a

fixed location, and gather mobility information on the object while it exists. The mobility

domain and thus the stable address location of a mobile object will become apparent when

it is moving around. When the stable address location is known, we can store the contact

address of the mobile object there, instead of in a leaf node.

What is more, a mobile object may change its mobility behavior and thus have several

different stable address locations during its lifetime. We therefore need to continue with

gathering mobility information (even after a stable address location is found) and move

the contact address up or down the tree when needed. For instance, in our example in

Figure 4.1, the current stable address location is the UK node. However, if the mobile

object were to start visiting Amsterdam and Rennes regularly as well, the Europe node

would become the stable address location for the object and current address of the object

would be stored at the Europe node.

Two aspects of an object’s mobility behavior determine its stable address location.

The first aspect is the frequency with which update operations occur for an object, that is,

the frequency with which the object moves. If this frequency is too low, an object stays

at the same location for a long time and it is not worthwhile to store contact addresses

of this object higher in the search tree. The second aspect is the area from which the

update operations originate, that is, the area in which the object is mobile. When this area

becomes larger, the contact address of the object needs to be stored higher in the tree.

To determine the update frequency and area, every directory node collects per-object

historical update information. The update information records the frequency of update

requests arriving at a directory node. The directory node summarizes this information in

a single value per object, indicated by Hnow. We call this value the update history of a

contact record. The update history is basically a weighted average of the time between

update requests for an object at a node. Intuitively, it keeps track of how long an object

usually remains in one of the subdomains of the directory node based on recent moves.

A high value for Hnow means that the object has been in a single subdomain for long

periods of time. A low value means that the object has been frequently moving from one

subdomain to the next.

To compute the update history of a contact record, we maintain for every contact field

f in the contact record the last time it was filled, indicated by Tfilled(f). This value is the

last time that contact field f went from being empty to being filled with a contact address

or forwarding pointer. The last filled time is undefined when the contact field is empty.

Adding an extra contact address to a contact field does not change the last filled time of

the contact field since it was already filled. To indicate that a contact field is not empty

and its last filled time is defined, we use the following notation: Tfilled(f) �= ⊥.

78 CHAPTER 4. AN EFFICIENT LOOKUP OPERATION

The update history is computed in the following way:

D := Tnow −max{Tfilled(f) | f ∈ CR ∧ Tfilled(f) �= ⊥}

Hnow := α ·D+(1−α) ·Hprev

The formula consists of two steps. First, we compute duration D, which indicates how

much time has passed since the most recent time a contact field in the contact record was

filled. A recently inserted contact address results in a low value for D. Second, we use

this duration D and the previous history value Hprev to compute the current history value

Hnow. A low value for Hnow means frequent updates on the contact record have occured in

the recent past. The aging factor α (with 0 < α < 1) determines the influence of historical

data on the current update history. A large α weights the current change heavily; a small

one weights previous changes more heavily.

When a new contact record is created, we need to give its associated update history

an initial value. Since the object is initially assumed to be nonmobile, we give the update

history a large value. When a contact record is deleted, its history value is also deleted.

Since a contact record is deleted when its object leaves a domain, the update history of

a mobile object is effectively reset to the initial value every time the object leaves and

enters a domain. The contact record of a mobile object that regularly enters and leaves a

particular domain therefore has a high history value at the associated directory node.

Now we have the situation that the update history has a low value only at the stable

address location. At nodes higher in tree the value is large because no new insert pro-

cedures are executed. All insert operations originate from the mobility domain, visit the

stable address location, and effectively finalize their execution there, lowering the update

history. At nodes lower in the tree the update history is also large. At these nodes the

update history is large because the value is reset every time the object moves out of the

associated smaller domains.

Figure 4.2 shows the update history values for an object that is mobile in the UK

domain. The contact records of the mobile object at the World and Europe nodes were

created when the first contact address of the mobile object was inserted and the nodes

needed to store forwarding pointers. However, since the object moves within the UK

domain only, the resulting insert and delete operations never change the contact records

at the World and Europe node. These nodes therefore associate a high update history

value with their contact records.

The contact records at the London and Glasgow nodes also have a high update

history value, but in this case, it is because the mobile object is never located long enough

in their respective domains. Since the contact records at the London and Glasgow nodes

start with a high initial value and the object is only in their domains for a short time, there

is no possibility for their update history to get smaller. The only node that continuously

sees all insert operations is the UK node. It therefore has a low update history value.

4.2. STABLE ADDRESS LOCATION MANAGEMENT 79

Paris Rennes London Glasgow

France UK Netherlands

Europe

World

High update history valuesLow update history value

A

RotterdamAmsterdam

Figure 4.2: The update history values for an object mobile in the UK domain. Only

the value at the UK node is low.

4.2.2 Moving the Stable Address Location Upward

When the location service determines that the stable address location of a mobile object

is located at a higher node than the node that currently stores the contact address, it needs

to move the address up the tree to this new directory node. Since we are dealing with

a mobile object, we know new contact addresses are regularly inserted in the location

service. We can therefore use the normal insert operation to “move” the current contact

address to a node located higher in the tree. The next time the object changes its contact

address, we simply store its new contact address at the new stable address location higher

in the search tree.

As described in Chapter 2, the insert operation uses a distributed decision making

process to determine at what directory node on the path from leaf to root node to store a

contact address. In the process, every directory node first determines for itself whether it

can and wants to store the contact address. The node then asks permission from its parent

to store the contact address itself or at one of its children. The parent can agree with the

request or decide it wants to store the contact address itself. The highest node in the tree

that wants to store the contact address actually stores the address.

Every directory node involved in the distributed decision making process uses the

doStoreHere function to determine whether it wants to store the contact address itself.

The doStoreHere function returns a boolean value, with true indicating that the contact

address should be stored at the local directory node. All we need to do is make sure

that the new stable address location is the highest directory node where the doStoreHere

function returns true. The insert operation using the distributed decision process will then

store the new contact address at the stable address location.

80 CHAPTER 4. AN EFFICIENT LOOKUP OPERATION

We let the return value of the doStoreHere function depend on the update history of

the contact record of the mobile object and the mobility threshold, indicated by Dmobility.

The doStoreHere function basically takes the following form:

Hnow < Dmobility

During the insert operation, every directory node uses this inequality to determine whether

it is better suited than its child node to store the contact address. When an object is

unknown, there is no update history for the doStoreHere function to use. To ensure that

a contact address is stored at a leaf node (the default situation) in this case, we do two

things. First, we let the doStoreHere function always returns true at a leaf node. Second,

we let the doStoreHere function return false at a nonleaf node.

4.2.3 Moving the Stable Address Location Downward

The stable address location moves down the tree when the object decreases its mobility

domain (i.e., starts moving in a smaller area). When this happens the contact address of

the object should be moved down the tree to the new stable address location. For instance,

when the object in Figure 4.1, which was mobile in the UK domain, becomes stable in the

Glasgow domain, its contact address should be moved from the UK node to the Glasgow

node. Moving the address downward in the search tree improves the locality of future

update operations and lookup operations from the domain in which the object is mobile.

Old cache entries, such as those pointing to the UK node, remain valid and useful after

an address is moved down. Since the UK node stores a forwarding pointer to the Glasgow

node, a cache reference to the UK node can still be used to quickly find a contact address.

Since a reference to the UK node is not as efficient as a reference to the Glasgow node

itself, it will be updated on the next lookup operation.

A node uses the stability threshold, indicated by Dstability, to decide whether its child

node has become more suited to store a contact address that it currently stores itself. The

stability threshold is used in the following equation:

Tnow −Tfilled(f) > Dstability

A directory node uses the inequality to decide whether the last time the contact field was

filled with a contact address (after being empty) was a long time ago. If so, the object has

apparently a stable presence in the child domain associated with the contact field, and the

child node has thus become a more appropriate node to store the contact address. Note

that the equation applies only to a single contact field that stores a contact address, and

not the contact record as a whole.

We are only interested in the last time the contact field was filled; we are not interested

in whether the contents of the contact field changed. Consider the situation where the

contents of a contact field changes frequently but there is always at least one contact

address present. In this situation, the mobile object is moving inside the child domain

4.2. STABLE ADDRESS LOCATION MANAGEMENT 81

associated with the contact field but it is always present. The child domain is therefore the

mobility domain since it is the smallest domain in which the object is always present.

Unfortunately, we cannot use the normal insert operation to store a new contact ad-

dress at the new (lower) stable address location. Since the old stable address location still

holds a contact address, our consistency rules (as described in Chapter 2) require the new

contact addresses to be stored there as well. We therefore need a separate move-down

operation. Since this operation does not need to be invoked by clients, it is internal to the

location service. The move-down operation is implemented using an individual take-over

message and the reInsertAddress and reInsertPointer procedures.

The move-down operation starts when the parent node decides the contact address

for a particular object needs to be stored at one of its child nodes. The parent sends the

take-over message to the child node specifying the object and contact address concerned.

The child node executes the reInsertAddress procedure to insert the contact address. To

finish the move-down operation the child node invokes the reInsertPointer procedure at

the parent node. This procedure swaps the contact address for a forwarding pointer, and

the move-down operation has finished.

The move-down operation uses only a single message instead of an RPC when the

parent node requests the reInsertAddress procedure at its child node. We avoid the more

heavyweight RPC since the parent node is not interested in knowing when the move-down

operation is completed. When the parent node detects a favorable situation for a move-

down operation, it simply send the take-over message. After sending it, the parent can

forget that it has sent the message, knowing that in the normal case its child node will

continue the move-down operation. If the move-down operation needed to be aborted,

for instance, because of concurrent update operations, the parent node will detect the

favorable situation again in the future, if it still exists, and try a second time. The use of

the lightweight take-over message is an application of our idempotency principle. We do

not have to worry about the take-over message getting lost. Since the favorable situation

will persists in that case, the parent will simply decide at a later time to send the message

again.

Figures 4.3, 4.4, and 4.5 show the execution of the move-down operation in our ex-

ample search tree. In Figure 4.3, the object is currently located in the Glasgow domain,

and its contact address is stored at the UK node. The object was previously mobile in the

UK domain, but using the stability threshold the UK node has determined that the object

has become stable within the Glasgow domain, and that the contact address should be

stored at the Glasgow node. The UK node therefore initiates the move-down operation

by sending the take-over message to the Glasgow node, in step 1. Upon receiving this

message, the Glasgow node tentatively inserts the contact address.

Figure 4.4 shows step 2 of the move-down operation. As part of the reinsertAddress

procedure, the Glasgow node invokes the reInsertPointer procedure at its parent, the UK

node. The UK node uses the reInsertPointer procedure to exchange the contact address

with a forwarding pointer. Figure 4.5 shows the third and final step of the move-down

operation. The UK node signals the Glasgow node that the reInsertPointer procedure

has successfully completed. Upon receiving this reply, the Glasgow node knows the

82 CHAPTER 4. AN EFFICIENT LOOKUP OPERATION

1

Paris Rennes London Glasgow

France UK Netherlands

Europe

World

A

A

RotterdamAmsterdam

Figure 4.3: Moving down a contact address. The UK node initiates the move-down

operation by sending a take-over message to the Glasgow node.

move-down operation was successful, and the tentative contact address is permanently

stored at the node.

There are two reasons for choosing the current structure for the move-down opera-

tion, that is, inserting the contact address at the child node before exchanging the contact

address for a forwarding pointer at the parent node. The first reason is that in the chosen

order the contact address stays available for concurrently executing lookup operations.

The second reason has to do with crash recovery and concurrent update operations, and is

dealt with in Chapter 5.

The move-down operation is carefully constructed to avoid a race condition during

its execution. The race condition could occur when a move-down operation and a delete

operation for the same contact address execute concurrently. The method to avoid this

race condition is explained in Figure 4.6. In this figure, there is a parent node N, a child

node CN, and an object. The parent node N decides that it wants to move the contact

address of the object to its child node CN. Shortly afterward, the object deletes its contact

address.

In step 1 in Figure 4.6, parent node N sends a take-over message to child node CN.

In step 2, the object sends its delete request to child node CN. The race condition occurs

when the delete requests arrives at child node CN before the take-over message. Since the

contact address is (still) stored at parent node N, the child node simply forwards the delete

request to the parent, in step 3. This request crosses the take-over message. Now the take-

over message arrives at child node CN, and the child inserts the contact address. In the

meantime, the delete request arrives at parent node N, and the parent deletes the contact

address. However, in step 4, child node CN sends a reInsertPointer request to insert a

4.2. STABLE ADDRESS LOCATION MANAGEMENT 83

A

Paris Rennes

France

London Glasgow

UK Netherlands

Europe

World

2

RotterdamAmsterdam

Figure 4.4: Moving down a contact address. The Glasgow node invokes the

reInsertPointer procedure at the UK node.

3

Paris Rennes London Glasgow

France UK Netherlands

Europe

World

A

RotterdamAmsterdam

Figure 4.5: Moving down a contact address. The UK node sends an RPC reply to

confirm the successful exchange of the contact address with a forwarding pointer.

84 CHAPTER 4. AN EFFICIENT LOOKUP OPERATION

CN

N

N requests take-over N deletes address N ignores reinsert request

4. reinsert request

3. delete request 5. fail reply

CN requests deletion

CN process take-over message

CN deletes address

2. delete request

Object requests deletion
Time

1. take-over

Object

Figure 4.6: Solution to the race condition between the move-down and delete op-

eration.

forwarding pointer at parent node N. If the parent node would consider only this request

and simply insert a forwarding pointer, the end result of this scenario would be that the

delete operation is ignored since both the contact address and the forwarding pointer will

be present. To avoid this race condition, the reInsertPointer procedure needs to check that

the contact address is actually still present at the parent node. If the address is not present

at the parent, the procedure reInsertPointer should fail, change nothing, and return a fail

reply, as in step 5. Furthermore, child node CN should delete the contact address when it

receives the fail reply.

A concurrent insert operation can also create problems for the move-down operation.

These problems can occur both in the reInsertAddress procedure at the child node and in

the reInsertPointer procedure at the parent. When a concurrent insert operation inserts

a forwarding pointer in the contact field to be used by the move-down operation at the

child node, the reInsertAddress procedure must fail since inserting an address in a contact

field with a forwarding pointer violates our consistency requirements. Likewise, when a

concurrent insert operation inserts a new contact address in the contact field to be used by

the move-down operation at the parent node, the reInsertPointer procedure must fail. If

there is another contact address present in the contact field, the specified contact address

cannot swapped for a forwarding pointer without violating consistency rule C3, described

in Chapter 2. In both cases, the move-down operation is simply aborted and retried at

a later time. Concurrency issues are further discussed in Chapter 5, when we consider

nodes that might fail.

The reInsertAddress Procedure

Listing 4.1 shows the code of the reInsertAddress procedure. The reinsert operation is

invoked when a take-over message is received from the parent. This is not a normal RPC

invocation since the parent node is not waiting for a reply message. The standard RPC

4.2. STABLE ADDRESS LOCATION MANAGEMENT 85

(1) procedure reInsertAddress(oh : ObjectHandle,
(2) addr : ContactAddress) is

(3) origCR : ContactRecord;

(4) child : NodeID;

(5) success : Boolean;

(6) begin

(7) −− Retrieve a copy of the contact record, or create one, if needed

(8) origCR := crDatabase(oh);
(9) if origCR = NIL then

(10) origCR := new ContactRecord;

(11) initializeCR(origCR, children, thisNode);
(12) end if;

(13) child := determineField(addr);
(14) −− Determine if we can and need to insert the contact address

(15) if origCR(child).isPtr or addr ∈ origCR(child).addrSet then

(16) return;

(17) end if;

(18) crDatabase(oh)(child).addrSet := origCR(child).addrSet +{addr};

(19) success := call reInsertPointer(oh, addr, thisNode) at parent;

(20) −− Undo the local modification, if the address is deleted at the parent

(21) if not success then

(22) if isEmpty(origCR)
(23) then delete crDatabase(oh); −− Remove temporary record

(24) else crDatabase(oh) := origCR; −− Restore original record

(25) end if;

(26) end if;

(27) end reInsertAddress;

Listing 4.1: The reInsertAddress procedure.

parameter caller is therefore also not present. The take-over message does contain an

object handle and contact address, and these are given to the procedure as parameters, as

shown in lines 1–2.

The procedure uses three local variables, as shown in lines 3–5. The contact record

origCR contains the original contents of the contact record in the contact record database.

The node identifier child is used to indicate the specific contact field the contact address

should be stored in. The boolean variable success stores the reply of the parent node,

indicating whether the parent node successfully exchanged the contact address for a for-

warding pointer.

The reInsertAddress procedure starts by retrieving a copy of the contact record from

the database using the object handle, in line 8. If the object is unknown in this directory

node, which is the normal case, there is no contact record in the contact record database

(line 9) and a new contact record needs to be created and initialized, in lines 10–11.

However, given the possibility of concurrent insert operations, a contact record might

86 CHAPTER 4. AN EFFICIENT LOOKUP OPERATION

already exist.

The next thing the procedure does, in line 13, is determine at which subdomain the

contact address is located. This should be known since it determines which contact field of

the contact record to use. To determine this subdomain, we store in each contact address

the leaf domain where the address resides. Using its knowledge of domain hierarchy, the

directory node can determine to which of its subdomains the leaf domain belongs. The

subdomain is stored in the variable child.

The reInsertAddress procedure then determines, in line 15, whether it can and needs

to insert the contact address in the contact record. First, it determines whether it actually

can insert the address. The only reason why it cannot insert a contact address is that

the contact field already contains a forwarding pointer. Such a forwarding pointer could

have been inserted by a concurrent insert operation or a subsequent move-down operation.

Either way, the move-down operation fails, and the procedure is finished, in line 16.

Second, the reInsertAddress procedure determines whether it actually needs to insert

the address. If the address was already moved down before, but the parent did not know

about this yet, the procedure is already done. Since the parent node does not record that is

has sent a take-over message, it might actually send two take-over message shortly after

each other. In this case, there is nothing to be done, and the procedure is finished, in

line 16.

The procedure can now safely insert the contact address in the contact record, in

line 18. It then sends the reInsertPointer request to the parent node, and awaits its reply, in

line 19. The reply value success describes whether the contact address was successfully

swapped for a forwarding pointer at the parent node. If that is the case, the search tree is

consistent again and the move-down operation has finished successfully.

If the parent node did not successfully exchange a contact address for a forwarding

pointer, the move-down operation is aborted and the local changes need to be undone, in

lines 21–26. If the contact record was empty before the address was inserted, the record is

deleted from the contact record database, in line 23, otherwise the original contact record

is restored, in line 24.

The reInsertPointer Procedure

Listing 4.2 shows the code of the reInsertPointer procedure. Its task is to exchange a

contact address with a forwarding pointer. The reInsertPointer procedure takes three pa-

rameters, as shown in lines 1–3. Object handle oh specifies for which object the contact

address should be exchanged, and contact address addr specifies the contact address that

should be exchanged. The last parameter is the standard caller node identifier since the

reInsertPointer procedure is invoked using the normal RPC mechanism.

The procedure starts by checking whether a contact record exists for the object, in

line 5. If no contact record exists, there was apparently a concurrent delete operation, as

discussed above. The move-down operation is not needed anymore, and the procedure

returns false, in line 6, to tell the child node to undo its modification.

If a contact record exists, the reInsertPointer procedure checks whether the contact

4.3. LOCATION-CACHE MANAGEMENT 87

(1) procedure reInsertPointer(oh : ObjectHandle,
(2) addr : ContactAddress,
(3) caller : NodeID) return Boolean is

(4) begin

(5) if crDatabase(oh) = NIL then

(6) return false;

(7) elsif crDatabase(oh)(caller).addrSet = {addr} then

(8) crDatabase(oh)(caller).addrSet := /0;

(9) crDatabase(oh)(caller).isPtr := true;

(10) return true;

(11) elsif crDatabase(oh)(caller).isPtr then

(12) return true;

(13) else

(14) return false;

(15) end if;

(16) end reInsertPointer;

Listing 4.2: The reInsertPointer procedure.

field for the caller (i.e., the child node) stores only the contact address that should be

moved down, in line 7. If that is the case, the contact address can be safely deleted, in

line 8, and a forwarding pointer can be inserted in its place, in line 9. The procedure has

successfully exchanged the address, and returns true, in line 10, to inform the child node

of this.

If the contact field stores a forwarding pointer (line 11), the procedure assumes the

contact address was already moved down, and the procedure returns successfully as well,

in line 12. Otherwise, the situation has apparently changed since the parent initiated the

move-down operation, and the contact address can no longer be exchanged for a forward-

ing pointer. To indicate the unsuccessful execution, the procedure returns false to its child

node, in line 14.

4.3 Location-cache Management

To implement our location caching and stable address location management, we need

to introduce new data structures and global variables. As indicated in the beginning,

to implement location caching the lookup operation needs to return more than simply a

contact address. It also needs to return the node identifier of the directory node that stored

the contact address. These two values are combined in the StoredAddress type, with the

addr and node fields, respectively, as shown in Listing 4.3. A third field, age, is also

added. This field stores the time elapsed since the contact address was originally stored

at the directory node. This field is used to compute how long the reference to the node

should be stored in the location cache.

The cache entry type CacheEntry is defined in Listing 4.4. An entry in the location

88 CHAPTER 4. AN EFFICIENT LOOKUP OPERATION

(1) −− Value returned by the new lookupAddress procedure

(2) type StoredAddress is

(3) record

(4) addr : Address := NIL; −− Contact address found

(5) age : Date := 0; −− Elapsed time between insert and lookup

(6) node : NodeID := NIL; −− Node where the address was stored

(7) end record;

Listing 4.3: The StoredAddress return type.

(1) −− Per-object entry in location cache

(2) type CacheEntry is

(3) record

(4) localPtrs : set of NodeID := /0; −− Ptrs to nodes in current subdomain

(5) remotePtrs : set of NodeID := /0; −− Ptrs to nodes outside current subdomain

(6) expirationTimes : set (NodeID) of Date; −− Expiration time for cache entry

(7) end record;

(8) −− Set of cache entries, indexed by object handle

(9) type Cache is set (ObjectHandle) of CacheEntry;

(10) cache : Cache;

Listing 4.4: Data structure and global variable for the location cache.

cache consists of three field: localPtrs, remotePtrs, and expirationTimes. The first two

fields are sets of node identifiers. In the cache, we distinguish between the node identi-

fiers referring to directory nodes in the domain of the current node and the node identifiers

referring to directory nodes in the rest of the search tree. This distinction allows us to sup-

port locality by using the identifiers in the localPtrs set before the identifiers in remotePtrs

set in the lookup operation. The expirationTimes field is used to delete stale node refer-

ences in the two sets. The expiration time of a node reference is based on the age of

the contact address, found at the directory node and returned in the StoredAddress return

value. The younger the contact address found, the sooner the node reference will expire.

This approach resembles the Alex cache replacement policy that has been successfully ap-

plied to Web caches [Cate, 1992]. The location cache itself is defined as a global variable

on line 10.

The History type is used to store the update history of each contact record stored at the

current directory node. The history data structure is defined in line 2 in Listing 4.5. The

history values are stored as an indexed set of floating-point values. We choose to keep the

history value separate to keep our contact record data structure conceptually simple. In

line 3, the type is used to define the global variable history.

To ease the handling of the location cache, we introduce the following three pro-

cedures: cache insert (Listing 4.6), cache delete (Listing 4.7), and cache lookup (List-

ing 4.8). The cache insert and cache delete procedures are straightforward. Both proce-

4.3. LOCATION-CACHE MANAGEMENT 89

(1) −− Current update history for each contact record

(2) type History is set (ObjectHandle) of f loat;

(3) history : History;

Listing 4.5: Data structure and global variable for storing the update history.

(1) procedure cache insert(oh : ObjectHandle,
(2) node : NodeID,
(3) age : Date) is

(4) begin

(5) if node ∈ domain(thisNode) −− Is the node inside our subtree?

(6) then cache(oh).localPtrs := cache(oh).localPtrs+{node};

(7) else cache(oh).remotePtrs := cache(oh).remotePtrs+{node};

(8) end if;

(9) cache(oh).expirationTimes(node) := expire(age);
(10) end cache insert;

Listing 4.6: Inserting a node in the cache.

dures start by determining whether the node that is to be inserted or deleted is part of the

local domain or is located outside it. Depending on the outcome, the node identifier is

inserted in or deleted from the set of local or remote node references. The cache insert

procedure also sets the expiration time based on the age of the contact address, in line 9

of Listing 4.6. The cache delete procedure checks whether the cache entry has become

empty for the object, in line 7 of Listing 4.7, in which case the entry is deleted in line 8.

The cache lookup procedure returns a node reference from either the set of local or

remote node references, depending upon the strategy parameter. The use of the strategy

parameter is explained in the next section on the new lookupAddress procedure. The pro-

cedure uses the procedure nearest to choose the directory node that is closest to the current

directory node. The procedure nearest can use different metrics to determine which node

(1) procedure cache delete(oh : ObjectHandle, node : NodeID) is

(2) begin

(3) if node ∈ domain(thisNode) −− Is the node inside our subtree?

(4) then cache(oh).localPtrs := cache(oh).localPtrs−{node};

(5) else cache(oh).remotePtrs := cache(oh).remotePtrs−{node};

(6) end if;

(7) if cache(oh).localPtrs = /0 and cache(oh).localPtrs = /0 then

(8) delete cache(oh); −− Delete the whole cache entry.

(9) end if;

(10) end cache delete;

Listing 4.7: Deleting a node from the cache.

90 CHAPTER 4. AN EFFICIENT LOOKUP OPERATION

(1) procedure cache lookup(oh : ObjectHandle,
(2) strategy : (local, remote)) return NodeID is

(3) begin

(4) if strategy = local then −− retrieve a node from the current domain

(5) return any in nearest(cache(oh).localPtrs, thisNode);
(6) else −− retrieve a node from outside the current domain

(7) return any in nearest(cache(oh).remotePtrs, thisNode);
(8) end if;

(9) end cache lookup;

Listing 4.8: Looking up a node in the cache.

is closest to the current node, for example, geographical distance or the number of hops in

the search tree. The use of the nearest procedure allows us to support locality by retrieving

nearby contact addresses when those are available.

To simplify the new lookupAddress procedure, we introduce the check cache proce-

dure to retrieve a contact address using the location cache. The procedure is shown in

Listing 4.9. The check cache procedure takes as parameters the object handle for which a

contact address should be retrieved and a strategy telling whether to use local or remotely

located directory nodes. The procedure starts, in line 6, by checking whether the location

cache has a reference to a directory node that potentially stores a contact address. If such a

node exists (line 7), the procedure tries to retrieve it using an RPC invocation, in lines 8–9.

If a contact address was found using the cached node reference (line 10), the node

reference of the contact address is inserted in the location cache, in line 11. If the node

reference refers to the same node as the one found in the cache, this insertion is done

to update the expiration time of the cache entry. The contact address can, however, also

be found at a different node. In which case (line 12), the old node reference needs to

be deleted, in line 13. If no contact address was found, the cache entry also needs to be

deleted, in line 16. Either way, the result of the lookup request is returned to the looku-

pAddress procedure, in line 18. If no cache entry was found, the NIL value is returned to

the lookupAddress procedure to indicate failure, in line 20.

4.4 The New Lookup Operation

The improved lookupAddress procedure that uses the location cache is shown in List-

ing 4.10 and Listing 4.11. The lookupAddress procedure takes three parameters and re-

turns a value of the StoredAddress type, as shown in lines 1–3. The object handle param-

eter oh specifies the object for which we are looking for a contact address. The boolean

parameter subDomOnly specifies whether the lookup procedure should keep to the current

subdomain. The use of location caches introduces the risk of loops in the search tree that

could conceivably allow the lookup procedure to follow cached node references endlessly

and never terminate. The subDomOnly parameter limits the use of location caches to lo-

4.4. THE NEW LOOKUP OPERATION 91

(1) procedure check cache(oh : ObjectHandle, strategy : (local, remote))
(2) return StoredAddress is

(3) storedAddr : StoredAddress;

(4) cachedNode : NodeID;

(5) begin

(6) cachedNode := cache lookup(oh, strategy);
(7) if cachedNode �= NIL then −− A cache entry was found.

(8) storedAddr := call lookupAddress(oh, true, thisNode)
(9) at cachedNode;

(10) if storedAddr �= NIL then −− A contact address was found.

(11) cache insert(oh, storedAddr);
(12) if storedAddr.node �= cachedNode then −− The address was found

(13) cache delete(oh, cachedNode); −− at a different node.

(14) end if;

(15) else −− No contact address was found.

(16) cache delete(oh, cachedNode);
(17) end if;

(18) return storedAddr;

(19) else −− No cache entry was found.

(20) return NIL;

(21) end if;

(22) end check cache;

Listing 4.9: Using the cache to lookup a contact address at another node.

92 CHAPTER 4. AN EFFICIENT LOOKUP OPERATION

cal node references, and thereby ensures the termination of the lookup operation. The last

parameter is the standard parameter caller, identifying the directory node that invoked the

procedure.

The new lookup operation still searches for only one contact address. There is no min

or max parameter to specify a desired number of contact addresses, as indicated in the

location service interface in Chapter 2. Extending the lookupAddress procedure with this

functionality is, however, straightforward. To easy our discussion, we therefore focus on

searching for only a single contact address.

The procedure uses five local variables. The contact record cr stores a copy of the

contact record of the specified object. The node identifier child stores the identity of the

contact field from which we are retrieving a contact address or forwarding pointer. The

contact address addr stores the oldest contact address found in this node. The variable

storedAddress stores the contact address and associated information retrieved from an-

other node. The variable childPtrs is used to hold the identities of the contact fields that

hold a forwarding pointer.

The lookupAddress procedure consists of at most five steps. If a step is successful, the

steps following it do not need to be tried.

1. Retrieve a contact address from the local contact record.

2. Use a cached node reference from the local domain to retrieve a contact address.

3. Follow a forwarding pointer in the local contact record to retrieve a contact address.

4. Use a cached node reference from outside the local domain to retrieve a contact

address.

5. Contact the parent node to retrieve a contact address.

The first, third, and fifth steps were also present in the simplified lookup operation of

Chapter 2.

The procedure starts, in line 10 in Listing 4.10, by retrieving a copy of the local contact

record of the specified object. If the object is known in the current domain, a contact

record is present, and the procedure can perform step 1–3, in lines 12–34. Otherwise, the

procedure can skip ahead to step 4–5, in lines 37–51 in Listing 4.11.

In step 1, in lines 12–17, the lookupAddress procedure tries to retrieve a contact ad-

dress from the local contact record. It specifically tries to retrieve the oldest address in the

contact record, in line 13. This choice is based on the heuristic that an old contact address

is a stable address. A downside to using the oldest address is that it forces all lookup

procedures at a node to use the same contact address. Another option is to pick a random

contact address from the local contact record, as was done in the simplified lookup pro-

cedure in Chapter 2. If an address is present (line 14), it is retrieved from the record and

returned to the caller, in lines 15–16. The storedAddress return value is made up of the

contact address, age of the address, and the identifier of the current node. If an address

was found the procedure is ready.

4.4. THE NEW LOOKUP OPERATION 93

(1) procedure lookupAddress(oh : ObjectHandle,
(2) subDomOnly : Boolean,
(3) caller : NodeID) return StoredAddress is

(4) cr : ContactRecord;

(5) child : NodeID;

(6) addr : Address;

(7) storedAddr : StoredAddress;

(8) childPtrs : set of NodeID;

(9) begin

(10) cr := crDatabase(oh);
(11) if cr �= NIL then

(12) −− Step 1: Try to retrieve an address from the local node.

(13) child := oldest in cr with cr(child).addrSet �= /0;

(14) if child �= NIL then

(15) addr := oldest in cr(child).addrSet;

(16) return (addr, date of addr, thisNode);
(17) end if;

(18)

(19) −− Step 2: Try to retrieve an address using local references from the cache.

(20) storedAddr := check cache(object, local);
(21) if storedAddr �= NIL then return storedAddr end if;

(22)

(23) −− Step 3: Try to retrieve an address by following forwarding pointers.

(24) childPtrs := {child ∈ index of cr with cr(child).isPtr};

(25) while childPtrs �= /0 loop

(26) −− Pick the child which forwarding pointer has been stored the longest.

(27) child := oldest in cr with child ∈ childPtrs;

(28) childPtrs := childPtrs−{child};

(29) storedAddr := call lookupAddress(oh, subDomOnly, thisNode) at child;

(30) if storedAddr �= NIL then

(31) cache insert(object, storedAddr);
(32) return storedAddr;

(33) end if;

(34) end loop;

(35) end if;

Listing 4.10: The new lookupAddress procedure, part 1.

94 CHAPTER 4. AN EFFICIENT LOOKUP OPERATION

(36) if not subDomOnly then

(37) −− Step 4: Try to retrieve an address using a remote reference from

(38) −− the cache.

(39) storedAddr := check cache(object,remote);
(40) if storedAddr �= NIL then return storedAddr end if;

(41)

(42) −− Step 5: Try to retrieve a contact address through the parent node.

(43) −− So far nothing has been found. Forward the request to the parent

(44) −− thus broadening the search region.

(45) if caller �= parent then

(46) storedAddr := call lookupAddress(oh, false, thisNode) at parent;

(47) if storedAddr �= NIL then

(48) cache insert(object,storedAddr);
(49) return storedAddr;

(50) end if

(51) end if

(52) end if

(53) return NIL;

(54) end lookupAddress;

Listing 4.11: The new lookupAddress procedure, part 2.

In step 2, in lines 19–21, the procedure tries to retrieve a contact address from the local

domain using the location cache. It uses, in line 20, the check cache procedure, described

above, to do the actual work. The lookupAddress procedure specifies, using the strategy

parameter, that it wants to use a reference to a node from the local domain. If a contact

address was found, the storedAddress return value can be returned to the caller, and the

procedure is finished, in line 21.

In step 3, in lines 23–34, the lookupAddress procedure tries to retrieve a contact ad-

dress from the local domain using the forwarding pointers found in the contact record.

The procedure first creates childPtrs, the set of node identifiers identifying the contact

fields with forwarding pointers, in line 24. The procedure then loops, in lines 25–34,

over this set, trying the oldest forwarding pointers first. The notion here is that an old

forwarding pointer indicates a stable contact address. The body of the loop consists of re-

trieving the oldest forwarding pointer, in line 27, and removing it from the set, in line 28.

The procedure then performs an RPC invocation to obtain the contact address at the child

specified by the forwarding pointer, in line 29. If a contact address was found (line 30),

the associated directory node is put in the location cache, in line 31. The result is returned

to the caller, in line 32, and the procedure is finished.

Step 4 and step 5 are executed only if the subDomOnly parameter is false. The pa-

rameter is set to true when a node reference from the location cache is followed. When

the subDomOnly parameter is set to true, the lookup operation is contained within the do-

main of the directory node that received the lookup request. The lookup operation cannot

leave the domain since neither the use of remote cache references nor the parent node is

4.5. SIMULATION RESULTS 95

allowed. This way we guarantee the termination of the lookup operation. A client starts

the lookup operation at a leaf node with the subDomOnly parameter set to false.

In step 4, in lines 37–40 in Listing 4.11, the procedure uses the location cache for

a second time. This time it instructs, in line 39, the check cache procedure to use node

references to directory nodes outside the current domain to obtain a contact address. If a

contact address was found, the storedAddress return value can be returned to the caller,

and the procedure is finished, in line 40.

In step 5, in lines 42–51, the lookupAddress procedure tries to obtain a contact address

by invoking the lookupAddress procedure at the parent node, in line 46. This can be done

only if the procedure was not invoked from the parent node in the first place (line 45). If

a contact address was found by the parent (line 47), a reference to the node that stores the

address is inserted in the location cache, in line 48, and the procedure returns the contact

address, in line 49.

If none of the steps were successful, the NIL value is returned to the caller, in line 53,

to indicate failure.

4.5 Simulation Results

To evaluate the effectiveness of our location caching mechanism, we performed a simu-

lation experiment. The goal of this experiment was to show that our method of storing

contact addresses higher in the tree and using location caches to store references to nodes

where contact addresses were found improved the performance of lookup operations. Fur-

thermore, we expected this improvement to be larger than the improvement provided by

ordinary caching schemes.

4.5.1 Methodology

Since each object is handled independently by the location service, we simulated only

a single object. This mobile object had, however, different mobility domains during its

lifetime, resulting in movement across larger and smaller distances at different times. To

generate the mobility and lookup activity, we used the same object models as in the simu-

lation experiment in Chapter 3. The mobility and lookup patterns are shown in Table 4.1.

The mobility pattern was used to choose the mobility domains of the object. The lookup

pattern was used to choose the location of clients initiating lookup operations.

The characteristics of the search tree were also based upon the simulation experiment

in Chapter 3. The logical search tree had the same four levels: a root level, a subcontinent

level, a country level, and a city level. To determine at which physical nodes contact

records would be stored for a logical node, we used the location-aware load distribution

scheme. To simplify our simulation, we chose a fixed home location for the object in

Amsterdam. Using the cities from the simulation from Chapter 3 and the fixed home

location, we determined the cities that would have physical nodes for the object. We

96 CHAPTER 4. AN EFFICIENT LOOKUP OPERATION

Table 4.1: The probability distributions of the three object models used in the simu-

lation experiment. G refers to global domains, and L refers to local domains. Model

LM-GL thus stands for mobility only in the local domain and lookup operations

initiated in the global domain.

Model ↓ Mobility Lookup

Level → 3 2 1 0 3 2 1 0

GM-GL 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25

LM-GL 0.50 0.25 0.15 0.10 0.25 0.25 0.25 0.25

LM-LL 0.50 0.25 0.15 0.10 0.50 0.25 0.15 0.10

needed to determine these physical nodes to compute the geographical distances between

nodes in the search tree.

In the experiment we simulated and compared the results of three types situations: no

caching, data caches, and location caches. While comparing the situations, we looked at

three properties of the location service: the total load experienced by all physical nodes,

the total number of messages sent by all operations, and the total geographical distance

traveled by all operations. The total load was measured by the total number of executed

lookup and update procedures at all the nodes in the location service. For simplicity we

assumed that the load of executing a single update and lookup procedure was equal. The

total message count measured the number of RPC requests and replies sent. For simplicity

we ignored other messages sent, such as acknowledgments or status requests. The total

distance is measured as the distance traveled by all RPC requests and replies. We expected

that with an effective caching mechanisms these properties would all decrease.

The no caching situation was the base line situation where lookup operations used

tree traversals that followed the basic search tree structure to find contact addresses. In

the data-caching situation, we simulated caches that stored contact addresses, with a data

cache placed at every node in the search tree. If the lookup operation found a contact

address in a data cache and the address was still valid, the operation was finished, and it

returned the address to the client. If the lookup found a contact address that was no longer

valid, the operation received a communication penalty. This communication penalty con-

sisted of a pair of messages sent and the distance they traveled. Even if these messages

were actually sent by the client, they were still the result of invalid cache entries in the lo-

cation service. If no contact address was found in the cache, the lookup operation simply

continued its traversal to find a contact address.

In the location-caching situation, a lookup operation always received a communication

penalty when it found a cache entry since the operation always needed to communicate

to check for a contact address at the node referred to in the entry. If the node referred

to by the cache entry stored a contact address of the object, the lookup operation was

finished. If the node stored a forwarding pointer, the operation followed that pointer to

retrieve the contact address and then the operation was finished. If the node was found

4.5. SIMULATION RESULTS 97

to be empty, the lookup operation continued its tree traversal at the original node. The

penalty for an invalid location-cache entry thus consisted of a pair of messages sent, the

distance they traveled, and an increase of the load at the receiving node. In the location-

caching situation contact addresses were also moved down by the move-down operation.

This generated extra load and communication costs.

In both the data-caching and the location-caching situation, the lookup operation also

removed a cache entry when it was found to be invalid. Since it was unclear whether we

could find an additional mechanism to purge invalid entries from the cache without actu-

ally verifying the entry, for instance, using the Alex cache replacement policy mentioned

earlier, we simulated for both the data and the location cache a simple and an ideal case.

In the simple case no additional mechanism was used to purge invalid entries from the

cache. The ideal case represented a system where an additional mechanism existed that

purged entries from the cache the moment they became invalid. We therefore looked at

five situations in total: no caching, data caching, location caching, ideal data caching, and

ideal location caching.

Since the move-up and the move-down operation used timing information, we also

needed to simulate time in our experiment. In the simulation we used an abstract time

unit that represented a fixed amount of real time, for instance, a period of several hours.

In every time unit, only a single operation took place. Since we used the same mobility-

to-lookup ratio of 0.2, as in Chapter 3, the object would move on average once every

five time units and be looked up four times for every time it moved. For every object

model, we chose 20 times a mobility domain and used that mobility domain during 1,000

time units, resulting in a simulation of 20,000 time units (and thus operations) per object

model.

For the location-caching situation, we also needed to simulate the moving up and

down of contact addresses. To do so, we needed to choose values for the mobility thresh-

old, stability threshold, and aging factor. To allow the location cache to work efficiently,

we chose values that would result in the direct placement of a contact address at the stable

address location. Since we expected movement within a mobility domain every five time

units, we set the mobility threshold slightly higher, at eight time units. To ensure a stable

contact address would start moving downward straightaway, we chose the stability thresh-

old slightly higher than the mobility threshold, at ten time units. We disabled the aging

factor (α = 1) since its only purpose was to avoid (over)reaction to incidental movements,

that is, movement not part of the regular mobility pattern.

To get a fair comparison between the caching schemes, we separated our simulation

program in a trace-generation tool and a trace-execution tool. That way the location ser-

vice reacted in all three caching situation to the same client and object activity. Since there

was one event per time unit, the trace-generation tool simply generated 20,000 events. The

tool started with adding an insert event that inserted a contact address of the object in Am-

sterdam. For every event afterward the generation tool chose at random whether the event

would be a movement or a lookup. If the event was object movement, the tool chose a

new location using the current mobility domain. It then added a move entry to the trace

file. If the event was a lookup, the tool chose a client location using the lookup pattern,

98 CHAPTER 4. AN EFFICIENT LOOKUP OPERATION

and added a lookup entry to the trace file. Every 1,000 time units, the generation tool

chose a new mobility domain using the probability distribution associated with the mo-

bility pattern. The trace-generation tool ended with adding a final delete event to clean up

the contact address of the object.

The trace-execution tool actually simulated the location service using a particular

caching scheme. It read the trace file, one event at a time, and performed the activity

described in the event. A move event meant inserting a new contact address and delet-

ing the old contact address. While performing these update operations, the tool increased

the total load, message count, and distance traveled. A lookup event meant performing

a lookup operation from the location given by the event. While performing the lookup

operation, the tool increased the total load, message count, and distance traveled. After

handling an event from the trace file, the trace-execution tool checked whether a move-

down operation needed to performed.

4.5.2 Results

Figure 4.7 shows the total load in the location service using the five caching schemes and

three object models. The most obvious result is that both the data-caching scheme and

location-caching scheme result in a significantly decreased load. In all object models the

load is decreased by on average 30%. The fact that the improvement for the data cache

is similar to the location cache is unexpected. It can, however, be explained by the fact

that, in contrast to the location cache, invalid cache entries in the data cache do not result

in a load increase. That cost is simply not visible in this figure since it is part of the

communication between the user and the object which is not simulated.

The striped bars depict the load of using the ideal data and location cache. The result

of the ideal data-caching scheme provides no improvement over the simple scheme. This

is also caused by the fact that invalid data cache entries do not increase the load in the

location service. The result of the ideal location cache is slightly better than the result

of the simple data cache. Invalid cache entries in the simple location-caching scheme

apparently do result in a slight decrease in performance.

Figure 4.8 shows the total number of RPC messages sent. This figure is more revealing

than the previous. It shows that the number of messages sent when using the data-caching

scheme is similar to using no caching at all. A possible improvement of the number of

messages is apparently completely negated by the number of messages sent in the case of

invalid entries. The location-caching scheme shows in this case an improvement for all

models of on average 40%.

The large impact of invalid entries in the simple data-caching scheme can be seen by

comparing it with the ideal data-caching scheme. While the simple data-caching scheme

results in a number of messages similar to the situation without a cache, the ideal data-

caching scheme results in a drop in the number of message to at least 60%; a result com-

parable to the simple location-caching scheme. The ideal location-caching scheme, how-

ever, also provides an improvement over the simple location-caching scheme, although

the improvement is less significant, on average an improvement of only 10%.

4.5. SIMULATION RESULTS 99

GM-GL LM-GL LM-LL

Object Model

0

20,000

40,000

60,000

80,000

100,000

120,000

T
o
ta

l
L

o
a

d

No caching

Data caching

Location caching

Data caching (ideal)

Location caching (ideal)

Model GM-GL LM-GL LM-LL

Abs. Rel. Abs. Rel. Abs. Rel.

No caching 94,513 100% 94,076 100% 83,960 100%

Data caching 65,266 69% 65,938 70% 55,943 67%

Location caching 63,904 67% 66,453 71% 61,316 73%

D. caching (ideal) 65,266 69% 65,938 70% 55,943 67%

L. caching (ideal) 57,421 61% 59,307 63% 55,588 66%

Figure 4.7: Total load generated by update and lookup operations using three types

of workload and different caching schemes.

100 CHAPTER 4. AN EFFICIENT LOOKUP OPERATION

GM-GL LM-GL LM-LL

Object Model

0

50,000

100,000

150,000

200,000

T
o
ta

l
M

es
sa

g
e

C
o

u
n

t

No caching

Data caching

Location caching

Data caching (ideal)

Location caching (ideal)

Model GM-GL LM-GL LM-LL

Abs. Rel. Abs. Rel. Abs. Rel.

No caching 141,020 100% 140,124 100% 120,104 100%

Data caching 144,950 103% 146,046 104% 107,292 89%

Location caching 79,609 56% 84,640 60% 74,528 62%

D. caching (ideal) 82,526 59% 83,848 60% 64,070 53%

L. caching (ideal) 66,643 47% 70,348 50% 63,072 53%

Figure 4.8: Total message count by update and lookup operations using three types

of workload and different caching schemes.

4.6. DISTINGUISHING REPLICAS 101

Figure 4.9 is also revealing. It shows the distance traveled by update and lookup oper-

ations. It shows that the distance traveled by operations using the location cache is similar

to the distance when using no cache. This is to be expected because with our location-

aware load-distribution scheme going up the search tree and down again is roughly similar

to going directly to the referenced node. In contrast, the data-caching scheme results in a

distance that is on average 60% larger than the distance traveled without caching.

Comparing the ideal data-caching scheme with the simple data-caching scheme makes

the communication penalty for invalid entries clearly visible again. What is more surpris-

ing is that the ideal data cache is as good or better (for the LM-LL model) than the ideal

location cache. This can, however, be explained by the fact that the overhead for the

location-caching scheme is higher. In the location-caching scheme, lookup operations

always have to retrieve the contact addresses at the indicated node making it more expen-

sive.

4.5.3 Conclusion

By introducing the location-caching scheme in the location service we can significantly

improve its performance. Furthermore, this improvement is far more than that of a data-

caching scheme. Our simulation clearly shows that a data cache is hampered by its invalid

cache entries. Since both schemes benefit equally well from a scheme to remove invalid

cache entries, it would seem likely that the location-caching scheme will continue to per-

form better. Only in the ideal case will the data-caching and location-caching schemes

provide similar performance. It should be noted that these results are all based on an

assumed workload. Our location-caching scheme still has to prove itself with real-life

workloads.

4.6 Distinguishing Replicas

In this section we discuss an issue with the lookup operation that is independent of location

caching and object mobility described so far.

Even though our objects can consists of multiple replicas, we have so far assumed

that all replicas of an object are functionally equivalent and differ only in the location at

which they reside. In a distributed system with replicated objects, we expect, however,

that different replicas of an object play different roles. For instance, if an object uses a

primary/backup replication strategy, it will have one primary replica and several backup

replicas. When performing normal operations, a client can use any of the replicas, but if

the client wants to add a new backup replica to the object, the client needs to know which

of the replicas of the object is the primary replica. Another difference between replicas

can be that one kind of replica supports only read operations while another kind supports

both read and write operations on the object.

In the current design of the location service we cannot efficiently support looking

up replicas that play specific roles. The only way to distinguish the primary replica,

102 CHAPTER 4. AN EFFICIENT LOOKUP OPERATION

GM-GL LM-GL LM-LL

Object Model

0.0e+00

1.0e+08

2.0e+08

3.0e+08

4.0e+08

T
o
ta

l
D

is
ta

n
ce

 (
k

m
)

No caching

Data caching

Location caching

Data caching (ideal)

Location caching (ideal)

Model GM-GL LM-GL LM-LL

Abs. Rel. Abs. Rel. Abs. Rel.

No caching 1.7e8 100% 1.5e8 100% 9.5e7 100%

Data caching 3.0e8 171% 2.7e8 182% 1.5e8 158%

Location caching 1.6e8 93% 1.5e8 101% 9.2e7 97%

D. caching (ideal) 1.1e8 65% 9.9e7 66% 5.8e7 61%

L. caching (ideal) 1.1e8 65% 1.0e8 67% 6.3e7 66%

Figure 4.9: Total geographical distances traveled by update and lookup operations

using three types of workload and different caching schemes.

4.6. DISTINGUISHING REPLICAS 103

in the example above, is to associate the contact address of the primary replica with a

second object handle. If a client is interested in only the primary replica, he will use

this new object handle; for normal operations the old object handle is used. The solution

is attractive since we can look for specific replicas without adding functionality to the

location service.

There are, however, also serious problems with associating multiple object handles

with a single object. These problems become visible when replicas can play multiple

roles at the same time. The first problem is that the client needs to maintain multiple

object handles to refer to an object since a single object handle is no longer enough to

find all types of contact addresses. This problem also occurs in naming services that store

the mapping from object name to object handle. An object name needs to be associated

with all the object handles of an object. The number of object handles associated with

an object name becomes particularly bothersome if the replicas of an object can play an

increasing number of roles. Using multiple object handles also requires the client to do

multiple lookup operations when he wants to lookup a replica without being interested in

one specific role. The client also needs to determine which reply of the multiple lookup

operations retrieved the nearest contact address. Introducing an object handle for every

possible subset of roles the replicas can play is not attractive either since this choice would

make the set of object handles associated with an object grow exponentially.

A generic extension to the location service to support different replica roles is to as-

sociate (attribute, value)-pairs with a contact address. Such pairs would be stored in the

contact record together with the contact address. The client could add a predicate to the

lookup operation specifying the attribute values of the contact address. The problem with

this extension is that it violates locality. The location service needs to follow every path

of forwarding pointers to the directory node that stores the contact address before it can

decide whether the address will actually match the predicate.

It is, in principle, possible to add (attribute, value)-pairs and still support locality. To

do this, we also need to associate the (attribute, value)-pairs of a contact address with

the path of forwarding pointers pointing to the address. That way the lookup operation

can already match the predicate with forwarding pointers higher up in the tree, and avoid

traversing down the tree to the directory node that stores the contact address. We decided,

however, that this generic solution would be too heavyweight for the location service

due to its costly comparisons of attributes and the increased complexity of the lookup

operation.

We therefore simplify the idea of generic (attribute, value)-pairs, and instead asso-

ciate a property map with a contact address. A property map is a bit string where the

bits in the bit string represent boolean characteristics of the object. The semantics of the

properties are object specific, the value 1 simply means the replica has the property and

the value 0 means the replica does not have the property. Since the semantics are object

specific, different objects can assign different properties to the boolean values in the prop-

erty map. When a client inserts a contact address, the client assigns a property map to

the address. During the insert operation, the property map is associated with the contact

address and every forwarding pointer on the path of forwarding pointers pointing to the

104 CHAPTER 4. AN EFFICIENT LOOKUP OPERATION

GlasgowLondonRennesParis

mreq = 0100

mask = 0110

France

Amsterdam Rotterdam

1001

1100

1100

1001

1001

10011100 1001

10011100

A A

A

World

Europe

NetherlandsUK

Figure 4.10: Property maps and a lookup operation in the search tree.

contact address.

For every lookup operation, the client specifies which bits of the property map he is

interested in using a bit mask. The client also specifies the value each bit should have.

The lookup operation returns a contact address (or follows a forwarding pointer) if the

property map m associated with the contact address matches the request (mreq) in the

following way.

(mask AND m) = (mask AND mreq)

Figure 4.10 shows an example of a search tree with property maps. The object in the

example has three replicas. The property maps associated with the replicas consist of four

bits. The contact addresses in the Rennes and Glasgow leaf domain have the property map

1001, and the contact address in Paris has property map 1100. At the European level,

the contact record of this object has two forwarding pointers. The forwarding pointer

pointing to the French domain has two property maps since the two contact addresses

have different property maps. The forwarding pointer pointing to the UK domain has

only one property map.

Consider the lookup operation in the example. It starts in the Rotterdam domain. The

client is interested in a replica that has the second property and does not have third. The

client is not interested whether a replica has (or does not have) the first and last property.

To indicate that the client is interested only in the value of the second and third bit, the

mask has a value of 0110. The client requests (mreq) has the value 0100. The lookup

4.6. DISTINGUISHING REPLICAS 105

operation propagates up the tree until the Europe node where it finds the first contact

record. The contact record contains two forwarding pointers, and the property maps of

both are matched against the request of the client. The lookup operation follows the

French forwarding pointers since it alone has a property map that matches against the

client’s request. At the France node only the forwarding pointer to the Paris node

matches, and the lookup operation follows the forwarding pointer to the Paris node.

The ability to distinguish replicas during a lookup operation comes at the price of in-

creased complexity and increased resource use of update operations. Since the property

map of every contact address needs to be reflected in the property maps of forwarding

pointers at higher levels in the search tree, every change to a property map at a low level

needs to be propagated up the tree, potentially all the way up to the root node. Update op-

erations therefore need to visit higher level nodes more frequently to make these changes.

Previously, the upward traversal of an insert or delete operation was ready when a node

was visited that stored a forwarding pointer, but with the new functionality, this forward-

ing pointer also needs to have the correct property map, otherwise the upward traversal

needs to continue.

106 CHAPTER 4. AN EFFICIENT LOOKUP OPERATION

Chapter 5

Availability and Fault Tolerance

This chapter deals with the problem of ensuring that the location service is highly avail-

able. This availability depends heavily upon the way the location service deals with faults

since faults can cause inconsistencies in the distributed state of the location service that,

in turn, can result in the location service behaving incorrectly. The focus in this chapter

is thus on making the location service fault tolerant, that is, ensuring it can maintain a

consistent distributed state in the presence of faults. To keep the implementation of the

lookup and update procedures simple, we want to shield the procedures from availability

and fault tolerance issues as much as possible.

5.1 Failures

The location service plays a pivotal role in the Globe distributed system since it is involved

in all communication. Since there are no other services in Globe that provide contact

addresses, a client is (de facto) required to use the location service when he wants to

communicate with an object. If the location service is unable to find a contact address, the

client cannot bind to the object and communication cannot be initiated. When the location

service fails to provide its service, the Globe distributed system breaks down since binding

to objects is central to Globe. The functionality provided by the location service therefore

needs to be highly available and highly reliable, that is, a client should be able to use the

location service immediately with a high probability of success [Kopetz and Verissimo,

1993].

Faults within the distributed system, such as network partitions and crashing nodes,

can lead to errors in the location service, such as the loss or corruption of location in-

formation, threatening its consistency and thereby its availability. Faults can occur in the

location service itself or in the resources it uses, for example, the underlying network.

Since the location service is a system consisting of many physical nodes and using a large

number of resources, we can expect faults to occur frequently. While faults may lead to

107

108 CHAPTER 5. AVAILABILITY AND FAULT TOLERANCE

the failing of individual components of the location service, faults are not allowed to lead

to a failure of the location service as a whole. Furthermore, the errors caused by faults

should be repaired automatically while the service is in operation. Unfortunately, the

process of masking faults in the location service can lead to a degradation in performance.

To structure our discussion, we make a distinction between external and internal fail-

ures with respect to a particular physical node. An external failure is the failing of a

component of the location service that lies outside the physical node, for instance, a net-

work connection or some other physical node. Even though the physical node is only

indirectly affected by the failure, it still needs to deal with the consequences. The node

can, however, rely on the correctness of its own state. An internal failure is the failing

of (parts of) the physical node itself, for example, its software crashes or its hardware

fails. In this case the physical node has to deal with the crash itself and the resulting

inconsistency of its own state.

In the rest of this chapter, we first examine the problem of external failures, and de-

scribe how we deal with them. We then examine the problem of internal failures. We

finish this chapter with a description of how we have implemented fault tolerance.

5.2 External Failures

This section describes how a physical node deals with the effects of external failures, such

as network partitions and other physical nodes crashing. We also explain the important

role concurrency plays for high availability when dealing with external failures. We finish

this section with the description of a data structure we developed to ease the implementa-

tion of concurrent update and lookup procedures.

5.2.1 Problem Analysis

External failures are visible at a physical node as the failure of another node to respond

to an RPC request, that is, the physical node simply keeps on waiting for an RPC reply.

Since we assume a fail-silent failure model [Laprie, 1995], a physical node will not send

or receive any incorrect request or reply. The failure to get the reply can originate at two

places: in the network during the transmission of the RPC request or reply or at the other

physical node during execution of the requested procedure.

The simplest cause of the failure to receive a reply is intermittently dropped network

packets. This can happen during the transmission of RPC requests or replies. Fortunately,

two cooperating physical nodes can easily deal with dropped packets using a combination

of a time-out mechanism, packet retransmission, and sequence numbers. Furthermore,

this kind of failure results only in a short delay in receiving the RPC reply, but has no

significant impact on the processing of operations in the location service as a whole. We

therefore ignore such failures in the rest of this chapter.

In contrast, network partitions and crashed nodes are more serious problems. Both

types of problems are visible at a physical node as the absence of replies to all outstanding

5.2. EXTERNAL FAILURES 109

requests over a long period of time. This absence, however, should not prevent the location

service from continuing to perform its task, and this absence should thus be dealt with.

The location service handles the absence of replies for lookup requests differently from

update requests because lookup and update requests have different requirements.

The location service needs to handle lookup operations quickly since there is always

a client waiting for the answer. A physical node should therefore not wait indefinitely for

a lookup RPC to finish, but instead place a timeout on the waiting period and abort the

lookup RPC when it takes too long to complete. Aborting the lookup RPC is not a problem

since the lookup operation can always continue by searching for contact addresses some-

where else in the search tree, for instance by following a different forwarding pointer

or by going to a higher-level node. The downside of using a timeout mechanism in the

lookup operation is that when the network is slow, we risk the location service not finding

a contact address that it has actually stored. We prefer a fast lookup operation, however,

over the certainty that the lookup operation will always find a contact address.

In contrast to lookup operations, update operations have less severe timing require-

ments since update operations do not have a return value that is to be used after the oper-

ation ends. The receipt of an RPC reply from an update operation simply tells the client

that the operation has finished; unlike the lookup operation, the RPC reply does not con-

tain a return value for the client to use. To guarantee consistency in the location service,

however, we do require that all update RPCs are allowed to finish. Since we therefore

cannot abort a long running RPC, a physical node potentially needs to wait a long time

for before it can continue executing an update procedure. The only thing left to do when

dealing with an unresponsive node is thus to save all outstanding update requests until

the unresponsive node becomes responsive again and RPC replies can be received. If the

(formerly) unresponsive node was unresponsive because the network was partitioned, it

can simply filter out any duplicate request. If the unresponsive node had actually crashed,

however, a recovery process is started, which is fully described in Section 5.3.

Unfortunately, the physical node sending the update request cannot simply wait for

the update replies to come in and do nothing in the meantime; clients are sending new

lookup and update requests continuously and are waiting for their results. To ensure

the availability of the location service, physical nodes therefore have to handle incoming

requests concurrently. This is especially true since these new requests do not necessarily

require communication with the unresponsive node. Recall that different object handles

can be handled by different physical nodes of a logical node.

A different problem is that a physical node cannot continue saving update requests

for an unresponsive node indefinitely. The physical node will at a certain time run out

of resources (first main memory and later disk storage) to store the RPC requests. A

mechanism is thus needed to control the flow of RPC requests between physical nodes.

This mechanism needs to ensure that a physical node cannot overflow another physical

node that is saving RPC requests. A straightforward way to accomplish this is to place

a limit on the number of concurrently running procedures per physical node. Once this

limit is reached, the physical node will only accept RPC replies for update operations.

110 CHAPTER 5. AVAILABILITY AND FAULT TOLERANCE

5.2.2 Concurrency

As stated in previous chapters, it is easy to handle RPC requests for different objects con-

currently. Since there is no dependency between object handles, there are no consistency

requirements to take care of. The concurrent handling of lookup requests for the same

object is also not a problem since no changes are made. The real problem is how to deal

with groups of update requests or groups of lookup and update request for the same object

in a concurrent fashion. Note that these requests need not all come from the same child

node.

By handling multiple update requests for the same object concurrently, multiple ex-

ecuting procedures use and possibly change the same contact record. Since this leads

to race conditions and may result in inconsistent contact records, we give an executing

procedure exclusive access to the contact record it uses (i.e., we lock the contact record).

Unfortunately, as noted above, the execution of an update procedure might take a long

time when other physical nodes are unresponsive. Since we do not want the contact record

to be inaccessible for other requests during this period, we make the following exception

with respect to mutual exclusion.

The exception is that during an RPC (i.e., when the node is waiting for a reply), we

unlock the contact record, and a new procedure is allowed to start using the contact record

or an old procedure that has received its RPC reply is allowed to continue using the record.

In other words, the procedures and contact record together form a monitor [Hoare, 1974].

To ensure a correct end result of the concurrently executing procedures, we introduce two

scheduling rules. First, if two update requests for the same object handle come from the

same child node, the parent node must start the execution of the requested procedures

in the same order that the RPC requests were sent. Second, if two concurrently running

update procedures use the same contact record and are waiting for their respective RPC to

finish, the procedure that sent its RPC request first must continue executing first as well,

possibly delaying the continuation of the execution of the other procedure if its RPC reply

was received first. The concurrent procedures are thus executed in a pipeline fashion.

For example, consider two update requests for the same object sent to a physical node

by the same child node. The order of the requests is an insert request followed by a delete

request. Following the first scheduling rule, the node starts with the execution of the

insert procedure. The delete procedure starts its execution only when the insert procedure

performs an RPC or has finished its execution. If, at a later time, both procedures are

waiting concurrently for their respective RPC to finish, the insert procedure continues

first after its RPC, that is, before the delete procedure continues, as stated by the second

scheduling rule.

If two concurrent update requests come from different child nodes, the order in which

the procedures are started is undefined. This does not affect the consistency of the contact

record since the modifications use different contact fields and are thus unrelated. The

order can, however, influence the final state of the search tree, as shown in Figure 5.1. In

this example the height at which a new contact address is stored depends upon the order

in which two concurrent update operations, a delete operation initiated in London and an

5.2. EXTERNAL FAILURES 111

UKUK

EuropeEuropeEurope

UK

A

A

A

request

insert

request

delete

insertdelete

?

a) initial situation c) delete winsb) insert wins

GlasgowLondonGlasgowLondonGlasgowLondon

Figure 5.1: A race condition between a delete and an insert operation resulting in

different search trees.

insert operation initiated in Glasgow, are executed. Recall from Chapter 4 that the height

at which an address is stored is determined by a distributed decision making process, and

that this process is based on the evaluations of individual nodes of whether they are a good

node to store the contact address. In the figure we assume that, besides the Glasgow leaf

node, the UK node and the Europe node also consider themselves a good node to store

the contact address.

Figure 5.1(a) shows the initial situation with both leaf nodes sending an update request

to the UK node. Figure 5.1(b) shows the end result if the UK node executes the insert

procedure first. In this case, the UK node stores the new contact address since it is the

highest available node that wants to store the contact address; then, the old address in the

London node and its forwarding pointer in the UK node are deleted. Figure 5.1(c) shows

the end result if the UK node executes the delete procedure first. In this case, the contact

address in the London node and its forwarding pointers in the UK and Europe nodes are

deleted. Afterward, the insert operation will thus propagate to the Europe node, which

will subsequently store the contact address itself since it is the highest available node. It

is important to note that both end results are valid.

Apart from update requests, a physical node also receives lookup requests. These

lookup requests can be handled concurrently with update requests by simply abiding by

the exclusive access rule. Since the lookup procedures do not make any changes, no or-

dering between a lookup and an update procedure is needed. We would, however, like the

changes made to contact records by update procedures to become visible to lookup proce-

dures as soon as possible. For instance, a contact address that is currently being inserted

in the location service can be returned to a client immediately by a lookup procedure since

112 CHAPTER 5. AVAILABILITY AND FAULT TOLERANCE

it is for the client irrelevant whether the contact address will ultimately be stored at the

current node or somewhere higher up the tree.

5.2.3 View Series

With the introduction of the concurrent handling of update requests, a contact record can

have many tentative changes made to it concurrently. Keeping track of all these changes

can easily increase the complexity of the lookup and update procedures. This is in con-

flict with our goal to keep our lookup and update procedures as simple as possible. We

therefore introduce a new data structure, called a view series, to maintain the state of the

concurrent changes to a contact record and keep the lookup and update procedures simple.

A view series is an association between a contact record and a queue of tentative

changes to that contact record. Update procedures append these tentative changes to and

remove them from a view series. View series maintain a strict FIFO ordering among the

tentative changes: New tentative changes are appended at the tail of the queue and only

the change at the head of the queue can be removed. When a tentative change is removed

from the queue in the view series, the change is either made permanent by applying it to

the associated contact record or it is discarded. Hence, the change is called tentative while

it is in the queue, and authoritative when it is applied (permanently) to the contact record.

The view series allows update and lookup operations to compute the current view of

the view series. The current view on the view series is the state of the contact record when

all tentative changes in the queue are applied to it. The terms tentative and authoritative

also apply to the current view. When a view series has changes in its queue, its current

view is called tentative; otherwise, the current view is called authoritative.

Figure 5.2 shows the state of an example view series changing over time. The figure

shows three columns. The left column shows the current state of the contact record that is

associated with the view series. This state is stored on disk. The contact record consists

of three contact fields. The middle column of the figure shows the tentative changes

appended to the view series. Changes are appended to the right and removed from the

left. These changes are stored in main memory. The right column shows the current view

of the view series.

Figure 5.2(a) shows the initial situation. The contact record has a forwarding pointer

in the left contact field, contact address A1 in the middle contact field, and an empty right

contact field. The view series has one tentative change appended to it. This change is the

insertion of address A2 in the middle contact field. The current view of the view series

shows a contact record with a forwarding pointer in the left contact field, contact addresses

A1 and A2 in the middle contact field, and an empty right contact field.

In Figure 5.2(b) a new tentative change is appended to the view series. The change

is the deletion of the forwarding pointer in the left contact field. This does not change

the contact record on disk, but does change the current view, as can be seen in the right

column. In Figure 5.2(c) and Figure 5.2(d) the changes in the view series are applied to

the contact record on disk. The changes are removed from the head of the sequence. Note

that although the contact record on disk changes, the current contact record view remains

5.2. EXTERNAL FAILURES 113

A1

A1

A2

A2

A2

A1

A2
A1

A1

A2

A1

A2

A1

A1

Insert

Delete

pointer

pointer

DeleteInsert

d)

c)

b)

a)

View Series

Current View of

View Series

Changes Appended to

Contact Record

Current State of

A2

A2

Figure 5.2: Changes to a view series over time.

114 CHAPTER 5. AVAILABILITY AND FAULT TOLERANCE

the same. In Figure 5.2(d) there are no changes appended, and the contact record on disk

is the same as the current contact record view. In this case the current view of the view

series is authoritative.

The tentative changes appended to the queue of the view series are the same changes

normally made directly to a contact record. Thus, all changes made to a contact record,

that is, adding or removing a contact address and setting or clearing a forwarding pointer,

can also be appended to a view series. To simplify our procedures, we made the view

series concept part of our Ada-like pseudocode. The following example shows a statement

to append a new tentative change to a view series.

append view 〈self(caller).addrSet :=

self(caller).addrSet + {addr}〉 to tentativeCR;

In this example the variable tentativeCR is a view series. The tentative change appended to

this view series adds the contact address addr to the contact record. To refer to the current

value of the contact record, the view series uses the pseudo-variable self. This variable

refers to the contact record at the time the change will be made permanent. The tentative

change at the head of the queue (i.e., the least recently added change) is made permanent

by applying it to the contact record. This is done using the following statement.

apply view to tentativeCR;

If the change at the head of the queue is unwanted, the change is removed from the queue

of the view series. This is done using the following statement.

remove view from tentativeCR;

If the tentative change that is removed is, for example, the change append above, the

contact address addr would no longer be visible in the view series. To obtain the current

view of the view series, we use the following statement.

viewCR := view tentativeCR;

This statement computes a new contact record viewCR by making a copy of the contact

record associated with the view series tentativeCR, and applying all appended changes to

this copy. We use the sizeOf function to determine whether the current view of a view

series is authoritative.

count := sizeOf(tentativeCR);

The sizeOf function returns the number of tentative changes appended to the view series.

When the function returns zero, the view series is authoritative; otherwise, it is tentative.

Line 1 in Listing 5.1 shows the definition of the view series data type, called Con-

tactRecordView. To keep track of all the view series currently in use in a physical node,

5.2. EXTERNAL FAILURES 115

(1) type ContactRecordView : view series of ContactRecord;

(2) type CRViewSet : set (ObjectHandle) of ContactRecordView;

(3)

(4) tentativeCRSet : CRViewSet;

Listing 5.1: Data structure and global variable for the use of view series.

we define an indexed set of view series, in line 2. This type is used to define the global

variable tentativeCRSet, in line 4. The lookup and update procedures use the procedure

getTentativeCR to retrieve a view series from the tentativeCRSet variable.

To explain how view series are used in our update procedures, Listing 5.2 shows the

new insertAddress procedure using view series. The structure of the procedure is very

similar to the previous version, presented in Chapter 2. The procedure starts, in lines 9–

10, by obtaining the view series of the contact record and computing the (initial) current

view of the view series. In lines 13–14, the contact address is inserted by appending a

tentative change to the view series.

As in the previous version, the procedure has to decide whether this node should obtain

permission from its parent to store the contact address. The node should obtain this per-

mission if the contact record was empty before it inserted the contact address. However,

the node cannot be certain the contact record is nonempty if the current view (computed

before the address was inserted) is only tentative. The procedure should therefore always

obtain permission from the parent when the view series has appended changes.

The procedure uses the sizeOf function to determine whether there are appended

changes. If the sizeOf function returns a value larger than one, concurrent update pro-

cedures have already appended other views to the view series, and we cannot be sure

whether the contact record is actually nonempty. If the sizeOf function returns a value of

exactly one, the current view of the contact record is authoritative, and we can be sure the

contact record is nonempty. Note that the sizeOf function returns a value greater or equal

to one since this procedure has appended a tentative change itself.

In line 18 the procedure decides whether it should store the contact address itself. If

the contact record was already filled or the node wants to store the contact address, the

procedure requests permission from the parent to store the address, in line 19; otherwise,

the procedure requests the parent to insert the contact address itself, in line 20. If no

approval is needed, the variable approved is set to true, in line 23. Depending on the

variable approved, the procedure applies the tentative change to the contact record, in

line 28, or it discards the change, in line 29. In both cases, the view that is appended in

lines 13–14 is removed from the view series. The procedure returns false in line 33 to

indicate the contact address was stored at this node or higher in the tree, as in the previous

version.

The insertAddress procedure uses the procedure getTentativeCR to obtain the view

series associated with an object handle. This procedure is depicted in Listing 5.3. The

procedure starts, in lines 6–7, by checking whether the contact record and its view series

are already in use. If so, the view series is stored in the global variable tentativeCRSet.

116 CHAPTER 5. AVAILABILITY AND FAULT TOLERANCE

(1) procedure insertAddress(oh : ObjectHandle;

(2) addr : ContactAddress;

(3) caller : NodeID) returns Boolean is

(4) tentativeCR : ContactRecordView; −− tentative contact record

(5) viewCR : ContactRecord; −− initial view of contact record

(6) approved : Boolean; −− parent approves address insert

(7) begin

(8) −− Retrieve the contact record view series and the compute initial view.

(9) tentativeCR := getTentativeCR(oh);
(10) viewCR := view tentativeCR;

(11)

(12) −− Add the address (possibly temporarily) to the view series of the record.

(13) append view 〈self(caller).addrSet :=
(14) self(caller).addrSet +{addr}〉 to tentativeCR;

(15)

(16) −− Ask the parent for approval, if needed.

(17) if parent �= NIL and (isEmpty(viewCR) or sizeOf (tentativeCR) > 1) then

(18) if not isEmpty(viewCR) or doStoreHere(viewCR)
(19) then approved := call insertPointer(oh, addr, thisNode) at parent;

(20) else approved := call insertAddress(oh, addr, thisNode) at parent;

(21) end if;

(22) else

(23) approved := true; −− No approval needed.

(24) end if;

(25)

(26) −− Undo the local modification, if the parent does not approve.

(27) if approved

(28) then apply view to tentativeCR;

(29) else remove view from tentativeCR;

(30) end if;

(31)

(32) −− The contact address is stored here, or higher in the tree.

(33) return false;

(34) end insertAddress;

Listing 5.2: The concurrent insertAddress procedure.

5.2. EXTERNAL FAILURES 117

(1) procedure getTentativeCR(oh : ObjectHandle)
(2) returns ContactRecordView is

(3) tentativeCR : ContactRecordView; −− tentative contact record

(4) cr : ContactRecord; −− contact record

(5) begin

(6) tentativeCR := tentativeCRSet(oh);
(7) if tentativeCR = NIL then

(8) −− The contact record and its view series are not yet used.

(9) cr := crDatabase(oh);
(10)

(11) −− Create and initialize a new contact record, if none exists.

(12) if cr = NIL then

(13) cr := new ContactRecord;

(14) initializeCR(cr, children, thisNode);
(15) end if;

(16)

(17) −− Create and initialize the view series of the contact record.

(18) tentativeCR := new ContactRecordView;

(19) initializeCRView(tentativeCR, cr);
(20)

(21) −− Make the view series available.

(22) tentativeCRSet(oh) := tentativeCR;

(23) end if;

(24)

(25) return tentativeCR;

(26) end getTentativeCR;

Listing 5.3: The getTentativeCR procedure returns the view series of the contact

record associated with the given object handle.

If no view series is available, a new view series is created and initialized, in lines 8–22.

First, the procedure checks whether the object is known and has a contact record, in

line 12. If the object is unknown, no contact record is stored in the local contact record

database, and a new contact record is created and initialized, in lines 13–14. With the

contact record available, a new view series is created and initialized, in lines 17–19. To

make the view series available for new concurrent procedures, it is inserted in the global

view series variable, in line 22. The view series is finally returned in line 25.

For the view series on the contact record to remain consistent, the procedure that ap-

pends a tentative change should also be the procedure that removes or applies that change,

that is, the order in which procedures append changes should also be the order in which

they remove or apply changes. This FIFO order is maintained using the second schedul-

ing rule, described in the previous section. Since an update procedure always invokes an

RPC when it encounters a view series with changes appended, the procedure will have to

wait until the previous procedures have finished before it can continue itself. Its change is

118 CHAPTER 5. AVAILABILITY AND FAULT TOLERANCE

therefore always in the head position of the queue when it applies or removes the view.

Each insert or delete procedure consists of three phases:

1. Append a tentative change to the view series of the object. This is the change the

procedure would like to make.

2. Ask the parent permission for the intended change. This allows the parent node to

override the change or make the necessary changes itself to keep the search tree

consistent.

3. Make the tentative change permanent or discard it by applying or removing the

appended change. Applying the tentative change makes the change to the contact

record authoritative.

Only the insert procedure decides whether to apply or remove its appended change;

in contrast, the delete procedure always applies its change since the change (removing a

contact address or clearing a forwarding pointer) always has to be done. After the third

phase, the physical node sends the RPC reply that completes the procedure.

5.3 Internal Failures

This section describes how a physical node deals with the effects of crashing itself. In this

section we assume a fail-stop system [Laprie, 1995] in which the physical node just stops

working; no erroneous messages are sent and no erroneous data are written to disk before

the node crashed. We also assume the use of atomic disk writes [Lampson and Sturgis,

1979] and node crashes that do not affect a disk. A node crash therefore results only in

the loss of main memory.

The focus of this section is on repairing inconsistencies in the distributed state of the

search tree. We start this section with a description of how a node crash can cause incon-

sistencies in the distributed state of the location service. We then propose a method of

resolving these inconsistencies after a node crash. We finish this section with the reasons

why our method is correct. In Section 5.4 we propose solutions to dealing with the loss

of persistent state.

5.3.1 Problem Analysis

The execution of an update procedure in a leaf node usually involves making an RPC call to

its parent node. The execution of the update procedure at the parent node, in turn, usually

involves making an RPC to its parent as well, leading to a chain of cascaded invocations.

An update operation therefore consists of a chain of RPCs from the leaf node upward,

possibly to the root. This chain of RPCs is severed when one of the nodes on this chain

crashes.

During a crash, a physical node loses all its in-core state, including information about

the communication it is involved in at the time of the crash and the tentative changes

5.3. INTERNAL FAILURES 119

A

Paris Rennes

France

Europe

Authoritative

state

insert

request

state

Tentative

Figure 5.3: Crash during an insert operation, part 1. The insert operation insert the

contact address and forwarding pointers tentatively.

stored in its view series. If the crashed node had sent update requests to its parent, the

parent node will continue performing the requested update procedure since it is unaware

of the crash. This executing procedure is called an orphan [Panzieri and Shrivastava,

1988]. During the execution of the orphaned procedure the parent will possibly modify

its own contact record and send out an RPC request. The severed chain of RPCs thus

results in nodes located higher in the tree than the crashed node performing their part of

the update operation while the nodes located lower in the tree do not. This may result in

inconsistencies in the tree, for instance, a path of forwarding pointers ending in an empty

contact record.

Figures 5.3–5.5 show how a node crash during an insert operation can introduce an

inconsistency in the search tree. In the figures we show both the current view of an object’s

view series and the state of its contact record on disk. In Figure 5.3 a client in the Parisian

domain sends an insert request to the Paris leaf node. As a result, an insert operation

is started that tentatively inserts a contact address at the Paris node and a forwarding

pointer at the France and Europe nodes.

In Figure 5.4 the insert operation continues by making its tentative change at the Eu-

rope node authoritative, that is, saving the resulting contact record to disk. After the

change is made authoritative, an RPC reply is sent back to the France node indicating

that the RPC request has been handled at the Europe node. The operation continues at

the France node upon receipt of this reply. The France node then makes its changes

120 CHAPTER 5. AVAILABILITY AND FAULT TOLERANCE

Europe

RennesParis

France

Figure 5.4: Crash during an insert operation, part 2. The insert operation makes

tentative changes authoritative, but leaf nodes crashes.

authoritative, and sends its reply to the Paris leaf node. However, the Paris leaf node

crashes before it can receive the RPC reply from the France node. The Paris node

loses its tentative changes and forgets it was handling an insert request. Figure 5.5 shows

the end result with the path of forwarding pointers in the Europe and France nodes

pointing to the empty Paris leaf node.

The child nodes of a crashed node face a different problem caused by the node crash.

To deal with intermittently dropped network packets, a receiving node (i.e., the parent)

acknowledges receiving a packet. This tells the sending node (i.e., the child) that the

packet has been received and that the RPC request or reply in the packet will be dealt

with. However, if the receiving node crashes after sending the acknowledgment, the node

loses all knowledge of having received the RPC request or reply while the sending nodes

still assume that their packets will be dealt with. Especially problematic is the loss of an

update RPC request from a child node since this results in the child node assuming its RPC

request is being handled, and the child node will thus wait indefinitely for an RPC reply.

The purpose of the recovery mechanism is thus twofold:

1. The mechanism must correct the inconsistencies created by update operations bro-

ken off due to a node crash.

2. The mechanism must allow update operations to complete, even though nodes crash

during their execution.

5.3.2 Crash Recovery

The crash recovery method must resolve the inconsistencies between the crashed node

and its parent. However, the recovery method does not have to reconstruct the exact old

state of the tree before the crash; any consistent state will do as long as it is a possible

5.3. INTERNAL FAILURES 121

Paris Rennes

France

Europe

Inconsistency

Figure 5.5: Crash during an insert operation, part 3. The Paris leaf node reverts

back to its authoritative empty state and becomes inconsistent with its parent, the

France node.

result of the authoritative state before the crash with the pending update operations applied

to it. We are therefore interested only in ensuring that updates are not lost and that the

consistency between a crashed node and its parent is restored. There can be more than

one consistent state since the same set of update operations can result in a different state

due to race conditions (recall the example of Figure 5.1).

The recovery method is based on the idea that since these inconsistencies were caused

by the partial execution of outstanding update requests, they will be resolved when all

outstanding update requests are restarted and fully handled. The method thus consists of

the resending of the outstanding update requests by the children of a recovering node.

Since these child nodes are still waiting for an RPC reply anyway, they can easily resend

their requests when they notice the crashed node has restarted. The restarted node executes

these resent requests, some possibly for a second time, and resolves the inconsistencies

that might have arisen during the node crash. Note that we have to ensure that our update

operations are idempotent. We discussed this and other requirements of our method in the

next section.

The re-execution of the update procedures at the recovering node results in new update

requests being sent to its parent node. The parent simply executes the requested proce-

dures using the current version of its contact record, unaware that its child is actually

recovering from a node crash and unaware that these requests were the result of the crash

recovery method. The crashed node uses the reply sent by the parent node to become

consistent with its parent.

Consider first the situation of re-executing an insert procedure at the recovering node.

Three cases can be distinguished. First, if the contact field at the parent associated with

the recovering child node already stores a contact address, the parent will store the new

contact address as well, and tell the recovering node to discard its modification. Second,

122 CHAPTER 5. AVAILABILITY AND FAULT TOLERANCE

RennesParis

A

France

Europe

A

Figure 5.6: The occurrence of inconsistency, part 1. The initial situation

if the contact field already stores a forwarding pointer, the parent will tell the recovering

node to store the contact address. Third, if the contact field is empty, the parent can choose

what to do, and subsequently tell the recovering node what it should do. In all cases, the

recovering node gets told by the parent what to do (i.e., keep or discard its modification)

to become consistent. If an inconsistency between this node and its parent was caused by

the insert operation during the node crash, it is now resolved. Note that the parent node

does not have to be aware it is actually re-executing the insert procedure.

Now consider the situation where the recovering node re-executes a delete procedure.

If the contact record at the recovering node does not become empty, the delete procedure

is finished. If the contact record became empty or was already empty, the recovering node

invokes a delete procedure at its parent. Two cases can be distinguished. Either the parent

node already received a delete request for this operation from the recovering node or it

did not. If the parent already received a request, the part of the delete operation above the

crashed node is already executed. The procedure will try to delete the contact address or

forwarding pointer and find it is already done. If the parent did not yet receive a delete

request, it simply deletes the contact address and its path of forwarding pointers. Either

way when the delete procedure is executed the path of forwarding pointers is deleted.

In principle we can use the same update procedures (i.e., the algorithms) to resolve

inconsistencies as used in normal operations. Figures 5.6–5.11 show, however, that the

inconsistency between a recovering node and its parent might pose a problem during the

recovery of the node. Consider a part of a search tree with one contact address inserted at

the Paris leaf node. This address is about to be deleted and a new contact address at the

Rennes leaf node is about to be inserted, as shown in Figure 5.6.

If the recovery method consisted of simply resending the insert request the following

might happen. In Figure 5.7 the delete request is received at the Paris node, and a delete

operation is started that tentatively deletes the contact address and forwarding pointers. In

Figure 5.8 the second half of the delete operation starts, and the delete operation makes

5.3. INTERNAL FAILURES 123

Rennes

France

Paris

Europe

delete
request

A

Figure 5.7: The occurrence of inconsistency, part 2. The delete operation tenta-

tively removes the contact address and forwarding pointers.

its change at the Europe node authoritative and an RPC reply is sent. The France node

crashes, however, before the reply is received.

The resulting situation is shown in Figure 5.9. The France node only has its author-

itative state, and forgot it was deleting its forwarding pointer. The Paris leaf node is

waiting for a reply on its delete request, and the Rennes leaf node is about to start its

insert operation. Figure 5.10 shows the Rennes leaf node receiving its insert request, and

starting an insert operation. This operation inserts tentatively a new contact address at the

Rennes leaf node and a forwarding pointer at the France node. However, given that

the forwarding pointer to the Paris leaf node is authoritatively stored at the France

node, the insert operation assumes incorrectly that a forwarding pointer is also stored at

the Europe node and immediately makes the new forwarding pointer also authoritative.

Figure 5.11 shows the resulting situation. The insert operation has finished by making

the contact address authoritative. However, the delete operation, which is repeated as part

of the crash recovery, deletes the forwarding pointer at the France node, and given the

presence of the forwarding pointer to the Rennes node incorrectly assumes it is finished

as well. The France node therefore sends an RPC reply to the Paris node allowing the

delete operation to finish. Both the delete and insert operation have finished successfully,

and assume that they have left the tree in a consistent state. The inconsistency between the

Europe and France node in Figure 5.11 clearly shows that this is not the case. Update

operations thus need to behave differently during the recovery since they cannot use the

local contact record to determine what is stored at the parent node.

The problem with using (normal) update procedures to restore consistency is that they

assume that the existing information in the search tree is consistent. However, if a node is

124 CHAPTER 5. AVAILABILITY AND FAULT TOLERANCE

France

Paris

Europe

Rennes

A

Figure 5.8: The occurrence of inconsistency, part 3. The delete operations makes

the change in Europe node authoritatively, but the France node crashes before

receiving the RPC reply from the Europe node.

Paris Rennes

Europe

France

A

Figure 5.9: The occurrence of inconsistency, part 4. The France node reverts

back to its previous authoritative state.

5.3. INTERNAL FAILURES 125

request
insert

Paris Rennes

France

Europe

A A

Figure 5.10: The occurrence of inconsistency, part 5. The insert operation insert

a tentative contact address at the Rennes node and an authoritative forwarding

pointer at the France node.

Paris Rennes

France

Europe

delete
reply reply

insert

Inconsistency

AA

Figure 5.11: The occurrence of inconsistency, part 6. The delete operation removes

authoritatively the forwarding pointer at the France node and the contact address

at the Paris node. Both the delete and insert operation are completed, while the

inconsistency remains between the Europe and France nodes.

126 CHAPTER 5. AVAILABILITY AND FAULT TOLERANCE

recovering from a node crash, this assumption is obviously incorrect. More specifically,

the problem is that an insert operation assumes that if it finds an authoritative nonempty

contact record at a node, the parent node will have an authoritative forwarding pointer,

and the parent node does not have to be contacted.

We call the period during which the crashed node is resolving inconsistencies the

recovery phase. To avoid creating an inconsistent tree during the recovery phase, we

modify the behavior of the insert operation during the recovery phase. The basic idea is

that the insert procedure does not trust the local contact record and does not use it to draw

conclusions about the contact record at the parent node. An insert procedure therefore

always requests permission for its modification from its parent during the recovery phase.

The parent node can then insert the address or a forwarding pointer if needed. Using

the reply from the parent, the insert procedure can perform the correct local change, as

described above.

The recovery phase is finished when all inconsistencies have been resolved, that is, all

contact records at the recovering node are consistent with those at the parent. The problem

is how to determine efficiently when this point is reached. Every inconsistency is caused

by an update operation that was only partially completed, and for which the crashed node

was awaiting an answer from its parent. Since that same inconsistency disappears when

the node re-executes the update request, a node becomes consistent when it has executed

all operations that were broken off by the node crash. Therefore, when each child of the

crashed node has finished executing all previously issued update requests, the recovery

phase is finished.

The recovery phase is implemented by distinguishing the RPC requests resent after

a node crash as recovery requests. A special end-recovery-requests message

signals the end of the stream of recovery requests and the start of regular (new) requests.

If the recovering node has received end-recovery-requests messages from all

its children, it knows that when all currently running update procedure are finished, its

contact records are consistent with the records at its parent.

Unfortunately, in two cases there are no child nodes that can repeat their outstanding

update requests. The first case is when the recovering node is a leaf node. Location

service clients can, in principle, also resend their update requests, but this would make the

location service dependent upon clients for its internal consistency. Since the organization

maintaining the location service has no control over these clients this would increase the

likelihood of errors, and using clients to resend update requests is thus undesirable. The

second case is the take-over message, sent by the parent node as part of the move-down

operation, described in Chapter 4. Since the parent retains no knowledge of having sent

the take-over message (recall that it is only a message, not an RPC call), it cannot resend

the request.

To deal with these two cases, every physical node has a persistent message log, for

instance, on disk. This persistent log stores the update request messages received from

clients by a leaf node and the take-over messages received by all nodes. These messages

are kept in the log during the execution of the update procedure and are deleted once the

execution has finished. When a physical node restarts, it starts handling the requests in

5.3. INTERNAL FAILURES 127

the message log as if these were recovery requests sent by normal child nodes. When the

old requests in the log are handled, the node continues with the requests it receives over

the network. We use this persistent message log only in these two cases (instead for all

update requests) since to guarantee consistency, the message logging to disk needs to be

synchronous, making it an expensive operation.

5.3.3 Correctness

Our recovery method is similar to message-logging systems, such as sender-based message-

logging [Johnson and Zwaenepoel, 1987], but does not need the mechanisms used in

message-logging systems to repeat messages in strictly the same order as before the crash.

Our recovery method can recover a consistent distributed state without such mechanisms

because of three reasons:

1. A modification to a contact record is made permanent atomically.

2. Every modification to a contact record is idempotent.

3. Modifications to a contact record resulting from different child nodes are commu-

tative.

The modified contact record is written to disk in an atomic fashion, that is, a node has

either written a modified contact record completely before it crashes, or the node crashes

before it started its write operation. A node never crashes during a write operation. Since

we also assume that contact records already stored on disk are not corrupted by a node

crash, we basically assume the use of stable storage techniques in the implementation of

the contact record database. The recovery mechanism therefore does not have to worry

about inconsistencies within a contact record.

The modifications to a contact record are idempotent since the contact fields that make

up a contact record use (mathematical) sets to store contact addresses and boolean values

to store forwarding pointers. As a consequence, inserting a contact address in or deleting it

from a contact field for a second time does not change the contact field. Likewise, setting

or clearing the forwarding pointer a second time does not change the contact field either.

Being idempotent allows the modifications to be redone without adverse effect. The idem-

potency also applies to groups of operations since the update requests are retransmitted in

the original order.

The modifications requested by different child nodes are commutative since different

child nodes operate on different contact fields. Requests retransmitted by different child

nodes therefore do not interfere. The final result, however, can be different than expected

before the crash since the ordering of requests from two children can be different during

the recovery. This is not a problem since the issue is not whether we restore the original

state, but instead, that we end in a consistent state. Since update operations are commu-

tative from different child nodes, any ordering of requests will result in a consistent state.

Note, however, that the original ordering of requests per child does need to be maintained.

128 CHAPTER 5. AVAILABILITY AND FAULT TOLERANCE

The recovery method requires that all update operations start at a lower node and

work their way up the tree. That way the RPC reply signals that the nodes higher in the

tree have performed their part of the update operation successfully. A physical node is

therefore allowed to send its RPC reply only when it is sure its modification is safely

written to disk. The write operation can thus be considered as making a checkpoint. The

move-down operation is therefore also structured as an operation that starts at the child

node and that sends an update request to its parent. The child node uses the information

in the RPC reply from the parent to become consistent again.

An important aspect of the recovery method is that it is transparent to the update

procedures executing at the parent and children of the recovering node. The update pro-

cedures at a child node are unaware of the RPC system sending the update requests to

the crashed node for a second time. An update procedure requests an RPC only once, but

when the RPC is completed, the procedure is guaranteed to have been performed at the

parent, possibly more than once. The RPC system thus guarantees at-least-once semantics

[Spector, 1982]. The parent node is unaware of receiving the same RPC request message

multiple times; it deals with every request as a separate individual request. This does not

lead to problems because the update procedures are idempotent.

It follows from this recovery transparency at child and parent that multiple simultane-

ous node crashes can be handled without extra effort. When two nodes on different paths

from leaf to root crash, their recovery is unrelated. When two nodes on the same path

from leaf to root crash, but these nodes are not directly connected, no problem arises as

well. In both cases a crashed node has normal running child nodes (i.e., nodes that are not

in the recovery phase themselves), which retransmit their update requests.

The question is what happens when two directly connected nodes (i.e., parent and

child) crash simultaneously. In this case, the recovering parent will receive retransmis-

sions from its grandchildren indirectly via its recovering child. During its recovery, the

recovering child node will transmit its requests to the recovering parent, just as in normal

recovery of the parent. The parent and child nodes are completely unaware of each other’s

recovery. When the recovering child has fully recovered itself, it will send its end-

recovery-requests message to the parent node. Note that the recovery method can

therefore also deal with the child node crashing during the recovery of the parent node.

When the child is restarted, it will simply start resending the recovery requests (some

possibly for the third time), while it is recovering itself.

Figure 5.12 shows two directly connected nodes, the Europe and France nodes,

recovering from a node crash. Both nodes are assisted by the child nodes. The France

node plays a special role since it is both recovering itself and sending recovery requests

to the Europe node. The update procedures executing at the France node are, how-

ever, not aware that the Europe node is also recovering. The France node sends

an end-recovery-requests message to the Europe node when it has received

end-recovery-requests messages from the Paris and Rennes nodes and fin-

ished handling all update requests received before the end-recovery-requests

messages.

5.4. MEDIA FAILURES 129

NetherlandsUKFrance

RennesParis

Child nodes sending recovery messages

Recovering nodes

Europe

World

R

R

Figure 5.12: The Europe and France node recovering simultaneously. Recovery

messages are sent two both nodes, and the France nodes helps the recovery of the

Europe node while recovering itself.

5.4 Media Failures

In this section we describe some methods that can be used to deal with the loss of persis-

tent data, that is, disk crashes. Since we have not investigated the problem of lost persistent

state thoroughly, the discussion here is speculative and contains only some global ideas.

To simplify our discussion, we assume in this section that the physical node has lost all

its persistent data.

When a physical node loses its persistent data, all paths of forwarding pointers that

used the node have become inconsistent. Two types of inconsistency problems occur. The

first problem is inconsistencies between the crashed node and its children. This happens

when a child node stores contact records and the crashed node no longer stores forwarding

pointers to the child node. The second problem is inconsistencies between the crashed

node and its parent. This happens when the parent has forwarding pointers pointing to the

crashed node and the crashed node does not store any contact record. Furthermore, the

contact addresses stored by the physical node are also lost.

The search tree can be made consistent again, but this might still include the loss of

location information. The recovery process consists of two steps. The first step deals

with the inconsistency problems between the crashed node and its children. The children

go through their persistent contact record database and for every contact record tell the

recovering node that it should store a forwarding pointer. This ensures that the contact

addresses in the subtree of the recovering node can be found again.

The second step deals with the inconsistency problems between the crashed node and

its parent. In this step the parent node goes through its persistent contact record database

130 CHAPTER 5. AVAILABILITY AND FAULT TOLERANCE

and for every forwarding pointer checks with the recovering node if a nonempty contact

record exists. If no contact record can be found at the recovering node, the recovering

node apparently used to store a contact address that has been lost due to the disk crash.

Therefore, the path of forwarding pointers ending at the parent must be removed because

the contact address is permanently lost. After these two steps, the search tree is consistent

again.

Both steps in the recovery process are, unfortunately, heavyweight since they require

significant communication between nodes and a traversal through the complete persistent

databases at the parent and child nodes. Fortunately, we can make use of stable storage

techniques to store data highly reliable in the presence of disk crashes. These techniques

introduce reliability by storing data redundantly on multiple disks. These disks can be

located at the same site, such as in RAID technology [Chen et al., 1994], or located

at different sites, such as in the Petal system [Lee and Thekkath, 1996]. Using these

techniques, the loss of a physical node is limited to the risk of catastrophic events, such

as fires and floods.

Even though the recovery process can establish a consistent search tree, there remains

the problem of dealing with the lost contact addresses stored at the recovering node. One

way to deal with this problem is to reuse the contact address lease system, discussed in

Chapter 2. Since a client is required to renew its lease regularly, the contact address can be

reinserted when it appears missing during a lease renewal. The contact address is then lost

only for the period between the disk crash and the renewal of the lease. A compromise

has to be found for the duration of the lease: too long will result in a slow recovery of the

contact address; too short will result in leaf nodes frequently handling renewal requests.

5.5 Implementation

This section describes how view series and crash recovery are integrated into the location

service. It starts with an overview of the layers in the design of a physical node. The rest

of this section presents the fault-tolerant versions of the update procedures. The lookup

procedure can stay the same as presented in Chapter 4. It simply uses the current contact

record view instead of the contact record itself.

5.5.1 Design

The design of a physical node with the crash recovery techniques implemented can be di-

vided into five layers, as shown in Figure 5.13. The top layer contains the implementation

of the lookup and update procedures. The second layer contains the implementation of the

exclusive access and scheduling rules for executing procedures, as described in the begin-

ning of this chapter. The third layer is the distribution layer dealing with node partitioning

issues, as described in Chapter 3. The fourth layer is the RPC layer that is responsible for

the high-level RPC communication. This layer is responsible for maintaining the ordering

of RPC requests and replies and for resending RPC requests when a physical node restarts.

5.5. IMPLEMENTATION 131

Messenger Layer

RPC Layer

Distribution Layer

Scheduling Layer

Algorithm Layer

Network

Figure 5.13: Layering in the design of a physical node

The layer implements the inRecovery function that indicates whether the node is in the

recovery phase. It also maintains the persistent message log. The bottom layer is the

messenger layer that is responsible for reliable low-level communication between nodes.

5.5.2 Insert Operation

Listing 5.4 and Listing 5.5 show versions of the insertAddress and insertPointer proce-

dures that make use of view series and implement the crash-recovery extensions. There is

no code dealing with scheduling in the procedures since the scheduling of procedures is

performed outside the algorithm layer.

The insertAddress Procedure

Listing 5.4 shows the concurrent and fault-tolerant version of the insertAddress proce-

dure. The signature of the procedure has not changed since previous versions, but unlike

previous versions, this version actually uses the boolean return value. The procedure will

normally return false to indicate the caller should not store the contact address, but during

crash recovery the crash recovery the procedure might return true.

The procedure starts, in lines 10–11, with retrieving the view series of the object and

computing the current view of the view series. Since the procedure can be used on an

inconsistent tree, the procedure can no longer be sure that the contact field to be modified

is either empty or stores contact addresses. The procedure therefore checks, in line 15,

whether the contact field already stores a forwarding pointer. If that is the case, this

node can only keep the forwarding pointer (line 16) and tell the caller to store the contact

132 CHAPTER 5. AVAILABILITY AND FAULT TOLERANCE

(1) procedure insertAddress(oh : ObjectHandle;

(2) addr : ContactAddress;

(3) caller : NodeID) returns Boolean is

(4) tentativeCR : ContactRecordView; −− tentative contact record

(5) viewCR : ContactRecord; −− initial view of contact record

(6) storedAddress : Boolean; −− address or forwarding pointer

(7) approved : Boolean; −− parent approves address insert

(8) begin

(9) −− Retrieve the contact record view series and compute the initial view.

(10) tentativeCR := getTentativeCR(oh);
(11) viewCR := view tentativeCR;

(12)

(13) −− Add the address or a pointer (possibly temporarily) to the view series.

(14) −− This change is in main memory only.

(15) if viewCR(caller).isPtr

(16) then append view 〈self(caller).isPtr := true〉 to tentativeCR;

(17) storedAddress := false;

(18) else append view 〈self(caller).addrSet :=
(19) self(caller).addrSet +{addr}〉 to tentativeCR;

(20) storedAddress := true;

(21) end if;

(22)

(23) −− Ask the parent for approval, if needed.

(24) if parent �= NIL and (isEmpty(viewCR) or sizeOf (tentativeCR) > 1 or

(25) inRecovery()) then

(26) if not isEmpty(viewCR) or doStoreHere(viewCR)
(27) then approved := call insertPointer(oh, addr, thisNode) at parent;

(28) else approved := call insertAddress(oh, addr, thisNode) at parent;

(29) end if;

(30) else

(31) approved := true; −− No approval needed.

(32) end if;

(33)

(34) −− Undo the local modification if the parent does not approve, and return

(35) −− the appropriate response to the child node.

(36) if approved

(37) then apply view to tentativeCR; −− Make the change persistent

(38) return not storedAddress;

(39) else remove view from tentativeCR;

(40) return false;

(41) end if;

(42) end insertAddress;

Listing 5.4: The fault-tolerant insertAddress procedure.

5.5. IMPLEMENTATION 133

address itself (line 17). Note that a leaf node will therefore never return true to a client

since it will never refuse to store a contact address. Normally, the contact address will be

appended to the view series, in lines 18–20.

Lines 24–25 determine whether the procedure should contact the parent node. The

condition the procedure uses is an extended version of the conditions found in previous

versions of this procedure. In this case the procedure contacts the parent node if the parent

exists and one of three cases applies. The first case is if the contact record is empty. If it is

empty, the contact record at the parent is obviously also empty. The second case is if the

view series has more than one view appended to it. This means that there are concurrently

running update procedures, and the current view of the view series is only tentative. The

third case is if the node is in the recovery phase.

In line 26 the procedure decides what RPC call to make. If this node wants or needs to

store the address itself, it sends an insertPointer request, otherwise it sends an in-

sertAddress request. Either way, the approval of the parent node to store the contact

address is saved in the approved variable. If no RPC is performed, the variable is set to

true.

Based on the variable approved, the insertAddress procedure makes its tentative change

authoritative by applying it to the underlying contact record (line 37), or it discards the

change by removing it from the view series (line 39). In the former case, the procedure

returns true if a forwarding pointer was stored and false otherwise. In the latter case, the

procedure always returns false.

The insertPointer Procedure

Listing 5.5 shows the concurrent and fault-tolerant version of the insertPointer procedure.

This version of the procedure follows the same general structure as previous versions.

The procedure starts, in lines 10–11, with retrieving the view series for the object and

computing its current view. Using the current view, the procedure decides whether it

wants to store the contact address or a forwarding pointer, in lines 17–21. The change is

appended to the view series in lines 17–18 or line 20.

The procedure then decides, in lines 25–26, whether it should contact the parent node

to ask its permission for the change appended to the view series. As for the insertAddress

procedure, this condition is that the parent exists, and either the contact record is empty,

or there are concurrently executing procedures, or the node is in its crash recovery phase.

The actual invocation is performed in line 27. The approved variable stores whether the

parent approves our appended change. If no RPC call is made, it is set to true.

Based on the variable approved, the insertPointer procedure applies its tentative change

to the underlying contact record, in line 34, or removes it from the view series, in line 36.

In the former case, the procedure returns true if a stored forwarding pointer was stored

and false otherwise. In the latter case, the procedure always returns false.

134 CHAPTER 5. AVAILABILITY AND FAULT TOLERANCE

(1) procedure insertPointer(oh : ObjectHandle;

(2) addr : ContactAddress;

(3) caller : NodeID) returns Boolean is

(4) tentativeCR : ContactRecordView; −− tentative contact record

(5) viewCR : ContactRecord; −− initial view of contact record

(6) storedAddress : Boolean; −− address or forwarding pointer

(7) approved : Boolean; −− parent approves address insert

(8) begin

(9) −− Retrieve the contact record view series and compute the initial view.

(10) tentativeCR := getTentativeCR(oh);
(11) viewCR := view tentativeCR;

(12)

(13) −− Add the address or a pointer (possibly temporarily) to the view series.

(14) −− This change is in main memory only.

(15) if viewCR(caller).addrSet �= /0 or (not viewCR(caller).isPtr and

(16) doStoreHere(tentativeCR))
(17) then append view 〈self(caller).addrSet :=
(18) self(caller).addrSet + {addr}〉 to tentativeCR;

(19) storedAddress := true;

(20) else append view 〈self(caller).isPtr := true〉 to tentativeCR;

(21) storedAddress := false;

(22) end if;

(23)

(24) −− Ask the parent for approval, if needed.

(25) if parent �= NIL and (isEmpty(viewCR) or sizeOf (tentativeCR) > 1 or

(26) inRecovery())
(27) then approved := call insertPointer(oh, addr, thisNode) at parent;

(28) else approved := true; −− No approval needed

(29) end if;

(30)

(31) −− Undo the local modification if the parent does not approve, and return

(32) −− the appropriate response to the child node.

(33) if approved

(34) then apply view to tentativeCR; −− Make the change persistent

(35) return not storedAddress;

(36) else remove view from tentativeCR;

(37) return false;

(38) end if;

(39) end insertPointer;

Listing 5.5: The fault-tolerant insertPointer procedure.

5.5. IMPLEMENTATION 135

5.5.3 Delete Operation

Listing 5.6 shows the concurrent and fault-tolerant version of the deleteAddress procedure.

In contrast to the deleteAddress procedure from Chapter 2, this version has an additional

boolean parameter, called delPtr. The parameter tells the procedure whether it should

remove forwarding pointers. This parameter is set to true by the calling procedure at the

child node if the child’s contact record became empty.

The deleteAddress procedure starts, in line 11–12, with retrieving the view series for

the object and computing its current view. Using the view, the procedure determines

whether it can delete a contact address (line 13) or a forwarding pointer (line 14). Note

that a forwarding pointer can be deleted only if the contact record at the caller was empty.

If something can be deleted (line 16), the procedure will do so in lines 17–37.

The deleteAddress procedure continues with determining whether it should remove a

contact address or a forwarding pointer, in line 19. The actual deletion consists of ap-

pending a new view with the contact address (lines 20–21) or forwarding pointer (line 23)

removed from the contact record. To decide what to do next, a new view of the view series

is computed, in line 26. If a parent node exists (line 29), the procedure might need to con-

tact it. If the contact record has become empty (line 30), the parent node needs to delete

its forwarding pointer (line 31), as indicated by the delPtr parameter. If the contact record

was nonempty but there were other concurrent procedures or the node was in its recovery

phase (line 32), the deleteAddress procedure needs to be invoked at the parent as well, but

without the possibility to remove forwarding pointers (line 33). Finally, in line 37, when

the RPC at the parent has returned, the appended view is applied to the contact record to

make the change authoritative.

If no contact address or forwarding pointer was found, the procedure has to check one

last case. If the parent node exists and the contact record is empty (line 38), or there is a

concurrently executing procedure (line 38), or the node is in its recovery phase (line 39),

the deleteAddress procedure is invoked at the parent to search for the contact address there

(line 40). Otherwise, the procedure is ready.

5.5.4 Move-down Operation

The move-down operation moves a single contact address from a parent node to its child.

The operation consists of the reInsertAddress procedure executing at the child and the

reInsertPointer procedure executing at the parent, as described in Chapter 4.

Listing 5.7 shows the fault-tolerant reInsertAddress procedure. As with all procedures

in this chapter, the reInsertAddress procedure starts with obtaining the view series of the

object and computing its current view, in lines 9–10. The procedure then determines the

contact field in which the contact address has to be inserted, in line 11. If the contact field

already stores a forwarding pointer, the address cannot be inserted. If the contact field

already stores the contact address, the address does not need to be inserted. In both cases,

the procedure is finished, in line 15.

In lines 19–20, the contact address is inserted by appending a new view to the contact

136 CHAPTER 5. AVAILABILITY AND FAULT TOLERANCE

(1) procedure deleteAddress(oh : ObjectHandle;

(2) addr : ContactAddress;

(3) delPtr : Boolean;

(4) caller : NodeID) is

(5) tentativeCR : ContactRecordView; −− tentative contact record

(6) viewCR : ContactRecord; −− current view of contact record

(7) addrFound : Boolean; −− Can we delete an address?

(8) ptrFound : Boolean; −− Can we delete a pointer?

(9) begin

(10) −− Retrieve the contact record view series and compute the initial view.

(11) tentativeCR := getTentativeCR(oh);
(12) viewCR := view tentativeCR;

(13) addrFound := addr ∈ viewCR(caller).addrSet;

(14) ptrFound := delPtr and viewCR(caller).isPtr;

(15)

(16) if addrFound or ptrFound then

(17) −− Delete the address or pointer by appending a tentative change.

(18) −− This change is in main memory only.

(19) if addrFound then

(20) append view 〈self(caller).addrSet :=
(21) self(caller).addrSet − {addr}〉 to tentativeCR;

(22) else

(23) append view 〈self(caller).isPtr := false〉 to tentativeCR;

(24) end if;

(25)

(26) viewCR := view tentativeCR; −− Compute the new current view

(27)

(28) −− Tell the parent to delete its address or forwarding pointer, if needed.

(29) if parent �= NIL then

(30) if isEmpty(viewCR) then

(31) call deleteAddress(oh, addr, true, thisNode) at parent;

(32) elsif sizeOf (tentativeCR) > 1 or inRecovery() then

(33) call deleteAddress(oh, addr, false, thisNode) at parent;

(34) end if

(35) end if;

(36)

(37) apply view to tentativeCR; −− Make the change persistent

(38) elsif parent �= NIL and (isEmpty(viewCR) or sizeOf (tentativeCR) > 0 or

(39) inRecovery()) then

(40) call deleteAddress(oh, addr, false, thisNode) at parent;

(41) end if;

(42) end deleteAddress;

Listing 5.6: The fault-tolerant deleteAddress procedure.

5.5. IMPLEMENTATION 137

(1) procedure reInsertAddress(oh : ObjectHandle,
(2) addr : ContactAddress) is

(3) tentativeCR : ContactRecordView; −− tentative contact record

(4) viewCR : ContactRecord; −− initial view of contact record

(5) child : NodeID; −− Identity of the contact field to use

(6) success : Boolean;

(7) begin

(8) −− Retrieve the contact record view series and compute the initial view.

(9) tentativeCR := getTentativeCR(oh);
(10) viewCR := view tentativeCR;

(11) child := determineField(addr);
(12)

(13) −− Determine if we can and need to insert the contact address

(14) if viewCR(child).isPtr or addr ∈ viewCR(child).addrSet then

(15) return;

(16) end if;

(17)

(18) −− Insert the contact address by appending a tentative change.

(19) append view 〈self(caller).addrSet :=
(20) self(caller).addrSet +{addr}〉 to tentativeCR;

(21)

(22) −− Tell the parent to insert a forwarding pointer.

(23) success := call reInsertPointer(oh, addr, thisNode) at parent;

(24)

(25) −− Undo the local modification if the address was deleted at the parent.

(26) if success

(27) then apply view to tentativeCR; −− Make the update persistent

(28) else remove view from tentativeCR;

(29) end if;

(30) end reInsertAddress;

Listing 5.7: The fault-tolerant reInsertAddress procedure.

138 CHAPTER 5. AVAILABILITY AND FAULT TOLERANCE

(1) procedure reInsertPointer(oh : ObjectHandle,
(2) addr : ContactAddress,
(3) caller : NodeID) return Boolean is

(4) begin

(5) −− Retrieve the contact record view series and compute the initial view.

(6) tentativeCR := getTentativeCR(oh);
(7) viewCR := view tentativeCR;

(8)

(9) if sizeOf (tentativeCR) = 0 and viewCR(caller).addrSet = {addr} then

(10) −− Exchange the address for a pointer by appending two tentative changes.

(11) append view 〈self(caller).addrSet := /0;

(12) self(caller).isPtr := true〉 to tentativeCR;

(13) apply view to tentativeCR; −− Apply the changes directly.

(14)

(15) return true; −− The exchange was successful.

(16) elsif sizeOf (tentativeCR) = 0 and viewCR(caller).isPtr then

(17) return true; −− Already inserted a forwarding pointer.

(18) else

(19) return false; −− The exchange could not be done.

(20) end if;

(21) end reInsertPointer;

Listing 5.8: The fault-tolerant reInsertPointer procedure.

record. The child node then invokes the reInsertPointer procedure at its parent to swap the

contact address for a forwarding pointer, in line 23. The result of this RPC call is stored in

the variable success. If the procedure at the parent was successful (line 26), the appended

view is made permanent, in line 27, otherwise the appended view is discarded, in line 28.

Listing 5.8 shows the fault-tolerant reInsertPointer procedure. The procedure starts

with obtaining the view series of the object and computing its current view, in lines 6–7.

Unlike other procedures, this procedure does not perform an RPC. As a result, the pro-

cedure appends a tentative change and applies it straightaway. This presents, however,

a scheduling problem when there are concurrently executing update procedures for this

object. Since these procedures have already appended tentative changes to the view se-

ries, the change appended by the reInsertPointer procedure at the back of the queue will

not be the same change that is made permanent at the head. We therefore ensure that

reInsertPointer procedure performs its function only when no other concurrently execut-

ing procedures exists (i.e., when the number of views is zero), and aborts the move-down

operation otherwise.

To allow the exchange of the contact address for the forwarding pointer, the address

also has to be the only address in the contact field (line 9). If these two conditions are met,

the address is deleted from the contact field and the forwarding pointer is appended in one

view, in lines 11–12. This view is applied in line 13, and the procedure signals the caller

the exchange was successful, in line 15. If the contact record contains an authoritative

5.5. IMPLEMENTATION 139

forwarding pointer (line 16), the procedure was already executed successfully before.

This can happen when either the parent or the child has crashed recently. To provide

an idempotent procedure, only the successful completion of the procedure needs to be

reported back to the caller, in line 17. Line 18 covers the remaining case where a problem

arose and the procedure needs to signal the caller the exchange has failed, in line 19, in

which case the whole move-down operation fails.

140 CHAPTER 5. AVAILABILITY AND FAULT TOLERANCE

Chapter 6

Security

This chapter describes our security goals in the location service, and the techniques we

employ to achieve them. We specifically focus on threats against the availability of the

location service. While in the previous chapter we looked at accidental disruption of

availability, here we look at intentional disruption. To achieve a high level of confidence

in the security of the location service, we keep our methods as simple as possible and use

only well-known techniques.

To simplify the security design, we assume that the location service is operated by

a single organization in which all parts of the organization can trust each other. We fo-

cus only on mechanisms that allow the location service to protect itself against outside

threats and do not worry about one part of the location service trying to attack another

part. Research into maintaining a large, trusted, virtual organization across a wide-area

network, such as the Internet, is a generic security problem that falls outside the scope of

this research.

6.1 Goal

As stated in previous chapters, the location service is central to all communication in

the Globe distributed system. It is therefore also the prime target for denial-of-service

attacks. By disrupting the availability of the location service, an attacker can prevent

clients from contacting objects, resulting eventually in a breakdown of the Globe system.

There are two ways to attack the availability of the location service. The first attack is

to disrupt update and lookup operations in progress. The second attack is to corrupt the

location data stored in the location service.

A simple denial-of-service attack that targets running operations is to disrupt all com-

munication in the location service. The main idea behind this kind of attack is to allocate

such a large amount of communication resources for useless communication that no re-

sources are left for useful communication. For instance, the process of setting up a con-

141

142 CHAPTER 6. SECURITY

nection through a three-way handshake requires some state at the accepting side of the

connection. By sending a large number of connection requests in parallel, an attacker can

tie up all memory resources dedicated to setting up connections. This type of attack has

been shown to be effective against TCP/IP [Schuba et al., 1997].

A second way to disrupt operations in progress is by generating a large number of valid

operations. For example, an attacker can continuously request insert and delete operations

or search for all contact addresses of a large number of objects. The amount of resources

used to handle these valid but otherwise useless requests, prevents ordinary requests from

being handled in a timely fashion, resulting in, for instance, time-outs and aborted lookup

operations.

The general protection mechanism against these types of denial-of-service attacks is

resource accounting [Leiwo et al., 2000]. By recording the amount of resources used

by a client and placing a limit on that amount, we can prevent clients from overloading

a physical node. An important part of this accounting process is the authentication of

clients. Unfortunately, in most cases significant amounts of resources are needed before

the identity of a client can be securely known. For instance, when setting up a communi-

cation channel, the identity of the peer is not yet securely known, and the authentication

protocols used to establish the identity of the peer are resource intensive as well.

To prevent denial-of-service attacks in cases where a client’s identity cannot be se-

curely determined, different researchers have proposed solutions based on puzzle solving

[Leiwo et al., 2000]. In these schemes, a server that fears it is under a denial-of-service

attack, refuses to allocate resources to a client before the client has solved a resource-

intensive puzzle. The basic notion is that a legitimate client can commit the resources

needed to solve a single puzzle, but that an attacker cannot commit the resources needed to

solve enough puzzles to overload the server with useless connections. For these schemes

to work, the generation of puzzles and the verification of their solutions should require

only a minimal amount of resources from a server. After a client provides the correct

solution to the given puzzle, it is allowed to setup a connection, authenticate itself, and

use the location service.

Our focus in this chapter is on preventing denial-of-service attacks against objects

through the unauthorized modification (i.e., corruption) of data in the location service.

We specifically want to prevent the unauthorized deletion of valid contact addresses and

the unauthorized insertion of invalid contact addresses through normal update operations.

If any client can delete contact addresses of any other client, all contact addresses run

the risk of being removed by an attacker. Furthermore, inserting large numbers of invalid

contact addresses for an existing object will make a valid contact address of the object

virtually invisible to clients.

Access control on update operations is the main form of protection against denial-of-

service attacks that target the data stored in the location service. The location service has

to determine which changes to a contact record are allowed and which are not. Since the

location service cannot determine by itself which update operations are allowed, clients

will have to determine the correct update policies for their objects.

Access control on update operations requires us to solve four problems:

6.2. OBJECT MODEL 143

• Secure communication between clients and the location service.

• Secure communication within the location service.

• Client authentication by the location service.

• Determining the update policy for an object and granting access accordingly.

To correctly enforce the update policies, the access control mechanism requires both the

integrity of communication channels to ensure that update requests are authentic and in-

tact, and the authentication of clients. Luckily, these two issues are well-known security

problems with good solutions. Providing a scalable mechanism for per-object update poli-

cies is a new problem, and the description of our solution therefore covers a major part of

this chapter.

Since the lookup operation does not change anything, it is generally available to all

clients, as long as a client is allowed to use the resources needed for the operation. The

location service currently does not support confidentiality of location information since

confidentiality is useful only when it is supported throughout the Globe distributed system.

Given that object handles and contact addresses are not kept confidential within Globe, it

is useless to keep them confidential within the location service.

However, we could have chosen to support the confidentiality of the set of contact

address associated with an object handle. For instance, a reason to keep the set confidential

is to provide a first line of defense against denial-of-service attacks on objects. Since

providing confidentiality would simply require access control for lookup operations and

encrypted communication within the location service, we are confident we can easily add

such functionality should the need arise.

It is important to realize that the location service is not part of the access control

system that protects the integrity of objects. The location service is involved only in

finding a replica of an object. We assume that the Globe system provides end-to-end

checks between clients and objects during the binding process, authenticating both the

client to the object and the object to the client. Afterward, an object enforces its own

access policy on the method invocations it receives.

6.2 Object Model

We introduce an object ownership model to determine who is allowed to make which

changes to the set of contact addresses of an object. In our model every object has a sin-

gle location-service client, called the object owner, that ultimately determines the set of

contact addresses of an object. For a (highly) replicated object it is undesirable, however,

that there is only a single entity that can perform update operations on the set of contact

addresses. To ensure locality, the object owner needs the ability to delegate (restricted)

update rights to other clients of the location service. These clients can then independently

of the object owner insert and delete contact addresses at their local leaf node, for exam-

ple, when they create or remove replicas.

144 CHAPTER 6. SECURITY

To keep some control over the set of contact addresses, the object owner should not

give these other clients unrestricted access to the set. Instead, the owner should determine

an update policy for its object that specifically states which update rights are delegated to

these clients. The location service should be able to read the policy and validate specific

update requests. An update right in this model allows a client to insert contact addresses

with certain characteristics and to delete contact addresses with certain characteristics.

These two rights are combined since it makes no sense to separate them and give a client

the right to insert a contact address without the right to delete it (or vice versa).

The update policy limits the basic update right by describing the characteristics of the

update operations it allows. Currently, the location service supports three characteristics:

the time and duration the contact address is to be stored, the location (e.g., network or

geography) of the contact address, and the property maps of the contact address. For

example, the update policy of an object might say that a specific client can insert contact

addresses of slave replicas (a property map restriction) during a week (a time restriction)

at the Amsterdam leaf node (a geography restriction). The three characteristics are not the

only ones possible. Other characteristics can also be supported should the need arise.

The time characteristic also influences the duration the contact address is stored in the

location service. As stated in Chapter 2, contact addresses are stored using a lease. When

the lease runs out, the contact address is deleted by the location service. Since the time

characteristic limits the period a client can have contact addresses in the location service,

this characteristic also limits the lease time of a stored contact address.

If an object is highly replicated, the process of managing and distributing update rights

to other clients might become too large for the object owner to handle on its own. An

object owner therefore also needs the ability to delegate the delegation right, that is,

allow another (trusted) client to delegate to other clients update rights and possibly the

delegation right itself. While this recursive step can be repeated indefinitely, we expect

only a few delegation steps to be useful. The object owner should therefore be able to

limit the (recursive) delegation right to a small number of steps. For instance, an object

owner can allow a trusted client to delegate the update rights to other clients, but refuse

the trusted client from delegating the delegation right itself.

As a general policy, a client that delegates update rights is allowed to delete all contact

addresses that were inserted using the update rights it has delegated. This policy is needed

to allow a client to remove invalid contact addresses inserted by a misbehaving client to

which it had previously delegated update rights. As a consequence, this policy also gives

the object owner full control over all the contact addresses of the object that are stored in

the location service since all update rights are always given (possibly indirectly) by the

object owner.

Figure 6.1 shows, as an example, the delegation relationships between the object

owner and eight other clients that can perform update operations. Beside the object owner,

only clients C1 and C2 have both update and delegation rights. Clients C3 to C8 have only

update rights. Contact addresses inserted by client C3 can be deleted by client C3 and the

object owner; contact addresses inserted by clients C6 to C8 can be deleted by the object

owner, client C2, and the client that inserted the contact address. The figure does not show

6.3. SECURE COMMUNICATION 145

C3

C4 C5 C6 C7 C8

Object Owner
A client with both update

and delegation rights

A client with update but

without delegation rightsC1

O

C2

Update right

Update and Delegation

right delegation

delegation

Figure 6.1: Update and delegation right delegation.

whether clients C1 and C2 are allowed to delegate the delegation right.

6.3 Secure Communication

To ensure that the access control mechanism works, we need to protect the underlying

communication system. We specifically need to ensure that a physical node can distin-

guish valid RPC requests and replies from those sent or modified by an attacker. Other-

wise, an attacker can simply trick a physical node into performing unauthorized changes

by impersonating another physical node that is authorized to make changes. This prob-

lem can be avoided by letting the sending node sign its request or reply cryptographically,

and letting the receiving node verify the signature on the request or reply. Since all lo-

cation information is public knowledge, no encryption is needed to ensure confidential

communication.

We protect the integrity of the communication channels between physical nodes using

public-key cryptography (PKC) [Diffie and Hellman, 1976]. Every physical node has

a key pair consisting of a public and a private key. Every physical node signs its RPC

messages with its private key, and other nodes verify these messages with the node’s

public key. Since the exact public key algorithm used is irrelevant to our discussion, any

applicable PKC algorithm can be used, for instance, RSA [Rivest et al., 1978].

We choose PKC over shared-key cryptography (SKC), also known as secret key

cryptography, because in our specific situation PKC is more scalable. The main problem

with an SKC-only system is its dependence on a trusted third party for generating, storing,

and handing out shared keys for every pair of nodes in the system. Since every physical

node should be able to communicate with every other physical node, the implementation

of the trusted third party will require a significant infrastructure and can easily become

a communication bottleneck in the location service. Furthermore, when SKC would be

used in a wide-area system, such as our location service, the interaction with the trusted

third party would require long-distance communication, violating our locality principle.

An important issue in any system using PKC is the secure distribution of public keys.

Since physical nodes use these keys to authenticate RPC messages, they have to be sure

146 CHAPTER 6. SECURITY

the public key used to authenticate a message belongs to the sending physical node. The

component responsible for the secure distribution of public keys in a PKC system is called

the public-key infrastructure (PKI). The PKI consists of certification authorities (CA)

that create certificates by signing (physical node identifier, public key)-pairs. A physical

node accepts the authority of the CA and trusts the binding of the public key to the node,

as stated in the certificate. The certificates then only need to be available to interested

physical nodes.

For secure communication between physical nodes in the location service, we make

use of a dedicated PKI. Adding a dedicated (internal) PKI to the location service is

straightforward since we already have a tree information service. The tree informa-

tion service provides information about the search tree, such as its logical structure, the

partitioning of logical nodes, and the contacting information of physical nodes. It can

easily also provide public keys as part of the contacting information. The tree information

service is described further in Chapter 7 on tree management issues.

The difference in scalability between the trusted third party of an SKC system and the

PKI of a PKC system is that the number of public keys stored in a PKC is much smaller

than the number of shared keys in an SKC. The number of keys stored in a PKI is of the

same order as the number of physical nodes (i.e., O(n)), while the number of (shared) keys

stored by the trusted third parties is in the order of the square of the number of physical

nodes (i.e., O(n2)). Furthermore, the creation of certificates (i.e., the signing of public

keys) can be done off-line, leaving the tree information service with the simple task of

distributing certificates.

An important problem with PKC systems is how to deal with key revocation. When

the private key of a physical node is compromised (i.e., potentially known by attackers),

other physical nodes can no longer use the public key of the pair to verify RPC request

and replies. These other nodes therefore need to be informed of the fact that this public

key is revoked. Fortunately, given the fact that physical nodes have to contact the tree

information service regularly anyway, they can easily receive key revocation information

during this contact.

PKC has several problems, most of which can be alleviated by using a hybrid public-

key and shared-key system. The first problem is that public key operations are slow (i.e.,

require many CPU cycles). The usual way to solve this problem is to setup a shared

session key using PKC, and then use this shared key to sign request and reply messages.

That way the heavyweight public-key operations need to be done only infrequently. The

use of session keys in a hybrid system also solves a second problem which is that public

keys are easier to break than shared keys of the same size. Since the public key is less

frequently used in a hybrid system, an attacker can collect less information to break the

key. A third problem is that public keys are larger than shared keys. Whereas the typical

size of a shared key is between 128 and 256 bits (16 to 32 bytes), the typical size of a

public key is between 1,024 and 2,048 bits (128 to 256 bytes). A public key can thus be

said to be on average a factor eight times larger than a shared key.

The size of the public keys of physical nodes can, unfortunately, pose a problem in

location caches. Recall that with the introduction of location caches, described in Chap-

6.3. SECURE COMMUNICATION 147

Table 6.1: Keys used together with a reconnection ticket.

Symbol Name Lifetime Known by

KLn Long-term key Long Node n

KMn Medium-term key Medium All nodes in the tree

KSn,m Session key Short Nodes n and m

ter 4, lookup operations avoid general tree traversal by following a reference from one

node in the search tree to another node in the tree that potentially stores a contact address.

Following the node reference means communicating (securely) with the physical node

that stores the contact record for the object at the referenced logical node. Every physical

node thus potentially needs to know the public key of every other physical node in the

tree.

The naive way to obtain the public key of a physical node is to query the tree informa-

tion service when its key is needed. This approach is, however, undesirable since it would

slow down and increase the resource usage of the lookup operation considerably. A sim-

ple way to avoid the communication with the tree information service is to let the physical

node that stored the contact address return a certificate with its public key together with

the contact address and its node identifier during a lookup operation. Every node along

the return path of the lookup operation can then validate and store this public key in its

location cache together with the node identifier. Storing public keys in the location cache

leads, unfortunately, to a significant increase in the size of a cache entry given the size of

public keys.

Fortunately, the problem of the increased cache entry size can also be diminished by

using a shared-key technique. This technique is based on the concept of a reconnection

ticket and uses three types of shared keys. The characteristics of the three types of keys

are shown in Table 6.1. To create a reconnection ticket, we associate a long-term key KLn

and a medium-term key KMn with every physical node n. Physical node n keeps its long-

term key KLn a secret, but shares its medium-term key KMn with other physical nodes

in the search tree. However, physical nodes do keep medium-term keys a secret from

everyone outside the search tree. A physical node regularly changes its medium-term key

to lessen the consequences in case the key is compromised.

Physical node n uses its long-term key KLn and medium-term key KMn to create a

reconnection ticket. The reconnection ticket (shown in Figure 6.2) consists of a plaintext

part and an encrypted part. The plaintext part consists of the medium-term key KMn of

physical node n. The encrypted part consists of the medium-term key KMn with some

administrative information encrypted with long-term key KLn. The administrative part,

for instance, describes how long the reconnection ticket remains valid. The reconnection

ticket is given to other physical nodes in the search tree to enable them to reconnect to

node n securely at some time in the future. Since the medium-term key KMn is a shared

key and available in plaintext in the ticket, the ticket has to be stored and communicated

148 CHAPTER 6. SECURITY

Medium-term

Key KMn

Administrative

Information

Medium-term

Key KMn

Encrypted with

Long-term

Key KLn

Figure 6.2: The structure of a reconnection ticket.

Paris Rennes London Glasgow

NetherlandsUKFrance

Europe

World

2

3

A

1

4

RotterdamAmsterdam

Figure 6.3: In the first half of the first lookup operation, the contact address is found

at the UK node.

confidentially. We therefore need to encrypt the ticket for secure transmission.

The use of the reconnection ticket in the lookup operation is shown in Figures 6.3–6.5.

Since we are dealing with the location cache, we need to consider two lookup operations.

The first lookup operation retrieves a node identifier (i.e., a node reference) and a recon-

nection ticket; the second lookup operation uses the node identifier and the reconnection

ticket to efficiently and securely retrieve the contact address a second time.

Figure 6.3 shows the first half (i.e., step 1–4) of the first lookup operation. In the

figure, the lookup operation traverses the search tree and finds a contact address at the

UK. This happens in the same way as described in Chapter 4. Note that this part of the

example does not involve the reconnection ticket.

In the second half of the first operation (shown in Figure 6.4), the UK node returns

6.3. SECURE COMMUNICATION 149

LondonRennesParis Glasgow

France

Amsterdam Rotterdam

(Address)

Reconnection ticket)

8

(Address, Node identifier,

5

7

6

A

World

Europe

NetherlandsUK

Figure 6.4: In the second half of the first lookup operation, the (contact address,

node identifier, reconnection ticket)-triplet is returned from the UK node to the Eu-

rope, Netherlands, and Amsterdam nodes. Note that, in step 8, the client

receives only the contact address.

its reconnection ticket, together with the contact address and its node identifier, in the

reply message of the lookup operation. Every physical node along the return path of

the lookup operation (i.e., the Europe, Netherlands, and Amsterdam node) can

store the node identifier and the reconnection ticket in its location cache, and use them to

securely (re-)connect to the UK node.

Figure 6.5 shows the second lookup operation that uses the cached node identifier and

reconnection ticket stored in the Netherlands node. When the (physical) Nether-

lands node retrieves the entry of the UK node from its location cache, it also retrieves

the reconnection ticket of the UK node. It then uses the plaintext medium-term key KMUK

from the reconnection ticket to encrypt a new session key KSNL,UK , and sends its lookup

request signed with KSNL,UK to the UK node, as shown in step 3 of Figure 6.5. This re-

quest includes the session key KSNL,UK encrypted with the medium-term key KMUK and

the encrypted part of the reconnection ticket, that is, the medium-term key KMUK and the

administrative information encrypted with the long-term key KLUK .

Since the UK node can decrypt the encrypted medium-term key using its own long-

term key KLUK , it knows that it has given its medium-term key KMUK to the Nether-

lands node (possibly indirectly) and that the Netherlands node is thus trustworthy.

Furthermore, using the medium-term key, it decrypts the session key KSNL,UK . It uses

the session key to sign its lookup reply, sent back in step 4. Using the signature, the

Netherlands node can verify the validity of the reply message. Reconnection tickets

150 CHAPTER 6. SECURITY

LondonRennesParis Glasgow RotterdamAmsterdam

3

4

52

61

A

World

Europe

NetherlandsUKFrance

Cached node reference and

Reconnection ticket

the reconnection ticket

Request message signed using

Figure 6.5: During the second lookup operation, the Netherlands node uses

the node reference and reconnection ticket from its location cache, obtained in Fig-

ure 6.4, to communicate securely with the UK node and obtain the contact address.

can also be used to provide a fast secure connection setup in other places, for instance,

between pairs of physical nodes in a logical parent and child. The reconnection ticket

method is similar to an approach for DNS proposed by Ateniese and Mangard [Ateniese

and Mangard, 2001].

Communication between clients and leaf nodes also needs to be secure. Leaf nodes

need to authenticate clients for the resource accounting described in the previous section,

and clients need to be sure they communicate with the location service. The algorithms

and protocols used by a leaf node to authenticate a client and protect communication can

be different at different leaf domains. For instance, a shared-key system, such as Kerberos

[Steiner et al., 1988], can be used in one leaf domain and a public-key system in another.

Either way, the client authentication system is independent of the internal authentication

system of the location service. Allowing leaf domains their own security infrastructure

increases the flexibility of the location service. It does, unfortunately, also increase the

trusted computing base (TCB), and thereby decreases the security of the location service.

Client authentication for access control is described in Section 6.6.

6.4. OBJECT OWNERSHIP 151

6.4 Object Ownership

The ownership model requires that the location service is able to determine that an update

request is authorized, that is, determine that the request either came from the object owner

or from a client that was authorized by the object owner to make changes. To make this

determination, the location service needs to be able to find out who the owner of an object

is. In the location service, object ownership is established using public-key cryptography.

Every object has a public key associated with its object identifier, and only the object

owner can prove its ownership by proving it has knowledge of the corresponding private

key.

The public key is associated with the object identifier using a separate ownership

service. To increase security, the client uses a different key pair for each object. When a

client creates a new object, it creates a new key pair and gives the public key from the pair

to the ownership service. The service returns an object handle that contains an association

between the object identifier and the public key. The service also uses other information to

create the object handle, such as the expected home location of the object (see Chapter 3).

Since new objects will be created regularly all over the world, the ownership service needs

to consist of multiple servers distributed over the world to provide local access.

The association of a public key with an object identifier can be implemented in several

ways. Figure 6.6 shows four ways to implement the association: (a) using an external

database to store the public key, (b) using the public key as the object identifier, (c) using

a certificate, and (d) deriving the object identifier from the public key. In some of these

methods the public key is part of the object handle; in others the public key is obtained

separately, for instance, it is provided by the client as part of the update request.

In the rest of this section, we compare the four methods of Figure 6.6 based on security

and performance issues. We are, for instance, interested whether the association is static or

dynamic, what the vulnerabilities and their consequences are, whether public key retrieval

and object handle creation are local operations or not, and what the impact is of the method

on the size of data structures, such as database entries. The latter is particularly important,

given the size of public keys. The actual method used in the location service is irrelevant

for the rest of this chapter, but the method based on an object identifier derived from a

public key is the most attractive one currently.

Public Key Stored in Database

The simplest way to implement the association between an object identifier and the public

key is to store the public key in a database at the ownership service and allow location

service nodes to query this database. Figure 6.6(a) shows this implementation with the

object handle consisting of an object identifier and location information. The public key

is retrieved during update operations when needed. There are two variants of this imple-

mentation.

In the first variant the public key is retrieved by the leaf node at the start of an update

operation. This scheme has several desirable security properties. The association between

152 CHAPTER 6. SECURITY

Public Key

Object Identifier / Public Key Longitude Latitude Random

Object Identifier Longitude Latitude Random Signature

Object Identifier

derived from Public Key Public KeyRandomLatitudeLongitude

Public Key

Combined

(d)

(c)

(b)

(a) RandomObject Identifier Longitude Latitude

Figure 6.6: Four methods of (securely) associating ownership information with an

object identifier: (a) using an external database to store the public key, (b) using the

public key as the object identifier, (c) using a certificate, and (d) deriving the object

identifier from the public key.

object identifier and public key is dynamic, that is, when desired the owner can change

the public key. Since the association is maintained by separately administered servers,

changes are made in one place and the service can easily provide audit logs of changes

made to associations. Unfortunately, this variant has a severe scalability problem. Since

clients can request update operations from all over the world, the ownership service will

need to communicate over long distances, violating locality.

The second variant of the database implementation improves the locality of the first

variant. In the second variant the public key of an object is also stored in the location

service itself. This means that if the object is already known by the location service, no

communication is needed with the ownership service. When an object is unknown, the

update operation will reach the root node, which will then retrieve the public key from the

ownership service, and forward it to rest of the nodes that store contact records. Since the

(physical) root node is stored in a single place, it is possible to co-locate the ownership

server, and provide local communication between the physical root node and ownership

server.

Unfortunately, by also storing the public key in the contact records, we lose the dy-

namic association property of the first variant. Since there is no longer a single place

where the association is stored, it can no longer be changed easily. A different problem

with storing the public key in the contact record is that it also increases the size of the

contact record.

In both variants, there are two threats to the system. The first threat is an attacker

6.4. OBJECT OWNERSHIP 153

that gains access to the database and changes its contents. The second threat is against

the communication between the ownership service and the location service. If an attacker

manages to impersonate the ownership service it can provide any public key it wants, and

thus also impersonate the object owner. Both threats can easily be counteracted, however,

by standard security technology, such as authenticated communication.

Public Key Used as Object Identifier

The main problem with the database method is the communication needed to retrieve the

public key. This problem can be overcome by using the public key itself as the object

identifier, as shown in Figure 6.6(b). The reason we can use the public key as an object

identifier is that for the public key to be secure, it has to have a very high probability

of uniqueness. Thus, if we generate a new public key for every new object, we can be

sure that the public key is not currently associated with another object. Furthermore, we

can be sure this public key was never associated with an object at all. If we combine

this with the fact that we only associate a single public key with an object, the public

key becomes a proper identifier [Wieringa and de Jonge, 1995], which is a requirement

of object handles (see also Section 1.5). The Legion system uses a similar approach to

secure object-to-object communication [Stoker et al., 2001].

The main advantage of this approach is its simplicity. No extra mechanisms are needed

to associate the object identifier with public key. A separate ownership service is therefore

not needed in this scheme. The functionality needed to combine the public key and the

location information into an object handle can simply be provided by a library function.

This scheme is thus completely decentralized.

The main drawback to this approach is that it increases the size of the object handle.

If we assume that the object identifier was originally 128 bits long and that a public key is

on average 1,024 bits long, the object handle grows by a factor of eight. Since the object

identifier is used as the indexing key in the local contact record database at every node,

this increases the storage size for the (object handle, contact record)-pair entries in the

database.

The only credible risk of this method is the exposure of the private key of individual

objects. This can happen only outside the location service since the private key is only

stored by the object owner. Fortunately, the consequences of a key exposure are limited

to the contact addresses of the compromised object. The situation is rectified by making

the object available using a different public key and object handle.

Object Handle as a Certificate

A different way to associate an object identifier with a public key is by using a certificate,

as shown in Figure 6.6(c). The object handle is in this case a certificate signed by the own-

ership service. When the ownership service receives the object’s public key and location

information, it generates a unique object identifier. It then combines the public key and

location information with the object identifier to form an object handle. The ownerships

154 CHAPTER 6. SECURITY

service then signs the object handle using its private key, turning the object handle into a

certificate.

From a security standpoint, it is unwise to give all the servers of the ownership service

the same key pair to sign object handles. Instead, every server should have a private key

pair. Leaf nodes of the location service, however, need to know the server’s public key

when authenticating the object handle. The client should therefore provide the public key

of the ownership server as a separate certificate beside the object handle. These certificates

will be signed by the ownership service certificate authority.

The main advantage of this approach is that the public key can be locally obtained

and verified. Furthermore, once the public key is used to validate the request, the location

service can forget the public key and certificate information, leaving a much smaller object

handle consisting of only the object identifier and location information. A small advantage

of this approach is that the certificate also securely associates the location information

with the object identifier. This means that object handles can be passed through insecure

channels without the risk of being changed.

The main problem with the certificate implementation is the risk of a key exposure of

an ownership server. If the private key of a server becomes known to some attacker, the

attacker can associate its own public key with an object identifier, and thereby perform

unauthorized update operations on that object’s handle. The attacker can then change the

set of contact addresses of any object. To deal with this situation, the ownership service

needs a mechanism to quickly distribute certificate revocation lists to location service

nodes.

Object Identifier Derived from Public Key

Instead of using the public key directly, we can also implement the association by using

an object identifier that is securely derived from the public key. In this implementation

the object identifier is derived from the public key using a secure message digest, such as

SHA-1 [National Institute of Standards, 1995]. This method is shown in Figure 6.6(d).

Since it is exceedingly difficult to find two public key pairs with public keys that have

the same message digest, the public key is securely associated with the object identifier.

A similar approach is used in the SFS distributed file system [Mazières and Kaashoek,

1998].

This approach has two advantages. The first advantage of this approach is that the

object identifier is less than one sixth the size of the method that uses the public key

directly (a public key is 1,024 bits; a SHA-1 message digest size is 160 bits). The second

advantage is that both creation of an object handle and the validation of the association

between public key and object identifier are local processes. This method is therefore,

like the direct-use method, completely decentralized. The main disadvantage is the fact

that clients need to manage public keys explicitly, that is, in addition to managing object

handles.

Like in the direct-use method, the only credible risk with this method is the exposure

of the private key of single objects. Fortunately, the consequences are limited to the

6.5. UPDATE POLICY 155

contact addresses in the location service of the object. The situation is rectified by making

the object available using a different public key and object handle.

6.5 Update Policy

The update policy for an object is implemented using a set of update credentials. Every

client authorized to make changes to the set of contact addresses of an object is provided

with a personal update credential by the object owner or one of its delegates. The client

gives this credential to the leaf node with its update request to prove it is allowed to make

changes. Update credentials are very similar to the credentials used in Legion [Stoker

et al., 2001].

An update credential consists of an attribute certificate containing general information,

such as the object handle, and a chain of attribute certificates with every certificate pro-

viding proof that a client has certain update and delegation rights. The main information

currently stored in the general information certificate is the home location in the object

handle. The reason for providing this information is to ensure that the correct home loca-

tion is used when selecting physical nodes (see Chapter 3). The chain of certificates starts

with a number of certificates allowing delegation steps and ends with a certificate that

binds the client’s public key and the allowed characteristics of update requests together.

The object owner provides an empty update credential to signal it is itself performing the

update operation.

Figure 6.7 shows an example update credential for location service client 3. The

update credential consists of four attribute certificates. The leftmost certificate contains

the object handle of the object, and, in the future, possibly other information relevant

to an update operation. The other three certificates form the certificate chain. The first

(leftmost) certificate of the chain is signed by the object owner using the public key of

the object. It thus needs to be verified with the public key of the object owner. The

certificate grants client 1 the right to delegate update rights for the object by including the

public key of client 1 (i.e., “P. Key: <key 1>”) in the certificate. This delegation right

is valid from the date 5/4 for 28 days. Furthermore, client 1 can delegate update rights

only for the specified geographical area (5◦± 3◦ longitude by 52◦± 3◦ latitude) and for

the specified property map (0011). Client 1 used its right to generate the next certificate

in the chain, providing client 2 with a more restricted delegation right. Client 2 used this

right to provide client 3 with the right to perform update operations on the object. Note

that the restrictions in the certificates increase with every step in the certificate chain.

6.6 Access Control

Access control consists of two steps. The first step is performed at the leaf node; the

second step is performed at the node that stores or will store the contact address. The

leaf node is responsible for authenticating the client and checking the update credential.

156 CHAPTER 6. SECURITY

0011

(5, 52, 3)

5/4 + 7

P. Key:

Time:

Loc.:

Maps:

Del. steps:

<key 1>

5/4 + 28

(5, 52, 3)

0011

2Del. steps:

Maps:

P. Key:P. Key:

....

<key 3><key 2>

1

Information

Other

5/4 + 7

(5, 52, 1)

0011

0

Signature Client 2

Del. steps:

Maps:

Loc.:

Time:

Loc.:

Time:
Object Handle

Attribute Certificates

for Delegation

Signature Client 1Signature OwnerSignature Owner

Attribute Certificates for

General Information

Figure 6.7: An example update credential for client 3, consisting of one attribute

certificate for general information and three attribute certificates for update-right

delegation steps. Note that the “Signature Owner” is a signature made by the object

owner using the public key of the object.

The node that stores the contact address is responsible for checking whether the client is

allowed to perform the update operation (primarily the delete operation) and storing the

information needed to perform this check.

When a leaf node receives an update request, it first extracts the parameters: object

handle, contact address, property map, and update credential. The leaf node then extracts

the public key from the object handle using one of the methods described in the previous

section. Using the public key of the object, the leaf node is now able to authenticate and

validate the update credential. Authenticating the update credential consists of validating

the signature on the attribute certificate for the general information and on every attribute

certificate in the certificate chain. Validating the credential consists of ensuring that the

semantics of the characteristics in the chain are not violated, that is, with every delegation

step the restrictions on the allowed update operations should be the same or stronger. The

number of allowed delegation steps should always decrease.

After the update credential is authenticated and validated, the leaf node extracts the

client’s public key from the last (i.e., rightmost) certificate of the update credential. In the

example of Figure 6.7, this is the public key of client 3. The leaf node uses this public

key to authenticate the client. This authentication is independent of the authentication for

resource accounting purposes described in Section 6.3. The client is authenticated using a

challenge/response system. The client authenticates itself by proving it knows the private

key of the public key in the credential. For example, the leaf node sends a message to

the client containing a number encrypted with the public key (the challenge); the client

proves its identity by responding with a message containing this value in plaintext (the

response).

Finally, the leaf node ensures that the update requests conforms to the limits set in

the update credential. First, the leaf node checks whether the object handle given as a

6.6. ACCESS CONTROL 157

parameter is the same object handle given in the update credential. Afterward, the leaf

node checks whether the current time at the leaf falls in the time range of the credential,

and uses the time range to set the lease time for the contact address. Finally, the leaf node

checks whether it is at the right geographic location, whether the contact address falls in

the right address range, and whether the property map of the address matches the property

map restrictions. If these checks succeed, the update operation is allowed to proceed in

the location service.

To support our policy that allows the clients on the certificate chain (i.e., the clients

that delegated the update right) to delete the contact address, the insert operation needs to

store access control information with the contact address. This information should allow

the location service to identify these other clients. Luckily, this information is stored only

with the contact address. Forwarding pointers do not require such information since they

are created and removed only in response to the insertion or deletion of contact addresses.

If we were to store the public keys of the clients in the update credential, the contact

record could become very big. Fortunately, we need to store only the message digests of

the public keys, keeping the size of the additional security information small.

The delete operation needs to ensure only that the client invoking the operation is

actually allowed to delete the contact address. It performs this access control check at the

node where the contact address is stored since this node also stores the message digests of

the public keys of all clients that were part of the update credential in the original insert

operation. The delete operation needs to verify that the message digest of the client’s

public key matches a message digest stored with the contact address. Deleting forwarding

pointers in the rest of the tree requires no further checks.

158 CHAPTER 6. SECURITY

Chapter 7

Tree Management

This chapter provides an outlook on the problems relating to the management of the loca-

tion service. Specifically, it deals with changes in the environment in which the location

service operates and how these changes need to be reflected in the configuration of the dis-

tributed search tree. Since tree management is at the time of writing still part of ongoing

research, this chapter does not provide (complete) solutions to these problems.

7.1 Dealing with Change

The location service is not an autonomous component of the Globe distributed system,

instead it needs to be managed by a support organization. This organization needs to

ensure that all physical nodes are up and running, that the nodes have all the resources they

need, and that clients are allowed to use these resources. The main goal of the organization

managing the location service is, however, to ensure the best possible performance level

of the location service. As in the previous chapter, we assume in this chapter that a single

organization is responsible for managing the location service.

The performance of the location service can be characterized in three ways. First, the

location service should provide high-quality answers. This means that a lookup opera-

tion should return the contact address(es) nearest to the client that initiated the lookup

operation. Second, the location service should ensure that the duration of all operations

is as short as possible. This applies especially to the lookup operation since the client

wants to use the contact address that is found. Third, the resource usage of the location

service should be kept as small as possible since the location service does not provide

application-level functionality and its resource usage should thus be considered overhead.

In short, the management organization needs to ensure that the location service is effective

and efficient.

The performance of the location service is strongly influenced by the configuration

of the distributed search tree. We distinguish two types of configuration information: the

159

160 CHAPTER 7. TREE MANAGEMENT

logical structure and the physical structure. The logical structure deals with the shape of

the search tree, such as the parent-child relationships. The physical structure deals with

the implementation of logical nodes, such as the number and placement of physical nodes.

The logical structure of the search tree should be strongly influenced by distances in

the underlying network since the location service uses this structure to exploit locality,

and thereby provide high-quality results. Recall that the metric for network distance in

the location service is based on a combination of geographical, network-topological, and

administrative boundaries. The physical structure of the search tree should be determined

by the distribution of clients and objects since these greatly influence the distribution of

the workload. Ensuring efficient resource usage in the location service means ensuring

that the right amount of resources are available at the right locations in a domain.

Unfortunately, neither the network distance nor the client or object population is static.

For instance, new network connections are added continuously and existing connections

are upgraded. These changes decrease the latency of communication and allow more

clients to use the location service, possibly in new locations. Since the network and client

environment changes over time, maintaining a high performance level requires regular

adaptation of the configuration of the location service to the current environment.

When changing the configuration of the location service, we face several problems.

As noted before, we cannot stop the location service without violating its high-availability

requirement. Since we cannot stop the location service, at least not as a whole, we need to

make the changes to the configuration on-the-fly. We also face our “general” scalability

problems. A change in the configuration can potentially affect a large number of physical

nodes, for example, in the root domain, and therefore involve a large amount of data.

These same physical nodes are potentially distributed worldwide, risking the need for

wide-area communication. The methods that change the configuration of the location

service should deal with these problems.

We distinguish three types of changes to the configuration information. First, we

can change the contact information of a physical node. This will happen, for example,

when the network address of a node is reconfigured. This problem will be dealt with in

Section 7.2. Second, we can change the physical structure of the search tree by adding

physical nodes to or removing them from the set of nodes that implement a logical node.

The problems caused by this type of change are dealt with in Section 7.3. Third, we can

change the logical structure of the search tree by adding, removing, splitting, or merging

logical nodes. The problems caused by this type of change are dealt with in Section 7.4.

The management organization needs to gather statistical information to determine

when to make which changes to the location service configuration. The organization

needs to monitor the network to ensure that the domain hierarchy still represents the dis-

tances in the network. It also needs to monitor the load at the physical nodes to ensure

that certain nodes are not overloaded. In this chapter we assume that this information is

readily available to determine the appropriate changes.

The organization managing the location service will also have other responsibilities

relating to the location service, such as client administration, hardware maintenance, and

backup operations. While these issues are relevant to the management of the location

7.2. TREE INFORMATION SERVICE 161

service and have to be dealt with, they do not involve changes to the search tree. They fall

therefore outside the scope of the research described in this chapter.

7.2 Tree Information Service

Regularly adapting the search tree to the current environment requires the logical and

physical search tree structures to be dynamic. Unfortunately, this means that it is no longer

obvious for a physical node that has just started what the current logical and physical

structure of the search tree is. To solve this problem, a description of the current structure

of the search tree is maintained by a separate service, called the tree information service.

A physical node can query this service when it needs to know the current structure of the

search tree, for example, its current logical parent node.

The tree information service stores the configuration of the search tree using two ta-

bles. The first table stores logical node records; the second table stores physical node

records. These tables are indexed by the logical and physical node identifier, respectively.

A client retrieves a logical or physical node record from the tree information service by

providing the identifier of the relevant node.

The logical node record stores the following properties of a logical node:

• The identifier of the logical node itself

• The identifier of the logical parent node

• A list of identifiers of the logical child nodes

• A list of identifiers of the physical nodes implementing the logical node

• The mapping table of the logical node

• A version number

To identify the logical node described by the logical node record, the record starts with

the identifier of the logical node. To store the logical tree structure, every logical node

record stores the identifier of the logical parent node and a list of the identifiers of the

logical child nodes. A special NIL NODE value is used to indicate a node does not have

a parent (in case of the root node) or child nodes (in case of leaf nodes). Furthermore,

to implement node partitioning, as described in Chapter 3, the tree information service

also stores the identifiers of the set of physical nodes that implement a logical node. The

service also stores the mapping table in the record to allow a physical node to determine

which physical node in the set is responsible for storing the contact record for a specific

object handle. Finally, to allow the record to be cached by a physical node, the record

has a version number. Physical nodes use the version number to ensure that they use

the newest version of the record. The size of the logical node record is almost entirely

determined by the size of the mapping table since the size of the mapping table is in the

order of 253 kilobytes (see Section 3.5.3) while the sizes of the identifiers and version

number are between 4 and 8 bytes.

The physical node record stores the following properties of a physical node:

162 CHAPTER 7. TREE MANAGEMENT

• The identifier of the physical node

• The identifier of the logical node it belongs to

• The network address

• The public key

• The geographical location

• A version number

The record starts with the identifier of the physical node that is described. The record also

stores the identifier of the logical node the physical node belongs to, allowing a physi-

cal node to quickly determine the logical node it implements. The record also stores the

contact information of the physical node, that is, its network address and public key. The

physical node determines these two properties when it starts and stores them in the tree

information service. The tree information service also needs to know the geographical

locations of all the physical nodes that implement a logical node since it is responsible

for (re)computing the mapping table when the partitioning of a node changes (see Sec-

tion 7.3). The physical node record also has a version number to allow the record to be

cached. The size of the physical node record is mostly determined by the size of the public

key since this size is 128 bytes or 256 bytes (1,024 or 2,048 bits, see Chapter 6) while the

sizes of the other values are between 4 to 8 bytes.

A physical node queries the tree information service when it is (re)started or when it

expects or notices a change in the search tree structure. A physical node detects changes in

the search tree by exchanging the version numbers of the logical and physical node record

it uses as part of its normal communication. When the version number of the logical or

physical node record used by a sending physical node is higher than the version number

of the receiving node, the receiving node needs to retrieve the new record from the tree

information service before it can proceed with the communication. When another node

no longer responds to communication requests, the physical node also needs to check the

tree information service to see whether the configuration information has changed. This

indirect method of notifying nodes of changes is used only for nodes not directly involved

in a change. Nodes that need to change or transfer location information are informed

directly by the tree information service, as described in the next two sections.

The size of the configuration information stored by the tree information service is

insignificant. The size of the information is formed by the sizes of the tables storing

the logical and physical node records. To get an estimate of the amount of information to

store, consider the example search tree from Chapter 3. This example search tree consisted

of 2,430 logical nodes and 9,720 physical nodes. Thus, in this case, the tree information

service needs to store 2,430 logical node records and 9,720 physical node records. Since

the size of the logical node record is in the order of 253 kilobytes, the size of the table

of logical node records is in the order of 2,430× 253 kilobytes = 615 megabytes. If we

assume the size of the physical node record is in the order of 160 bytes, the size of the

table of physical node records is in the order of 9,720×160 bytes = 1.6 megabytes. The

size of the configuration information is thus mainly determined by the table of logical

node records. Note that since the example search tree represents only a minimal size that

7.3. NODE PARTITIONING CHANGES 163

we want to support, the tree information service has to store more than 615 megabytes of

configuration data.

The tree information service can be implemented by a single heavyweight server.

Since the amount of data stored by the tree information service is not significant, this

server can even store the configuration in main memory. However, to provide physical

nodes with local access to the configuration information, we expect the tree information

service to be implemented by a small group of heavyweight servers distributed across the

network. Every server in the group keeps a replica of the complete configuration informa-

tion. Since we are dealing with only a small group of servers, it is straightforward to keep

the replicas (highly) consistent. Furthermore, since changes are likely to involve only a

few physical or logical nodes, the size of the changes can be expected to be small.

To prevent frequent communication with the tree information service, physical nodes

can cache the configuration information they received from the tree information service.

By exchanging and comparing the version numbers of the logical and physical node

records, physical nodes can easily determine whether they still use up-to-date configu-

ration information.

7.3 Node Partitioning Changes

Recall from Chapter 3 that a logical node is implemented by a set of physical nodes.

Contact records in the logical node are distributed across its physical nodes, with each

physical node being assigned a subset of the contact records stored by the logical node as

a whole. A physical node provides the actual storage and processing capacity needed by

the subset of contact records assigned to it.

We described two methods to assign a contact record to a physical node in Chap-

ter 3. The first method uses a hash function to distribute the contact records evenly over

the physical nodes. The second method uses the geographical location field of the ob-

ject handle to select the nearest physical node. The assignment of contact records to the

physical nodes is determined by the mapping table of the logical node. This table is used

by the physical nodes of other logical nodes to determine with which physical node to

communicate.

The storage and processing capacity needed by a logical node can, however, change

over time. For instance, when the domain associated with the logical node becomes more

popular, more capacity is needed and a new physical node needs to be added. Also, the

logical node might want or need to increase its processing capacity at a specific location

in its domain, for instance, because a large number of objects reside at that particular

location. When the set of physical nodes changes, the assignment of contact records to

physical nodes changes as well, and the set of (existing) contact records of the logical node

needs to be redistributed over the new set of physical nodes. The change in distribution

of contact records depends strongly on the load-distribution scheme used by the logical

node.

The changes to the partitioning of a logical node are thus about adding physical nodes

164 CHAPTER 7. TREE MANAGEMENT

A B

C D

A B

DC

A

N

C

B

D

(a) (b)

(c)

N

Figure 7.1: The transfer of contact records and change in mapping table caused by

adding physical node N to the set of physical nodes implementing a logical node.

to and removing them from the set of physical nodes that make up a logical node. Using

these two changes, we model the movement of a physical node inside a logical node (i.e., a

change in network or geographical location) as the addition and the removal of a physical

node. Note that replacing a physical node (i.e., replacing the machine running the node)

does not require a partitioning change since the new machine simply takes over the role

and identity of the old machine.

Figure 7.1 shows the transfer of contact records caused by adding a new physical node

to a set of physical nodes. The figure also shows the associated domain of the physical

nodes. The four physical nodes use the location-aware mapping scheme to distribute the

set of contact records of the logical node they implement. In the figure the domain is

partitioned in four parts to show which locations in the domain are mapped to which

physical nodes. For instance, the contact records of all the object handles with a location

in the upper-left quadrant are stored in physical node A.

Figure 7.1(a) shows the initial situation with the logical node implemented by four

physical nodes A–D. In Figure 7.1(b) a new physical node N is added. As a result the

domain is partitioned in five parts, and the contact records of the objects with a location

closest to physical node N need to be transferred to node N. Figure 7.1(c) shows the final

situation with the logical node implemented by five physical nodes, each having their own

geographical area from where they support object handles.

Figure 7.2 shows the reverse situation where the transfer of contact records is caused

7.3. NODE PARTITIONING CHANGES 165

(a) (b)

(c)

A

C

O

B

D

A

C

B

D

A

C

B

D

O

Figure 7.2: The transfer of contact records and change in mapping table caused by

removing physical node O from the set of physical nodes implementing a logical

node.

by the removal of physical node O. In this case all the contact records stored at physical

node O need to be redistributed over the remaining four physical nodes A–D. Note that

physical node O cannot disappear before all its contact records have been sent to the

remaining physical nodes and their reception is acknowledged.

A new mapping table that reflects the new distribution of contact records over the new

set of physical nodes has to be created for the logical node. This new mapping table needs

to be distributed to other physical nodes that want to communicate with the logical node.

We would like the redistribution of the contact records and the distribution of the new

mapping table to be atomic. Unfortunately, redistributing the contact records may take a

long time. For instance, even if a physical node that is to be removed is able to transfer

its contact records with a speed of 10 megabytes per second, the transfer will still last

14 hours, given a contact record database of 500 gigabytes. We therefore have to deal

specifically with a transition phase in which the transfer takes place and decide at which

time during this phase the new mapping table is distributed to other physical nodes.

The main problem of this transition phase is dealing with lookup and update opera-

tions while the contact record transfer is in progress. During this phase, every contact

record is either at its old physical node, waiting to be transferred, or at its new phys-

ical node, having just been transferred. This means that during the transition phase,

166 CHAPTER 7. TREE MANAGEMENT

other physical nodes wanting to send an update or lookup request have no way of know-

ing at which physical node a contact record is stored. Furthermore, the contact record

might even be transferred while an update operation is in progress, introducing the risk of

changes to a contact record being lost. A concurrency-control mechanism is thus needed

to synchronize the transfer of contact records, the distribution of the mapping table, and

the handling of lookup and update operations.

The main concept of our solution to dealing with this transition phase is that the phys-

ical node that ships out contact records remains responsible for those contact records

during the transition phase. The physical node handles the transfer of contact records on

a per contact record basis: Either the physical node still stores the contact record and can

handle update and lookup operations itself, or it can forward the update or lookup request

to the physical node that currently stores the contact record. This way the physical node

acts as a proxy server during the transfer of contact records and the mapping table used

before the transition phase can remain in effect during the transition phase. This ensures

that the transition phase is transparent to other physical nodes that want to communicate

with the logical node during the transition phase.

Consider the simplified situation of a single change in the set of physical nodes (i.e.,

one physical node being added or removed). We distinguish three steps during the transi-

tion phase:

1. Initialization step. The tree information service is informed of the new situation

and requested to compute a new mapping table. This mapping table is kept hidden,

in the sense that it is distributed only to the physical nodes that need to transfer

contact records.

2. Transfer step. The contact records are sent to their new locations using the new,

hidden mapping table. During this step, the physical nodes of other logical nodes

still use the old mapping table. However, the physical nodes transferring contact

records use the new, hidden mapping table to forward requests to the physical node

that stores the requested contact record.

3. Finalization step. All the physical nodes sending contact records inform the tree

information service when their transfer is done. When the tree information service

has been informed by all physical nodes, the service makes the new mapping table

official and distributes it to all physical nodes that want to communicate with the

logical node.

For example, in Figure 7.2 where physical node O is removed, node O sends its contact

records to physical nodes A–D. During this transfer node O remains responsible for the

contact records previously stored by it. It will either handle the lookup and update request

itself or forward the request to the record’s new location. Node O uses the new, hidden

mapping to decide to which of the physical nodes A–D it forwards update and lookup

requests.

In the general case, we need to deal with concurrent changes, that is, new changes that

are made while the logical node is still in the transition phase of a previous change. This

7.4. SEARCH TREE CHANGES 167

case is especially likely in larger domains, such as the root domain. We can, in principle,

use the same method as described above to deal with this case. Every time a new change

is sent to the tree information service, a new mapping table is computed, possibly using

the previous hidden mapping table. All physical nodes involved in the new change are

informed and start their transfer. However, the physical nodes still involved in the old

transfer ignore the new change until they are ready; only then do they consider the new

change.

Several issues have to be worked out for the general case. For instance, methods have

to be developed to determine how a physical node knows where to forward requests to,

when the transition phase has completed, and when the new hidden mapping table can be

made official. Also, if we want to support the hashing load-distribution scheme, we need

to deal with the redistribution of contact records while using this scheme. These issues

are left unresolved in this dissertation.

7.4 Search Tree Changes

In this section we describe (some of) the issues relating to changes to the logical structure

of the search tree. Recall from Chapter 2 that the logical structure of the search tree

is a representation of the domain hierarchy, and that the domain hierarchy, in turn, is a

representation of the distances in the underlying network. For example, clients that share

a leaf domain are closer to each other than clients that share only the root domain. The

metric used by the location service for network distances (and thus locality) is derived

from a combination of geographical distance, different network metrics (e.g., latency and

hop count), and the structure of the organizations using the network. To ensure the locality

of lookup and update operations, the search tree and thus the domain hierarchy need to be

good representations of distances in the network.

There are two main causes for changes to the logical structure of the search tree. The

first cause of change is the initial deployment of the location service. During this phase

the search tree will grow and cover new parts of the underlying network as clients want

to insert contact addresses at new locations. Also during this phase, parts of the network

already covered by an existing domain will be (also) covered by new, increasingly smaller

child domains. The introduction of child domains provides a more detailed representation

of distances in those domains.

The second cause of change is the need to adapt the search tree to significantly changed

distances in the network. This happens mainly after the initial deployment of the location

service. These changes in distance are caused by changes in the underlying network or

the organizations using the network. We expect the logical structure of the search tree to

change only infrequently after the deployment since significant changes in the underlying

network or organizations are rare.

168 CHAPTER 7. TREE MANAGEMENT

A B C

D

R

A B C

N

D

R

Figure 7.3: Example 1: Search tree changed caused by an improvement of the local

network.

7.4.1 Example Changes

To better understand the causes of change and their resulting changes, we consider three

example situations where a change in the environment of the location service results in a

change in the logical structure of the search tree.

Example 1: Adding a New Network Connection

The first example is a network change where some distances in the network are shortened

by the addition of a high-speed connection. This situation is shown in Figure 7.3. In the

initial situation the network is covered by intermediate node D. The domain of node D

is divided into three leaf domains represented by leaf nodes A, B, and C. Now assume

that a new high-speed connection is added between the leaf domains of leaf nodes A and

B, shortening the network distance between them but leaving them far enough apart to

warrant distinct leaf domains.

In this case we need to add a new intermediate domain with a new intermediate node N

to the search tree. Node N represents the fact that the domains of leaf nodes A and B are

closer to each other than to the leaf domain of node C. These three leaf domains are,

however, still part of the existing domain of node D.

Example 2: Changing ISP

The second example is also a network change. In this case, however, an organization

decides to change the ISP it uses to connect its LAN to the Internet. This situation is

shown in Figure 7.4. In the initial situation the LAN is covered by the leaf domain of leaf

node C. Since the leaf domain is part of the domain of the ISP, represented by intermediate

node F, leaf node C is a child node of node F. When the organization starts using the new

ISP, represented by intermediate node G, its LAN becomes part of the domain of node G.

Leaf node C therefore needs to become a child node of node G instead of node F.

7.4. SEARCH TREE CHANGES 169

A B C D E

F G

R

A B C D E

F G

R

Figure 7.4: Example 2: Search tree changed caused by a change of ISP.

A B C D

E

R

A C DB

L M

N

R

Figure 7.5: Example 3: Search tree changed caused by an organizational split.

Example 3: Splitting a Company

The final example is an organizational change where a unified company splits into two

divisions. This situation is shown in Figure 7.5. In the initial situation the network of the

company is covered by the domain of the intermediate node E and the leaf domains of the

leaf nodes A–D. Now assume that the two new divisions split the network in two, with one

division using the network covered by the domains of leaf nodes A and B and the other

using the network covered by the domains of leaf nodes C and D.

To model the new situation in the location service, we need to introduce two new inter-

mediate domains with intermediate nodes L and M. The new domains cover the networks

of the two divisions. If we assume that the divisions still work closely together, we also

want to introduce a third domain covering both divisions. This domain is represented by

intermediate node N.

7.4.2 Basic and Composite Changes

When transforming the structure of the search tree, we face the problem of what to do with

the existing location information (i.e., contact addresses and forwarding pointers) stored

in the search tree. After we have changed the search tree, the information still needs to

fulfill the consistency requirements described in Chapter 2. The connectivity requirement

C2 is particularly important. It states that “For each node N, the contact record for object

O at node N stores a forwarding pointer to a child node of N if and only if the contact

record for O at that child is not empty.”

170 CHAPTER 7. TREE MANAGEMENT

R

N

C

BA

R

C

BA

Figure 7.6: Basic change insert-node: Inserting an intermediate node.

To ensure that this consistency requirement is met in the modified search tree, the lo-

cation information needs to be updated. For instance, contact records need to be created

at new logical nodes, contact records need to be modified at existing logical nodes, for-

warding pointers need to be inserted, and contact address need to be transferred. Changes

to the logical structure of the search tree are therefore more complex than changes to the

partitioning of a logical node (described in the previous section) where contact records

only needed to be transferred.

When making changes to the search tree, we are faced with an atomicity problem sim-

ilar to the one described in the previous section. When we want to make a change to the

search tree, we need to update two kinds of information: the configuration information in

the tree information service and the location information stored in the search tree. Unfor-

tunately, updating the location information in the search tree might take a long time. We

therefore need to deal with a transition phase in which the search tree changes its structure

and concurrent update and lookup operations can still use the location information in the

search tree.

To simplify this problem, we divide the complex changes to the structure of the

search tree into four basic changes: insert-node, remove-node, split-node,

and merge-nodes. These basic changes are simple enough to guarantee correct results

from concurrent operations, but still allow us to perform complex changes when combined

into composite changes. To allow us to grow the search tree during the initial deployment

of the location service, we add a fifth operation that appends a new leaf node to an existing

leaf node: append-leaf.

Figures 7.6–7.9 show examples of these basic changes. Figure 7.6 shows a new in-

termediate node N being inserted in between the root node R and intermediate node C.

Figure 7.7 shows an old intermediate node O being removed, resulting in a direct connec-

tion between root node R and leaf nodes A and B. Figure 7.8 shows two inverse operations:

splitting and merging nodes. Node E is split into two nodes N and M, or nodes N and M are

merged into a single node E. Figure 7.9 shows a new leaf node N being appended to the

leaf node A, making leaf node A an intermediate node.

The insert-node and append-leaf basic change result in an increase in the

height of the search tree. This increase in the height affects, unfortunately, the efficiency

of the lookup and update operation adversely. Specifically, operations that need to visit

7.4. SEARCH TREE CHANGES 171

R

BA

R

O

BA

Figure 7.7: Basic change remove-node: Removing an intermediate node.

A B C D

E

R

A B C D

N M

R

Split

Merge

Figure 7.8: Basic changes split-node and merge-nodes: Splitting and

merging nodes, respectively.

BA

C

R R

B

N

A

C

Figure 7.9: Basic change append-leaf: Appending a leaf node.

172 CHAPTER 7. TREE MANAGEMENT

R

D

CBA A

MergeInsert

TS

R

D

A B C

N

D

R

CB

Figure 7.10: Implementation of the search tree change of Example 1 using the

insert-node and merge-nodes basic change.

R

GF

EDCBA A

MergeSplit

R

G’

EDC

F’

BA

R

GTF’

EDCB

Figure 7.11: Implementation of the search tree change of Example 2 using the

split-node and merge-nodes basic change.

the root node take longer to complete since they need to visit more nodes to reach the root

node in the search tree. Examples of such operations are an insert operation that inserts

the first contact address of an object and a lookup operation on an object with a single

replica located far away. The management organization therefore needs to take care not

to indiscriminately insert and append new logical nodes to the search tree.

Figure 7.10 shows how the complex change of Example 1 can be implemented using

the insert-node and merge-nodes basic change. In the first step, we insert two

temporary intermediate nodes S and T between node D and node A and node B, respec-

tively. In the second step, we merge these two temporary nodes into a single intermediate

node N that covers the leaf domains of leaf nodes A and B.

Figure 7.11 shows how the complex change of Example 2 can be implemented using

the split-node and merge-nodes change. The leaf node can be moved to its new

position in the search tree by first splitting intermediate node F into node F’ and tempo-

rary node T, and then merging temporary node T and node G to form the new intermediate

node G’.

Figure 7.12 shows how the complex change of Example 3 can be implemented us-

ing the insert-node and split-node changes. In the first step, we insert a new

intermediate node N between node E and its parent node R. In the second step, we split

the existing intermediate node E into two new intermediate nodes L and M. We make leaf

nodes A and B a child of node L and leaf nodes C and D a child of node M.

7.4. SEARCH TREE CHANGES 173

R

E

DCBA A

SplitInsert

R

N

ML

DCBA

R

N

E

DCB

Figure 7.12: Implementation of the search tree change of Example 1 using the

insert-node and split-node basic change.

7.4.3 Implementing Search Tree Changes

To implement our five basic changes, we still need to deal with their respective transition

phases. To deal with the transition phase of each basic change, we propose a solution

similar to the one presented in the previous section. The solution consists of two compo-

nents. First, the changes to the contact records in a node are made on a per contact record

basis. Second, the nodes in the search tree involved in the change behave in a proxy-like

fashion, that is, they either perform a requested operation themselves or forward it to the

correct logical tree node. The exact method to allow the maximum amount of concurrency

possible is still part of ongoing research.

insert-node: Inserting a Logical Node

Figure 7.13 shows the process of inserting a new node N between parent node P and child

node C. To perform this change, we need to inform parent node P that node N has taken

the place of its (former) child node C, and we need to inform child node C that node N

has taken the place of its (former) parent node P. Furthermore, we need to restore the

connectivity of the paths of forwarding pointers running through node C (and thus node N).

We restore the connectivity during the transition phase by inserting forwarding pointers

at the new node N. Adding the forwarding pointers reconnects the paths of forwarding

pointers flowing through nodes P, N, and C, and thereby allows contact addresses in the

domain associated with node N to be found. At parent node P, we need to redirect the

forwarding pointers from node P’s former child node C to its new child node N.

To store forwarding pointers at the new node N, we need to know which object han-

dles have a contact record stored at intermediate node C. Node C therefore goes through

its contact record database and requests node N to insert a forwarding pointer for every

contact record found. To redirect the forwarding pointers at node P, node P needs to go

through its database and change all forwarding pointers pointing to child node C to point

to the new node N. Note that redirecting these pointers might actually consist of simply

changing a single logical node identifier shared by all forwarding pointers.

To deal with the transition phase, as shown in Figure 7.13(b), we need to temporarily

change the behavior of the new node N. The transition phase starts when nodes P and

174 CHAPTER 7. TREE MANAGEMENT

C

P

N

(b)

C

P

(a)

C

N

P

(c)

Figure 7.13: Basic change insert-node: (a) Initial situation. (b) In the transi-

tion phase node C requests the insertion of forwarding pointers at node N. (c) Final

situation.

C start using node N. During the transition phase node N will be increasingly filled with

contact records, which store a single forwarding pointer to node C. Since nodes P and

C forward requests to node N and node N is not yet completely filled, node N receives

requests for both known and unknown objects.

For known objects, node N has a contact record, and it can simply handle all requests

for those objects. Node N can also handle insert requests for unknown objects since these

will simply insert a contact address or forwarding pointer, and request confirmation from

parent node P. Lookup and delete requests for unknown objects, however, require special

actions. Node N needs to forward these requests to the proper node, that is, to its parent

node P if the request came from its child node C, and vice versa. The transition phase is

finished when node C has checked all its contact records.

remove-node: Removing a Logical Node

Figure 7.14 shows the process of removing an existing node O from parent node P and

child nodes C1 and C2. To perform this change, we need to inform parent node P that child

nodes C1 and C2 have taken the place of its (former) child node O, and we need to inform

child nodes C1 and C2 that node P has taken the place of their (former) parent node O.

When we want to remove an existing node, we first need to transfer the location in-

formation (i.e., contact addresses and forwarding pointers) it stores to its parent node P.

This transfer of location information takes place during the transition phase. Recall that

the location information is stored in the contact records of node O, and that these contact

records consist of a set of contact fields, one field for each child node Cn. In Figure 7.14

the contact records consists of two contact fields. These contact fields will replace the

single contact field for node O in the contact records at parent node P since parent node P

will become the parent of the child nodes.

To move the contact records to parent node P, node O goes through its contact record

database and transfers its contact records to node P. Node P retrieves the related contact

record (i.e., associated with the same object handle) from its contact record database and

7.4. SEARCH TREE CHANGES 175

P

P

O

P

O

C1 C1 C1C2 C2 C2

(b)(a) (c)

Figure 7.14: Basic change remove-node: (a) Initial situation. (b) In the transi-

tion phase node O transfers its contact records to parent node P. (c) Final situation.

removes the existing contact field for node O from the record. It then merges the remaining

contact fields of the contact record with the contact record received from node O. Note

that during the transition phase, parent node P stores two types of contact record, that is,

contact records with a contact field for node O and contact records with contact fields for

nodes C1 and C2. Node O removes the contact record when it has been received by node P.

To deal with the transition phase, nodes O and P have to change their behavior slightly.

Node P uses the contents of the contact record to determine its behavior. If the contact

record has a forwarding pointer to node O (i.e., no transfer has taken place for this contact

record), node P sends its request to node O; if it has a forwarding to a child node Cn, it

sends its request to that child node. Node O behaves in the proxy-like fashion, as indicated

before. It handles requests for known objects in the normal fashion since it still stores their

contact records. Requests for unknown objects from its children are forwarded to its par-

ent node R. Requests for unknown objects from parent node P (i.e., lookup requests) can

simply be ignored since the path of forwarding pointers followed by the lookup operation

is apparently being deleted. Child nodes C1 and C2 simply keep on using node O, unaware

of the transition phase. The transition phase is ready when node O has transferred all its

contact records to node P. At this time we inform child nodes C1 and C2 that node P is

their parent, and node O can be deleted.

There is one situation we have to deal with separately. This situation occurs when a

contact record at parent node P stores a contact address in its contact field for node O. In

this situation node P needs to determine in which of the new contact fields the contact

address has to be stored. In our example, the node chooses between the contact field of

node C1 and the contact field of node C2. Node P can determine the contact field using

the identifier of the leaf node where the contact address was originally inserted. Recall

from Chapter 4 that this identifier is part of the contact address. We know node O is empty

in this case since it follows from our consistency rule C2 that no contact addresses or

forwarding pointers can be stored in node O.

176 CHAPTER 7. TREE MANAGEMENT

C4 C4

C4C3

C3C3C2 C2

C2C1

C1C1

N1 N2

P

O

P

P

O
N2N1

(b)

(c)

(a)

Figure 7.15: Basic change split-node: (a) Initial situation. (b) In the transition

phase existing node O transfers its contact fields to the new nodes N1 and node N2.

The new nodes, in turn, insert forwarding pointers at parent node P. (c) Final situa-

tion.

split-node: Splitting a Logical Node

Figure 7.15 shows the process of splitting an existing node O into two new nodes N1 and

N2. Splitting a node requires different actions depending upon whether we split a leaf node

or an intermediate node. When we split an intermediate node, as shown in Figure 7.15,

we assign a subset of child nodes of node O to node N1 and the rest to node N2. In the

example, nodes C1 and C2 are assigned to node N1 and nodes C3 and C4 are assigned to

node N2.

As a consequence of the split, the location information stored by node O needs to be

redistributed over nodes N1 and N2. In practice, this means that the contact fields of the

child nodes assigned to node N1 need to be transferred from node O to node N1 and that

the rest of the contact fields need to be transferred to node N2. Furthermore, the contact

fields for node O at parent node P need to be split in two to represent the two new nodes

7.4. SEARCH TREE CHANGES 177

N1 and N2. The two new contact fields in the contact records of node P need to store a

forwarding pointer if node N1 or node N2 stores a contact record, respectively.

Splitting the domain associated with a leaf node requires a different approach. When

we split a leaf domain into two domains, we need a way to determine how to distribute the

location information (i.e., contact addresses) of the original leaf domain over the two new

leaf domains. Since leaf domains are atomic, the contact records in a leaf node consist

of only a single contact field to store contact addresses for objects. We therefore cannot

distribute the location information based on the original contact field it comes from. In

our ongoing research, we are considering two approaches to determine how to distribute

the location information.

In the first approach we divide the world up into small atomic cells with a fixed

size and location, based on network distances, geography, and administrative boundaries.

These cells are significantly smaller than leaf domains, and every leaf domain is assigned

a set of adjacent cells. Every contact address stores, besides its leaf domain, also the cell

identifier of the cell to which it resides. When a leaf node splits, the two leaf nodes cover

distinct sets of adjacent cells, and the contact addresses can be distributed based on the

cells they belong to. The downside to this approach is that is not obvious how to divide the

network into cells with a fixed location that is useful and that you have to get the division

into cells right the first time.

The second approach uses the contact address lease system, discussed in Chapter 2.

The lease system forces clients to regularly contact the location service to extend their

lease. At the renewal time, the client will notice the old leaf node is split. The client

can then delete its contact address from the old leaf node and reinsert the address using

the new leaf domain structure. Only when the lease of the last contact addresses has

expired is the transfer completed, and can the old leaf node disappear. The downside of

this approach is that it may take a long time to complete the transfer. Note that with this

approach the leaf nodes are not involved in the actual transfer of contact addresses.

The process of distributing the contact fields of a node (leaf or intermediate), as shown

in Figure 7.15(b), consists of three steps. In the first step, parent node P adds empty

contact fields for nodes N1 and N2 to all its contact records, allowing forwarding pointers

to be inserted. In the second step, the contact fields of node O are divided between nodes

N1 and N2. Node O removes the contact record when it is received by nodes N1 and N2. For

every set of contact fields that node N1 (or N2) receives, it contacts parent node P to insert

a forwarding pointer in the new contact field for node N1 (or N2) at node P. In the third

step, node P removes all the old contact fields for node O.

During the transition phase node O behaves like a proxy. It forwards requests to nodes

N1 and N2 for objects that are unknown and handles the operations itself for objects it

does know. The behavior of node P depends upon the contents of its contact record.

If one of the contact fields for nodes N1 and N2 is filled, the contact field for node O is

ignored. Otherwise, the contact field of node O is used. Nodes N1 and N2 handle all

requests normally. They do send their requests directly to child nodes C1–C4 (i.e., not via

the old node O). The transition phase is finished when all the contact fields from node O

have been transfered to nodes N1 and N2. At this time node O can be deleted.

178 CHAPTER 7. TREE MANAGEMENT

C4 C4

C4C3

C3C3C2 C2

C2C1

C1C1

O1 O2

N
O2O1

N

P

(b)

P

(c)

(a)

P

Figure 7.16: Basic change merge-nodes: (a) Initial situation. (b) In the tran-

sition phase existing nodes O1 and node O2 transfers their contact fields to the new

node N. The new node, in turn, inserts forwarding pointers at parent node P. (c)

Final situation.

There is one situation we have to deal with separately. This situation occurs when a

contact record at parent node P stores a contact address in its contact field for node O. In

this case we have to determine in which of the new contact fields to store the contact ad-

dress. This is the same situation as encountered during the remove-node basic change.

In this case we can also use the leaf node identifier to determine the correct contact field

to store the contact address.

merge-nodes: Merging Two Logical Nodes

Figure 7.16 shows the process of merging two existing nodes O1 and O2 into a single new

node N. When two nodes are merged into one node, we also need to merge the contact

records of the two nodes. As a consequence, we also merge the contact fields of nodes O1

and O2 into a single contact field at parent node P.

7.4. SEARCH TREE CHANGES 179

This process of merging two nodes, as shown in Figure 7.16(b), consists of three steps.

In the first step, node P adds a contact field for node N to every contact record it stores,

allowing forwarding pointers for node N to be inserted. In the second step, nodes O1 and

O2 send their contact records to node N which merges them into a single contact record.

Nodes O1 and O2 remove their contact records when it is received by node N. Node N

requests a forwarding pointer at node P for every newly created contact record. In the

third step, node P removes its contact fields for nodes O1 and O2.

During the transition phase nodes O1 and O2 behave like proxies. They forward re-

quests to node N for objects that are unknown, and handle the operations themselves for

objects they do know. The behavior of node P depends, as when splitting a node, upon

the contents of its contact record. If the contact field for node N is filled, the contact fields

for nodes O1 and O2 are ignored. Otherwise, the contact field of nodes O1 and O2 are used.

Node N handles all requests normally. It does send its requests directly to child nodes

C1–C4 (i.e., not via the old nodes O1 and O2). The transition phase is finished when all the

contact records from nodes O1 and O2 have been transfered to node N. At this time nodes

O1 and O2 can be deleted.

There is one situation we have to deal with separately. This is the case that node P

stores a contact address in its contact field for either node O1 or O2. This might present

a problem for consistency rule R3 which states: “A contact field can contain either a

forwarding pointer or a set of contact addresses, but not both.” If the contact field for

node O1 stores a forwarding pointer and the contact field for node O2 stores a contact

address, merging these two fields will lead to a violation of consistency rule R3. The

avoid this violation, the contact address needs to be moved down to node N. This transfer

increases, unfortunately, the complexity of this basic change.

append-leaf: Appending a Logical Leaf Node

When a new leaf node N is appended to an existing leaf node L, the existing node L

becomes an intermediate node, as shown in Figure 7.17. To ensure a consistent search

tree, we need to update two aspects of the location information stored. First, since leaf

nodes are the default storage location for contact addresses, we need to move the contact

addresses stored at the intermediate node L to the new leaf node N. Second, recall that to

support the move-down operation in Chapter 4, we store the identifier of the leaf node in

the contact address. Since the contact address will now be stored at a new leaf node, this

identifier has to be updated in all contact addresses to reflect the new leaf node N.

The operation to transfer a contact address to the new leaf node is similar to the move-

down operation described in Chapter 4 since it consists of inserting the contact address

at the new leaf node N and inserting a forwarding pointer at the existing node L. We can,

conceivably, even reuse the move-down operation by changing the identifier in the contact

addresses at the intermediate node L to the identifier of the new leaf node N. We can then

simply wait until the intermediate node L notices its addresses are stable and invokes the

move-down operation at the new leaf node L. Using this method we do not need to deal

explicitly with the transition phase since move-down operations are part of the normal

180 CHAPTER 7. TREE MANAGEMENT

L

N N

L

(b) (c)

L

(a)

Figure 7.17: Basic change append-leaf: (a) Initial situation. (b) In the tran-

sition phase the move-down operation transfers contact addresses to the new leaf

node. (c) Final situation.

operations of the nodes anyway.

7.4.4 Open Issues

In this section, we have side-stepped several issues that require future research to come

to a complete and efficient method of dealing with changes to the logical structure of the

search tree. In this final part of the section, we address some of these issues briefly.

In our description of changes to the search tree, we discussed all operations in terms of

logical tree nodes. However, in practice most of these logical nodes will be implemented

using multiple physical nodes. Since our operations work on a per contact record basis,

the node partitioning does not threaten our solution. All physical nodes simply implement

the changes described for the logical node. It does, however, add an extra layer of com-

plexity. A specific problem that has to be addressed is the interaction of node partitioning

changes and search tree changes (e.g., adding physical nodes to a logical node that is be-

ing inserted). In the worst case, we might have to allow nodes to be involved in only one

type of change (partitioning or search tree) at a time.

The method described in this section was influenced by our desire to first develop

simple changes that we could oversee, and only in a second step add complexity by com-

bining them. While this method leads to a conceptually simple model, it does not result

in efficient complex changes. A third step is therefore required to optimize the frequently

occurring complex changes to the search tree. A second efficiency problem is that our

method requires the introduction of new independent logical nodes, for instance, during a

node split. This can, unfortunately, lead to problems since it requires serious amounts of

resources when splitting a node located high in the tree. Intuitively, it should be possible

to split a logical node by splitting and reusing the set of physical nodes that implement

the logical node. Such a method does, however, require further research.

The choice of basic changes to support was made more or less intuitively. To ensure

the completeness of our solution to dealing with changes to the search tree, however, we

need to do research on whether we can actually perform all relevant complex changes

using our basic changes.

Chapter 8

Prototype Implementation

This chapter discusses a prototype implementation of the Globe location service, and

focuses specifically on the measurements made of this prototype. These measurements

assess the performance of the location service, and are intended to show that the perfor-

mance of individual physical nodes does not hinder the scalability of the location service

as a whole. To measure the performance of physical nodes under different types of condi-

tions, measurements were performed with different configurations of the search tree. The

main results from the measurements are that a physical node can support at least 9 update

operations or 107 lookup operations per second. From these results we conclude that a

scalable location service can be built.

8.1 Building a Location Service Prototype

In the previous chapters, we have examined the behavior of the location service by an-

alyzing and simulating the interaction between its nodes. In this chapter, however, we

focus on the performance of an actual implementation. Since the location service consists

mostly of the physical nodes that constitute its search tree, the performance of the location

service is strongly influenced by these physical nodes. It is therefore important that these

physical nodes perform efficiently since that enables the location service to be scalable.

To examine whether an efficient location service can be implemented, we implemented

a prototype and measured its performance, focusing on the performance of the physical

nodes.

The process of implementing the prototype, however, also had additional advantages.

For instance, it allowed us to verify that the functionality of the location service was com-

plete. It also showed us that the we could translate the update and lookup algorithms from

our high-level Ada-like pseudocode, as presented in the previous chapters, into executable

code. The prototype of the location service is also used in a Globe system that runs con-

tinuously. This system is used to demonstrate the functionality of Globe, and serves as a

181

182 CHAPTER 8. PROTOTYPE IMPLEMENTATION

testbed for performing experiments for subprojects of Globe, such as the Globe Distribu-

tion Network (GDN) [Bakker, 2002] and GlobeDoc [Kuz, 2003].

8.2 Assessing the Performance of the Prototype

The performance of the location service can be characterized using three views. The

first view is the user view. This view deals with the question of how long an update or

lookup operation takes in the location service, and is of interest to the users of the location

service. For the location service to be usable, a user should not have to wait a long time for

an operation to be finished, that is, the duration of update and lookup operations should

be short.

The second view is the system view. This view deals with the question of how many

update or lookup operations per second the location service can handle, and is of interest

to the operators of the location service. We call this value the throughput of the location

service. For the location service to be maintainable, the number of physical nodes that

implement the location service should be as low as possible. To achieve a low number,

the (maximum) throughput of individual physical nodes has to be high.

To explain the results from the user and system view, we also looked inside the phys-

ical nodes. This third view is called the engineering view. It examines the distribution of

the total time spent in a physical node over the various software modules that implement

the node. This view allows us to see where further research is needed to improve the

performance of physical nodes.

8.3 Prototype Implementation

The prototype implementation of the Globe location service can be divided into three

parts: the search tree, the tree information service, and the resolver library. The main

part of the prototype is the search tree, which consists of a set of physical nodes. The

implementation of the physical node is the main subject of this section. The tree informa-

tion service is a simple process that stores the structure of the search tree and the contact

information of the physical nodes, and which allows the physical nodes to query this in-

formation (see also Chapter 7). The resolver library is linked with client programs, and

allows these programs to easily invoke the insert, delete, and lookup operations in the

location service. This library basically consists of the code needed to communicate with

the nearest leaf node of the search tree.

As shown in Figure 8.1, the design of the physical node roughly follows the design

described in the previous chapters. This design consists of four layers, with the top layer

divided into three parts. The top layer implements the insert, delete, and lookup algo-

rithms. To improve the engineering view of this layer, we separated the location cache

and contact record database (CRDB) modules from the rest of this layer. The RPC layer

contains the implementation of the RPC mechanism (i.e., the sending and receiving of re-

quest and reply messages), including the persistent message log used for crash recovery.

8.3. PROTOTYPE IMPLEMENTATION 183

Algorithm

Layer

Cache

Module Module

RPC

Layer

Layer

Messenger

Low-level

Layer

CRDB

Network

Contact Record

Database

Message

Log

Cache

Location

Figure 8.1: Global design of the physical node prototype.

This layer also implements the scheduling of procedures and the distribution of load over

multiple physical nodes. The messenger layer implements reliable, ordered communica-

tion between two physical nodes, including the marshalling of network packets. Finally,

the low-level layer implements the low-level support for networking (e.g., socket calls),

threading (e.g., locking), and timers.

The design of the physical node is driven by the use of pop-up threads. This means

that there are threads waiting in the low-level layer for timer or network events. Once such

an event occurs (e.g., the arrival of a packet), a thread will “pop up” from the low-level

layer, and handle the event by calling the appropriate callback function in a higher-level

layer, usually the messenger layer. As an indirect result of the event, one of the procedures

in the algorithm layer can be invoked.

The design is mostly single threaded, that is, at any point in time, only a single thread

can be active in the top three layers. The low-level layer, however, is not single threaded,

but contains two concurrent threads: one thread waiting for network events and one thread

waiting for timer events. The low-level layer uses a locking mechanism to ensure that at

any time at most one of these two threads is executing a callback function in the higher-

level layers. The use of a single thread of control greatly simplified the design of the

physical node since the need for concurrency control was limited to the low-level layer.

Using a single-threaded design can, however, limit the performance of a physical node,

especially on multi-processor hosts.

184 CHAPTER 8. PROTOTYPE IMPLEMENTATION

An important drawback of using a single-threaded design is that a pop-up thread is not

allowed to block in the higher-level layers. Otherwise, the physical node would become

idle since both pop-up threads would not be able to handle new events. The blocked

thread (e.g., the network thread) cannot accept new events because it is blocked; the other

thread (e.g., the timer thread) cannot handle new events since the thread is not allowed to

enter the (single threaded) higher-level layers. The pop-up threads therefore have to run

to completion, and return to the low-level layer.

Unfortunately, the update and lookup procedures in the algorithm layer do need to

block in a higher-level layer when performing an RPC to allow other procedures to start or

continue executions, as described in Chapter 5. We solved the blocking-thread problem

by using continuations [Milne and Strachey, 1976]. A continuation is a piece of data

that allows a previously interrupted procedure to continue its execution. In the physical

node, the update and lookup procedures save their state in a continuation before starting

an RPC, and the RPC layer uses the continuation to continue the procedures when the RPC

has completed. When a procedure has saved its state and send its RPC request, its thread

can return to the low-level layer to accept new work.

The current prototype does not implement all the functionality described in the pre-

vious chapters. The three most important parts that are missing are the move-up and

move-down operations for contact addresses (described in Chapter 4), the stable storage

for the contact record database and message log (described in Chapter 5), and the security

features (described in Chapter 6). Since tree management (described in Chapter 7) is not

yet fully developed, it is also not included in the prototype, which significantly simplified

the design of the tree information service. The performance of the prototype is also lim-

ited because we used only a straightforward design, and did not (yet) try to optimize its

design for high performance.

For the measurements of the engineering view, we added timers to various modules

and layers of the physical node prototype. These timers measured the total amount of

time spent in the various modules and layers. Care had to be given to the timing of the

low-level layer since that layer contained two concurrent threads and the time spent there

should not be measured twice.

We implemented the prototype using the Java programming language. Specifically, we

used the Java 2 SDK 1.3.1 from Sun. This Java distribution includes a just-in-time (JIT)

compiler to translate Java bytecode into native code. We used this JIT compiler in all our

measurements. To simplify the implementation of persistent storage, for instance, for the

contact record database, we used the Berkeley database library (version 3.3.11). We used

the standard Java remote method invocation (RMI) protocol and libraries to implement the

communication between the physical nodes and the tree information service. The size of

the complete prototype was around 50,000 lines of code.

8.4. OVERALL MEASUREMENT METHODOLOGY 185

8.4 Overall Measurement Methodology

In the ideal situation, we would have measured the performance of the location service

by starting a real-life search tree, that is, a search tree consisting of a large number of

physical nodes distributed over a wide-area network, and measuring its performance under

a real-life workload. Unfortunately, this approach was not possible for the following three

reasons. First, the number of physical nodes required to run a real-life search tree was

too large to handle by ourselves. Second, the characteristics of the network between

the physical nodes were unknown. Third, the real-life workload of the location service

(i.e., the number of invocations and their distribution over time and locations) was also

unknown. Therefore, a different approach had to be taken.

8.4.1 Measurement Approach

In our alternative approach, we measured the performance of an individual physical node

under several reasonably likely workloads. By focusing on the performance of a single

physical node instead of the performance of the location service as a whole, we avoided

both the problem of the large number of nodes and the problem of the unknown network

characteristics. By examining the performance of the physical node under several reason-

ably likely workloads, we avoided the problem of the unknown real-life workload. We

basically assumed that by examining reasonably likely workloads, we would cover any

potential future workload. Note that this measurement of the performance of individual

nodes can be seen as complementary to the simulations of Chapter 3 and Chapter 4 that

examined the global interactions in the search tree.

We examined the different types of workloads by dividing them into separate mea-

surement cases. Each measurement case examined a different type of behavior of an

update or lookup operation at a physical node. We expected different types of behavior

to result in different types of workloads for the physical node. Examples of measurement

cases are: ”How long does it take to find a contact address in a physical node?” and ”How

long does it take to insert a forwarding pointer at a physical root node?” By carefully

choosing the structure of the search tree, we could examine each particular measurement

case, as shown in the sections on the update and lookup measurement below.

Measuring the overall performance of a physical node by examining different mea-

surement cases can be a problem in itself because there might be many different cases

to consider for lookup and update operations. We therefore needed to introduce some

simplifying assumptions to limit the number of cases to consider. The assumptions and

the resulting measurement cases are described in the next two sections. As a first step

to simplify the performance measurements, we considered the measurement cases for the

update and lookup operations separately. This separation allowed us to ignore the problem

of determining the real-life lookup-to-update ratio for object handles.

The shift of focus from the performance of the location service as a whole to the

performance of individual physical nodes meant that the user view could no longer be

measured directly since the duration of an individual operation (as experienced by a user)

186 CHAPTER 8. PROTOTYPE IMPLEMENTATION

is in part determined by the network conditions. We could, however, still determine the

time spent per operation in a physical node, and use that value to estimate the duration of

individual operations in the location service as a whole. We discuss the consequences of

the measurement results for the location service as a whole in Section 8.7.

Since it was difficult to measure the amount of time spent by each operation in a

physical node, we did not measure this amount directly, but computed the amount of time

instead, as the total duration of the measurement divided by the number of operations

executed. This computation was possible since the implementation of the physical node

was single threaded. We call the amount time spent in a physical node by an operation its

duration in the node.

8.4.2 Physical Setup

To perform the measurements, we used the DAS-2 supercomputer at the Vrije Univer-

siteit in Amsterdam. The DAS-2 is a supercomputer consisting of 72 independent PCs

connected through a high-speed Myrinet network1 and a normal fast Ethernet network.

Every PC consisted of a dual 1-GHz Pentium-III system with 1 GByte of main memory

and a local IDE hard disk with 20 GByte of storage. We used these disks to store the

database, cache, and log of each physical node. The hard disk was formatted with the

ext3 file system. For communication in the location service, we used the TCP/IP protocol

over the fast Ethernet network. The PCs ran the Red Hat Linux 7.2 operating system, with

a locally configured and compiled 2.4.19 kernel.

The measurement setup consisted of a small number of physical nodes that formed a

search tree and a client program to generate update or lookup operations in that tree. To

examine a measurement case, we ran each individual physical node, as well as the tree

information service and the client program, on a separate PC in the supercomputer. The

client program allowed multiple parallel operations to be started in the search tree. By

varying the number of parallel operations, we could control the workload of the location

service. By using several measurement runs, we could determine which workload resulted

in a maximum throughput in a node without overloading the measurement setup.

To ensure real-life performance of the Berkeley database library, we filled the contact

record database and location cache with a large number of extra object handles. These

object handles were not used during the measurements, but did increase the size of the

database files. The increased file size resulted in a slower, but more realistic, performance

of the read and write operations on the databases.

1We did not use the high-speed Myrinet network in our measurements. The DAS-2 merely provided us with

a couple of unused PCs connected through an independent and lightly-loaded network.

8.5. MEASURING UPDATE OPERATIONS 187

8.5 Measuring Update Operations

8.5.1 Determining Measurement Cases

To determine the measurement cases for update operations, we looked at their behavior at

different types of nodes. We limited the number of measurement cases to consider with

the following simplifying assumptions:

• The location service stores at most one contact address per object handle.

• The location service stores contact addresses only at leaf nodes.

These assumptions have the following consequences for the update operations:

• When a contact address is inserted, the leaf node always inserts the contact ad-

dress, and the other nodes on the path from the leaf to the root node always insert a

forwarding pointer.

• When a contact address is deleted, the leaf node always deletes the contact address,

and the other nodes on the path from the leaf to the root node always delete their

forwarding pointers.

The behavior of each of the nodes on the path from the leaf to the root node is therefore

fixed by the assumptions:

• The leaf node receives an insert (or delete) request from a client, inserts (or deletes)

the contact address, and requests the insertion (or deletion) of a forwarding pointer

at its parent.

• One or more intermediate nodes receive an insert (or delete) request from a child

node, insert (or delete) a forwarding pointer, and request the insertion (or deletion)

of a forwarding pointer at their parent.

• The root node receives an insert (or delete) request from an (intermediate) child

node, and inserts (or deletes) a forwarding pointer.

Since the behavior of the update operation is determined only by the type of node, we

needed to consider only three types of nodes: leaf, intermediate, and root nodes. The

measurement cases to consider for update operations consisted therefore of measuring the

throughput and time distribution at these three types of nodes, as shown in Table 8.1.

We also assumed that the number of contact addresses stored in the search tree would

be more-or-less stable during the measurement runs. This meant that during the measure-

ments roughly the same number of insert and delete operations had to be executed. This

steady-state assumption holds only for a long-running location service since the service is

expected to grow in its start-up phase. Since any insert-to-delete ratio during the start-up

phase would be a wild guess at best, we decided to focus on the steady-state situation

only.

188 CHAPTER 8. PROTOTYPE IMPLEMENTATION

Table 8.1: Measurement cases for the update operation.

Case Description

U1 Update operation executed at leaf node

U2 Update operation executed at intermediate node

U3 Update operation executed at root node

(b)

RootRoot

Intermediate

Leaf

(c)

Leaf

Intermediate

Root

Run 1 Run 2 Run 3

Measurement Measurement Measurement

Intermediate

Leaf

(a)

Figure 8.2: Search tree structures used in the three measurement runs for update

operations. The (physical) node that was measured is shaded gray.

8.5.2 Measurement Methodology

To examine the three measurement cases, we used the minimal search tree that would

allow us to measure the three types of nodes. The search tree consisted of a single leaf,

intermediate, and root node, as shown in Figure 8.2. We used three independent measure-

ment runs to measure the performance of the three types of nodes. In each of the three

measurement runs, we measured the duration and time distribution of 5,000 update oper-

ations. Each update operation used an object handle that was randomly chosen out of a

set of 20,000 object handles. To ensure that roughly the same number of insert and delete

operations were executed 10,000 (i.e., 50%) of the 20,000 object handles were already

stored in the location service at the start of a measurement run. The characteristics of the

measurements are shown in Table 8.2.

To ensure that at most one contact address per object handle was stored in the location

service, the client program maintained a table that kept track of which object handles had

a contact address stored in the location service. The client program used this table to

decide whether it should insert or delete a contact address for the randomly chosen object

handle. If an address was present in the location service, the client program would delete

the address; if no address was present, the client program would insert it.

8.5. MEASURING UPDATE OPERATIONS 189

Table 8.2: Characteristics of the measurement of update operations.

3 Measurement cases

3 Measurement runs

1 Search tree

1 Measurement scenario

5,000 Update operations

± 50% Insert operations

± 50% Delete operations

20,000 Object handles

Table 8.3: Measurement scenario for update operations. This scenario is used in all

three measurement runs.

Step Action Description

1 Prepare Insert 50% of all object handles.

2 Measure Perform updates operations.

The measurement scenario for update operations consisted of the same two steps for

all three measurement runs. These steps are shown in Table 8.3. In the first step, we

prepared the search tree by inserting 50% of all the object handles used in the experiment.

In the second step, we measured the performance of update operations by performing

5,000 update operations on randomly chosen object handles. We measured how long the

update operations took in total and measured how much time was spent in the various

layers and modules in total. The throughput is the number of operations divided by the

total duration of the measurement run. The duration of an individual operation is the total

duration of the measurement run divided by the number of operations.

To ensure that we measured the maximum throughput of a node, we needed to ensure

that the measured node was the bottleneck in the system. Otherwise, we might actually

have measured the maximum throughput of one of the other two nodes, given the pipeline

nature of executing operations in the location service. We avoided this problem by arti-

ficially lowering the amount of work per operation in the other two nodes in the search

tree, for example, by using asynchronous writes to disk or by using a message log in main

memory at these nodes.

We expected that in normal operations a physical node would usually read its contact

records directly from disk, instead of from the file system cache, since the number of

contact records stored by a node is normally quite large. To ensure that the contact record

database would behave in the same way in our measurement setup, we therefore needed

to minimize the caching effects of the file system. We minimized the caching effects by

storing significantly more object handles in the database than the number of operations,

190 CHAPTER 8. PROTOTYPE IMPLEMENTATION

Table 8.4: Throughput and duration of an individual update operation in different

types of physical nodes.

Case Description Throughput Duration

U1 Leaf node 9.2 updates/s 108.1 ms

U2 Intermediate node 16.7 updates/s 59.6 ms

U3 Root node 17.3 updates/s 57.6 ms

Table 8.5: Time spent per update operation in the different layers and modules (as

depicted in Figure 8.1) for the three types of physical nodes.

Layer / Module Leaf Node Intermediate Node Root Node

Low-level 0.7 ms 0.8 ms 0.2 ms

Messenger 0.9 ms 0.7 ms 0.4 ms

RPC (incl. log) 48.2 ms 0.5 ms 0.3 ms

Algorithm 0.6 ms 0.5 ms 0.4 ms

CRDB 57.7 ms 57.1 ms 56.3 ms

Cache 0.0 ms 0.0 ms 0.0 ms

Total 108.1 ms 59.6 ms 57.6 ms

thereby minimizing the chance of reusing one of the randomly chosen object handles in

an operation. For our measurements, we chose to use four times as many object handles

as update operations.

8.5.3 Results

Table 8.4 shows the combined results of the throughput and of the duration measurements

of update operations in the three measurement cases. The table shows that the leaf node

is only half as fast as the other two nodes. The root and intermediate node have almost

the same performance. These results are to be expected, and can easily be explained by

Table 8.5.

Table 8.5 shows the time distribution per update operation over the various layers and

modules in a physical node, as depicted in Figure 8.1. The table shows that most of the

time is spent performing disk operations, either by reading and writing contact records

in the database (in the CRDB module), or by saving request messages in the persistent

message log (in the RPC layer). Since the leaf node has to do both, it is only half as fast

as the other nodes. The root node is slightly faster than the intermediate node since it has

less communication to do.

8.6. MEASURING LOOKUP OPERATIONS 191

8.6 Measuring Lookup Operations

Since the behavior of lookup operations is much less influenced by the type of node its

runs on than the behavior of update operations, we took a different approach to find the

measurement cases for the lookup operation. Instead of looking at the behavior of the

lookup operation at different types of nodes, we examined the different steps taken by the

lookup operation to find a contact address.

8.6.1 Determining Measurement Cases

We limited the number of measurement cases to consider for the lookup operation with

the following simplifying assumptions:

• Only a single contact address is stored in the search tree per object handle.

• Only a single contact address is looked up per lookup operation.

These assumptions have the following consequences for the lookup operation:

• The lookup operation can always find a contact address.

• The lookup operation is always ready after the first contact address is found.

In Section 4.4 we described that the lookup operation uses five steps to find contact ad-

dresses. Since every lookup operation always finds a single contact address during the

measurements, one of these five steps is responsible for retrieving the contact address.

These five steps thereby become five measurement cases:

i. The contact address is found locally at the physical node.

ii. The contact address is found by following a local cache pointer.

iii. The contact address is found by following a forwarding pointer.

iv. The contact address is found by following a remote cache pointer.

v. The contact address is found by going to the parent node.

We also needed to consider the fact that the location cache might have invalid cache

entries, that is, references to nodes that no longer store a contact address. This was poten-

tially a problem since the cache could have more than one invalid cache entry per object

handle. To avoid having to deal with potentially large numbers of measurement cases in-

volving increasing numbers of incorrect entries in the location cache, we also introduced

a third simplifying assumption for the lookup operation:

• A physical node has at most one invalid cache entry per object handle.

192 CHAPTER 8. PROTOTYPE IMPLEMENTATION

Table 8.6: Measurement cases for the lookup operation.

Case Description

L1 Local contact address

L2 Via local cache pointer

L3 Via forwarding pointer

L4 Via forwarding pointer, after an invalid cache entry

L5 Via remote cache pointer

L6 Via parent

L7 Via parent, after an invalid cache entry

Since the lookup operation continues searching for a contact address after using an invalid

cache entry, the invalid cache entry must always be examined before or during the step

that actually retrieves the contact address. The extra cases created by an invalid cache

entry can thus be considered variants of case ii–v.

When considering these four invalid-cache-entry variants, the variants of case ii and

case iii are seen to be very similar, as well as those of case iv and case v. We consider

case ii and case iii to be similar because for both cases the lookup operation accesses

the contact record database and the local location cache, before performing the RPC that

retrieves the contact address. For case iv and case v, the lookup operation accesses the

contact record database, the local location cache, and the remote location cache, before

performing the RPC that retrieves the contact address. Because of these similarities, we

decided to add only two new measurement cases for invalid cache entries:

vi. The contact address is found by following a forwarding pointer, after trying an

invalid local cache entry (variant of case iii).

vii. The contact address is found by going to the parent node, after trying an invalid

remote cache entry (variant of case v).

In total, we thus had seven measurement cases to consider for the lookup operation. The

seven cases are summarized (and slightly reordered) in Table 8.6.

8.6.2 Measurement Methodology

To examine the seven measurement cases for the lookup operation, we used three mea-

surement runs and two search trees, as shown in Figure 8.3. Per search tree, we used a

single measurement scenario. To measure the performance of a physical node in a partic-

ular measurement case, the client program invoked 50,000 lookup operations which each

operation looking up a single object handle. The characteristics of the lookup operation

measurements are shown in Table 8.7.

8.6. MEASURING LOOKUP OPERATIONS 193

Root

Leaf1 Leaf3

(b) (c)

Leaf2

Root

Leaf1 Leaf3

Run 2 Run 3Run 1

Measurement Measurement Measurement

Leaf2

(a)

Figure 8.3: Search tree structures used in the three measurement runs for lookup

operations. The (physical) node that was measured is shaded gray.

Table 8.7: Characteristics of the measurement of lookup operations.

7 measurement cases

3 Measurement runs

2 Search trees

2 Measurement scenario

50,000 Lookup operations

50,000 Object handles

194 CHAPTER 8. PROTOTYPE IMPLEMENTATION

Table 8.8: Measurement scenario 1 for lookup operations. This scenario is used in

measurement run 1.

Step Action Description

1 Prepare Insert all object handles at the leaf node.

2 Measure Lookup all object handles at the leaf node.

As with the measurement of update operations, we had to ensure that only the mea-

sured node was the bottleneck in the system. This was obviously not a problem for mea-

surement run 1 since it used a search tree consisting of only a single node. To speed up

the other nodes in the search tree in run 2 and run 3, we disabled their location caching

code and emptied their contact record database.

As explained in Chapter 4, the lookup procedure inserts a new location in its location

cache whenever it finds a contact address at another node. Since this cache update is of no

concern to the user that invoked the lookup operation, this update can be performed after

the RPC reply is sent back to the caller. The cache update is thus not part of the duration

of the lookup operation as experienced by the user. It is, however, measured in the total

duration of the measurement run, and thus the duration of individual lookup operations.

We therefore had to correct the duration of lookup operations in a node by subtracting the

total cache update time from the total duration. We added an extra timer to the physical

node prototype to measure the total time used to update the location cache.

Measurement Run 1

The goal of the first measurement run was to examine measurement case L1, that is, find a

contact address at the local physical node. For this run, we used a search tree consisting of

a single physical node, as shown in Figure 8.3(a). The measurement scenario for this run

consisted of two steps, as shown in Table 8.8. Step 1 prepared the search tree by inserting

all object handles in the single node. Step 2 performed the actual measurement by letting

the client program invoke lookup operations for all object handles and measuring the

performance.

Measurement Run 2

The goal of the second measurement run was to examine measurement cases L2–L4. In

these cases, the contact address is found, either by following a local cache pointer or by

following a forwarding pointer. To find a node that exhibited the behavior associated with

these cases, we used a search tree consisting of a single (physical) root node and three leaf

nodes (each consisting of a single physical node), as shown in Figure 8.3(b). Since the

root node stores a forwarding pointer when a contact address is stored in one of the leaf

nodes and a local cache pointer when a contact address is found in one of the leaf nodes,

8.6. MEASURING LOOKUP OPERATIONS 195

Table 8.9: Measurement scenario 2 for lookup operations. This scenario is used in

measurement runs 2 and 3.

Step Action Description

1 Prepare Insert all object handles at node Leaf1.

2 Measure Lookup all object handles at node Leaf2.

3 Measure Lookup all object handles at node Leaf2.

4 Prepare Delete all object handles at node Leaf1.

5 Prepare Insert all object handles at node Leaf3.

6 Measure Lookup all object handles at node Leaf2.

the behavior associated with cases L2–L4 is exhibited by the root node. We measured in

this run therefore the performance of the root node.

The measurement scenario for run 2 is shown in Table 8.9. Steps 1, 4, and 5 were used

to prepare the search tree, and steps 2, 3, and 6 performed the actual measurements. The

measurement steps consisted of performing a lookup operation for every object handle.

Using every object handle only once minimized the caching effects of the file system. In

these steps, the lookup operations were always started at node Leaf2.

Step 1 prepared the search tree for measurement steps 2 and 3 by inserting at node

Leaf1 a contact address for every object handle. Step 2 measured the performance of

finding a contact address via a forwarding pointer (i.e., case L3) by starting lookup opera-

tions at node Leaf2. As a side effect of the lookup operation, cache entries were inserted

in this step in the local location cache of the root node. No cache entries were inserted in

node Leaf2 since its location cache was disabled, as described above. Step 3 measured

the performance of finding a contact address via a local cache pointer (i.e., case L2) by

using the local cache entries inserted in step 2.

The remaining case was finding a contact address via a forwarding pointer, after using

an invalid cache entry (i.e., case L4). This case used invalid entries in the local location

cache. To create such invalid entries, we moved the contact addresses from node Leaf1 to

node Leaf3. This movement was done in step 4 and step 5. These steps deleted the contact

addresses at Leaf1 and inserted them at Leaf3. Since the entries in the location cache at

root node still pointed to node Leaf1, step 6 measured the performance of physical nodes

with invalid cache entry caches at the root node, as needed for this case.

Measurement Run 3

The goal of the third measurement run was to examine measurement cases L5–L7. In

these cases, the contact address is found either by following a remote cache pointer or

by going to the parent node. For this run, we used the same search tree and the same

measurement scenario as measurement run 2. The main difference with the measurement

run 2 is the node that is measured. In this run, we examined the performance of node

Leaf2 since that node exhibits the behavior associated with cases L5–L7.

196 CHAPTER 8. PROTOTYPE IMPLEMENTATION

Step 1 prepared the search tree for measurement steps 2 and 3 by inserting at node

Leaf1 a contact address for every object handle. Step 2 measured the performance of

finding a contact address by going to the parent node (i.e., case L6) by starting lookup

operations at node Leaf2. Again, as a side effect of the lookup operation, cache entries

were inserted in this step in the remote location cache of node Leaf2. No cache entries

were inserted in the root node since its location cache was disabled, as described above.

Step 3 measured the performance of finding a contact address via a remote cache pointer

(i.e., case L5) by using the remote cache entries in node Leaf2.

The remaining case was finding a contact address by going to the parent node, after

using an invalid cache entry (i.e., case L7). This case used invalid entries in the remote

location cache. To create such invalid entries, we moved the contact addresses from node

Leaf1 to node Leaf3 in this run as well. This movement was done in step 4 and step 5.

Step 6 measured the performance of physical nodes with invalid cache entry caches at

node Leaf2, as needed for this case, since the entries in the location cache at node Leaf2

still pointed to node Leaf1.

8.6.3 Results

Figure 8.4 shows the maximum throughput of lookup operations in a physical node. The

measurement cases can be divided into two groups based on the performance. The first

group consists of only the case where the lookup operation finds a contact address di-

rectly in the local node (i.e., L1). In this case our prototype can handle about 410 lookup

operations per second.

The second group consists of the other cases, which were significantly slower. The

slowest case is case L7, where a lookup operation has to handle an invalid cache entry

and has to use the parent node to find a contact address. In this case our prototype can

handle about 107 lookup operations per second. Figure 8.5 shows the duration of lookup

operations for the different cases. These numbers include the correction for inserting

cache entries, as mentioned above, and show the same kind of result as the numbers for

the throughput, although the difference between the cases is less pronounced.

The bar graph in Figure 8.6 allows us to easily compare the engineering view for the

different measurement cases. In the figure, the cache module has an extra white bar which

indicates the amount of time spent on the cache update. This time is spent in the node, but

it is not part of the duration as experienced by a user.

The figure clearly shows that cache access times are the main reason why case L1 is

so much faster than the other measurement cases. It also shows that for cases L2–L7, the

time distribution is almost the same. The main anomaly in the figure is that the algorithm

layer is 1 ms slower in cases L5–L7, while the node has to execute only a few extra lines of

Java code for these cases. The lines do not explain the significant increase in the amount

of time used since they only determine that steps 1–3 of the lookup procedure do not

apply. Unfortunately, we do not have an explanation for this anomaly.

8.6. MEASURING LOOKUP OPERATIONS 197

L
o

c
a

l
A

d
d

re
s
s

V
ia

 L
o

c
a

l
C

a
c
h

e

V
ia

 F
w

d
 P

o
in

te
r

V
ia

 F
w

d
 P

tr
 (

in
v
.

c
a

c
h

e
)

V
ia

 R
e

m
o

te
 C

a
c
h

e

V
ia

 P
a

re
n

t

V
ia

 P
a

re
n

t
(i
n

v
.

c
a

c
h

e
)

Type of Lookup

0

100

200

300

400

500

T
h

ro
u

g
h

p
u

t
(l

o
o

k
u

p
s/

s)

Case Description Throughput

L1 Local contact address 410 lookups/s

L2 Via local cache pointer 132 lookups/s

L3 Via forwarding pointer 147 lookups/s

L4 Via fwd. ptr. (inv. cache) 117 lookups/s

L5 Via remote cache pointer 115 lookups/s

L6 Via parent 128 lookups/s

L7 Via parent (inv. cache) 107 lookups/s

Figure 8.4: Throughput (i.e., the number of lookup operations per second) of dif-

ferent cases for the lookup operation measurement.

198 CHAPTER 8. PROTOTYPE IMPLEMENTATION

L
o

c
a

l
A

d
d

re
s
s

V
ia

 L
o

c
a

l
C

a
c
h

e

V
ia

 F
w

d
 P

o
in

te
r

V
ia

 F
w

d
 P

tr
 (

in
v
.

c
a

c
h

e
)

V
ia

 R
e

m
o

te
 C

a
c
h

e

V
ia

 P
a

re
n

t

V
ia

 P
a

re
n

t
(i
n

v
.

c
a

c
h

e
)

Type of Lookup

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

D
u

ra
ti

o
n

 (
m

s)

Case Description Duration

L1 Local contact address 2.4 ms

L2 Via local cache pointer 5.6 ms

L3 Via forwarding pointer 5.1 ms

L4 Via fwd. ptr. (inv. cache) 6.5 ms

L5 Via remote cache pointer 6.6 ms

L6 Via parent 6.1 ms

L7 Via parent (inv. cache) 7.3 ms

Figure 8.5: Duration of different types of lookup operations in a physical node

(critical path only).

8.6. MEASURING LOOKUP OPERATIONS 199

 Low-level Layer

 Messenger Layer

 RPC Layer

 Algorithm Layer

 CRDB Module

 Cache Module

 Low-level Layer

 Messenger Layer

 RPC Layer

 Algorithm Layer

 CRDB Module

 Cache Module

 Low-level Layer

 Messenger Layer

 RPC Layer

 Algorithm Layer

 CRDB Module

 Cache Module

 Low-level Layer

 Messenger Layer

 RPC Layer

 Algorithm Layer

 CRDB Module

 Cache Module

 Low-level Layer

 Messenger Layer

 RPC Layer

 Algorithm Layer

 CRDB Module

 Cache Module

 Low-level Layer

 Messenger Layer

 RPC Layer

 Algorithm Layer

 CRDB Module

 Cache Module

 Low-level Layer

 Messenger Layer

 RPC Layer

 Algorithm Layer

 CRDB Module

 Cache Module

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

3
.5

4
.0

4
.5

Duration (ms)

 L
o

ca
l

C
o

n
ta

ct
 V

ia
 L

o
ca

l
 V

ia
 F

o
rw

ar
d

in
g

 V
ia

 F
w

d
.
P

tr
.

 V
ia

 R
em

o
te

 V
ia

 P
ar

en
t

 V
ia

 P
ar

en
t

 A
d

d
re

ss
 C

ac
h

e
P

tr
.

 P
o

in
te

r
 (

in
v

.
C

ac
h

e)
 C

ac
h
e

P
tr

.
 (

in
v
.
C

ac
h
e)

T
y
p

e
o
f

L
o
o
k

u
p

Figure 8.6: Duration of different parts of the lookup operation in a physical node

for different types of lookup operations. The critical path is shaded gray.

200 CHAPTER 8. PROTOTYPE IMPLEMENTATION

8.7 Discussion of Results

The main question examined in this chapter is whether an efficient physical node can be

implemented. To answer this question, we have to determine whether the performance of

the physical nodes allows the location service to be scalable. We make this determina-

tion by examining the performance numbers of the last two sections in the context of a

complete location service.

User-view Assessment

In our assessment of the performance numbers, we first consider the user view, that is,

the duration of update and lookup operations in the location service as a whole. As we

indicated before, it is, unfortunately, difficult to state what typical update and lookup

operations are in the location service. We therefore examine the performance numbers by

using them to estimate only the worst-case performance of update and lookup operations

in a typical example search tree. Our goal in this user-view assessment is to show is that

the worst-case performance of update and lookup operations is within acceptable bounds.

An update operation consists at most of executing update procedures at all the nodes

on the path from the leaf node to the root, that is, at the leaf node, some intermediate

nodes, and the root node. The worst-case scenario for an update operation is therefore

performing update procedures at all these nodes. We examine the performance in a four-

level search tree, as used in Chapters 3 and 4. The performance of the leaf node was

captured by measurement case U1, the performance of the two intermediate nodes was

captured by measurement case U2, and the performance of the root node was captured

by measurement case U3. In the example search tree, the time spent in the nodes of the

search tree for the worst-case scenario is:

108.1ms(case U1) + 2×59.6ms(case U2) + 57.6ms(case U3) = 284.9 ms

For the total duration of the update operation in the worst-case scenario, we need to

add the communication time between the four nodes. If our location-aware load distribu-

tion scheme is effective, the physical nodes are near each other, and the total communica-

tion time between nodes can be as low as a couple of milliseconds. If the load distribution

scheme is not effective, however, the physical nodes can be located far away, and the to-

tal communication time between nodes can easily rise to several hundred milliseconds.

Given that there are three remote RPCs involved in the example search tree, and assum-

ing a round-trip between 5 and 100 ms time per RPC, we expect the total duration of the

update operation in the worst-case scenario to be roughly between 300 and 600 ms.

To evaluate the estimated total duration of update operations (i.e., 300–600 ms), we

examine the context where these operations are used. We are mainly interested in duration

of insert operations since the completion of an insert operation signifies the moment the

contact address is available to all users and thereby the moment the object handle can

safely be distributed. In contrast, the completion of the delete operation only signifies

the disappearance of a contact address, which is less interesting. A new contact address is

8.7. DISCUSSION OF RESULTS 201

inserted in the location service when a new replica is created. The creation of a replica at a

new location can be considered a heavy operation since it usually involves the (wide-area)

transfer of state and program code. Since these transfers can last in the order of seconds

themselves, the duration of the insert operation in the worst-case scenario is acceptable.

For lookup operations, a general, worst-case scenario does not exist since we can al-

ways increase the amount of work by having more contact addresses in the search tree,

by searching for more contact addresses, or by having more invalid entries in the location

caches of the tree nodes. If we stick with the simplifying assumptions for lookup opera-

tions from the previous section, however, the worst-case scenario for lookup operations is

easily given. It consists of the lookup operation starting at a leaf node, visiting each node

on the path from the leaf to the root node, and following forwarding pointers down to the

leaf node that stores the contact address, while examining a single invalid cache entry at

each node visited.

In this limited worst-case scenario, the lookup operation consists of executing the

lookup procedure at two nodes at the leaf and intermediate levels of the search tree and

at one node at the root level. While going up the search tree via the parent node, the

lookup operation behaves according to measurement case L7, and while going down the

search tree by following forwarding pointers, the lookup operation behaves according

to measurement case L4. At the leaf node that stores the contact address, the lookup

operation behaves according to measurement case L1. If we consider a four-level search

tree, this means that the time spent in nodes is:

3×7.3ms(case L7) + 3×6.5ms(case L4) + 2.4ms(case L1) = 43.8 ms

For the total duration of the lookup operation in the limited worst-case scenario, we

need to add the communication time between the seven nodes. Once again, the total

communication time can be as low as a couple of milliseconds and grow to several hun-

dred milliseconds. For the lookup operation, however, there is communication between

seven nodes involved. Assuming again a round-trip between 5 and 100 ms time per RPC,

we therefore expect the total duration of the lookup operation in the limited worst-case

scenario to be roughly between 75 and 650 ms.

Luckily, if our location caching scheme is effective, the lookup operation visits only

two nodes, as discussed in Chapter 4. The first node is the leaf node that has a (valid)

remote cache pointer (i.e., measurement case L5); the second node is the node that actually

stores the contact address (i.e., measurement case L1). The time spent in nodes for a

lookup operation is in this case significantly less:

6.6 ms (case L5) + 2.4 ms (case L1) = 9.0 ms.

In this case, the communication between only two nodes needs to be added. Assuming

a round-trip between 5 and 100 ms time for a single RPC, we therefore expect the total

duration of the lookup operation in this case to be roughly between 15 and 110 ms.

To evaluate the performance of the lookup operation, we compare it to the perfor-

mance of name resolution of DNS. Depending upon the effectiveness of our location

202 CHAPTER 8. PROTOTYPE IMPLEMENTATION

caching scheme, a lookup operation in the Globe location service lasts roughly between

15 and 650 ms. Since the duration for successful name resolution in DNS falls roughly

between several milliseconds and several seconds, presented for instance in [Jung et al.,

2001], we consider the lookup performance of our location service acceptable.

System-view Assessment

Next, we consider the system view, that is, the number of update or lookup operations a

physical node can support. The measured throughput for update operations is, unfortu-

nately, lower (i.e., worse) than the numbers we assumed in our calculations in Chapter 3.

For example, if the logical root node were to receive on average an update operation for

all objects once a month, the logical root node would receive 3.9×105 update operations

per second. To support this number of operations with the prototype implementation, we

need 3.9× 105/17.3 ≈ 22,300 physical nodes to implement the logical root node. This

number is quite large, but still within the expected boundaries, as given in Chapter 3.

The measured throughput for lookup operations is higher (i.e., better) than the through-

put we assumed in Chapter 3. For example, if the logical root node were to receive

a lookup operation for all objects once a month, the logical root node would receive

3.9× 105 lookup operations per second. To support this number of operations with the

prototype implementation, we need 3.9×105/117 ≈ 3,300 physical nodes to implement

the logical root node. This number is also large, but within the expected boundaries, as

given in Chapter 3.

Engineering-view Assessment

The engineering view clearly shows that for both update and lookup operations, the per-

sistent storage (i.e., reading and writing to the hard disk) is the main performance bot-

tleneck. This problem is the most pronounced for update operations since they require

synchronous write operations for database updates and message logging.

An obvious hardware solution to this problem is the use of nonvolatile RAM (NV-

RAM). For instance, the persistent message log can easily be stored completely in NV-RAM

since the log is unlikely to grow large. With this approach we avoid one synchronous

disk write (to add the message to the log) and one asynchronous disk write (to remove

the message from the log) per update operation. NV-RAM can also be used to collect

several database updates persistently in main memory, and write them back to disk asyn-

chronously. A similar method is described for NFS in [Baker et al., 1992].

A software solution to the performance problem is collecting disk write operations,

and perform them synchronously as a group. This aggregation improves disk write per-

formance by better use of the bandwidth to the disk, but delays the completion of individ-

ual update operations. To what extent such aggregation can be effective remains an open

question.

Chapter 9

Related Work

This chapter compares the Globe location service to related work. The criteria on which

the related work is chosen are similarity in the functionality provided, such as support for

mobility and replication, and similarity in the techniques used. Based on these grounds,

we chose the following six categories of related work: naming and directory services,

home-location based systems, search-tree based systems, pointer-chain based systems,

uniform resource names (URNs), and peer-to-peer (P2P) systems. Within every category,

we discuss one or two example systems, and compare these to the Globe location service.

We compare the related work using the issues raised in Chapters 2–7: replication support,

mobility support, basic architecture, scalability, fault tolerance, security, and management

(adaptability). A more general overview of research in the area of location services can

be found in [Pitoura and Samaras, 2001].

9.1 Naming and Directory Services

The primary goal of the location service is to provide location transparency. Historically,

research in the area of location transparency falls in the naming services category. Ex-

amples of such services are DNS [Mockapetris, 1987; Albitz and Liu, 1992], the Tilde

naming system [Comer et al., 1990], work by Cheriton and Mann [Cheriton and Mann,

1989], and work by Lampson [Lampson, 1986]. In this section we consider wide-area

naming services and wide-area directory services to be a single category. Even though

wide-area directory services, such as those based on X.500 [Radicati, 1994] or LDAP

[Loshin, 2000], provide more powerful search facilities than wide-area naming services,

they are still quite similar in the technology used. In this section we use the Domain Name

System (DNS) as our example system.

203

204 CHAPTER 9. RELATED WORK

Summary

DNS is part of the Internet structure, and is used to give human-friendly names to Internet

nodes and e-mail destinations. As a naming service, DNS has a strong focus on allowing

humans to select the right node or destination (i.e., human friendliness). DNS is, however,

also used as a location service in several content distribution networks (CDNs), such as

Akamai [Akamai Technologies, Inc., 2002].

We can distinguish a logical structure and a physical structure in DNS. The logical

structure of DNS concerns its tree-shaped name space. This name space is similar to

the name spaces found in present-day file systems, and differs mostly in the terminology

used and in the syntax of names. For instance, in DNS directories are called domains

and names are called domain names. Syntactical differences include the order in which

names are interpreted (i.e., right-to-left instead of the left-to-right usually found in file

systems) and the use of the dot character (“.”) instead of the (backward) slash character

(“/” or “\”) to divide a domain name into a sequence of labels.

The physical structure of DNS consists of a large set of name servers. Each name

server is assigned a part of the name space to support. The assignment is done as follows.

First, the overall name space is partitioned into zones by grouping sets of related domains;

then, each name server is assigned one or more zones to support. A name server supports a

zone by persistently storing its contents and allowing other hosts (i.e., clients and servers)

to query the information contained in the zone.

Traditionally, DNS servers support two protocols: a name resolution protocol and

a zone replication protocol. Changes to the domain information in a zone were made

manually, by simply editing the configuration files containing the zone information. In

recent years, however, an update protocol has been added to DNS, which enables clients

to make simple modifications to the zone information remotely. The authors of [Huck

et al., 2002] go further and propose to extent DNS with a management system that is

designed to significantly reduce the amount of work required for the (re)configuration of

DNS servers. In this system each name server is assigned a management agent that is

responsible for maintaining the configuration of the name server.

Name resolution in DNS is closely tied to the structure of a domain name. A do-

main name consists of a sequence of labels. The sequence of labels determines a path

of domains in the tree-shaped name space, starting at the root domain. Conceptually,

name resolution consists of visiting, in turn, the domains associated with the labels in

the sequence. In practice, this means visiting the name servers responsible for the zones

encompassing the domains. To improve the efficiency of name resolution, DNS makes

extensive use of caching. Name servers cache both intermediate and end results of the

name resolution process.

To improve fault tolerance and availability, DNS supports the replication of zone in-

formation among multiple name servers. The name servers use a master-slave protocol to

propagate changes in a zone. Changes are made at the master name server either manually

or through the update protocol, and slave name servers periodically retrieve the updated

state of the zone using a special zone transfer protocol.

9.2. HOME-LOCATION BASED SYSTEMS 205

Several CDNs, such as Akamai, have introduced an extension to DNS that improves

the locality of the result of the name resolution process. Normally, when faced with a

replicated host, that is, a domain name with more than one IP address, the name resolution

process picks an IP address of the set of available addresses in a round-robin fashion. The

extension, however, selects an IP address of the replicated host that is near the client that

requested the name resolution. To determine which IP address of the domain name is

near, the extension uses the IP address of the client. The exact method Akamai uses to

choose an IP address is left unspecified, but it does take the topology and current use of

the Internet into account [Leighton and Lewin, 2000].

Evaluation

An important part of DNS, as with any name service, is its support for human-friendly

naming. This aspect of DNS, however, falls outside the scope of our evaluation since

human-friendly naming is not the responsibility of the Globe location service, as described

in Chapter 1.

DNS has support for replicated hosts, that is, domain names with more than one IP

address. However, this support normally does not include exploiting locality, and an ex-

tension, as described above, is thus needed. DNS has no support for frequent mobility. It

can behave like a home-location based system by allowing the IP address associated with

a mobile host to be changed. Frequent address changes of a mobile host do, however,

preclude the use of replication and caching techniques.

Even though DNS and the Globe location service both use a distributed search tree to

deal with scalability issues, the purpose of the search tree is actually significantly different

in both systems. While in DNS, the search tree is used to organize large numbers of

domain names and make them available in a human-friendly fashion, the search tree in

the Globe location service is used to represent distances in the underlying network in order

to exploit locality.

DNS has proven it can store a large number of names1, and thus clearly has numer-

ical scalability. DNS also provides geographical scalability through its use of caching

to prevent wide-area communication. The extension mentioned before can provide even

more locality by carefully selecting the answers (i.e., IP addresses) of the name-resolution

process. Recently, security features have been introduced in DNS to protect against unau-

thorized changes of the name-to-address mapping. Most hosts on the Internet, however,

still use the insecure versions of the DNS protocol.

9.2 Home-location based Systems

In a home-location based system, each mobile object has an identifier that identifies a

server in the network that is responsible for storing the current location of the mobile

11.5×108 names, as of January 2002 [Internet Software Consortium, 2002].

206 CHAPTER 9. RELATED WORK

object. This server is called the object’s home location. When a client wants to commu-

nicate with the mobile object, it queries the home location to retrieve the current location

of the object, and when the mobile object moves, it sends an update request to its home

location to update its current location. Note that this approach is not centralized. Different

mobile objects can have different servers as a home location.

The two examples of home-location based systems described in this section are the

HLR/VLR system [Mohan and Jain, 1994], found in current mobile-phone systems, and

Mobile IP [Perkins, 2002], which is the current proposal for supporting host mobility in

the Internet. Both example systems have extended the basic home-location based archi-

tecture, and are therefore not home-location based location services in a strict definition

of the term.

9.2.1 HLR/VLR Systems

Summary

The HLR/VLR architecture is currently used in the location services of several (cellular)

mobile-phone systems. The two most notable examples of its use are IS-41 (Interim

Standard 41) systems, which are used in North America, and GSM (Global System for

Mobile Communication) systems, which are used primarily in Europe.

The cellular mobile-phone architecture can be divided into a mobile and a fixed part.

The mobile part is the most visible and consists of mobile phones capable of wireless

communication. The fixed part is less visible and consists of the support structure dis-

tributed across the area where mobile phones can be used. The support structure divides

this area into small, disjoint cells. Every cell has a (fixed) base station capable of wireless

communication. The mobile phone communicates using wireless communication with

the base station of the cell in which it currently resides and from there on using normal

wireline based communication.

The main mobility problem in cellular mobile-phone systems is determining in which

cell a mobile phone currently resides. This information is needed to correctly route data

packets for the mobile phone to the base station of the cell where the mobile phone cur-

rently resides. It can also be used for other services, such as locating people in emergency

situations.

The fixed part of the mobile-phone architecture can be divided further into three parts:

the fixed network, the access network, and the intelligent network. The fixed network

is basically (part of) the normal public telephone switching network (PTSN). The access

network consists of the transmitters and related hardware of base stations that provide

the wireless communication. The intelligent network, finally, is used for all signaling

communication, such as setting up and tearing down connections in the (mobile) phone

system. For example, when a person on a fixed line calls a person on a mobile phone,

the intelligent network connects the two using the fixed network for the first part of the

connection and the access network for the second part.

The HLR/VLR architecture is part of the intelligent network, and uses two types of

9.2. HOME-LOCATION BASED SYSTEMS 207

hosts — called “registers” — to record where a mobile phone is located. Each mobile

phone has an associated home-location register (HLR) that stores its current location.

Specifically, it records the registration area in which a mobile is located. A registration

area is simply a combination of several adjacent cells. This basic home-location based

approach is extended with the visitor-location register (VLR). The VLR records per

registration area which mobile phones are present in that area.

When a mobile phone (i.e., the caller) calls another mobile phone (i.e., the callee), the

current location of the callee is looked up in two steps. First, the mobile-phone system

looks in the VLR of the caller to see if the callee is present in the same registration area as

the caller. If so, a connection can be setup quickly. In this way, the VLR provides a form

of locality for lookup operations. Otherwise, the mobile-phone system looks in the HLR

of the callee to find its current location. If the callee is present in the area covered by the

mobile-phone service, its location will be known by its HLR, and a connection can be set

up.

When a mobile phone moves from a cell of one registration area to a cell of a different

registration area, three actions need to be taken. First, the presence of the mobile phone

needs to be inserted in the VLR of the new registration area. Second, the HLR of the

mobile phone needs to be updated to reflect the current location of the mobile phone.

Third, the presence of the mobile phone needs to be removed from the VLR of the old

registration area. Movements between cells of the same registration area are handled by

the registration area itself.

The efficiency of the HLR/VLR system can be improved by several extensions to

the basic architecture. An obvious extension is the caching of mobile phone locations at

the VLR. Using this form of caching the mobile-phone system can avoid communication

with the HLRs of the (cached) mobile phones, and thereby shorten connection setup times.

The choice to cache the location of a specific mobile phone is based upon its local call-

to-mobility ratio (LCMR). A high value for the LCMR means that the mobile phone is

frequently called from the current registration area, and caching will thus be effective.

A different extension is the use of forwarding pointers at the VLR to shorten the

duration of update operations. With this extension, the mobile-phone system leaves a

forwarding pointer at the old registration area of the mobile phone, instead of updating

the location of the mobile phone at the home location. The mobile-phone system can then

update the HLR in a lazy fashion. This improvement comes at the cost of an increased

duration of a lookup operation, and should thus be used only if the call-to-mobility ratio

(CMR) is low (i.e., the mobile phone is not frequently called).

Evaluation

Location services based on the HLR/VLR architecture are designed to support mobility

only. There is no concept of replication (i.e., multiple mobile phones with the same num-

ber). There is some similarity between the search tree of the Globe location service and

the HLR/VLR architecture. In fact, the HLR/VLR architecture can be considered a two-

layer search tree with the set of HLRs forming a logically partitioned root node and the

208 CHAPTER 9. RELATED WORK

set of VLRs forming its leaf nodes.

Since the HLR/VLR structure is currently in use in mobile-phone systems, the ar-

chitecture is obviously effective on a wide-area scale. The HLR/VLR architecture can

easily scale further in the number of supported mobile phones since that simply means

the use of more HLRs. It is, however, not obvious how well the HLR/VLR architecture

can scale further geographically. The basic architecture provides some lookup locality

through its use of the VLR, but it is not clear whether it provides enough locality to sup-

port a worldwide system. Furthermore, the basic architecture provides no locality for

update communication.

9.2.2 Mobile IP

Summary

Mobile IP is a home-based routing system designed to support the connectivity of mobile

Internet hosts. Since the current IPv4-based Internet is already fully deployed, the design

goals of Mobile IP center around backward compatibility with the existing transport layer

protocols, applications, and infrastructure. To support this compatibility, the Mobile IP

protocols are an extension to the IPv4 standards that leave the existing functionality in

place. Since the new IPv6-based protocols are not yet fully deployed, most techniques

developed for IPv4 have also been integrated into the basic IPv6 standards. The Mobile

IP protocols are developed by the Mobile IP working group of the IETF [Mobile IP, 2002].

Mobile IP solves the problem of the dual use of the IP address of a host for both

routing and host identification. Since the contents and structure of IP addresses are used

for routing, IP addresses are assigned in such a way as to enable efficient routing through

the underlying network. Unfortunately, this means that when an Internet host changes its

location in the network, it also needs to change its IP address to remain accessible by other

nodes. On the other hand, (pairs of) IP addresses are also used to identify communication

channels between hosts at the transport layer. Since present-day applications require these

channels to remain in existence, that is, even when a mobile host changes its location, we

explicitly do not want IP addresses to change. IP addresses should thus on the one hand

be location dependent to enable routing and on the other hand be location independent to

support durable communication channels.

Mobile IP solves the dual-use problem at the network layer by assigning two IP ad-

dresses to the mobile host, the basic mobile entity in Mobile IP. The first address is the

normal, fixed IP address that is used for host identification and routing when the host

is at its home location, The second is a temporary care-of address that is used to route

network packets to the mobile host when it is roaming the network. Other nodes (called

correspondent hosts) in the network are unaware of the mobile node’s mobility, and

simply use its normal address for communication.

A mobile host is either at home (i.e., located on its home network) or it is roaming

around the network and located at a foreign network. When a mobile host is at home,

normal Internet routing ensures that the host can communicate with correspondent hosts.

9.2. HOME-LOCATION BASED SYSTEMS 209

When the host is roaming, however, its data packets need to be forwarded through a tunnel

to the mobile host’s current foreign network. This tunneling is done by the home agent

on the home network and a foreign agent on the foreign network.

The basic Mobile IP system therefore consists of three protocols: agent discovery,

registration, and tunneling. The mobile host uses the agent-discovery protocol to check

regularly whether it is on its home network, on a foreign network, or has moved to another

foreign network. When the mobile host notices it has arrived on a (new) foreign network,

it requests a care-of address in the foreign network. The host then uses the registration

protocol to tell its home agent this care-of address. The home agent then uses the tunnel

protocol to send all network packets for the mobile host to the foreign network using the

care-of address.

Two extensions to the basic routing protocol are introduced to improve the locality

of the basic Mobile IP routing protocols. The first extension is route optimization, and

aims to keep the network traffic local where possible. The second extension is regional

registrations, and aims to keep the registration traffic local.

Route optimization avoids the inefficient triangular routing that is part of the basic

Mobile IP system. Triangular routing refers to the fact that traffic from the mobile host

goes directly to the correspondent host but that traffic to the mobile host must make a

detour via the home agent. Route optimization allows a correspondent host to retrieve the

current care-of address from the home agent and send its packets directly to the care-of

address instead of indirectly via a home agent. The main problems with route optimization

are security and backward compatibility. Note that route optimization transforms the

Mobile IP system from a routing system into a location-service based system.

With regional registration the concept of a domain is introduced. A domain covers

several (foreign) networks with associated foreign agents, and has, in turn, also its own

foreign agent. The mobile host registers its current care-of address at the foreign agent

of the local domain, and the foreign agent of the local domain at the home agent. When

the host moves inside the domain, the mobile host needs to update only its binding at the

foreign agent of the local domain, and can thus keep the update traffic local. To ensure

accessibility of the mobile host, the network traffic is first tunneled to the foreign agent

of the local domain and then to the current (normal) foreign agent. Note that this method

can, in principle, be extended into a hierarchy of domains and an associated tree of foreign

agents.

Evaluation

Mobile IP is designed to support mobility only, and has no support for replication. Its basic

architecture is significantly different from the Globe location service because Mobile IP

is based on routing. The route optimization extension, however, makes it behave more

like a normal location service based on home locations. Mobile IP can easily scale in

the number of mobile hosts supported since one can easily increase the number of home

agents. Geographical scalability is, however, a problem in the basic design since it does

not support locality. Fortunately, the suggested extensions improve the use of locality in

210 CHAPTER 9. RELATED WORK

the system.

Fault tolerance is dealt with through the use of replication for both home and foreign

agents. When a mobile host finds that its home or foreign agent is unresponsive, it can

simply select a new one (if available). Security is considered important since the routing

structure is vulnerable to denial-of-service attacks. Authentication is therefore an essential

part of the registration process.

9.3 Search-tree based Systems

Search-tree based systems, such as our location service, use a distributed search tree to

exploit locality in update and lookup operations. The two examples described in this

section are search-tree approaches proposed for next-generation mobile-phone systems

[Pitoura and Samaras, 2001] and NLS [Hu et al., 2002], which is a variant of the Globe

location service.

9.3.1 Next-generation Mobile-phone Systems

Summary

For the next-generation mobile-phone systems, several authors have proposed methods

that use a distributed search tree to find user locations, for instance [Wang, 1993]. We use

the term “next-generation mobile-phone systems” to refer to a group of similar (partially

overlapping) systems that are referred to by various names, such as PCS, PCN, UMTS,

and 3G. The infrastructure frequently proposed for user location in these systems is a

search tree that represents a distance metric. The methods differ, however, in the way they

store location data in the search tree.

In general, the nodes in the distributed search tree store a combination of three types of

information: user locations, node pointers, and no information. Different combinations of

these types of information have been proposed because they lead to different costs when

updating or looking up user locations. For instance, when a user location is stored at a

particular node, a lookup operation looking for the user can simply return the location

when visiting that node. As such, it might be useful to store a user’s location at all nodes

from the leaf node to the root. This is shown in Figure 9.1(a). When a user location is

stored at every node, however, every move of the user also results in an update operation

that needs to change the location information at every node.

A tree node can also store a pointer to another tree node for a user, indicating that

a lookup operation can find more information on the user at the indicated node. For a

lookup operation, a stored pointer is less efficient than a user location, but pointers still

allow the lookup operation to “home in” on a node that stores the user location. The upside

of storing a pointer at a particular node is that a pointer need not always be changed every

time the user moves. As long as the user location can still be found via the indicated

node, the pointer remains valid and useful. In some proposals pointers can follow only

9.3. SEARCH-TREE BASED SYSTEMS 211

A

A

A

A

(c)

(b)(a)

Figure 9.1: Some alternative search tree structures proposed for the next generation

mobile phone systems. The user location is depicted by the mobile phone icon.

Figure (a) shows a search tree that stores a user location at multiple nodes. Figure

(b) shows a search tree where node pointer do not follow the structure of the tree.

Figure (c) shows a tree where no user location is stored and brute-force searching is

needed.

212 CHAPTER 9. RELATED WORK

the structure of the search tree, that is, point to parent or child nodes; in other proposals

pointers can point to any node in the search tree, as shown in Figure 9.1(b).

Oddly enough, it can sometimes also be useful to store no information at all in a node

for a particular user. When no information is stored, an update operation does not have to

change anything. This is particularly attractive when a user is highly mobile, and update

traffic would impose too much overhead. The obvious downside of storing no information

at a particular node is that a lookup operation can continue only by searching brute force

at all neighboring nodes.

The choice of what type of data to store at a particular node can be fixed or be de-

termined dynamically per user. When the type of data stored is determined dynamically,

the system frequently looks at the CMR of a user. For instance, when a user is not mov-

ing around and is regularly receiving phone calls (i.e., has a high CMR), its location can

probably best be stored at many nodes. On the other hand, when a user is frequently mov-

ing around and receiving only sporadic phone calls, the search tree can probably best store

pointers at a few tree nodes to guide lookup operations in the right direction, and use brute

force searching to find the actual user location when needed, as shown in Figure 9.1(c).

It is usually an update operation, caused by a user moving from one location to the

next, that inserts or removes an address or pointer at a node. If the search tree system

supports caching, however, the lookup operation can also insert or remove addresses and

pointers at a node.

Evaluation

Like HLR/VLR systems, next generation mobile-phone systems are designed to support

mobility only. There is no concept of replication. When considering the general search

tree model, it is clear that the way we store location information in the Globe location

service is only a single alternative from a wide variety of alternatives. In this way, the

work done in this area is more generic than ours and provides ways to improve the Globe

location service. Since the architecture is similar, we can expect the same kind of scalabil-

ity as for the Globe location service. Unfortunately, most papers in this area focus on the

general architecture only, and do not discuss issues such as fault tolerance and security.

9.3.2 NLS

Summary

NLS [Hu et al., 2002] is a combined naming and location service that is designed to

support caching and replication in the World Wide Web. NLS was inspired by the Globe

project and the Globe location service, and the distributed search tree architecture of NLS

is thus similar to ours. A significant functional difference between NLS and the Globe

location service is that NLS uses hierarchical (human friendly) names to identify objects

instead of (opaque) object handles. NLS therefore has no need for a separate naming

service as we do.

9.3. SEARCH-TREE BASED SYSTEMS 213

NLS makes a number of different choices with regard to storing the name-to-address

mapping. First of all, NLS stores the binding of name-to-address always at a leaf node,

and intermediate nodes store only forwarding pointers. Furthermore, NLS stores full

object names only at leaf nodes. Intermediate nodes store only a hash of the object name

together with the forwarding pointer. This decreases the amount of persistent storage

needed by NLS. Apart from storing a name-to-address binding, NLS also encourages the

storing of more generic names, that is, the prefix of a hierarchical name. For example, the

Vrije Universiteit might store besides the name /nl/vu/www also the name /nl/vu,

indicating that all names starting with that prefix can be found at the Vrije Universiteit.

In the area of scalability, NLS uses hash-based partitioning to enable load distribution

at the higher-level nodes in the search tree. NLS extends this scheme by also supporting

the replication of forwarding pointers at these nodes. To ensure the search tree struc-

ture represents distances in the network adequately, NLS uses dynamic spanning trees at

lower-level nodes. Unfortunately, the authors do not elaborate on how this works. To

improve the efficiency of lookup operations, NLS uses (normal) data caches.

Evaluation

NLS has been mainly built to support replication, but its search tree structure can clearly

also support mobility. However, given the fact that normal data caches are used, it is

unclear how frequently objects can move without generating an undesirable overhead due

to cache misses. We consider the combining of naming and location functionality in a

single service a step back since it makes it more difficult to associated multiple human-

friendly names with a single object.

The basic architecture of NLS is obviously similar to ours, and similar scalability

arguments can thus be made. However, some differences between the designs might proof

significant. For instance, the designers of NLS have chosen to use logical partitioning

only, and not to improve locality, as we did with our location-based partitioning scheme

(see Chapter 3). To improve fault tolerance and availability, NLS uses replication at high-

level nodes. The exact consistency protocol used between the replicas, however, is left

unspecified, which raises questions on the type of consistency provided and the impact

replication has on scalability.

A case is also made for the use of smaller keys since they would allow more names

to be stored. However, the computation in Chapter 3 suggests that processing capacity

and not storage capacity will probably be the bottleneck in a distributed search tree. Fur-

thermore, providing any form of security would inevitably increase the amount of data

stored per object, significantly decreasing the impact of the improvement. Unfortunately,

no security information is given on NLS.

214 CHAPTER 9. RELATED WORK

9.4 Pointer-chain based Systems

Summary

Pointer-chain systems have been used successfully in local-area systems, and have also

been proposed for wide-area systems. Instead of using an object identifier to retrieve the

current location of a mobile object, pointer-chain based systems use references to a last

known location of a mobile object to communicate with it. To communicate with a mobile

object, network packets are basically sent to its last known location (i.e., node). If the ob-

ject is no longer at that node, the node is responsible for forwarding the packet to the new

location of the object. The first work on forwarding pointers was done by Fowler [Fowler,

1985], later work includes Emerald [Jul et al., 1988], Location Independent Invocation

(LII) [Black and Artsy, 1990], and SSP Chains [Shapiro et al., 1992].

The core data structure of a pointer-chain system is a list of forwarding pointers main-

tained by each node in the system. Each entry in the list contains a pointer to the last

known location of an object that recently stayed at the node. Every time a local object

moves to another node, a new entry is added to this list.

A pointer-chain based system has two important maintenance tasks: chain reduction

and garbage collection. Chain reduction deals with the problem of long paths of forward-

ing pointers. When a mobile object moves from node to node in a pointer-chain system, it

leaves behind a trail of forwarding pointers. When a network packet is sent by a node that

stores only a pointer to an old location of the object, the packet will have to follow this

trail, resulting in inefficient communication and risking communication failures when a

node on the trail has crashed. Nodes in a pointer-chain system therefore always include

the most recent location of a mobile object in their communication, allowing the nodes

involved in the communication to update their list of forwarding pointers.

Garbage collection deals with the problem of determining when a node in the system

can safely remove a forwarding pointer from its list. It is obvious that a node has to keep

a forwarding pointer when a local process still uses a remotely located object. Unfortu-

nately, the opposite is not true. When a node has no local processes interested in a remote

object, it cannot simply remove its forwarding pointer. The reason for this is that pro-

cesses at other nodes can still have an old pointer to the current node, expecting it to have

a more recent forwarding pointer. Removing the pointer would thus result in breaking the

chain of pointers, rendering communication with the referenced object impossible.

There are two ways to deal with the problem of old forwarding pointers. The opti-

mistic approach, used for instance in LII, basically tries to keep all pointers available as

long as possible, but allows them to be deleted at any time. In this case, a centralized

naming system is used as a fallback mechanism to locate the mobile object if the pointer

chain fails. The pessimistic approach, used for instance in SSP chains, basically performs

a liveness analysis to determine which forwarding pointers are still in use, and can thus

with certainty say which pointers can safely be removed.

9.5. UNIFORM RESOURCE NAMES 215

Evaluation

Current pointer-chain based system provide support only for mobility and not for repli-

cation, even though that might be possible theoretically. An important architectural dif-

ference with other naming and location services is that the pointer-chain mechanism is

integrated in the communication architecture, that is, there is no separate location service.

A security consequence of this is that a user has to trust, in principle, all nodes in the sys-

tem. Unfortunately, security of pointer-chain systems is usually not discussed. The need

for trust in all nodes is also a fault tolerance issue. The main problem of a pointer-chain

system is maintaining the connectivity of the pointer chain, which requires either complex

algorithms to determine the liveness of forwarding pointers or fallback methods. These

complex algorithms and fallback methods, unfortunately, present a scalability problem for

pointer-chain based systems.

9.5 Uniform Resource Names

Summary

In this section, we describe the work done by the URN working group of the IETF [URN,

2002]. The goal of the URN working group is to define the Uniform Resource Name

(URN) framework, and provide an initial set of components that fit in this framework.

Since URNs are persistent identifiers for information resources, they are comparable to

the object identifiers used with the Globe location service. The typical example of a URN

is an ISBN number that identifies a book.

In contrast to ordinary names, URNs are specifically not required to be human friendly,

that is, people do not need to understand the meaning of a URN. URNs should be tran-

scribable by a human, however. The primary use of a URN is to identify a resource. In

practice, this means that it can be resolved into the location of a replica of the specified

resource, into its properties, or directly into the resource itself.

A fundamental requirement in the URN work is that different types of resources re-

quire different types of names. Furthermore, given the desire to support names from ex-

isting systems, a large number of legacy resource names are already available. Because of

this, the URN framework cannot dictate its own standard syntax and semantics for URNs.

Instead, the working group chose to create a global URN name space consisting of sev-

eral resource-type specific name spaces. Every new type of name that follows the generic

URN requirements can simply be added to the global URN name space as a subspace of

names.

An important design decision in the URN framework is to make the structure of the

name space independent of the structure of servers that perform the name resolution.

This way the naming authorities responsible for the content of the URN name space can

manage the content independently of the organization performing the URN resolution,

allowing multiple organizations to provide name resolution for the same name space.

216 CHAPTER 9. RELATED WORK

Another important design decision is the distinction between URN resolvers that re-

solve a specific type of URN and the global Resolver Discovery Service (RDS). Since

specific URNs are part of type-specific name spaces, they require resolution by specific

name resolvers that understand their structure and meaning. It is the task of the RDS to

resolve a specific URN into the name or location of a resolver that, in turn, can resolve

the URN completely.

The first RDS defined by the working group used DNS to resolve URNs. The proposed

RDS is based on rewrite rules that transform the URN into the name of the resolver.

The group later generalized this work to include other kinds of names besides URNs,

and provided an abstract design, independent of DNS, called the Dynamic Delegation

Discovery System (DDDS) to resolve these names.

Evaluation

The URN framework provides a location service for replicated resources only. There is

no support for mobility. The main architecture consists of the RDS that guides clients

to specific resolvers and resolvers that maintain the exact location of resources. Unfortu-

nately, little information is available on the scalability of the URN approach. We foresee,

however, no scalability problems with the RDS itself. The rewrite rules in the RDS are

easy to cache and replicate since these rules change only slowly. Local access to these

rules should thus frequently be possible.

Unfortunately, no information on the requirements or characteristics of specific re-

solvers is available. The number of resources that can be supported by specific resolvers

is therefore unknown. Furthermore, geographical scalability is mainly a problem of the

resolvers since they determine whether or not local replicas of a resource are preferred

over nonlocal replicas. The main bottleneck is thus the scalability of the specific resolvers

of which little is known.

9.6 Peer-to-peer Systems

In this section we discuss the category of second generation peer-to-peer (P2P) systems,

including systems like CAN [Ratnasamy et al., 2001], Chord [Stoica et al., 2001], Pas-

try [Rowstron and Druschel, 2001], and Tapestry [Zhao et al., 2001]. Peer-to-peer sys-

tems provide a placement service, that is, a service that decides where in the network the

replica’s of an object reside if they exists. This is different from a location service, where

the object owner is free to choose the locations of the replica’s and the location service is

only responsible for recording these locations. We use Chord as the example system in

this section.

Summary

Chord is described by its designers as “a distributed lookup primitive” that serves as a

low-level building block upon which applications can be built, such as the distributed file

9.6. PEER-TO-PEER SYSTEMS 217

5

7
0

4

3

6

1

2

5

7
0

4

(a)

2

1

6

3

Finger table

(b)

+1

+2

+4

3

3

7

Chord nodes

Segment

Figure 9.2: The Chord key space with eight keys and three nodes, located at keys

1, 3, and 7. Figure (a) shows the segments the nodes are responsible for. Figure (b)

shows the finger table of the node with key 1.

system CFS [Dabek et al., 2001]. In Chord all data can be accessed by a unique key, taken

from a large key space. This data is placed at nodes that are responsible for that data. It

is the task of Chord to route network packets to the node that is responsible for a piece of

data. The exact nature of the node’s responsibility for the data and the relation between

key and data is determined by the application built on top of Chord, and is irrelevant to

Chord system.

To enable routing, Chord divides the key space into segments (ranges), and assigns

the responsibility for the keys in these segments to nodes in the system. Basically, each

Chord node gets its own unique key, and all data keys are assigned to the node whose

key is the smallest node key larger than those data keys. This node key is called the data

keys’ successor. Figure 9.2(a) shows an example key space with eight keys. This space is

divided into three segments that are assigned to the nodes with keys 1, 3, and 7.

To quickly find the node responsible for a segment, Chord stores an index structure,

called a finger table, at every Chord node. The finger table is basically a routing table that

stores the contact information (e.g., IP address) of Chord nodes with specific keys. The

finger table is constructed as follows. Assume that the node that stores the table has key n.

The first entry of the table contains the node responsible for key n + 1, the second entry

contains the node responsible for key n+2, the third entry contains the node responsible

for key n+4, etc. In general, the ith entry stores the node responsible for key n+2i. The

number of entries in the finger table is the 2log of the size of the key space. Note that

these values wrap around at the end of the key space.

Figure 9.2(b) shows the finger table of the node 1. Since the key space has eight

entries, the finger table has three entries. The first entry of the table stores the node

responsible for the key n + 1, which is node 3. The second entry stores the node for the

key n+2, which is also node 3. The third and last entry stores the node for the key n+4,

218 CHAPTER 9. RELATED WORK

which is node 7.

Chord routes a network packet for a piece of data to the node that is responsible for

that data by recursively forwarding the packet to the node in the finger table whose key is

just below the key of the data for which the packet is intended. When there is no node in

the finger table with a key just below the data key, the successor of the current node is the

node responsible for the data for which the packet is intended. For example, if node 3 in

Figure 9.2(b) has a packet for key 0, it will forward the packet to node 7. Node 7 does not

have an entry just below key 0, and thus knows its successor (node 1) is responsible for

key 0. Since the nodes in a finger table have keys at exponentially increasing distances

of the current node, Chord can quickly home in the node responsible for the packet. The

nodes in the Chord system also form a ring structure by recording the next and previous

node in the key space. This ring allows linear searching as a backup facility for finding

nodes when the nodes in the finger table are inaccessible.

Chord has three main tasks: adding new nodes to the system, removing existing nodes

from the system, and routing a network packet to a node responsible for a piece of data.

Whenever a new node wants to be a part of the Chord system, it first has to determine its

own key and take its place in the ring of Chord nodes. Furthermore, the node has to fill

its own finger table, and ensure its own presence is know to other nodes to enable them to

update their finger tables. Since nodes are expected to regularly join and leave the system,

changes to the system have to be made concurrently while still guarding the correctness

of the ring structure and finger tables.

The basic routing system selects nodes based only on their nearness in the (logical)

key space, and disregards the distances traveled in the network. An extension is proposed,

however, to improve the use of locality in Chord. Since the main concern in Chord is that

the network packet gets closer (in the key space) to its destination node with every routing

step, a Chord node can also forward the packet to a node that makes less progress in the

key space but is significantly more nearby in the physical network. By using such nearby

nodes, the number of routing steps will increase, but the actual network distance traveled

will most likely decrease.

Evaluation

Chord supports replication by making not only the successor node of a key responsible

for its data but also other nodes in the vicinity of the key. If the successor node becomes

inaccessible, these other nodes can easily take over its responsibility. Clients have no

control over the physical locations of replicas, however, since it is the distribution of

nodes over the key space that determines which nodes are responsible for a piece of data.

Since Chord determines where data should be stored, it has no support for mobility.

To some extent, we can compare the routing in Chord to the location-based and hash-

based routing between physical nodes in the Globe location service. In both cases, in-

formation in the key (or the Globe object identifier) determines where data will be stored

(at which Chord node or which physical location service node). A significant difference

is that routing in Chord is solely based on the nodes present in the system, independent

9.7. SUMMARY 219

of the data stored by Chord nodes, whereas routing in the Globe location service is also

guided by the forwarding pointers stored at nodes.

The number of nodes and objects supported by Chord can easily scale since the size of

the finger tables in Chord grows only logarithmically. Unfortunately, Chord is inflexible

when it comes to the location of an object since this location is determined solely by

Chord’s placement algorithm and not, for instance, by the object owner. It is thus not

possible to place a replica in a hot spot in the (physical) network. Chord can only hope its

nodes are distributed evenly, thereby providing local access to data. The routing algorithm

itself is able to use nearby nodes while routing packets, but the destination of a packet is

always fixed. Geographical scalability can therefore be considered limited.

Fault tolerance in the Chord system is mostly based on replication, that is, making

more than one node responsible for a piece of data. The routing functionality of Chord is

also highly available since each node can use its own finger table to route packets, inde-

pendent of other nodes. As with the Globe location service, security is mostly provided

by other layers that make use of Chord. It is shown in [Sit and Morris, 2002], however,

that Chord nodes can easily determine whether other nodes in Chord can be trusted to

route packets correctly. If a node is suspected of routing packets incorrectly, other nodes

in Chord can decide to route around this suspicious node.

A significant difference between the Globe location service and Chord, and peer-to-

peer systems in general, is in the area of (system) management. Chord is designed to be

completely self managing. Unlike (physical) nodes in Globe, nodes in Chord are inte-

grated and removed from the system without any human intervention. This makes Chord

attractive for systems without an obvious management organization.

9.7 Summary

In conclusion, we summarize the description of the related work in Table 9.1. For ease of

comparison, the first row of the table describes the Globe location service itself. Note that

there is no security column since most of the related systems barely describe any security

issues. When considering the summary table, the following observations can be made:

• Most systems support either mobility or replication, but not both. Our location

service was the first to combine support for both these object characteristics, and

thereby inspired NLS to also support both.

• All systems are either lookup or routing based. Six of the systems translate a

location-independent name to a location-dependent address. The other three sys-

tems route network packets to their proper destination.

• Hierarchical systems are frequently used to deal with scalability. Six of the systems

use a hierarchy and two systems do not. The HLR/VLR can be placed in either

category. The purpose of the hierarchy, however, differs per system.

220 CHAPTER 9. RELATED WORK

Table 9.1: Summary of related work.

S
y

st
em

S
u

p
p

o
rt

fo
r

A
rc

h
it

ec
tu

re
S

ca
la

b
le

in
G

eo
g

ra
p

h
ic

al
F

au
lt

A
d

ap
ta

b
il

it
y

m
o

b
il

it
y

/
#

O
b

je
ct

s
S

ca
la

b
il

it
y

T
o

le
ra

n
ce

re
p

li
ca

ti
o

n

G
lo

b
e

L
o

ca
ti

o
n

b
o

th
se

ar
ch

tr
ee

b
as

ed
o

n
y

es
y

es
p

ar
ti

ti
o

n
ed

d
o

m
ai

n
an

d

S
er

v
ic

e
a

d
is

ta
n

ce
m

et
ri

c
tr

ee
n

o
d

es
tr

ee
ch

an
g

es

D
N

S
re

p
li

ca
ti

o
n

se
ar

ch
tr

ee
b

as
ed

y
es

y
es

re
p

li
ca

te
d

au
to

m
at

ic
re

-

o
n

n
am

e
sp

ac
e

zo
n

e
in

fo
co

n
fi

g
u

ra
ti

o
n

p
o

ss
ib

le

H
L

R
/V

L
R

m
o

b
il

it
y

tw
o

-l
ev

el
st

ru
ct

u
re

,
y

es
n

o
N

/I
N

/I

S
y

st
em

s
H

L
R

s
an

d
V

L
R

s

M
o

b
il

e
IP

m
o

b
il

it
y

p
ac

k
et

fo
rw

ar
d

in
g

y
es

n
o

m
u

lt
ip

le
ag

en
t

v
ia

h
o

m
e

lo
ca

ti
o

n
ag

en
ts

d
is

co
v
er

y

N
ex

t-
g

en
er

at
io

n
m

o
b

il
it

y
se

ar
ch

tr
ee

b
as

ed
o

n
y

es
y

es
N

/I
N

/I

M
o

b
il

e-
p

h
o

n
e

a
d

is
ta

n
ce

m
et

ri
c

S
y

st
em

s

N
L

S
b

o
th

se
ar

ch
tr

ee
b

as
ed

o
n

y
es

y
es

re
p

li
ca

te
d

&
d

y
n

am
ic

a
d

is
ta

n
ce

m
et

ri
c

p
ar

ti
ti

o
n

ed
sp

an
n

in
g

tr
ee

n
o

d
es

tr
ee

s

P
o

in
te

r-
ch

ai
n

m
o

b
il

it
y

p
ac

k
et

fo
rw

ar
d

in
g

y
es

n
o

fa
ll

b
ac

k
N

/A

b
as

ed
S

y
st

em
s

v
ia

ch
ai

n
o

f
p

o
in

te
rs

se
rv

ic
es

U
R

N
s

re
p

li
ca

ti
o

n
tw

o
-l

ev
el

st
ru

ct
u

re
,

R
D

S
:

y
es

,
R

D
S

:
y

es
,

re
p

li
ca

te
d

N
/I

R
D

S
an

d
re

so
lv

er
s

re
so

lv
er

s:
N

/I
re

so
lv

er
s:

N
/I

re
w

ri
te

ru
le

s

P
2

P
S

y
st

em
s

re
p

li
ca

ti
o

n
p

ac
k
et

fo
rw

ar
d

in
g

y
es

u
n

cl
ea

r
re

p
li

ca
te

d
au

to
m

at
ic

re
-

v
ia

h
ie

ra
rc

h
ic

al
d

at
a

&
ro

u
t-

co
n

fi
g

u
ra

ti
o

n

in
d

ex
in

g
in

fo

N
/A

:
N

o
t

ap
p

li
ca

b
le

N
/I

:
N

o
in

fo
rm

at
io

n
av

ai
la

b
le

Chapter 10

Summary and Conclusions

This final chapter concludes this dissertation. It starts with a summary of the preceding

chapters, and then discusses some of the general lessons learned through the research on

the Globe location service. The chapter ends with a description of the most important

open issues, which will need to be addressed by future research.

10.1 Summary

Chapter 1 “Introduction” describes the context and requirements of the research on the

Globe location service. The main point the chapter argues is that a location service is

needed to support replication and mobility in a distributed system. Furthermore, to oper-

ate in a worldwide distributed system, the location service needs to be scalable, both in

the number of objects supported and the geographical area covered. Since it is unclear

whether existing name services can provide the required location service functionality, a

new system is designed from the ground up. The research is structured using a number

of research questions that focus on potential problem areas for a scalable location service:

locality exploitation, load distribution, efficient use of resources, fault tolerance, security,

and maintenance.

Chapter 2 “Architecture” examines the research question: “What architecture com-

bines scalability with flexibility?” The architecture of the location service needs to be

flexible to be able to support the methods that deal with the potential problem areas of the

location service. The focus in this chapter, however, is mainly on exploiting locality. We

solve the locality problem by using a distributed search tree that represents distances in the

underlying network. The search tree supports operations to insert, delete, and look up the

location(s) of an object. The distributed search tree enables the operations to exploit lo-

cality, and thereby supports geographical scalability. Later chapters extend the distributed

search tree architecture to deal with the remaining problem areas.

Chapter 3 “Load Distribution” examines the research question: “How do we avoid

221

222 CHAPTER 10. SUMMARY AND CONCLUSIONS

centralized components in our architecture?” Centralized components should be avoided

since they can easily become scalability bottlenecks. The chapter basically deals with

two problems, both caused by the root node and other high-level search tree nodes. Note

that these nodes are centralized components of the distributed search tree. The first prob-

lem examined is the large workload experienced by such high-level nodes. The second

problem examined is the long communication distances between such nodes.

We solve both problems by separating the logical structure of the location service (i.e.,

the way location information is structured), as presented in Chapter 2, from its physical

structure (i.e., the way hosts store location information). Using this separation, the large

workload problem is easy to solve. By implementing heavily loaded logical nodes using

multiple hosts, called physical nodes, we can provide the required storage and process-

ing capacity. We do have to ensure an even load over these physical nodes. The long

communication distances problem, however, is more difficult to solve. The goal here is to

shorten the network distance traveled by update and lookup operations while they traverse

the search tree. We shorten these distances by carefully choosing the physical nodes that

store the location information of an object. By choosing physical nodes (one per logical

node) that are near each other, we shorten the overall distance traveled by operations.

We examined the efficiency of our load distribution methods using a simulation ex-

periment. The experiment showed that distributing the workload evenly over multiple

physical nodes is easily done, for instance, by a hashing scheme. The experiment also

showed that by using our distance shortening selection mechanism, we can be shortened

the geographical distance traveled by an operation by about 20%. It is, unfortunately,

unclear how much effect that 20% has on the actual network distance traveled. Further

research is therefore needed to examine the long communication distance problem, for

instance, by trying other physical node selection methods.

The research described in Chapter 4 “An Efficient Lookup Operation” concerns im-

proving the performance of the lookup operation. The chapter examines the problem of

performing the same tree traversal each time when looking for the same object multiple

times. If we can avoid performing the same tree traversal multiple times, for instance, by

caching, we can improve the scalability of the location service by using fewer nodes in

the search tree, especially high-level nodes. Unfortunately, ordinary caching techniques

do not work well with highly mobile objects since these objects change their location too

frequently to be reused by an ordinary caching scheme.

We solve the mobility problem by recognizing that even a mobile object has a stable

“location,” namely its mobility domain. By storing the location of an object in the tree

node associated with the mobility domain of that object, the location service can cache a

reference to that tree node in other tree nodes, and short-cut the tree traversal by directing

the lookup operation directly to the referenced node. We investigated the effectiveness

of our caching method using a simulation experiment. The experiment showed that the

reference caching method is superior to normal caching and no caching. It can reduce the

overall workload by more than 30% compared to a search tree without caching and reduce

the distance traveled by lookup operations by almost 50%.

Chapter 5 “Availability and Fault Tolerance” examines the research question: “How

10.1. SUMMARY 223

do we ensure availability in a huge system such as our location service?” Providing high

availability is important because the location service plays a central role in communica-

tion. Since the location service is a huge system, however, it is very likely that partial

failures will occur. To maintain high availability, these partial failures should have only

a minimal effect on the location service as a whole. The main problem we have to deal

with is that partial failures might result in inconsistencies in the distributed state of the

location service. Since these inconsistencies limit the availability of the location informa-

tion stored in the location service, a fault tolerance mechanism is needed to resolve the

inconsistencies and keep the information available.

The main point argued in this chapter is that only a few small changes are needed to

implement fault tolerance in the location service and improve its availability. Since these

changes are only small, the location service remains comprehensible. We basically solve

the (in)consistency problem by using and strengthening the inherent characteristics of the

update operations, such as their idempotency and atomicity. Given these characteristics

and the structure of the traversal of update operations in the search tree, consistency is

easily restored. The main result of this chapter is that fault tolerance can be implemented

in the Globe location service in a simple and lightweight fashion.

Chapter 6 “Security” examines the research question: “What kind of security is needed

for the information stored in the location service, and how do we provide it?” Since the

information stored in the location service is not confidential and clients check the identity

of the objects they use, the main security problem is denial-of-service (DoS) attacks. The

location service is a prime target for people that want to disrupt the communication in

a distributed system since the service is pivotal to all communication. The main point

made in this chapter is that we can use well-known security mechanisms to provide the

necessary security guarantees. Since we can use these simple, well-known techniques, we

can have high confidence that the location service is well protected.

The location service deals with DoS attacks by providing access control on update

operations and integrity control on communication channels. To provide access control

on the stored location information, the location service uses certificates that give users

specific update rights. The location service uses the normal combination of public-key

and shared-key cryptography to provide communication integrity. Other protection tech-

niques, such as puzzle solving, can be added when the need arises. The efficiency of the

security mechanisms, however, has not yet been examined.

Chapter 7 “Tree Management” examines the research question: “How do we ensure

that the location service can deal with changes in its environment?” To keep the location

service efficient and effective, the logical and physical structure of its distributed search

tree needs to be regularly adjusted. The logical structure needs to be adjusted to match

changes in the distances in the underlying network, and the physical structure needs to be

adjusted to match changes in the workload. The main goal of the research in this chapter

is to show the feasibility of tree management.

The problem examined in this chapter is how to perform these changes while keeping

the location service operational. This problem can be divided into two subproblems: per-

forming logical changes and performing physical changes. We solved both subproblems

224 CHAPTER 10. SUMMARY AND CONCLUSIONS

by identifying a number of simple, basic changes, showing how these changes can be per-

formed, and showing how to combine them into more complex changes. Since the main

goal was a feasibility study, actual algorithms are not provided and their efficiency is thus

also not examined.

The research in Chapter 8 “Prototype Implementation” examines the performance of

an actual implementation of the Globe location service. We built a prototype implementa-

tion of the Globe location service to show that an actual implementation does not limit the

scalability of the location service design, as presented in Chapters 2–7. To simplify the

performance measurements, we focused on the performance of individual physical nodes.

The measurements showed that an individual physical node can perform 9 update

operations or 107 lookup operations per second. Using these performance numbers and

some general assumptions, we estimated the performance of the Globe location service as

a whole. These estimates showed, for instance, that in a search tree with four layers an

update operation will last between 300 and 600 ms and that a lookup operation will last

between 15 and 650 ms. These estimates support our claim that a scalable location service

can be built. Furthermore, the profiling information shows that an optimized version can

provide even better results.

Chapter 9 “Related Work” contains a comparison of the Globe location service with

similar systems. The chapter discusses example systems from each of the following cat-

egories of related work: naming and directory services, home-location based systems,

search-tree based systems, pointer-chain based systems, uniform resource names (URNs),

and peer-to-peer (P2P) systems. We compare the example systems to the Globe location

service on the points raised in Chapters 2–7: replication support, mobility support, ba-

sic architecture, scalability, fault tolerance, security, and management (adaptability). The

chapter shows that the location service is different both in its goals (i.e., its support for

replication as well as mobility) and in its heavy scalability requirements (i.e., the number

of objects supported and the area covered by the service).

10.2 Lessons Learned

The main research question examined in this dissertation is: ”How can we build a world-

wide location service?” We answered this research question by providing both the design

of the Globe location service and an evaluation of its viability. The design of the Globe

location service can be characterized using the following features:

• A distributed and partitioned search tree that represents distances in the underlying

network, as explained in Chapter 2 and Chapter 3.

• An RPC-based communication system with at-least-once failure semantics and idem-

potent remote procedures, as explained in Chapter 5.

• A caching technique based on references to other nodes in the search tree, as ex-

plained in Chapter 4.

10.2. LESSONS LEARNED 225

Table 10.1: Main requirements of the Globe location service.

Support for replication

Support for mobility

Support for 1012 objects

Support for objects distributed worldwide

Support for exploiting locality

• A certificate based access control mechanism to prevent unauthorized modifications

to location information, as explained in Chapter 6.

• A method to modify the logical and physical structure of the search tree while the

service remains operational, as explained in Chapter 7.

The main requirements of the Globe location service, which were described in Chap-

ter 1, are summarized in Table 10.1. We base our claim that the design of the location

service meets these requirements on the following three arguments:

• The design has been thoroughly analyzed with respect to its requirements.

• The behavior of the Globe location service has been simulated to examine its scal-

ability and performance.

• The performance of a prototype implementation of the Globe location service has

been measured.

Besides giving the answer to the main research question, we also make the following,

more general observations:

O1 The performance of the Globe location service is mainly determined by the perfor-

mance of its I/O hardware.

The performance of the location service is mainly determined by the time spent

using hard disks and on the network, and not by the time spent executing algorithms

and protocols. This strong influence of the I/O hardware is present both in the

throughput of the location service and the duration of its operations.

The throughput of the location service is mainly determined by the throughput of its

physical nodes. The network plays no role because its throughput (i.e., bandwidth)

is much larger than the throughput of the physical nodes. Since Chapter 8 has

shown that hard disk accesses account for 60%–95% of the time spent in physical

nodes, hard disk performance clearly has a significant impact on the throughput of

the location service as a whole.

The duration of individual operations, on the other hand, is determined both by the

time spent in physical nodes and the time spent on the network. Since hard disk

226 CHAPTER 10. SUMMARY AND CONCLUSIONS

accesses mainly determine the time spent in a node and wide-area network latency

is in the same order of magnitude as hard disk accesses (10 ms or more), their

combined influence on the duration of update and lookup operations is significant.

While we have been able to mask the influence of I/O hardware on the throughput

of the Globe location service using node partitioning, we have, unfortunately, not

been able to mask the influence of I/O hardware on the duration of operations.

O2 Separating the logical and physical design of the Globe location service has proven

useful.

The design of the Globe location service shows a distinct separation between its

logical and physical design. We gained the most of the scalability of our design by

this separation, which allowed us to focus on locality with the logical design and on

workload with the physical design. If we would have considered an integrated logi-

cal and physical design, it is likely that we would have dismissed a design based on

the distributed search tree solution early on. We consider this separation therefore

a powerful feature of our design.

O3 The highly modular design of the Globe location service has made its prototype

easy to implement.

The Globe location service has a modular design, with each module or layer adding

its own functionality to the system as a whole. This design follows the “separa-

tion of concerns” strategy, which is used for managing the (potential) complexity

of building large applications. The modular design has minimal dependencies be-

tween its layers and modules, allowing us to understand each module and layer by

itself. The Globe location service therefore has a comprehensible design. Such a

comprehensible, modular design provides a solid basis for further development.

10.3 Future Work

We can divide future work into short-term, medium-term, and long-term goals. The short-

term goals have a strong implementation focus, while the long-term goals have a strong

research focus. The medium-term goals have a focus that is both implementation and

research oriented.

Short Term Goals

Since the prototype described in Chapter 8 is incomplete, the obvious next step in our

research is to complete the location service prototype by adding the remaining function-

ality described in this dissertation. The remaining functionality consists of the move-up

and move-down operations from Chapter 4 and all the security features from Chapter 6.

A complete prototype will allow us to make more realistic performance measurements,

which, in turn, will enable a more detailed analysis of the performance and scalability of

the Globe location service. Furthermore, a complete prototype will allow us to implement

10.3. FUTURE WORK 227

client applications, which, in turn, allows us to study the everyday use of the location

service by real applications.

After completing the prototype, we can look for new ways to improve its performance.

The main method to improve the performance of the prototype is by introducing more con-

currency. More concurrency is needed to mask the high latency of hard disk accesses, as

shown by Chapter 8. The easiest way to introduce more concurrency is by implementing

asynchronous database operations. With these asynchronous operations, the prototype as

a whole does not have to wait for each, single database operation to finish, but instead can

continue doing other work in parallel. Note that this method is analogous to the concurrent

RPC mechanism described in Chapter 5.

A more general solution to the concurrency problem is to provide a fully multi-

threaded implementation. A fully multi-threaded version would, for instance, also allow

the prototype to make use of multi-processor hardware. Unfortunately, a fully multi-

threaded version does require a major redesign of the current prototype, and would thus

require a significant amount of work. Either way, an implementation with improved con-

currency will allow us to make more realistic predictions of the scalability of the location

service.

Medium Term Goals

A specific part of the Globe location service research that was left open in Chapter 7 are

the details of the tree management methods, such as data structures, algorithms, and pro-

tocols. When these details are integrated in the location service prototype, the prototype

will allow us to examine the amount of effort required to keep the location service opera-

tional, especially when it has become a large service. If it proves difficult to keep a large

location service operational, this difficulty could severely limit the scalability of the loca-

tion service. The research should be straightforward since it basically consists of filling

in the missing details. A logical first step would be to focus on partitioning changes since

they are more straightforward than search tree changes.

Long Term Goals

A more general issue to look at is the characteristics of realistic mobility, replication,

and lookup patterns and how they affect the performance of the location service. These

characteristics are interesting because we expect the performance (and thus scalability) of

the location service to depend heavily on the type of use. For instance, if there is much

locality in the patterns, the location service will be very scalable. Using these patterns, we

can thus validate the design decision made in Chapter 2 and Chapter 4. We can find these

real-life mobility, replication, and lookup patterns by examining the client applications,

which were made possible by our complete, real-life location service prototype.

A part of the research on the Globe location service that should be reexamined are

the locality characteristics of the load distribution schemes of Chapter 3. While it is

possible to provide an even load over the physical nodes, exploiting locality using load

228 CHAPTER 10. SUMMARY AND CONCLUSIONS

distribution has proven to be more difficult. We should therefore further examine the

effects of our (geographical) location-aware selection method on the network distances

traveled by update and lookup operations, and see if we can devise other methods that

provide better results.

Finally, we also need to consider the operational side of the location service. The

main research question to be answered is “Can a single (virtual) organization manage the

large number (i.e., O(105)) of physical nodes, spread all over the world?” This manage-

ment problem becomes even more difficult, if we consider an underlying network with

frequently changing distances. Recall that management by a single (virtual) organization

is an assumption of Chapter 6 and Chapter 7. If changes are needed in the structure of

the Globe location service support organization, these changes will undoubtedly have ef-

fects on the security mechanisms used in the location service and the security guarantees

provided. If, as a consequence, changes are needed in the security design, these changes

could, in turn, adversely affect the performance and scalability of the Globe location ser-

vice.

Bibliography

Akamai Technologies, Inc. (2002). EdgeSuite. http://www.akamai.com/.

Albitz, P. and Liu, C. (1992). DNS and BIND. O’Reilly & Associates, Sebastopol, CA,

USA.

Ateniese, G. and Mangard, S. (2001). A New Approach to DNS Security (DNSSEC).

In Proc. of 8th ACM Conference on Computer and Communications Security (CCS-8),

Philadelphia, PA, USA. ACM.

Baker, M., Asami, S., Deprit, E., Ousterhout, J., and Seltzer, M. (1992). Non-volatile

memory for fast, reliable file systems. In Proc. of the 5th International Conference on

Architectural Support for Programming Languages and Operating System (ASPLOS).

Bakker, A. (2002). An Object-based Software Distribution Network. PhD thesis, Faculty

of Sciences, Vrije Universiteit, Amsterdam, The Netherlands.

Ballintijn, G., van Steen, M., and Tanenbaum, A. (2000). Characterizing Internet Per-

formance to Support Wide-area Application Development. Operating Systems Review,

34(4):41–47.

Ballintijn, M. K. (1994). The ratio of structure functions for the neutron and the proton.

PhD thesis, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.

Ballintijn, M. R. (1999). Vocal variation in the Collared dove : coding messages in

coo-vocalizations. PhD thesis, Universiteit Leiden, Leiden, The Netherlands.

Barak, A. and Litman, A. (1985). MOS: a multicomputer distributed operating system.

Software — Practice and Experience, 15(8):725–737.

Birrell, A. and Nelson, B. (1984). Implementing Remote Procedure Calls. ACM Trans.

Comp. Syst., 2(1):39–59.

Black, A. P. and Artsy, Y. (1990). Implementing Location Independent Invocation. IEEE

Transactions on Parallel and Distributed Systems, 1(1):107–119.

229

230 BIBLIOGRAPHY

Butterfield, D. A. and Popek, G. J. (1984). Network Tasking in the Locus Distributed

Unix System. In Proc. of the USENIX Summer Conference, pages 62–71.

Cate, V. (1992). Alex - A Global Filesystem. In Proc. Usenix File Systems Workshop,

pages 1–11, Ann Harbor, MI, USA. USENIX.

Chen, P. M., Lee, E. K., Gibson, G. A., Katz, R. H., and Patterson, D. A. (1994). RAID:

High-Performance, Reliable Secondary Storage. ACM Computing Surveys, 26(2):145–

185.

Cheriton, D. and Mann, T. (1989). Decentralizing a Global Naming Service for Improved

Performance and Fault Tolerance. ACM Trans. Comp. Syst., 7(2):147–183.

Comer, D., Droms, R. E., and Murtagh, T. P. (1990). An Experimental Implementation of

the Tilde Naming System. USENIX Computing Systems, 3(4):487–515.

Dabek, F., Kaashoek, M. F., Karger, D., Morris, R., and Stoica, I. (2001). Wide-area

cooperative storage with CFS. In Proc. of the 18th ACM Symposium on Operating

Systems Principles (SOSP ’01), Chateau Lake Louise, Banff, Canada.

Diffie, W. and Hellman, M. E. (1976). New Directions in Cryptography. IEEE Transac-

tions on Information Theory, IT-22(6):644–654.

Duvvuri, V., Shenoy, P., and Tewari, R. (2000). Adaptive Leases: A Strong Consistency

Mechanism for the World Wide Web. In Proc. of IEEE INFOCOM 2000, pages 834–

843, Tel Aviv, Israel. IEEE.

Fowler, R. J. (1985). Decentralized object finding using forwarding addresses. Technical

Report 85-12-1, Dept. of Computer Science, Univ. of Washington, Seattle, WA, USA.

Gray, C. and Cheriton, D. (1989). Leases: An Efficient Fault-Tolerant Mechanism for

Distributed File Cache Consistency. In Proc. 12th ACM Symp. Operating Systems Prin-

ciples, pages 202–210, Litchfield Park, AZ, USA. ACM.

Harrison, C. G., Chess, D. M., and Kershenbaum, A. (1995). Mobile Agents: Are They

a Good Idea. Technical report, IBM T. J. Watson Research Center, Yorktown Heights,

NY.

Hoare, C. (1974). Monitors: An Operating System Structuring Concept. Communications

of the ACM, 17(10):549–557.

Homburg, P. (2001). The Architecture of a Worldwide Distributed System. PhD thesis,

Faculty of Sciences, Vrije Universiteit, Amsterdam, The Netherlands.

Hu, Y. C., Rodney, D. A., and Druschel, P. (2002). Design and Scalability of NLS, a

Scalable Naming and Location Service. In Proc. of IEEE Infocom 2002, New York,

NY, USA.

BIBLIOGRAPHY 231

Huck, P., Butler, M., Gupta, A., and Feng, M. (2002). A self-configuring and self-

administering name system with dynamic address assignment. ACM Transactions on

Internet Technology (TOIT), 2(1):14–46.

Internet Software Consortium (2002). Internet Domain Survey, Jan 2002. http://

www.isc.org/ds/WWW-200201/index.html.

Jannink, J., Lam, D., Shivakumar, N., Widom, J., and Cox, D. (1997). Efficient and Flex-

ible Location Management Techniques for Wireless Communication Systems. Journal

of Wireless Networks, 3(5):361–374.

Johnson, D. B. and Zwaenepoel, W. (1987). Sender-Based Message Logging. In Proc.

of the 17th Annual International Symposium on Fault-Tolerant Computing: Digest of

Papers, pages 14–19, Pittsburgh, PA, USA. IEEE.

Jul, E., Levy, H., Hutchinson, N., and Black, A. (1988). Fine-Grained Mobility in the

Emerald System. ACM Trans. Comp. Syst., 6(1):109–133.

Jung, J., Sit, E., Balakrishnan, H., and Morris, R. (2001). DNS Performance and the Effec-

tiveness of Caching. In Proc. of the ACM SIGCOMM Internet Measurement Workshop.

Kopetz, H. and Verissimo, P. (1993). Real Time and Dependability Concepts. In Mullen-

der, S., editor, Distributed Systems, pages 411–446. Addison-Wesley, 2 edition.

Kuz, I. (2003). An Approach to Scalable Wide-Area Web Servers. PhD thesis, Faculty of

Sciences, Vrije Universiteit, Amsterdam, The Netherlands.

Lampson, B. W. (1986). Designing a Global Name Service. In Proc. 5th ACM Symposium

on Principles Of Distributed Computing, pages 1–10, Calgary, Alberta, Canada. ACM.

Presented the previous year, ISBN 0-89791-198-9.

Lampson, B. W. and Sturgis, H. E. (1979). Crash recovery in a distributed data storage

system. Technical report, Xerox Palo Alto Research Center.

Laprie, J.-C. (1995). Dependability – Its Attributes, Impairments and Means. In Ran-

dell, B., Laprie, J.-C., Kopetz, H., and Littlewood, B., editors, Predictably Dependable

Computing Systems, pages 3–24. Springer-Verlag, Berlin, Germany.

Lee, E. K. and Thekkath, C. (1996). Petal: Distributed Virtual Disks. In Proc. of the ACM

7th International Conference on Architectural Support for Programming Languages

and Operating Systems (ASPLOS), pages 84–92, Cambridge, MA, USA. ACM.

Leighton, F. and Lewin, D. (2000). Global Hosting System. United States Parent

6,108,703.

Leiwo, J., Aura, T., and Nikander, P. (2000). Towards network denial of service re-

sistant protocols. In Proc. of the 15th International Information Security Conference

(IFIP/SEC 2000), Beijing, China. Kluwer.

232 BIBLIOGRAPHY

Loshin, P., editor (2000). Big Book of Lightweight Directory Access Protocol (LDAP)

RFCs. Morgan Kaufmann, San Francisco, CA, USA.

Mazières, D. and Kaashoek, M. F. (1998). Escaping the evils of centralized control with

self-certifying pathnames. In Proc. of the 8th ACM SIGOPS European Workshop.

Milne, R. E. and Strachey, C. (1976). A Theory of Programming Language Semantics.

Chapman and Hall.

Mobile IP (2002). Mobile IP Working Group of IETF.

http://www.ietf.org/html.charters/mobileip-charter.html.

Mockapetris, P. (1987). RFC 1034: Domain Names - Concepts and Facilities.

Mohan, S. and Jain, R. (1994). Two user location strategies for personal communications

services. IEEE Personal Commun., 1(1):42–50.

National Institute of Standards (1995). Secure Hash Standard. Technical Report FIPS-

180-1, U.S. Department of Commerce. Also known as: 59 Fed Reg 35317 (1994).

Panzieri, F. and Shrivastava, S. (1988). Rajdoot: A Remote Procedure Call Mechanism

with Orphan Detection and Killing. IEEE Trans. on Software Engineering, 14(1):30–

37.

Perkins, C. (2002). RFC 3220: IP Mobility Support for IPv4.

Perkins, C. E. (1998). Mobile Networking with Mobile IP. IEEE Internet Computing,

2(1):58–69.

Pitoura, E. and Samaras, G. (2001). Locating Objects in Mobile Computing. IEEE Trans-

actions on Kowledge and Data Engineering, 13(4):571–592.

Radicati, S. (1994). X.500 Directory Service: Technology and Deployment. International

Thomson Computer Press, London.

Ratnasamy, S., Francis, P., Handley, M., Karp, R., and Shenker, S. (2001). A Scalable

Content-Addressable Network. In Proc. of ACM SIGCOMM 2001, pages 161–172,

San Diego, CA, USA. ACM.

Rhind, D. (1991). Cartographical-related research at Birbeck College 1987-91. The Car-

tographic Journal, 28:63–66.

Rivest, R., Shamir, A., and Adleman, L. (1978). A Method for Obtaining Digital Signa-

tures and Public-key Cryptosystems. Commununications of the ACM, 21(2):120–126.

Rowstron, A. and Druschel, P. (2001). Pastry: Scalable, distributed object location and

routing for large-scale peer-to-peer systems. In IFIP/ACM International Conference on

Distributed Systems Platforms (Middleware), pages 329–350, Heidelberg, Germany.

BIBLIOGRAPHY 233

Schuba, C. L., Krsul, I. V., Kuhn, M. G., Spafford, E. H., Sundaram, A., and Zamboni,

D. (1997). Analysis of a Denial of Service Attack on TCP. In Proc. of the 1997 IEEE

Symposium on Security and Privacy, pages 208–223. IEEE Computer Society, IEEE

Computer Society Press.

Shapiro, M., Dickman, P., and Plainfossé, D. (1992). SSP Chains: Robust, Distributed

References Supporting Acyclic Garbage Collection. Technical Report 1799, INRIA,

Rocquencourt, France.

Sit, E. and Morris, R. T. (2002). Security Considerations for Peer-to-Peer Distributed

Hash Tables. In Proc. of the First International Workshop on Peer-to-Peer Systems

(IPTPS ’02), Cambridge, MA, USA.

Spector, A. Z. (1982). Performing Remote Operations Efficiently on a Local Computer

Network. Communications of the ACM, 25(4):246–260.

Steiner, J. G., Neuman, C., and Schiller, J. I. (1988). Kerberos: An Authentication Service

for Open Network Systems. In Winter 1988 USENIX Conference, pages 191–201,

Dallas, TX, USA.

Stoica, I., Morris, R., Karger, D., Kaashoek, M. F., and Balakrishnan, H. (2001). Chord:

A Scalable Peer-to-peer Lookup Service for Internet Applications. In Proc. of the ACM

SIGCOMM ’01 Conference, San Diego, CA, USA.

Stoker, G., White, B. S., Stackpole, E., Highley, T., and Humphrey, M. (2001). Toward

Realizable Restricted Delegation in Computational Grids. In High Performance Com-

puting and Networking (HPCN 2001), Proc. of European 9th International Conference,

pages 32–41, Amsterdam, The Netherlands.

URN (2002). URN Working Group of IETF. http://www.ietf.org/html.

charters/urn-charter.html.

Wang, J. (1993). A Fully Distributed Location Registration Strategy for Universal Per-

sonal Communication Systems. IEEE J. Selected Areas Commun., 11(6):850–860.

Wieringa, R. and de Jonge, W. (1995). Object Identifiers, Keys, and Surrogates - Object

Identifiers Revisited. Theory and Practice of Object Systems, 1(2):101–114.

Zhao, B. Y., Kubiatowicz, J., and Joseph, A. D. (2001). Tapestry: An Infrastructure for

Fault-tolerant Wide-area Location and Routing. Technical Report UCB/CSD-01-1141,

Computer Science Division, U.C. Berkeley.

234 BIBLIOGRAPHY

Index

access control, 142

change

authoritative, 112

tentative, 112

contact address lease, 20

contact fields, 17

contact record, 17

contact record database, 20

delegation of rights, 143

delegation right, 144

delete operation, 13

denial-of-service, 141

directory node, 17

distance

geographical, 50

network, 50

distributed search tree, 17

domain hierarchy, 17

DoS, see denial-of-service

engineering view, 182

forwarding pointer, 17

insert operation, 13

leaf domain, 17

locality, 4, 15

external, 15

internal, 15

location caching, 74

location service, 8

location-mapping table, 69

logical node, 44

logical node identifier, 68

logical node record, 161

lookup operation, 13

mobility domain, 74

mobility threshold, 80

name service, 8

naming scheme, 8

object identifier, 45

object owner, 143

ownership model, 143, 151

ownership service, 151

paths of forwarding pointers, 18

physical node, 44

physical node identifier, 68

physical node record, 161

PKC, see public-key cryptography

PKI, see public-key infrastructure

proper identifier, 8, 153

property map, 103

public-key cryptography, 145

public-key infrastructure, 146

puzzle solving, 142

reconnection ticket, 147

recovery phase, 126

recovery requests, 126

remote procedure call, 25

resource accounting, 142

root domain, 17

RPC, see remote procedure call

235

236 INDEX

search tree, see distributed search tree

search tree invariants, 21

selection field, 45

self, 114

shared-key cryptography, 145

SKC, see shared-key cryptography

stability threshold, 80

stable address location, 75

system view, 182

take-over message, 81

tree information service, 146, 161

trusted third parties, 145

update credential, 155

update history, 77

update operation, 14

update policy, 144

update right, 144

user view, 182

view

append, 114

apply, 114

authoritative, 112

current, 112, 114

remove, 114

tentative, 112

view series, 112

virtual column, 51

Samenvatting

Het Vinden van Objecten in een Wereldwijd Systeem

Het huidige Internet biedt zijn gebruikers een grote hoeveelheid diensten aan die, bij-

voorbeeld, informatie verschaffen. Het bekendste onderdeel van het Internet dat informa-

tie verschaft is waarschijnlijk het World Wide Web (WWW), waar gebruikers informatie

kunnen vinden over onderwerpen zo divers als wereldpolitiek en aspergerecepten. Daar-

naast heeft het WWW ook het ontstaan van e-commerce mogelijk gemaakt. Een andere

belangrijke dienst die door het Internet geleverd wordt is communicatie tussen Internet

gebruikers. De bekendste vormen hiervan zijn waarschijnlijk e-mail en instant messa-

ging.

De laatste tien jaar is het Internet explosief gegroeid. Deze groei is zichtbaar zowel in

het aantal gebruikers van het Internet als in de grote hoeveelheid en verscheidenheid aan

diensten die op het Internet worden aangeboden. Daarnaast is het Internet gegroeid van

een netwerk dat alleen de Verenigde Staten van Amerika bedekte tot een netwerk dat alle

uithoeken van de wereld met elkaar verbindt.

Helaas heeft de explosieve groei van het Internet ook schaalbaarheidsproblemen

geı̈ntroduceerd. Met de grote hoeveelheid gebruikers in het Internet lopen de compu-

ters die diensten verlenen het gevaar overbelast te raken. Ze kunnen simpelweg niet de

grote hoeveelheid verzoeken voor informatie verwerken. Daarnaast geldt ook dat, hoewel

het mogelijk is om met het Internet informatie van de andere kant van de wereld te halen,

dit vaak niet wenselijk is gegeven de inherente traagheid van communicatie over deze

afstanden.

Om deze schaalbaarheidsproblemen op te lossen zijn de verschaffers van Internet

diensten begonnen met het repliceren van diensten. Replicatie refereert aan het verschaf-

fen van dezelfde dienst op meerdere computers op verschillende plaatsen in het Internet.

Replicatie stelt verschillende gebruikers in staat verschillende replica’s van een Internet

dienst te gebruiken, waardoor de totale belasting van de dienst verspreid wordt over meer-

dere computers. Daarnaast stelt het verspreiden van replica’s over het Internet gebruikers

in staat een dichtbij gelegen replica van een dienst te gebruiken, waardoor de traagheid

van langeafstandscommunicatie kan worden vermeden en de belasting van het netwerk

kan worden beperkt.

237

238 SAMENVATTING

Mobiel computer gebruik is een andere belangrijke trend in de afgelopen tien jaar, die

mogelijk werd gemaakt door de introductie van draagbare computers, zoals laptops en

palmtops. Computers staan niet langer stil op een vaste plaats met een vaste verbinding

aan het Internet, maar vergezellen gebruikers tijdens hun reizen en stellen deze gebruikers

in staat computer functionaliteit overal en altijd te gebruiken, zelfs wanneer er gebruik

moet worden gemaakt van het Internet.

Om met een dienst in het Internet te communiceren moet een gebruiker weten wat de

lokatie van de computer is die die dienst verzorgt. Echter, aangezien de computers die

diensten leveren mobiel kunnen zijn, kunnen we niet zeker zijn dat een dienst beschikbaar

blijft op dezelfde lokatie. Daarnaast kunnen we ook niet zeker zijn dat de huidige dichtst-

bijzijnde replica van een dienst ook in de toekomst de dichtstbijzijnde replica blijft. Wat

we dus nodig hebben is een manier om de huidige lokaties van de replica’s van een dienst

bij te houden.

Het bijhouden van de lokaties van Internet diensten wordt traditioneel gedaan door

naamgevingsdiensten, zoals bijvoorbeeld DNS. Naamgevingsdiensten kunnen allerlei

soorten informatie opslaan voor een benoemde dienst, inclusief zijn lokatie(s). Door

gebruikers te laten refereren naar een dienst via zijn naam, in plaats van via zijn loka-

tie, kunnen naamgevingsdiensten gebruikers afschermen van problemen zoals waar een

dienst zich op dit moment bevindt, of een dienst uit meerdere replica’s bestaat, en of een

dienst van lokatie kan veranderen. Met andere woorden, naamgevingsdiensten leveren

respectievelijk lokatie onafhankelijkheid, replicatie onafhankelijkheid, en migratie onaf-

hankelijkheid.

De naamgevingsdiensten die heden ten dage gebruikt worden zijn echter niet in staat

om de lokaties van grote hoeveelheden gerepliceerde en mobiele diensten op te slaan en

te verwerken. Als we dus meer Internet toepassingen in staat willen stellen gebruik te

maken replicatie en mobiliteit, hebben we een nieuw soort naamgevingsdienst nodig die

specifiek ontworpen is voor het bijhouden van de lokatie(s) van grote hoeveelheden dien-

sten op een wereldwijde schaal. We noemen deze nieuwe specifieke naamgevingsdienst

een lokalisatiedienst.

De centrale onderzoeksvraag in dit proefschrift is hoe we een wereldwijde lokalisa-

tiedienst kunnen bouwen. Om deze centrale onderzoeksvraag te beantwoorden hebben

we hem opgedeeld in een aantal specifieke onderzoeksvragen, die we per hoofdstuk be-

antwoorden. Deze specifieke onderzoeksvragen kijken naar potentiële probleemgebieden

voor een lokalisatiedienst, zoals het gebruiken van lokaliteit, het verspreiden van de werk-

druk, het efficiënt gebruik maken van hardware, het verschaffen van fout tolerantie en

veiligheid, en het doen van onderhoud. De oplossing voor het lokalisatievraagstuk die we

in dit proefschrift voorstellen is de Globe lokalisatiedienst.

Hoofdstuk 2 “Architecture” behandelt de onderzoeksvraag: “Wat voor architectuur

combineert schaalbaarheid met flexibiliteit?” De architectuur van de lokalisatiedienst

moet flexibel zijn om de oplossingen voor de verschillende probleemgebieden van de

lokalisatiedienst te ondersteunen. De focus in dit hoofdstuk ligt daarnaast op het gebruik

van lokaliteit, met andere woorden het vinden van dichtbijgelegen replica’s. We hebben

het lokaliteitsprobleem opgelost met behulp van een gedistribueerde zoekboom die af-

SAMENVATTING 239

standen representeert in het onderliggende netwerk. Deze zoekboom biedt operaties aan

om de lokatie(s) van de replica’s van een Internet dienst toe te voegen, te verwijderen, en

op te zoeken.

Hoofdstuk 3 “Load Distribution” behandelt de onderzoeksvraag: “Hoe gaan we om

met centrale componenten in onze architectuur?” Centrale componenten vormen een ri-

sico omdat deze gemakkelijk tot schaalbaarheidsproblemen kunnen leiden. Helaas bevat

het ontwerp, zoals besproken in Hoofdstuk 2, dit soort centrale componenten, namelijk de

knopen die hoog in de zoekboom liggen. Deze knopen veroorzaken twee problemen. Het

eerste probleem betreft de grote werkdruk van zulke knopen. Het tweede probleem betreft

de grote afstand tussen zulke knopen, en de daaruitvolgende communicatie traagheid.

We kunnen beide problemen oplossen door onderscheid te maken tussen de logische

structuur en de fysieke structuur van de lokalisatiedienst. De logische structuur betreft de

manier waarop (lokatie) informatie in de zoekboom is gestructureerd, en de fysieke struc-

tuur betreft de manier waarop computers deze informatie feitelijk opslaan. Met dit onder-

scheid is het simpel om het probleem van overbelasting op te lossen. Door zwaar belaste

logische knopen te implementeren met meerdere computers, genaamd fysieke knopen,

kunnen we de vereiste opslag- en verwerkingscapaciteit verschaffen. We moeten er dan

wel voor zorgen dat de computers gelijkmatig belast worden. Het probleem van commu-

nicatie over lange afstanden is moeilijker op te lossen. Het doel is hier om de afstanden

die door opzoek- en veranderingsoperaties worden afgelegd zo kort mogelijk te houden.

We proberen deze afstanden kort te houden door de lokaties van Internet diensten op te

slaan in fysieke knopen die dicht bij elkaar en bij gebruikers liggen.

We hebben de effectiviteit van onze techniek voor het verspreiden van de belasting

en het verkorten van communicatie afstanden onderzocht met behulp van een simulatie

experiment. Dit experiment liet zien dat het gelijkmatig verspreiden van de belasting

gemakkelijk te doen is. Het experiment liet ook zien dat onze methode voor het verkorten

van afstanden tot een reductie van 20% van de afgelegde weg leidt. Meer onderzoek is

echter nodig om te bepalen wat het effect van deze 20% is op de lokalisatiedienst als

geheel.

Het onderzoek beschreven in Hoofdstuk 4 “An Efficient Lookup Operation” betreft

het efficiënter maken van de opzoekoperatie. Het hoofdstuk onderzoekt het probleem dat

als we de lokatie van dezelfde Internet dienst meerdere keren opzoeken de zoekboom elke

keer opnieuw op dezelfde manier doorlopen wordt. Als we het meerdere keren doorlo-

pen van de zoekboom kunnen voorkomen, bijvoorbeeld met het gebruik van een caching

techniek, dan wordt de schaalbaarheid van de lokalisatiedienst verbeterd en heeft de lo-

kalisatiedienst minder fysieke knopen nodig. Normale caching technieken werken echter

niet wanneer zeer mobiele diensten ondersteund moeten worden omdat de lokaties van

dit soort diensten te snel veranderen om hergebruikt te worden. Een ander soort caching

techniek moet dus bedacht worden.

We hebben het mobiliteitsprobleem opgelost met het inzicht dat zelfs een mobiele

dienst een stabiele “lokatie” heeft, namelijk zijn mobiliteitsdomein. Met de term mobi-

liteitsdomein refereren we naar het domein waarbinnen een dienst zich beweegt. Door

de lokatie van een Internet dienst op te slaan in de knoop (in de zoekboom) die behoort

240 SAMENVATTING

bij het mobiliteitsdomein van die dienst kan de lokalisatiedienst stabiele verwijzingen

opslaan naar die knoop. De lokalisatiedienst kan deze stabiele verwijzingen vervolgens

gebruiken tijdens het opzoeken van lokaties om het doorlopen van de boom in te korten

door direct naar de aangeweze knoop te springen.

We hebben de effectiviteit van onze verwijzing caching techniek onderzocht met be-

hulp van een simulatie experiment. Dit experiment liet zien dat onze caching techniek de

efficiëntie van de lokalisatiedienst verbeterde. Onze verwijzing caching techniek vermin-

derde de totale belasting van het systeem met 30% vergeleken met een systeem zonder

caching, en het verminderde de totaal afgelegde weg van een opzoekoperatie met bijna

50%.

Hoofdstuk 5 “Availability and Fault Tolerance” behandelt de onderzoeksvraag: “Hoe

kunnen we de continue beschikbaarheid garanderen van een groot systeem zoals de lo-

kalisatiedienst?” Het garanderen van de continue beschikbaarheid is belangrijk omdat de

lokalisatiedienst een centrale rol speelt in alle communicatie tussen gebruikers en dien-

sten.

Aangezien de lokalisatiedienst een groot systeem is, is het echter zeer waarschijnlijk

dat fouten zullen optreden in het systeem. Om continue beschikbaarheid te garanderen

mogen deze fouten dus slechts een minimale invloed hebben op de werking van het sys-

teem als geheel. Het belangrijkste probleem is dat fouten kunnen leiden tot inconsistenties

in de informatie die ligt opgeslagen in de zoekboom, en deze inconsistenties kunnen, op

hun beurt, de beschikbaarheid van informatie, zoals lokaties, beperken. Om deze beperkte

beschikbaarheid te voorkomen hebben we mechanismes nodig die dit soort inconsistenties

verbeteren.

Dit hoofdstuk laat zien dat slechts een aantal kleine veranderingen nodig is om de in-

consistenties te verbeteren en de beschikbaarheid van lokaties te garanderen. Aangezien

deze veranderingen slechts klein zijn, blijft de lokalisatiedienst als geheel begrijpelijk. We

lossen het inconsistentieprobleem op door het gebruik maken en het versterken van de in-

herente eigenschappen van de operaties die informatie veranderen, zoals idempotentie en

atomiciteit. Het belangrijkste resultaat van dit hoofdstuk is dat fouttolerantie gemakkelijk

toegevoegd kan worden aan de lokalisatiedienst, en geen schaalbaarheidsprobleem vormt.

Hoofdstuk 6 “Security” behandelt de onderzoeksvraag: “Wat voor veiligheidsgaran-

ties zijn nodig voor de lokalisatiedienst en hoe kunnen we die verschaffen?” Aangezien

de lokaties die opgeslagen liggen in de lokalisatiedienst niet geheim zijn en gebruikers

zelf controleren of ze met de correcte dienst communiceren, is het belangrijkste veilig-

heidsprobleem een zogenaamde denial-of-service (DoS) aanval, die legitieme gebruikers

de toegang tot een Internet dienst ontzegt. De lokalisatiedienst is een belangrijk doelwit

voor mensen die de communicatie in een computernetwerk willen verstoren omdat de lo-

kalisatiedienst een centrale rol speelt in alle communicatie. Dit hoofdstuk laat zien dat

de vereiste veiligheidsgaranties geleverd kunnen worden met het gebruik van simpele en

bekende beveiligingstechnieken. Vanwege het gebruik van deze simpele en bekende tech-

nieken kunnen we een groot vertrouwen hebben dat de lokalisatiedienst goed beveiligd

is.

De lokalisatiedienst verweert zich tegen DoS aanvallen door gebruik te maken van

SAMENVATTING 241

een combinatie van technieken voor toegangscontrole en communicatieintegriteit. Toe-

gangscontrole wordt verschaft door gebruik te maken van cryptografische certificaten die

gebruikers specifieke rechten geven om lokaties van een dienst toe te voegen of te verwij-

deren. De lokalisatiedienst gebruikt verder een combinatie van public-key en shared-key

cryptografie voor het verkrijgen van communicatie integriteit. Andere beschermingstech-

nieken, zoals bijvoorbeeld cryptografische puzzels, kunnen toegevoegd worden als dat

nodig blijkt.

Hoofdstuk 7 “Tree Management” behandelt de onderzoeksvraag: “Hoe kunnen we er

voor zorgen dat de lokalisatiedienst om kan gaan met veranderingen in zijn omgeving?”

Om de lokalisatiedienst efficiënt en effectief te houden moet zowel de logische als de fy-

sieke structuur van de zoekboom regelmatig aangepast worden aan de huidige toestand

van het onderliggende netwerk. De logische structuur moet worden aangepast om veran-

deringen in de afstanden in het netwerk te volgen, en de fysieke structuur moet worden

aangepast om de verdeling van de werkdruk over fysieke knopen gelijkmatig te houden.

Omdat het beheren van de zoekboom een groot onderzoeksgebied is, hebben we het doel

van het onderzoek in dit hoofdstuk beperkt tot het aantonen van de haalbaarheid van het

beheren van de logische en fysieke structuur van de zoekboom.

Het probleem dat we onderzoeken in dit hoofdstuk is hoe veranderingen in de zoek-

boom doorgevoerd kunnen worden terwijl de lokalisatiedienst operationeel blijft. Deze

veranderingen kunnen opgesplitst worden in twee groepen: logische veranderingen en

fysieke veranderingen. We hebben voor beide groepen het probleem van operationeel

blijven opgelost door eerst een aantal kleine basale veranderingen van de structuur van de

zoekboom te definiëren, en daarna de uitvoerbaarheid van deze kleine veranderingen aan

te tonen. Deze kleine veranderingen kunnen vervolgens gecombineerd worden tot grote

veranderingen.

Het onderzoek in Hoofdstuk 8 “Prototype Implementation” betreft de prestaties van

een prototype implementatie van de Globe lokalisatiedienst. We hebben een prototype van

de Globe lokalisatiedienst geı̈mplementeerd om aan te tonen dat een echte implementatie

niet de schaalbaarheid van het ontwerp, als gepresenteerd in Hoofdstukken 2–7, aantast.

Om de metingen van de prestaties te versimpelen, hebben we alleen gekeken naar de

prestaties van individuele (fysieke) knopen.

De metingen laten zien dat een individuele knoop 9 veranderings- of 107 opzoek-

operaties per seconde kan uitvoeren. Met deze cijfers en een aantal algemene aannames,

kunnen we de prestaties van de Globe lokalisatiedienst als geheel schatten. Deze schattin-

gen laten zien dat in een zoekboom met bijvoorbeeld vier lagen een veranderingsoperatie

tussen de 300 en 600 ms duurt en dat een opzoekoperatie tussen de 15 een 650 ms duurt.

Deze schattingen ondersteunen onze uitspraak dat een schaalbare lokalisatiedienst ge-

bouwd kan worden. Daarnaast hebben gedetailleerde metingen laten zien dat er ruimte is

om de prestaties van de Globe lokalisatiedienst te verbeteren.

De centrale onderzoeksvraag die wij onderzocht hebben in dit proefschrift is: “Hoe

kunnen we een wereldwijde lokalisatiedienst bouwen?” We hebben deze vraag beant-

woord met het geven van zowel een ontwerp van de Globe lokalisatiedienst als een evalu-

atie van dat ontwerp. De Globe lokalisatiedienst wordt gekarakteriseerd door de volgende

242 SAMENVATTING

eigenschappen:

• Een gedistribueerde en gepartitioneerde zoekboom die afstanden in het onderlig-

gende netwerk representeert.

• Een communicatiesysteem gebaseerd op remote procedure calls (RPCs) , met een

at-least-once fout semantiek en idempotente remote procedures.

• Een caching techniek gebaseerd op het opslaan van verwijzingen naar andere kno-

pen in de zoekboom.

• Een op certificaten gebaseerd mechanisme voor toegangscontrole dat niet-toegestane

veranderingen van opgeslagen lokaties voorkomt.

• Een methode om de logische en fysieke structuur van de zoekboom te veranderen

terwijl de lokalisatiedienst operationeel blijft.

We baseren onze uitspraak dat het ontwerp van de Globe lokalisatiedienst schaalbaar

is op de volgende drie argumenten:

• Het ontwerp is geanalyseerd op het gebied van schaalbaarheid.

• Het gedrag van de Globe lokalisatiedienst is gesimuleerd om de schaalbaarheid en

de prestaties van het ontwerp te onderzoeken.

• De prestaties van een prototype van de Globe lokalisatiedienst zijn experimenteel

vastgesteld.

Het onderzoek zoals beschreven in dit proefschrift laat ruimte open voor vervolgon-

derzoek. Op korte termijn is werk aan het prototype nodig omdat het huidige prototype

nog niet volledig is. Voor een volledige evaluatie van de Globe lokalisatiedienst is het

eerst nodig dat het prototype wordt uitgebreid met alle beschreven functionaliteit. Op

de lange termijn is onderzoek nodig naar replicatie- en mobiliteitspatronen van Internet

diensten. Kennis van dit soort patronen zal ons in staat stellen het gedrag van de Globe

lokalisatiedienst beter te simuleren, en daarmee tot een betere evaluatie van zijn prestaties

te komen.

Epilogue

Now that I have finally finished my dissertation, and reached the end of my AiO-schap

(i.e., PhD period), it is time for me to look back and acknowledge those people that have

supported me along the way in one form or another.

First, I like to thank Maarten van Steen and Andy Tanenbaum for providing me with

a pleasant and fruitful research environment. Maarten taught me the “nuts and bolts” of

doing research. In the early years, this meant providing structure and guidance on practical

matters, and in the later years this meant providing freedom and in-depth discussions.

One trait Maarten has not been able to teach me: an ever present, optimistic outlook on

the research. I will surely miss that! Andy played the important role of goal keeper:

Whenever Maarten and I got too close, too infatuated with our own little inventions and

research ideas, Andy would take one critical look and sent us back to the drawingboard,

challenging us to improve our ideas.

I would like to thank the members of my reading committee, Frans Kaashoek, Franz

Hauck, Frances Brazier, and Evaggelia Pitoura for the effort they put into reviewing this

dissertation. I have put their comments to good use. I especially like to thank Frans

Kaashoek for playing the role of referent. His thorough and in-depth comments have

significantly improved the contents of this dissertation.

Ahhh, and what does one do without a supportive office mate? I can only say that

Arno was everything I needed in an office mate: quiet and full of answers. Every time

I needed to know something about the inner workings of the Vrije Universiteit, I could

simply ask Arno without having to lookup anything myself. Such luxury! I’m sorry that

his good example of starting the workday early (i.e., before 9:30), never rubbed off on me.

I guess getting up on-time will remain a problem for me for some time. Arno, thanks for

your support and your patience. And, if you decide to do education again, remember the

AiO motto: “Hard zijn en hard blijven!”

During the seven years of being an AiO, a central part of my workday was the lunch

break — for me actually more a brunch break — which allowed me to mingle and talk

with colleagues I didn’t directly work with. The topics of these lunch discussions are

too numerous to list, but rest assured, there was always somebody with a bold opinion

on something. For fear of offending any member (past or present) of the lunch club by

not naming him (or her) explicitly, I will simply thank you all as a group; you’ll know

whether it applies to you or not.

243

244 EPILOGUE

During my PhD period I was twice given the opportunity to temporarily suspend my

research during the summer months, and visit other research institutes. My first visit

was in 1997 to the Computer Sciences department of the Friedrich-Alexander-Universität

Erlangen-Nürnberg. During this visit, Franz Hauck was my host. My second visit was in

2000 to the IBM Thomas J. Watson Research Center located in Hawthorne, New York.

During this visit, Leendert van Doorn was my host. I would like to thank both Franz

and Leendert for the possibility to broaden the scope of my research, and look at other

interesting research problems.

As the saying goes: “Mens sana in corpore sano.” However, computer science research

is not really conducive to a healthy body. I therefore had to achieve this goal in an other

way: Total Workout (formerly known as Bommen). However, motivating yourself twice a

week can be difficult. Luckily, there have been people that put some friendly peer pressure

on me. Broer, Gerald, Pim, and Mirna, thanks for your support, and I will return to the

training floor shortly! And BTW, how many push-ups do I still need to do?

I like to thank Frank Niessink and Michel Oey for agreeing to support me during

the final phase of my PhD period: the dissertation defense. Having a paranimf with a

PhD degree and a paranimf with extensive experience (three times!) instills me with

confidence. Especially, since Michel has read every chapter of my dissertation at least

once. Michel, I hope you are a good souffleur.

Finally, I like to thank my family for their support. Since my father has championed

the notion of academic excellence from when I was young, I guess, becoming an AiO

was more-or-less inevitable. Furthermore, the challenge of having two siblings that al-

ready obtained their PhDs [Ballintijn, 1994, 1999], has both inspired me and filled me

with dread. A common occurrence of being the youngest child. The upside of being the

youngest, however, was that by now my parents knew of the ups and downs of writing

a dissertation, and thus knew when to show interest and when to leave their “struggling”

AiO-son alone. I like to thank them for both.

Gerco Ballintijn

Amsterdam

September 2003

