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The degeneracy of the genetic code allows protein-coding DNA and RNA sequences to simultaneously encode additional,

overlapping functional elements. A sequence in which both protein-coding and additional overlapping functions have

evolved under purifying selection should show increased evolutionary conservation compared to typical protein-coding

genes—especially at synonymous sites. In this study, we use genome alignments of 29 placental mammals to systematically

locate short regions within human ORFs that show conspicuously low estimated rates of synonymous substitution across

these species. The 29-species alignment provides statistical power to locate more than 10,000 such regions with resolution

down to nine-codon windows, which are found within more than a quarter of all human protein-coding genes and contain

~2% of their synonymous sites. We collect numerous lines of evidence that the observed synonymous constraint in these

regions reflects selection on overlapping functional elements including splicing regulatory elements, dual-coding genes,

RNA secondary structures, microRNA target sites, and developmental enhancers. Our results show that overlapping

functional elements are common in mammalian genes, despite the vast genomic landscape.

[Supplemental material is available online at http://www.genome.org.]

It is often assumed that synonymous sites within protein-coding

open reading frames (ORFs) evolve neutrally, since mutations in

them do not change the amino acid translation. But, in fact, ORFs

in many species simultaneously encode additional functional se-

quence elements within the codon sequence, often with strong

evolutionary constraint on the synonymous sites (Chamary et al.

2006; Itzkovitz andAlon 2007). For example,mammalianORFs are

known to encode exonic splicing enhancers and silencers (Chen

and Manley 2009), microRNA target sites (Lewis et al. 2005; Hurst

2006), A-to-I recoding sites (Rueter et al. 1999; Bass 2002), and

transcriptional enhancers (Lang et al. 2005; Nguyen et al. 2007;

Lampe et al. 2008; Tümpel et al. 2008; Dong et al. 2010). Several

previous studies have observed strong genome-wide trends toward

increased evolutionary constraint on such overlapping functional

elements, by averaging acrossmany loci pooled together (Baek and

Green 2005; Xing and Lee 2005; Chen et al. 2006; Down et al.

2006; Goren et al. 2006; Parmley et al. 2006; Robins et al. 2008;

Kural et al. 2009). However, these averaging approaches generally

did not have the power to locate individual overlapping functional

elements within specific genes.

In this study, we use the unprecedented discovery power

provided by alignments of 29 mammalian genomes to provide a

systematic annotation of individual functional elements embed-

ded within protein-coding regions throughout the human ge-

nome. Since the average codon site in these multiple sequence

alignments shows about four synonymous substitutions, we pre-

dict that overlapping functional elements will individually stand

out as short, localized regions with exceptionally few synonymous

substitutions—in much the same way that widely used methods

such as GERP, phastCons, phyloP, and SiPhy locate conserved

functional elements within a background of neutral nucleotide-

level sequence evolution (Cooper et al. 2005; Siepel et al. 2005;

Margulies et al. 2007; Garber et al. 2009; Pollard et al. 2010).

However, detecting overlapping evolutionary constraints

within protein-coding ORFs is more difficult than detecting gen-

eral nucleotide-level constraints, for two main reasons. First, since

themajority of nucleotide sites in a typical humanORF are already

highly conserved among mammals due to their protein-coding

function, we must expect less statistical power to detect increased

conservation for overlapping sequence elements of a given length.

Second, it is important to account precisely for the protein-coding

constraints on each nucleotide site by modeling the evolutionary

process at the codon level, rather than analyzing the conservation of

individual nucleotide sites independently of those surrounding

them.

To address these challenges, we present a novel adaptation of

statistical phylogenetic codonmodels widely used in evolutionary

analysis of protein-coding genes (for recent reviews, see Anisimova

and Kosiol 2009; Delport et al. 2009), which locates short windows

within alignments of known human ORFs showing significantly

reduced rates of synonymous substitution. Applying this new

method to the 29-species alignments, we confidently locate more

than 10,000 such regions, typically with 70%–90% reduced syn-

onymous rates, down to a resolution of just nine codons. These

putative ‘‘synonymous constraint elements’’ contain only;2% of
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all synonymous sites, but are found within more than a quarter of

all human protein-coding genes. We also present numerous lines

of evidence that they indeed play diverse functional roles in several

biological processes such as splicing and translational regulation,

dual-coding regions, RNA secondary structures, miRNA targeting,

and developmental enhancers.

A few previous studies have also sought to locate individual

overlapping functional elements in human genes based on their

increased conservation, but their power was limited compared to

what should now be possible by comparing the 29 mammals.

Schattner and Diekhans (2006) analyzed pairwise alignments of

human andmouseORFs to identify about 200 regions of at least 60

codons tolerating atmost one synonymous substitution. Similarly,

many of the ‘‘ultraconserved elements’’ of Bejerano et al. (2004),

stretches of at least 200 bp perfectly con-

served between human and mouse, over-

lap known coding regions. Such pairwise

species comparisons allow for much sim-

pler statistical models, but their resolution

of 180–200 nt seems so long (considerably

longer than the typical exon length of

;120 nt) that many shorter overlapping

functional elements were probably aver-

aged out, even if they are highly con-

served. Other related studies, including

some multispecies approaches, have ana-

lyzed only a small fraction of mammalian

genes (Hurst and Pál 2001; Chen and

Blanchette 2007; Parmley and Hurst

2007b; Lin et al. 2008), while we un-

dertake a comprehensive genome-wide

analysis. Lastly, a few methods have been

developed to identify examples of certain

known classes of overlapping functional

elements with predictable evolutionary

signatures, including dual-coding ORFs

(Chung et al. 2007; Ribrioux et al. 2008)

and RNA secondary structures (Pedersen

et al. 2004a,b). These are complementary

to the rate-based approach we take here.

Estimating synonymous substitution

rates in short windows within open

reading frames

Our method uses phylogenetic codon

models to find short windows within

multi-species alignments of known ORFs

that exhibit unusually low rates of syn-

onymous substitution as measured by dS,

a composite rate commonly used to sum-

marize the relevant parameters of such

models (Yang and Bielawski 2000). Spe-

cifically, our method analyzes any win-

dow of adjacent codon sites within an

alignment to compute the maximum like-

lihood estimate of a parameter ls, which is

a scale factor on dS, indicating how much

slower or faster synonymous substitutions

have occurred in that window relative to

a null model representing typical protein-

coding sequence evolution. For example, a particular window with

ls = 0.5 is estimated to have evolvedwith a synonymous substitution

rate only one-half that of the null model average (window dS = ls 3

average dS) (Fig. 1A). Our method is designed to estimate ls for short

windows of adjacent sites—in this study, nine to 30 codons. (The

method also estimates ln, the analogous parameter for non-synon-

ymous substitutions, whichwe use to exclude potentiallymisaligned

regions.)

Furthermore, we can associate a statistical significance with

our estimate of ls for any window, using standard techniques for

testing the goodness-of-fit of statistical phylogenetic models.

Specifically, we can perform a likelihood ratio test (LRT) to assess

precisely whether a small estimate of ls explains an observed

alignment window better than the average rates assumed by the

Figure 1. (A) Examples of local synonymous rate variation in alignments of 29 placental mammals for
short nine-codon windows within the open reading frames (ORFs) of three known human protein-
coding genes—ALDH2, BMP4, and GRIA2—with brackets denoting starting codon position within each
ORF of shown alignment. (Bright green) Synonymous substitutions with respect to the inferred ancestral
sequence; (dark green) conservative amino acid substitutions; (red) other nonsynonymous sub-
stitutions. The estimated parameter ls

ome denotes the rate of synonymous substitution within these
selected windows relative to genome-wide averages. For example, the nine-codon window starting at
codon 88 of the BMP4ORF shows ls

ome
= 0.5, corresponding to an estimated synonymous substitution

rate 50% below the genome average. (B) Variation in the estimated synonymous rate at different po-
sitions with respect to exon boundaries and translation start and stop, across all CCDS ORFs. For each
class of regions, box-and-whisker plots show the observed distribution of ls

ome, including the median
(middle horizontal bars), middle 50% range (boxes), extreme values (whiskers), and whether medians
differ with high statistical confidence (nonoverlapping notches between two boxes). Estimated syn-
onymous rates tend to be significantly reduced at the 59 and 39 ends of exons, and dramatically reduced
in alternatively spliced exons, likely reflecting widespread splicing regulatory elements embedded
within protein-coding regions.
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null model. Then, if a window has a significantly reduced ls

according to this test, we infer that its synonymous sites have

probably been constrained by natural selection acting on an

overlapping functional element. This is very similar to likelihood

methods for nucleotide-level constraint detection (Garber et al.

2009; Pollard et al. 2010), extended to codonmodels so thatwe can

disentangle the different evolutionary pressures on synonymous

and non-synonymous sites.

The LRT provides an elegant way to avoid certain potential

pitfalls in detecting individual regions with reduced synonymous

rates. For example, it accounts for the uncertainty in rate estimates

based on the exact set of informant species aligned for each win-

dow. To illustrate, consider two windows, one with estimated ls =

0.5 with all 29 species aligned, and the other with ls = 0.1 but only

a human/chimpanzee alignment available. Even though the esti-

mated ls is lower in the second window, it is almost surely less

significant by the LRT, because it is based on far less informative

data. The LRT also accounts for the expected constraint at each

individual site based on the amino acid it encodes. For example,

consider a hypothetical window coding exclusively for conserved

methionine and tryptophan residues, which are encoded by non-

degenerate codons (ATG and TGG, respectively). By definition,

this window does not exhibit any synonymous substitutions and

might therefore appear to have a very low synonymous substi-

tution rate. But a reduced estimate of ls in this window would not

be considered significant, because it does not provide a better ex-

planation for the conservation of the nondegenerate sites.

We also designed our method to control for background vari-

ation in sequence composition and evolutionary rates across the

genome (Lercher et al. 2001; Williams and Hurst 2002; Fox et al.

2008), as well as the possibility of selection on diffuse effects that

can constrain all or most of an ORF, such as transcript structural

stability or codon bias for translation efficiency (Chamary et al.

2006). To account for these, we evaluated each window against two

null models, one representing the average sequence composition

and evolutionary rates of the entire ‘‘ORFeome’’ (to obtain ls
ome),

and the second estimated specifically from the individual ORF

containing each window (to obtain ls
ORF). By identifying statisti-

cally significant rate reductionswith respect to bothnullmodels, we

required windows of interest to be exceptional with respect to ge-

nome-wide averages, on one hand, and also not explained by local

biases in composition, rates, and codon usage, on the other hand.

Results

To annotate likely overlapping functional elements in human

genes, we applied our local synonymous rate estimation procedure

to sliding windows in all open reading frames in the human

Consensus Coding Sequence (CCDS) catalog, a conservative set

containing the ;85% of human gene annotations that are unan-

imously agreed on by the major gene catalogs (Pruitt et al. 2009).

The vastmajority of CCDSORFs are aligned across at least 15 of the

29 placental mammals used in this study, with an average of four

synonymous substitutions per codon site (Supplemental Fig. 1).

Genome-wide trends in synonymous rate variation

Before attempting to locate individual regions of synonymous

constraint, we were immediately able to confirm a few notable

genome-wide trends in synonymous rate variation that have been

observed previously using different methods. Specifically, we ob-

served marked reductions in average synonymous rates at the

boundaries of coding exons, suggesting widespread evolutionary

constraint on overlapping translation and splicing regulatory ele-

ments (Smith and Hurst 1999; Baek and Green 2005; Xing and Lee

2005; Chen et al. 2006; Parmley et al. 2006; Parmley and Hurst

2007a). For example, the median ls
ome estimate for the first nine

codons following the start codon in each ORF is only 0.81, in-

dicating that the first several codons in a typical mammalian gene

appear to have tolerated synonymous substitutions at a rate 19%

below average (P < 10�15, Mann-Whitney U test) (Fig. 1B). The

median estimated synonymous rate is also reduced by 13% in

nine-codon windows spanning exon–exon junctions (P < 10�15).

Strikingly, the first nine to 12 codons of alternatively spliced cas-

sette exons annotated in CCDS typically have an estimated syn-

onymous rate 41% below average (P < 10�15). We will revisit the

possible translation and splicing regulatory roles suggested by

these overall trends after establishing the statistical significance

of the synonymous constraint in each individual window.

More than one-third of CCDS ORFs contain short windows

with statistically significant synonymous constraint

We next applied LRTs to identify individual windows that show

statistically significant evidence of reduced synonymous sub-

stitution rates (Fig. 2). Using three window sizes of nine, 15, and 30

codons, and sliding across each ORF by one-third of the window

length, we selected windows passing three likelihood ratio tests,

for the hypotheses that ls
ome is significantly below one, that ls

ORF

is also significantly below one, and that ln
ome, the relative rate of

nonsynonymous substitutions, is not significantly above one. We

applied appropriate corrections for multiple testing (see Methods),

and simulation and permutation benchmarks confirmed the ro-

bustness of our approach for detecting significantly reduced syn-

onymous rates (Supplemental Material S3).

At the intermediate window length of 15 codons, 1.7% of the

windows in CCDS ORFs meet these criteria. Overlapping signifi-

cant windows collapse into 10,757 separate regions throughout

humanORFs, covering 2.8%of all approximately 28millionCCDS

coding nucleotide positions. More than one-third of CCDS genes

(6033/16,939) contain at least one such region. Notably, although

the test threshold is ls
ome

< 1, the median ls
ome among the win-

dows passing the test is only 0.23, corresponding to a 77% reduced

rate of synonymous substitution compared to the genome-wide

average. Furthermore, the estimates of ls
ORF in significant win-

dows are also very low (best-fit line ls
ORF

= 0.78ls
ome

+ 0.06 with

R2
= 0.81), confirming that these regions are generally not ex-

plained by ORF- or region-specific variation in sequence compo-

sition or evolutionary rates. Finally, the locally estimated synon-

ymous and non-synonymous rates are not strongly correlated

(Pearson coefficient between ls
ORF and ln

ORF of 0.04 in all win-

dows, and 0.06 in significant windows), suggesting that our

method largely succeeds in disentangling evolutionary pressures

on synonymous and nonsynonymous sites, when controlling for

regional biases in composition and rates. (Due to such biases, the

estimates of ls
ome and ln

ome do correlate somewhat, with Pearson

coefficient 0.24 in all windows and 0.22 in significant windows.)

Windows with significant synonymous constraints are not

unusually enriched on any of the individual human autosomes,

although they are about twofold depleted on chromosome 19

(Supplemental Table 1), which frequently stands out in genome-

wide analyses owing to several unusual properties. In particular,

the apparent depletion of synonymous constraints on this chro-

mosome may be due to a calibration bias in our method arising
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Figure 2. Identifying individual windows with statistically significant synonymous constraint. (A) Estimated synonymous rate relative to genome av-
erage (ls

ome) and corresponding P-value for the hypothesis ls
ome

< 1 evaluated in nine-codon windows along the entire protein-coding regions of ALDH2,
BMP4, and GRIA2, highlighting the windows corresponding to the three examples in Figure 1. For each plot, the top portion shows the ls

ome estimate for
each window (black curve), the genome average (red line at ls = 1), and the ORF average (blue dashed line). The bottom portion shows the statistical
significance of the reduction in the synonymous rate estimate in each window, accounting for evidence in the cross-species alignments, using a likelihood
ratio test for the hypothesis ls

ome
< 1 (continuous black curve, using the genome average as the null model), and for the hypothesis ls

ORF
< 1 (dashed black

curve, using theORF average as the null model). (Vertical gray lines) Exon boundaries; (orange) regions where ls
ome drops below 1/16th toward the 59 end

of BMP4 and the 39 end of GRIA2. (B) Overall distribution of ls
ome estimates for all nine-codon windows across all CCDS genes. Heavy left tail indicates an

excess of windows with very low estimated synonymous rates, shifting the mean (ls
ome

= 1) to the left of the distribution mode, which likely represents
neutral rates. (C ) Comparison of synonymous rates estimated relative to genome-wide (ls

ome) and ORF-specific (ls
ORF) null models, each point denoting

one nine-codon window, and density of overlapping points denoted by color. Joint distribution shows that low ls
ome estimates also usually correspond to

low ls
ORF estimates, and therefore that the heavy tail observed in B does not reflect regional or ORF-wide deceleration, but instead localized constraints in

small windowswithin eachORF, also visible in the three examples of A. (D) Comparison of P-values for synonymous rate reduction with respect to genome-
wide (y-axis) and ORF-specific (x-axis) null models. Candidate synonymous constraint windows are selected when synonymous rate reductions are
significant at P < 0.01 with respect to both null models (orange lines). Note that many windows are significant with respect to one null model but not the
other. (E ) Correspondence between ls

ome and the associated significance estimate for the each nine-codon window. The visible stripes in this plot arise
fromwindows that are perfectly conserved except for one, two, three, ormore synonymous substitutions observed in the extant species, while the position
along each stripe reflects variation in the ls

ome estimate and its significance, determined by the species coverage, codon composition, and observed codon
substitutions in each window. (B–E ) The three example regions highlighted in A are shown in each distribution and density plot, with horizontal and
vertical axes aligned. The orange line in plots A,D, and E denotes the statistical significance cutoff of P < 0.01, and the red line in plots A, B, C, and E denotes
the genome-wide average ls

ome
= 1 and ls

ORF
= 1 for B. The ALDH2[103] synonymous rate is not significantly reduced either relative to the genome or to the

ALDH2 ORF; BMP4[88] is reduced relative to the genome but not relative to its ORF, which shows an overall reduced rate; GRIA2[586] is >80% reduced
relative to both the genome and its ORF, resulting in significant P-values for both.
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from the chromosome’s above-average G+C content andmutation

rates (Lercher et al. 2001; Castresana 2002), or it could reflect

a genuine biological tendency related to the chromosome’s un-

usually large complement of genes from a few tandem families

(Grimwood et al. 2004). We analyzed ORFs on the X chromosome

using a null model estimated from coding sites on that chromo-

some only and found that its resulting proportion of significant

windows is lower thanmost autosomes, but stillmuch greater than

chromosome 19. We did not analyze the fewer than 100 protein-

coding genes on the Y chromosome due to their eccentric, fast-

evolving properties (Hughes et al. 2005, 2010; Kuroki et al. 2006).

In the longer windows of 30 codons, our method has in-

creased statistical power to detect synonymous constraints since it

combines evidence from more sites, and a larger proportion of

windows reach significance with somewhat higher typical syn-

onymous rate estimates, although they collapse into fewer sepa-

rate regions. Conversely, a smaller proportion of the shorter nine-

codon windows reach significance, with even lower estimated

synonymous rates (Table 1). We also attempted our analysis with

even smaller windows of six and three codons, but vanishingly few

reached significance. Evidently, in these very short windows, even

perfect conservation across the available species is usually not

adequate to infer synonymous constraints using our current

methodology and alignments.

Since the three window sizes lead to different trade-offs be-

tween resolution and discovery power, it is reasonable to expect

them to identify somewhat different sets of regions as significant.

In fact, of the regions obtained by collapsing overlapping signifi-

cant windows at the 15-codon resolution, 24% are not detected

at either the longer or shorter resolution. Similarly, 33% of the

30-codon regions and 28% of the nine-codon regions are detected

only at those resolutions. As expected, the intermediate 15-codon

resolution has the most overlap with the others, including 67% of

the 30-codon and 72% of the nine-codon regions.

Hereafter, we refer to the collapsed significant regions as

‘‘synonymous constraint elements’’ (SCEs) and undertake numer-

ous downstream analyses to show that they correspond to over-

lapping functional elements with diverse biological functions. We

will performmost of these analyses based on SCEs identified at the

15-codon resolution, since they includemost of the other sets, but

wewill also use the nine-codon and 30-codon resolutions based on

the expected length of different types of overlapping functional

elements. Similarly, we expect that each can be useful in different

contexts for future follow-up studies.

Sequence composition and codon usage in SCEs

Since a major design goal for this study was to control for the

specific codon sequence in eachwindow,we thoroughly examined

the composition of the regions reported as significant (Supple-

mental Material S6). Briefly, the SCEs exhibit certain biases in

nucleotide, dinucleotide, and amino acid composition, for example,

slightly below-average G+C content, but these biases are within the

range of variation seen between protein-coding regions from dif-

ferent parts of the genome. Other compositional properties allowed

us to rule out certain possible artifactual explanations for the low

divergence in SCEs, including tandem and microsatellite repeats,

biased conversion in recombination hotspots, and codon usage

bias. In particular, the effective number of codons (ENC) (Wright

1990; Fuglsang 2006) shows that there is slightly less codon usage

bias in SCEs compared to other coding regions, indicating that our

method excluded regions explained by this effect, as intended.

Overall, our analysis of sequence composition and codon usage did

not suggest any debilitating shortcomings of our overall approach,

and it is likely that the compositional differences that are seen

largely reflect the sequence-dependent biological nature of the

overlapping functional elements encoded by the SCEs.

Characteristics of genes containing SCEs

We next studied overall properties of the 6033 genes containing

SCEs (at 15-codon resolution). Compared to the remaining CCDS

genes, the typical gene containing an SCE has a much longer ORF

(median 558 vs. 356 codons). This is not actually longer than

expected based on drawing genes randomly weighted by their ORF

length, but the genes containing SCEs also have more introns

(median nine vs. five), lengthier individual introns (1727 nt vs.

1261 nt), and they span much larger genomic regions (36,000 nt

vs. 11,000 nt), suggesting that the overall length distribution is

entangled with the well-established correlations between gene

length and other relevant characteristics including conservation,

functional categories, and expression levels (Supplemental Mate-

rial S7; Castillo-Davis et al. 2002; Urrutia and Hurst 2003; Stanley

et al. 2006; Pozzoli et al. 2007). The genes containing SCEs also

appear to be under stronger purifying selection on their amino acid

sequences, as the median estimate of v = dN/dS measured across

each complete ORF is 0.068, much lower than the 0.138 for other

genes, despite containing regions with greatly reduced dS.

Next, we analyzed Gene Ontology (GO) annotations for the

genes containing SCEs. While 36% of

CCDS genes contain a 15-codon SCE, they

include 70% genes annotated with the

term ‘‘chromatinmodification,’’ a twofold

enrichment (Bonferroni-corrected hyper-

geometric P < 7.9 3 10�13). Additionally,

they include most of the genes in these

and related categories: ‘‘ubiquitin-protein

ligase activity’’ (1.8-fold, P < 2.9 3 10�6),

‘‘ion channel complex’’ (1.7-fold, P < 5.63

10�5), ‘‘nervous system development’’

(1.6-fold, P < 6.8 3 10�9), ‘‘transcription

factor activity’’ (1.6-fold, P < 3.5 3 10�6),

and ‘‘RNA splicing’’ (1.5-fold, P < 8.4 3

10�4). These enrichments remain strongly

significant when controlling for the vary-

ing ORF lengths (Supplemental Table 4)

and suggest a few interesting hypotheses

Table 1. Sliding windows in CCDS ORFs were tested for significantly reduced synonymous
substitution rate estimates at different resolutions and stringencies

Resolution (window size)
Short

(9 codons)
Intermediate
(15 codons)

Long
(30 codons)

No. of windows tested 2,915,773 1,727,202 842,475
Proportion of windows significant 1.04% 1.72% 2.75%
Median significant ls

ome 0.1361 0.2299 0.3584
Median significant ls

ORF 0.1443 0.2572 0.4120
Maximum significant ls

ome 0.5497 0.6323 0.7134
Maximum significant ls

ORF 0.4682 0.5805 0.6520
No. of nonoverlapping

synonymous constraint elements
11,882 10,757 8933

Proportion of 27,812,282 CCDS
nucleotide positions within a
synonymous constraint element

1.79% 2.82% 4.48%

Proportion of 16,939 CCDS ORFs
containing a synonymous
constraint element

35.8% 35.6% 33.3%
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about genes that encode overlapping functional elements. For ex-

ample, the enrichment for genes encoding chromatinmodification

and RNA splicing functions could suggest the existence of auto-

regulatory circuits for many such genes, similar to known examples

such as ADARB1, which edits its own pre-mRNA and causes

a change in its splicing (Rueter et al. 1999), and DGCR8, which

binds its own mRNA and causes it to be cleaved by Drosha (also

know as RNASEN) (Han et al. 2009). Also, the enrichment for ion

channel genes suggests a connection with A-to-I editing, since

several such genes are known targets of this recoding mechanism

(Bass 2002); we explore this further below.

More than one-third of short SCEs can be provisionally

assigned roles in transcript splicing or translation initiation

As expected, based on the aforementioned general trends in syn-

onymous rate variation (above; Fig. 1B), many SCEs can be pro-

visionally classified as possible splicing regulatory elements based

on their location within gene models. In particular, 34.7% of the

nine-codon SCEs span an exon–exon junction, compared to only

20.3% of a set of random control regions placed uniformly

throughout CCDS ORFs, with matching length distribution and

total number.

Interestingly, the introns flanked by these SCEs tend to have

weaker 39 splice acceptor sites (nine-codon resolution; P = 3.9 3

10�7, Mann-Whitney U test), based on analysis of the sequence

information content of the surrounding nucleotides (Yeo and

Burge 2004). This is consistent with the hypothesis that while

‘‘strong’’ splice sites are constitutively recognized by the splicing

machinery, the activity of weaker splice sites is more reliant on

additional nearby cis-regulatory sequences, increasing the possi-

bilities for their combinatorial and condition-specific regulation

(Fairbrother et al. 2002; Chen and Manley 2009). The SCEs span-

ning exon–exon junctions also show an increased frequency of

exonic splicing enhancer motifs compared to other coding regions,

although this is difficult to distinguish from correlated composi-

tional biases (Supplemental Material S8).

We also examined individual exons with multiple alternative

acceptor or donor sites, for which the coding sequence of the

longest exon isoform additionally encodes splice sites for shorter

isoforms and perhaps additional splicing regulatory elements (e.g.,

Fig. 3A). Of 551 such alternative donor sites in RefSeq transcripts

encoded within the CCDS exons we analyzed, 84 (15.2%) fall

within SCEs, compared to only 1% in the random regions (P <

10�21). Similarly, 57 of 576 (9.9%) alternative acceptor sites lie

within SCEs (1.7% random; P < 10�21).

SCEs are also enriched for elements potentially involved in

translation initiation. The first nine-codon window (beginning at

the first site following the start codon) in 3.9% of CCDS ORFs is

found to be under synonymous constraint, a strong enrichment

compared to 1.04% of all windows. Additionally, there are 744

RefSeq-annotated internal translation initiation sites encoded

within longer coding exons of CCDS ORFs, of which 5.4% fall

within SCEs (e.g., Fig. 3B) compared to 1.6% in the random regions

(P < 10�9).

Taken together, these provisional classifications of possible

splicing and translation regulatory elements account for slightly

more than one-third of the SCEs (at nine-codon resolution).

Conversely, nearly two-thirds are not found in locations that di-

rectly suggest such roles, although it should be noted that some

splicing regulatory sequences may act at considerable distances

(Parmley and Hurst 2007a; Parmley et al. 2007).

Synonymous constraint at an alternate translation start site in BRCA1

One noteworthy example of an SCE with a possible role in

translation initiation is found within the tumor suppressor gene

BRCA1. Hurst and Pál (2001) first observed that an extended re-

gion within this ORF shows unusually low synonymous sub-

stitution rates, based on sliding windows of 100 codons in pair-

wise comparisons among the human, mouse, and rat orthologs.

Recently, however, Schmid and Yang (2008) raised certain issues

with their statistical methods and argued that their result was

artifactual.

Our analysis is based on much more data than both previous

studies and strongly supports the original conclusion of Hurst and

Pál (2001). Within the most significant 15-codon window in

BRCA1, the estimated rate of synonymous substitution in pla-

cental mammals is reduced by 80% (ls
ome

= 0.20, P < 9.9 3 10�8),

ranking among the slowest 1% of windows in human ORFs, and

slower than average for SCEs at this resolution. Like all SCEs, the

windowalso has a very low synonymous rate estimate compared to

the BRCA1 ORF specifically (ls
ORF

= 0.23, P < 2.3 3 10�5). Due to

the controversy over this region in particular, we also performed

auxiliary permutation tests that further confirmed its statistical

significance (Supplemental Material S4).

Furthermore, the much higher resolution of our analysis

precisely localizes the significant region of synonymous constraint

to the annotated translation initiation site of a CCDS-supported

alternative splice form of BRCA1 (Fig. 3B), immediately suggesting

a hypothesis for an overlapping biological function—namely,

a role in regulating translation initiation in this splice form. This

highly suggestive positional association may have been much less

clear at the 100-codon resolution used by both previous studies.

Indeed, the synonymous constraint is not significant at the 30-

codon resolution according to our analysis, possibly corroborating

the statistical concerns raised by Schmid and Yang (2008), while

nonetheless confirming and extending the main conclusion of

Hurst and Pál (2001).

Enrichment of miRNA target sequences in SCEs

We next sought evidence that SCEs capture embedded miRNA

target sites, since previous studies have demonstrated trends to-

ward their preferential conservation in mammalian ORFs (Lewis

et al. 2005; Hurst 2006; Kural et al. 2009). Although the main se-

quence determinant of miRNA targeting is a ‘‘seed’’ of only;7 nt,

which is much shorter than our present resolution, it is still rea-

sonable to expect SCEs to capture at least some of these sites, due to

additional flanking positions influential in targeting, or to multi-

ple closely spaced target sites acting synergistically (Grimson et al.

2007).

Indeed, SCEs show a small but significant enrichment for the

7-nt target seed sequences of known human miRNAs: 8.9% of

positions in SCEs start with one of these 7-mers, compared to 8.6%

in all coding regions (P < 10�7; nine-codon resolution). They are

even more frequent in SCEs lying within the last coding exon of

each ORF (9.3% of positions; P < 10�5), consistent with the trend

for miRNA target sites to appear toward the 39 end of animal

transcripts (Lewis et al. 2005). Matched random control motifs

showed weaker or no enrichment, indicating that the observed

enrichment is not explained by correlated sequence composition

effects (Supplemental Table 5). Overall, while the excess of miRNA

seeds in SCEs provides further evidence that many mammalian

ORFs encode conserved target sites, greater power and resolution

will be needed to precisely annotate them.
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SCEs in known and novel dual-coding genes

Genomic sequences can simultaneously encode different amino

acid sequences in multiple reading frames, a common phenome-

non in viral genomes but rare in animal genomes. Such ‘‘dual-

coding’’ regions can involve ORFs on the same strand, but in an

alternate ‘‘shifted’’ reading frame, which can be mediated by al-

ternative splicing, internal translation initiation, or ribosomal

frameshifting. Of the six long human dual-coding gene structures

for which likely biological functions have been demonstrated

(Sharpless and DePinho 1999; Klemke et al. 2001; Yoshida et al.

2001;Hameed et al. 2003; Poulin et al. 2003; Ahmed et al. 2008), all

show at least some evidence of overlapping evolutionary con-

straint in our analysis: XBP1, GNAS, and the ANKHD1/EIF4EBP3

fusion transcript contain SCEs in their dual-coding regions; the

dual-coding 39 end IGF1narrowlymissed our thresholdwith a 47%

reduced synonymous rate; and the dual-coding regions of CDKN2A

and LRTOMT have very low synonymous rates, but were excluded

from SCEs because of elevated nonsynonymous rates. Aside from

these individually studied examples, CCDS annotates 237 other

exons as protein-coding in multiple reading frames of the same

strand, 24 (10.1%) of which contain SCEs, compared to six (2.5%)

containing random control regions. This lower overlap might

Figure 3. Examples of candidate synonymous constraint elements (SCEs) with likely roles in splicing and translation regulation. (A) Predicted SCEs (light
blue) overlapping two isoforms of ADAR exon 4 (black) arising from an alternative splice donor site encodedwithin the longer exon variant.With increasing
resolution, the SCE is more precisely localized to the region of overlap with the alternative splice site (motif logo for human donor sites rendered
by WebLogo) (Crooks et al. 2004). The localization of the synonymous constraint to the splice site is also seen in the local synonymous rate estimate ls

ORF

(relative to the ORF average). Note that the significant reduction in the synonymous rate is not obvious from the nucleotide-level conservation measure
(dark blue, bottom panel). The extent of the predicted SCE may suggest the presence of additional splicing regulatory elements downstream from the
alternative splice site. (B) Predicted SCE (light blue) overlapping an alternate translation initiation site (green) in BRCA1 encoded within exon 9 of a longer
isoform. Synonymous constraint ranges from shortly upstream to immediately downstream of the alternate start codon, suggesting this region may be
involved in regulating translation initiation at the alternate site. The region just upstream of the predicted SCE also shows a reduced synonymous rate
(black curve) overlapping an alternative splice donor site for a third BRCA1 isoform (gray), although this reduction is not statistically significant and the third
isoform is weakly supported. Annotation visualizations in Figures 3 and 4 are based on the UCSC Genome Browser (Kent et al. 2002).
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suggest dual-coding regions not under selection across placental

mammals.

Alternatively, both strands of the genomic DNA can encode

different protein sequences, expressed in ‘‘sense’’ and ‘‘antisense’’

transcription units. At least one such case has been thoroughly

studied: an ;200-nt sense/antisense dual-coding sequence of the

convergent transcription units for THRA and NR1D1 (Hastings

et al. 2000). Indeed, we find synonymous constraints in bothORFs

precisely coinciding with the known dual-coding region (Fig. 4A).

We similarly detect synonymous constraints in 10 of 44 individual

exons that CCDS annotates on both strands (five in random re-

gions).

In addition to these known examples, we found 19 candidate

novel dual-coding ORFs in alternate reading frames of known

CCDS ORFs, which contain one or more of our 30-codon SCEs, are

longer than expected by chance, and also appear to be depleted of

Figure 4. Synonymous constraint elements (SCEs) corresponding to dual-coding, selenocysteine insertion, and expression enhancer functions. (A) A
large SCE (blue) fully encompasses a 66-codon sense/antisense dual-coding region in the convergent transcripts of THRA and NR1D1. The SCE is spe-
cifically localized to the overlapping exons, while upstream exons of each gene are excluded. (B) A predicted SCE in the selenoprotein-encoding gene
SEPHS2 encompasses the selenocysteine insertion site (red) and a predicted RNA hairpin structure (minimum free energy fold rendered by VARNA) (Darty
et al. 2009) immediately downstream from the selenocysteine codon. Inferred structure is similar to a hairpin known to stimulate selenocysteine recoding
in SEPN1 (Howard et al. 2005). (C ) Two SCEs are found within the HOXA2ORF, each corresponding to a different enhancer element regulating expression
of the mouse ortholog in distinct segments of the developing hindbrain. The 59 element encodes a HOX-PBX responsive element and drives expression
in rhombomere 4 (Lampe et al. 2008), and the 39 element encodes SOX2 binding sites and drives expression in rhombomere 2 (Tümpel et al. 2008). The
39 element includes several RTE and ACAAT motif instances that were investigated by site-directed mutagenesis in the previous study (red), as well as
two additional upstream instances (green). SCEs are also found within most other HOX genes.
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stop codons in the othermammals. Twelve of these 19 are encoded

on the same strand as the CCDS gene structure, some spanning

multiple exons, and the remaining seven are found antisense to

individual CCDS exons. A few are further supported by transcript

cDNA evidence or similarity to known proteins (Supplemental

Material S9). This preliminary assessment suggests that the SCEs

probably capture several additional long dual-coding mammalian

gene structures, although specialized methods for detecting the

evolutionary signatures unique to dual-coding regions (Chung

et al. 2007; Ribrioux et al. 2008) would probably have more power

applied to the new set of 29 species.

SCEs capture most known A-to-I recoding sites

A-to-I editing is a recodingmechanism in which certain adenosine

(A) bases in RNA transcripts are edited to inosine (I), which is read

as a guanosine (G) (Bass 2002). This mechanism is essential for

normal development of the mammalian nervous system, and,

because the enzymes that mediate the reaction target double-

stranded RNA, known A-to-I recoding sites conserved between

human and mouse transcripts typically show extensive conserva-

tion of flanking sequence, presumably reflecting the interlocking

constraints of encoding amino acids and pairing with another por-

tion of the transcript (Aruscavage and Bass 2000; Hoopengardner

et al. 2003).

Indeed, 10 of 14 known human A-to-I recoding sites in CCDS

ORFs lie within SCEs (15-codon; none within random regions)

(Supplemental Table 7), although this is not surprising since ex-

ceptional conservation was one signature originally used to iden-

tify many of the known sites. A recent human-specific study used

a high-throughput sequencing approach not biased for highly

conserved regions (Li et al. 2009) to identify 40 new edited sites

within CCDS ORFs, only three of which also lie within our SCEs

(two amino acid changing sites in CADPS, FLNB, and a synony-

mously edited site in GRIA2) (Supplemental Table 8). Therefore,

consistent with that study’s report that the 37 remaining experi-

mentally identified sites lack extensive nucleotide-level conserva-

tion, we do not find specific evidence for synonymous constraints

in other mammals.

SCEs and RNA secondary structures

In addition to the paired structures associated with A-to-I editing

sites, the SCEs include several other striking examples of RNA

secondary structures embedded within mammalian ORFs. For ex-

ample, the selenoprotein-encoding gene SEPHS2 contains a hair-

pin immediately downstream from its selenocysteine insertion

site (Fig. 4B). This structure is likely to stimulate selenocysteine

recoding, based on similar known structures in other genes

(Howard et al. 2005; Pedersen et al. 2006). An SCE within TTN, the

human gene with the most exons (313) encoding a protein with

numerous functions in striated muscle and associated with several

diseases, contains a hairpin showing both compensatory double

substitutions and a compensatory deletion that preserve the paired

structure in other vertebrates (Supplemental Fig. 2), strong evi-

dence of selection on the RNA secondary structure. An SCE within

QKI, which encodes an RNA-binding protein, appears to contain

an instance of the protein’s own binding motif followed by

a hairpin showing a compensatory insertion, perhaps suggesting

an autoregulatory mechanism (Supplemental Fig. 3).

We also attempted to study overall mutual enrichments be-

tween SCEs and computationally predicted RNA secondary struc-

tures using EvoFold (Pedersen et al. 2006; Parker et al. 2011) and

RNAz (Gruber et al. 2010), but unfortunately this was confounded

by correlations in sequence composition and conservation influ-

encing both types of predictions (Supplemental Material S11).

Careful further investigation of this topic is warranted, given

previous studies suggesting that many additional RNA structures

(Chamary and Hurst 2005; Shabalina et al. 2006; Tuller et al.

2010) and perhaps RNA–RNA interaction sites (Wang et al. 2008)

are embedded within protein-coding regions.

Possible roles in exclusion of nucleosomes from certain exons

It was recently shown that nucleosomes preferentially localize

within human exons compared to surrounding intronic regions

(Schwartz et al. 2009; Tilgner et al. 2009). Two compositional

properties of the SCEs suggest a possible relationship with this

phenomenon. First, the general enrichment of nucleosomes

within exons was shown to positively correlate with G+C content,

while the SCEs have slightly lower G+C content than other coding

regions (50.3% vs. 52.0%). Second, it is known that nucleosomes

especially avoid contiguous stretches of adenine:thymine base

pairs, and synonymous codon usage in many species is biased to

avoid such ‘‘poly(dA:dT) tracts’’ (Cohanim and Haran 2009; Segal

and Widom 2009). The SCEs have a 20% higher frequency of

poly(dA:dT) tracts of 5 bpor longer compared to other coding regions.

Based on these properties, we would predict that exons con-

taining SCEs tend tohave lower nucleosomeoccupancy than other

exons. We analyzed a high-throughput sequencing data set for

nucleosome occupancy in human CD4+ T-cells (Schones et al.

2008) and found that the exons containing SCEs are, indeed, de-

pleted for reads of nucleosome-bound DNA compared to other

CCDS exons (P = 1.0 3 10�11, Mann-Whitney U test) (Supple-

mental Material S12).

Since the biological significance of nucleosome positioning

within exons is not yet well understood, we cannot exclude the

possibility that this relative depletion could just be a side effect of

compositional biases in the SCEs. It is also possible, however, that

some SCEs are under selection for sequence-dependent roles in

excluding nucleosomes from certain exons, not unlike the ‘‘nu-

cleosome-free regions’’ thought to facilitate chromatin access for

regulatory factors near promoters (Schones et al. 2008; Warnecke

et al. 2008; Washietl et al. 2008).

SCEs lie within most HOX genes and include two known

developmental enhancers

Many of the lengthiest and most strikingly conserved SCEs are

found within 27 of the 40 genes in the four HOX clusters. For ex-

ample, the first 60 codons of HOXB5 exhibit absolutely no syn-

onymous substitutions in any of the species in our alignment of its

ORF. More generally, we identify SCEs in eight of the 11 genes in

the HOXA cluster, seven of nineHOXB genes, seven of nineHOXC

genes, and three of nine HOXD genes, as well as the EVX1 and

EVX2 homeobox-encoding genes adjacent to theHOXA andHOXD

clusters. Lin et al. (2008) also noted striking regions of synonymous

constraint inHOX genes, which they defined as stretches of at least

40 codons without any synonymous substitutions in pairwise

comparisons. Our results confirm their findings while also pro-

viding much greater power and resolution, locating several addi-

tional shorter and/or less extremely conserved SCEs.

Remarkably, the two SCEs found within HOXA2 correspond

to known tissue-specific enhancers that regulate expression in dis-

tinct segments of the developing mouse hindbrain (Fig. 4C). A

lengthier region (;200bp) in theupstreamexonencodes aHOX-PBX
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responsive element and drives Hoxa2 expression in rhombomere

4 (Lampe et al. 2008), and a shorter region (;75 bp) in the down-

stream exon encodes SOX2 binding sites and drives expression in

rhombomere 2 (Tümpel et al. 2008). Considering these two exam-

ples, the SCEs could suggest the existence of a largely unknown

regulatory network relying on nucleotide sequence elements em-

bedded within the ORFs of most of these key developmental genes

(Woltering and Duboule 2009).

Discussion

In this study, we showed that thousands of human protein-coding

genes contain short regions with conspicuously low estimated

synonymous rates across placental mammals. We located between

9000 and 12,000 SCEs, depending on the resolution chosen,

within one-third of all CCDS ORFs (Table 1), or well over one-

quarter of all humanprotein-coding genes. Our preliminary results

implicate many of these regions in biological roles including tis-

sue-specific developmental enhancers, translation regulatory ele-

ments, RNA structures involved in A-to-I editing or selenocysteine

incorporation, and different classes of post-transcriptional regu-

latory elements including miRNA targeting and alternative splic-

ing. Still, these provisional explanations do not even account for

half of all the SCEs, suggesting that there may be many other

overlapping biological roles yet to be elucidated. Therefore, just as

our view of nucleotide-level conserved elements throughout the

genome has been greatly refined since the first human/mouse

comparisons nearly a decade ago, we expect that this initial survey

of SCEs can motivate many additional computational and exper-

imental studies to reveal their biological functions.

In addition to identifying candidate overlapping functional

elements, our extensive annotation of synonymous sites under

selection in placental mammals can help refine many types of

evolutionary and functional analyses that typically assume they

are neutral. For example, widely used methods for detecting posi-

tive and negative selection on amino acid sites are based on the

ratio of nonsynonymous and synonymous substitution rates (v =

dN/dS). Since the extreme drop in dS observed in SCEs would nat-

urally tend to elevate local estimates of v, any claims of positive

selection on the amino acid sites encoded within SCEs ought to be

regarded with caution (Xing and Lee 2006; Parmley and Hurst

2007b). Our results can also inform future disease association studies

and other types of population genetics analyses, which frequently

ignore synonymous SNPs (Chamary et al. 2006). The SCEs we iden-

tified represent specific regions in which synonymous SNPs may

well have significant consequences and should therefore be in-

cluded in such analyses.

One major challenge in the design of our study, shared with

nucleotide-level constraint detection methods, laid in the esti-

mation of null models. Nucleotide-level methods typically cali-

brate their null models to presumptively neutral regions such as

ancestral repeats or fourfold degenerate sites, but these were ob-

viously not suitable for our purposes because our null models must

capture the typical evolutionary rates of both synonymous and

non-synonymous sites in coding regions. Therefore, we simply

calibrated our null models to the ORFeome-wide or ORF-level

background, averaging in any unusually evolving sites. If we as-

sume that purifying selection ismuchmore common than positive

selection in synonymous sites (Resch et al. 2007), then this ap-

proach leads to a somewhat conservative test for synonymous

constraint, providing one of our countermeasures against the pos-

sibility of background rate variation leading to spurious inferences

of selection. More accurate null model calibration is an important

direction for future investigation, perhaps by explicitly modeling

statistical distributions of synonymous rates (Pond andMuse 2005;

Rodrigue et al. 2008).

Still, despite our prudently conservative null model calibra-

tion, we were able to achieve far greater discovery power than

previous efforts to locate regions of synonymous constraint in

mammalian genes (Schattner and Diekhans 2006; Parmley and

Hurst 2007b), which identified at most ;2% of our SCEs, and at

much lower resolution. This is attributable both to the many in-

formant species now available and to the rigorous phylogenetic

methodology we devised to take advantage of them, based on

maximum likelihood estimates of the synonymous substitution

rates in short windows and formal statistical tests for their re-

duction. Naturally, this methodology can accommodate addi-

tional sequenced genomes and improved assemblies and align-

ments as they become available—perhaps eventually enabling

systematic resolution of lineage-specific overlapping functional

elements and individual binding sites for miRNAs and regulatory

factors.

Methods

Genome annotations and alignments

This study was based on ORF annotations from the 2009-03-27

build of CCDS (Pruitt et al. 2009) for NCBI version 36 of the ref-

erence human genome assembly. When CCDS annotates multiple

isoforms of a single locus (as defined by multiple CCDS IDs in

overlapping chromosomal regions sharing the same HGNC gene

symbol), only the isoform with the longest coding sequence was

analyzed. We extracted the alignments for these ORFs from the

MULTIZ whole-genome alignments of 44 vertebrate species, gen-

erated by UCSC Genome Bioinformatics and used throughout

the initial analysis of the 23mammals data set. Only the ‘‘rows’’ of

the MULTIZ alignments corresponding to the 29 available pla-

cental mammals were used, and the whole-genome alignments

were ‘‘spliced’’ as necessary to produce an alignment of the com-

plete human ORF.

Estimating codon substitution rates in short windows

Our relative rate estimation procedure uses, as a parameter, any

standard phylogenetic codon model M = ÆT,Qæ where T specifies

the topology and branch lengths of a phylogenetic tree and Q is

a reversible 61 3 61 rate matrix describing codon evolution as

a stationary, homogeneous, continuous-time Markov process,

such that the transition probability matrix for any branch with

length t is given by P = exp(Qt). Given such amodel, the probability

of any alignment of extant sequences can be computed using

Felsenstein’s algorithm, assuming independence of the codon sites

and using the equilibrium frequencies of the codons implicit in Q

as the prior distribution over the root. Nonaligned, gapped, or stop

codons in any informant species are marginalized out so that they

are irrelevant to the probability, using standard techniques for

statistical phylogenetic models (Felsenstein 2004).

To analyze a given alignment window of several codons, we

wish to obtain maximum likelihood estimates of the synonymous

(and nonsynonymous) rates relative to the null model M. Our

approach is to hold T fixed and estimate a new window-specific

ratematrixQwnd by numericallymaximizing the probability of the

given alignment window jointly over two nonnegative parameters

ls and ln, where the entries of Qwnd relative to the entries of Q

are given by
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qwnd
ij =

ls 3 qij if i 6¼ j and aai = aaj
ln 3 qij if i 6¼ j and aai 6¼ aaj

�+k 6¼ iq
wnd
ik otherwise ði = jÞ

8

<

:

where aai denotes the amino acid translation of codon i. Thus, ls
represents a scale factor on the synonymous rates specified by Q ,

and similarly for ln on the nonsynonymous rates. Importantly,

while Q is typically normalized to unity mean rate of replacement

at equilibrium, we do not renormalize Qwnd. Since T is held fixed,

this allows ls and ln to control the absolute synonymous and non-

synonymous rates, respectively. Assuming Q is reversible, it is easy

to verify that Qwnd is reversible with the same equilibrium fre-

quencies pj as Q , by considering the decomposition qij = pj 3 sij for

symmetric ‘‘exchangeabilities’’ sij and noting that ls and ln scale

the entries symmetrically.

Using this approach, we reduced the parameter estimation

problem in each window to a mere two-dimensional optimization

by reusing ORF- or ORFeome-wide estimates of many other phy-

logenetic model parameters, for which we probably could not

obtain reliable joint estimates based only on a few codon sites

(Anisimova et al. 2001; Suzuki and Nei 2002; Schmid and Yang

2008; Nozawa et al. 2009). This is similar to the approach used by

the Sitewise Likelihood Ratiomethod ofMassingham andGoldman

(2005), which reuses ORF-wide parameter estimates while estimat-

ing v = dN/dS at individual sites. We reuse common parameter esti-

mates while effectively estimating both dN and dS in windows of

several sites.

Null models

The relative rate estimation procedure does not make any as-

sumptions about how the null model was originally estimated

(except for reversibility of Q ). In fact, we explored two different

ways to estimate Q before providing it to this procedure. The first

uses a parameterization equivalent to the M0 model of PAML,

based on estimates ofv and k, the transition/transversion rate ratio

(Goldman and Yang 1994; Yang et al. 2000). The second is an

empirical codon model (ECM) that essentially amounts to an in-

dependent estimate for every entry in the 61 3 61 rate matrix

(under the reversibility constraint), not restricted to single-nucle-

otide instantaneous substitutions (Kosiol et al. 2007). Comparing

the two approaches, we found the ECM parameterization to be

clearly superior toM0 for our purposes: It achieved better fit to the

training data based on BIC and AIC scores, led to tighter distri-

butions of ls and ln, and resulted in a more conservative overall

test for synonymous constraint (slightly fewer rejections of the

null hypothesis at any significance level). The ECM approach also

has the advantage that it accounts for the CpG hypermutability

effect and any other sequence-specific rate biases, to the extent

possible under the assumption of independence between codon

sites. The results described in the main text are all based on

the ECM parameterization. The parameterizations and estima-

tion procedures are described in greater detail in Supplemental

Material S2.

With both parameterizations, the ORFeome-wide null model

was fit to a random sample of 5% of the codon sites in autosomal

CCDS ORFs. A separate chromosome-specific null model was used

for genes on chromosome X, based on all codon sites on that

chromosome. The ORF-specific null models were estimated from

the complete alignment of each ORF. The topology of the mam-

malian species tree proposed in the 23 mammals analysis (23

Mammals Sequencing and Analysis Consortium, in prep.) was

used in all models, while the branch lengths were re-estimated for

each ORF in the ORF-specific models.

Likelihood ratio tests

To test the significance of the adjusted rate estimates in any

alignmentwindow,we evaluated the likelihoods of severalmodels:

1. The null model M (ls = 1; ln = 1)

2. ls = 1; ln estimated by maximum likelihood

3. ls and ln jointly estimated bymaximum likelihood (0# ls# 1)

4. ls = 1; ln estimated by maximum likelihood (ln > 1)

The likelihood ratios of nestedmodels can then be used to perform

the different significance tests we described. For example, the

primary test for ls < 1 comparesmodel 3 tomodel 2, and the test for

ln > 1 compares model 4 to model 1.

To formally compare two of these models, we follow the

standard frequentist approach for phylogeneticmodel comparison

by computing the log-likelihood ratio (lods) and assuming that,

when the null model holds, the statistic �2 3 lods converges in

distribution to the x
2 distribution with one degree of freedom.

We then report a P-value for each window by halving the x
2 dis-

tribution tail probability corresponding to lods (Ota et al. 2000).

The test statistic exhibits some artifactual discretization be-

haviors inwindowswith a small number of substitutions (reflected

in the stripes seen in Fig. 2E), likely violating the asymptotic as-

sumptions justifying these significance estimates (Whelan and

Goldman1999). To ensure the robustness of the test, we performed

additional benchmarks with simulated and permuted data, which

are described in Supplemental Material S3.

Sliding windows and multiple testing correction

We applied LRTs to windows of a designated length in every CCDS

ORF, beginning at the first site following the start codon and

sliding by one-third of the window length. This yielded a list of

millions of P-values for each window size and stringency thresh-

old, which has a complex internal dependency structure owing

to the overlapping windows and to latent rate correlations be-

tween nearby windows. We corrected the primary tests on ls
ome

using the Benjamini and Hochberg false discovery rate (FDR)-

controlling method (Benjamini and Hochberg 1995), which tol-

erates local positive correlations (Benjamini and Yekutieli 2001;

Storey and Tibshirani 2003), requiring estimated FDR < 0.01. The

secondary tests on ls
ORFwere Bonferroni-corrected for the number

of windows tested in each ORF, requiring corrected P < 0.01. Again,

benchmarks with simulated and permuted data confirmed the

robustness of this strategy (Supplemental Material S3).
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