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Abstract

We present a method for locating salient object features. Salient features are
those which have a low probability of being mis-classified with any other
feature, and are therefore more easily found in a similar image containing an
example of the object. The local image structure can be described by vec-
tors extracted using a standard ‘feature extractor’ at a range of scales. We
train statistical models for each feature, using vectors taken from a number
of training examples. The feature models can then be used to find the prob-
ability of misclassifying a feature with all other features. Low probabilities
indicate a salient feature. Results are presented showing that salient features
can be relocated more reliably than features chosen using previous methods,
including hand picked features.

1 Introduction

When analysing images of a class of object, we frequently begin by locating ’salient’
features to facilitate further processing. Such features are often selected by the system
designer. In this paper we describe how salient features can be chosen automatically.

Our previous approach [9][10] used a feature extractor to construct feature vectors
over a range of scales, for each image point within a single object example. In order to
locate salient points we estimated the probability density function of feature space, and
selected features which lay in low density areas of the space.

In this paper we develop an approach which can take advantage of a set of training
images, assuming a correspondence between them is known. A statistical model is con-
structed for each possible feature, representing the probability density function (p.d.f.) for
the corresponding feature vectors. By comparing the p.d.f. of any feature with those of
all others, we estimate the probability of misclassification. Salient features are those with
a low misclassification rate.

In the following we give an overview of the original method, describe the new ap-
proach in detail and present results of an experiment comparing the two approaches.

2 Background

Objects typically have a large number of features. Many people have used subsets of
features to accurately locate objects. It is common practice for the system designer to
select this subset of features manually, a task which is subjective but critical to the success
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of the system. Face recognition is one area in which manually selecting features with
which to interpret a face is common. Taoet al [7] selected 39 facial features which they
tracked using a probabilistic network. Lyonset al [5] used Gabor Wavelets to code 34
hand selected facial features in order to identify facial expressions. Also, Cooteset al [2]
builds models of object shape by placing hand chosen landmarks on a number of training
examples.

We believe that there is an optimum subset of these features which best determine the
object, and attempting to select them manually risks compromising system performance.

Many authors have shown that using the saliency of image features can improve the
robustness in object recognition algorithms [1] [8] [6], but this typically been applied to
finding salient segments on an object boundary.

3 Method 1: Selecting Salient Features from a Single
Training Example

The aim is to locate salient features, those which are most likely to be relocated correctly
in a subsequent image. Given only one example of the object, the best we can do is to
attempt to find those features which are significantly different to all other features in the
object. Ideally, these features would occur exactly once in each example of the object.

For every pixel in the image we construct several feature vectors, each of which de-
scribes a feature centred on the pixel at a range of scales. The full set of vectors describing
all object features, forms a multi-variate distribution in afeature space. By modelling the
density in feature space we can estimate how likely a given feature is to be confused with
other features. Salient features lie in low density areas of feature space.

In the rest of this section we describe how we modelled the density of feature space
and how this can be used to select salient features. See [9][10] for a more detailed de-
scription.

3.1 Modelling the Density of Feature Space

We estimate the local densitŷp at pointx in a feature space by summing the contribution
from a mixture ofm Gaussians:

p̂(x) =

mX

i=1

wiG(x�mi;�i) (1)

whereG(x;�) gives the probability ofx being part of the normalised multi-variant
Gaussian distribution, with covariance� and a mean of0.

We use two methods for choosing the parameters.

� Kernel method: The Kernel method positions Gaussians at all the samples in the
distribution. In this case the parameters arem = N ,wi = 1

N
, mi = xi and

�i = hS; whereN is the number of samples in the distribution, S is the covariance
of the whole distribution andh is a scaling factor. This method is of ordern2.
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� Sub-sampled Kernel method: This method attempts to approximate the Kernel
method by placing gaussian kernels at a randomly selectedns of the originaln
points. Evaluation of the probability density function is ordern2s, so can be much
more efficient than the kernel method, but this comes with some loss of accuracy.

We found that the Kernel method gave the best results but was to computationally
expensive if the features were extracted from a number of scales. The Sub-sampling
method was found to give a good approximation to the Kernel method.

3.2 Selecting Salient Features

The density estimate for each feature vectorv(�) corresponds directly to the saliency of
the feature at scale�. The lower the density, the more salient the point.

A saliency image can be constructed by setting each pixel to the density of the corre-
sponding feature vector at the most salient scale for that pixel. The most salient features
are then found by locating the lowest troughs in the saliency image. A scale image can be
constructed by plotting the most salient scale at each pixel. This shows the scale at which
each region of the image is most salient.

Figure 1(b) is the saliency image obtained from the image in Figure 1(a) using the
Sub-sampled Kernel method with 50 Gaussians. The bright regions are the most salient.
Figure 1(c) is the corresponding scale image. The peaks of the saliency image are su-
perimposed on the original image. The size of the points indicate the scale at which the
features are salient.

(a) (b) (c)

Figure 1: (b) is the saliency image obtained from image (a), and (c) is the corresponding
scale image.

4 Method 2: Selecting Salient Features From Many
Training Examples

We have shown that locating salient features using one training example results in features
which can be found in unseen object examples more reliably than hand chosen features
[10]. When training on only a single example, we define a salient feature to be one
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which is significantly different to all others in that example. However, this does not take
account of howreliable the feature is, whether it occurs in all examples of the object or
whether it varies enough to be confused with other object features. These factors can not
be determined by considering just a single example.

We present a new approach which attempts to model how each individual feature
varies over training examples. This is done by extracting a feature vector describing a
particular feature from all training examples. The set of feature vectors which describe
the feature is then used to create a feature model. The saliency of the feature is determined
by using the feature models to calculate the probability of mis-classifying the feature with
any other features from within the object.

In the following we define how the feature models are built and how the saliency
measures are calculated from the feature models.

4.1 Building the Feature Models

In order to extract a feature vector representing the same feature in all training examples,
we first establish a correspondence between all training examples. This is currently done
by interpolating between a set of common landmarks placed on all training examples.
Figure 2 shows some examples of such landmarks placed on faces.

Figure 2: Examples of face images with common landmarks.

We then define the features we wish to model at each scale. We calculate mean face
[3] based on the training examples. We then model one feature for each pixel in the mean
face. The approximate number of pixels in the mean face,nf , can be set according to
the computational power available.nf defines the number of features per scale. The total
number of features modelled isns:nf , wherens is the number of scales.

The p.d.f. for featurei, fi, is then modelled using a multi-variate gaussian with mean
�i and covariance�i (determined from the training set).

4.2 Calculating a Features Saliency

Given a probability density function,fi, for each feature it is now possible to calculate
a features saliency. The saliency of featurei, si, is given by the probability of not mis-
classifying featurei with any other object feature. Thus:
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si = 1� 1

nf � 1

ns:nfX

j=1;j 6=i

�(fi; fj) (2)

where�(fi; fj) is the probability of misclassifying featurefi with featurefj .

4.2.1 Calculating�(fi; fj)

Consider first the 1D case. We wish to calculate�(fi; fj), the probability of misclassifying
a sample from distributionfi as being fromfj . In the case wherefi andfj are gaussians,
an analytic solution using error functions exists (see Appendix A).

Typically the dimensionality of the feature vectors is much higher than 1. With higher
dimensions the misclassification regions become increasingly complicated volumes, mak-
ing �(fi; fj) hard to calculate. Also, to calculate the saliency measure for all features,
�(fi; fj) must be evaluated approximately1

2
(ns:nf )

2 times, wherens is the number of
scales analysed. Because of the complexity of calculating�(fi; fj) in high dimensional
spaces and the large number of times it must be evaluated it is necessary to approximate
�(fi; fj).

x1

x2

�i

�j

fi

fj

Feature space

u

Figure 3: Illustration of how a multi-variate gaussian classification can be simplified to a
single dimensional problem.

We approximate�(fi; fj) by simplifying the problem to a single dimension, where it
can be solved using error functions. This process is illustrated in Figure 3. The first step
is to construct a new one dimensional space. This is simply the axis which passes through
the mean of both features distributionsfi andfj . This axis is labelledu in Figure 3.

The variance,�i, alongu due to distributionfi is given by:

�i
2 = u

T :�i:u (3)
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where�i is the covariance matrix of feature modelfi.
�i, �j , �i and�j now form a one dimensional problem which can be solved using

error functions as shown in Appendix A.

4.3 Constructing a Saliency Image

Once the Saliency measure,si, of each feature has been found the result can be visualised
by constructing a saliency image. This is done by taking the mean image of the object
and at each pixel plotting the saliency measure corresponding to the most salient feature
centred on that pixel. The resulting image indicates which areas of the object are the most
salient.

Figure 4(b) shows an example of such a saliency image which was trained on approx-
imately two hundred images of faces. Figure 4(a) shows the mean face with the peaks of
the saliency image super-imposed.

(a) (b)

Figure 4: (b) is the saliency image obtained from approximately 100 face images, white
regions are most salient. (a) show the peaks of the saliency image superimposed onto a
’mean’ face

5 Results

In order to quantify if the features selected using method 2 are more salient than those of
method 1, we addressed the question ’how successfully can we find the features in unseen
images?’. We located the 20 most salient features according to method 1 (Figure 5(a))
and according to method 2 (Figure 5(b)). We then attempted to locate these features in
188 unseen images of faces. We recorded the rank of the correct match for each search.

To provide a means of contrast we also selected 20 features by hand (Figure 5(c)) and
20 randomly selected features (Figure 5(d)), and repeated the test on these.

The result of tests is shown in Figure 5. The graph shows the percentage of successful
searches according to the number of false positives. It can be seen that, as expected, the
randomly selected features do worse. The hand selected features approximately double
the performance of the random selected features. Features selected by method 1 do better
that hand selected points, as previously reported [10], but the features which were most
successfully found in the unseen images were those selected using method 2.
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All the results used Cartesian Differential invariants [4] as the feature extractor.

(a) (b)

(c) (d)

Figure 5: The most salient features according to (a) method 1, (b) method 2, (c) randomly
selected and (d) hand selected. These are the features used in the results.

6 Discussion

We have described how a probabilistic measure of saliency, calculated from a number of
object examples, can be used to select those object features least likely to generate false
positive matches.

We have also shown that the salient features selected can be found with a greater
degree of success in unseen object examples that features selected using previous meth-
ods [10], including hand selected features.

We have applied the notion of saliency to improve the robustness of one object inter-
pretation task, locating new instances of an object. The robustness of other interpretation
tasks can also benefit from the application of saliency, for example, classifying face ges-
tures. Saliency could be applied to locate the facial features which most discriminate
between gestures.

We anticipate that the method of detecting salient points and of locating their positions
in new images will prove useful both for generating cues to prime models for search, and
to help to automatically train statistical appearance models by locating common land-
marks on a set of training images.
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Figure 6: Graph illustrating the percentage of successful searches according to the number
of false positives.

Appendix A: Calculating �(fi; fj) in the 1D case

In the one dimensional space, the probability of a samplex belonging to featurei is given
by:

pi(x) =
1p

2��i2
e
�

(x��i)
2

2�i
2 (4)

where�i and�i are determined from the training set.
Assuming all features are equally likely the Likelihood ratio test suggests classifying

x as classi if pi(x) > pj(x). This splits the space up into two or three regions, where the
boundary points,x, satisfy:

pi(x) = pj(x) (5)

Figure 7 illustrates these regions. There are three situations depending on the values
of �i and�j . Taking logs from equation 5 results in a quadratic with roots equal tox1
andx2. Solving the quadratic gives:

x1 =
�b+

p
b2 � 4ac

2a
x2 =

�b�
p
b2 � 4ac

2a
(6)
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Figure 7: Illustrates the areas which need to be calculated in order to evaluate�(fi; fj) in
the 1D case. There are three cases depending on the values of�i and�j .

where

a =
1

�j2
� 1

�i2
(7)

b = 2(
�i

2

�i2
� �j

2

�j2
) (8)

c =
�j

2

�j2
� �i

2

�i2
� 2ln(

�i

�j
) (9)

x1 andx2 can be simplified further by making�i = 0.
�(fi; fj) can now be approximated in one of the three following ways, depending on

the value of�i and�j :
if �i = �j then

�(fi; fj) =
1

2
(1� erf(

x1 � �ip
2�i

)) (10)

if �i < �j then

�(fi; fj) = 1 +
1

2
(erf(

x1 � �ip
2�i

)� erf(
x2 � �ip

2�i
)) (11)
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if �i > �j then

�(fi; fj) =
1

2
(erf(

x2 � �ip
2�i

)� erf(
x1 � �ip

2�i
)) (12)

Thus, equations 10, 11 and 12 can then be substituted into equation 2 to obtain a
measure of feature saliency.
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