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This paper reports on an experimental approach to find a modularized artificial neural
network solution for the UCI letters recognition problem. Our experiments have been
carried out in two parts. We investigate directed task decomposition using expert knowl-
edge and clustering approaches to find the subtasks for the modules of the network. We
next investigate processes to combine the modules effectively in a single decision pro-
cess. After having found suitable modules through task decomposition we have found
through further experimentation that when the modules are combined with decision tree
supervision, their functional error is reduced significantly to improve their combination
through the decision process that has been implemented as a small multilayered per-
ceptron. The experiments conclude with a modularized neural network design for this
classification problem that has increased learning and generalization characteristics. The
test results for this network are markedly better than a single or stand alone network
that has a fully connected topology.

Keywords: Artificial modular neural network; task decomposition; alphabetic character
recognition.

1. Introduction

Artificial neural networks that have fully connected feed forward topologies have in

the past had successful application in the problem areas of classification and regres-

sion. However their success in part favors databases where the data predominantly

describes its concepts as a clear function of its features. It has also been established

in the studies of Quinlan11 and Collier4 that these networks also require condi-

tions of high feature independence to learn optimally. In recent times the spiralling

accumulation of complex and high-dimensional databases are overwhelming the

capabilities of these networks by introducing two conditions that adversely affect

their training and post training performance. These conditions are scalability and

data complexity.

The scalability problem arises when the artificial neural network is applied to

large databases. Where these databases have large numbers of feature attributes and

multiple classes, this often requires the network to have high numbers of neurons
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and connections. These large networks when fully connected, require lengthy train-

ing times and are susceptible to the condition of overfitting.13 This is where the

network learns too well the specifics of its training set so that it does not generalize

very well over new or unseen data. Although there are a number of ways to over-

come overfitting that include weight decay and early stopping during training, these

techniques apply better to smaller networks. Large databases often have complex

interrelationships between data that confuse training algorithms. One problem that

these interrelationships can cause is the problem of interference.

There are two known causes of interference, being spatial crosstalk and temporal

crosstalk.8 Temporal crosstalk occurs where functions are learned by the network

consecutively and results with one function that has already been learned and for-

gotten while it learns another.12,17 Spatial crosstalk is where two or more functions

are learned at the same time causing sharing problems with the neurons of the

hidden layer. Both problems of scalability and data complexity can be resolved to

a greater extent by structuring a neural networks topology.3,7,13

In recent times, there has been growing interest in a different kind of neural

network known as the modular neural network. These networks have the poten-

tial to overcome the problems experienced by fully connected networks or mono-

lithic networks. The modular neural network is designed to separate the functions

that cause interference problems by having independent modules assigned to each

function. Modularized networks have other advantages. Modules can be trained in

parallel which reduces training times substantially and additional modules can be

added without the need to retrain the others.

Current research for the development of modular neural networks is divided into

two areas. According to Auda and Kamel,1 one area concerns itself with the decom-

position of the problem into smaller subtasks while the other area of development

concerns itself with the coupling of the modules in such a way that they are appro-

priately coordinated to provide an optimal solution for the problem. Decomposing

the problem into subtasks is a process generally referred to as task decomposi-

tion and is usually directed by expert knowledge. Although, in recent studies there

appears to be a trend towards automating this process.5,6,10

Task decomposition for a problem is a straightforward process where there is

knowledge of the problem and the relationships in data. In this circumstance, mod-

ular structuring follows the structure of knowledge.1 However, where knowledge is

vague or nonexistent, the process becomes frustrated with little resolve from ana-

lytical approaches and it becomes unclear how to proceed and go about the process.

This can be the case with high-dimensional data emerging from research programs

such as those that are based in genetics and imaging.

In recent times, the research for task decomposition in the absence of knowledge

is moving to find the functional distribution between modules16 for a given problem.

In an approach by Wan et al.16 functional distinction between modules proceeds

by developing modules on disjoint subsets of the feature set. The disjoint subsets
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develop from a process of measuring the relative interaction between features with

the application of a second-order derivative to two features at a time. Features accu-

mulated within a subset have higher interaction between them than with features

in other subsets. In the study by Liu et al.,5 functional distinction was referred to

as the speciality of a module. The speciality between the modules of their ensem-

bles was arrived at through an evolutionary process. Negatively correlating mod-

ules were evolved in populations of modules learning in parallel using a correlation

penalty term in the error function. In this case, the interactivity between modules

was exploited to encourage the development of module speciality or expertness in

separate areas of the problem.

In the second area of research the problem of how to combine the subtasks for

modules is still relatively unclear given a diversity of reported methods. According

to Sharkey,14 these methods fall into one of four categories.

1. Competitive — Where modules are selected on the basis of their expertness

using rule-based switching, for example.

2. Cooperative — Where all modules contribute towards the main task. An example

involves using a gating process.9 This is where the outputs of the modules are

weighted with a gating vector and summed together.

3. Sequential — Where modules are arranged serially with the output of one serving

as an input to another.

4. Supervisory — This is where one module learns to supervise the behavior of

another. For instance, a neural network can learn to predict another networks1

error response for a given circumstance.

The majority of methods are based on either the competitive or cooperative

categories.

Our study is concerned with finding a modularized neural network solution

for the problem of alphabetic character recognition. This is a large classification

problem where fully connected or monolithic networks are known to have trou-

ble training and performing this task. We apply an experimental approach to task

decomposition to find suitable subtasks for the modules and to find a suitable

combining process for the decision module. This paper is organized into the fol-

lowing sections. Section 2 details our approach to modular neural network design.

Section 3 describes the conditions for the experiments, the software used, the details

of the dataset and its preparation. Section 4 outlines the experimental approach

for design, followed by the results and discussion in Sec. 5. Section 6 discusses the

causes for error in the design experiments. Section 7 outlines further experiments

to combine the modules with supervision, followed by the results for this section

and further discussion in Sec. 8. Section 9 summarizes the conclusions reached in

our study.
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2. Approach to Modular Design

In this work, we consider the two components for designing a modular neural net-

work; task decomposition and the combination of modules. The proposed archi-

tecture for this network that is illustrated in Fig. 1 has a number of independent

subtasking modules that contribute cooperatively to a common output through

a decision module. A number of task decomposition processes are experimented

with in order to partition the data for the problem of character classification to

learn the subtasks that would occur in a parallel sense. Each subtask would be

responsible for a unique portion of the data space. There are two considerations

that arise with an approach to task decomposition:

— how to decompose a problem where little or no knowledge exists?

— how many subtasks are sufficient for adequate solution of the problem?

We acknowledge these considerations by determining the criteria for a suitable

subtask in that it must be highly discriminating for its data partition over other

partitions. That is, a neural network trained in a subtask would feature high classi-

fication for test data belonging to its partition. This would also indicate the gran-

ularity of decomposition to decide how many subtasks. That is to say that further

iterations of the decomposition method would not result in any appreciable gains

in test accuracy. We explore two approaches to task decomposition with one based
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Fig. 1. Proposed architecture.
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on applied expert knowledge and the other using machine automation to assist this

process. In our experiments we try clustering using a self-organizing map (SOM)

where the nearest neighbor principle is used to cluster data partitions.

Having found appropriate subtasks through task decomposition we next seek to

understand how simultaneously occurring subtasks can be combined to perform the

overall task, where the combined result would be superior to that obtained with

a single fully connected neural network. For this purpose we explore the effectiveness

of decision based on, learning the decision process using a neural network and

learning the process using a decision tree.

3. Experimental Conditions

3.1. The UCI dataset and its preparation

The UCI Letters dataset is a classification problem for the 26 uppercase characters

of the English alphabet. This dataset consists of 20,000 character examples. Each

character is represented by a black-and-white rectangular pixel display and are

based on 1 of 20 different fonts. The examples for each character have 16 primitive

numerical attributes, being statistical moments and edge counts which were scaled

to fit into a range of integer values from 0 to 15. This dataset was chosen for our

experiments because it is a large classification problem that presents a challenge

for different types of classifier.

For the purposes of our study, it was necessary to resize the dataset from 20,000

to 3,900. This size represents the 150 examples for each of the 26 characters that

were chosen from the population at random. The self-organizing map used in the

clustering experiments had a maximum limit of 4,000 for the dimensional length of

examples that it could process. The reduction in the size of the dataset was neces-

sary to accommodate this limitation so that the proposed experiment for clustering

the 16 features of the UCI dataset could be carried out. In this experiment the

dataset was transposed so that each feature had a dimension of 3,900.

In addition to resizing, the dataset was normalized to between 0 and 1 by

dividing all values by the highest, which was 15. The output training vector was

prepared so that each example indicated its associated subtask with a value of 0.9

and 0.1 for no association. This allowed the delta rule that was used to train the

backpropagation neural networks, which had sigmoid transfer functions, to work

more efficiently.

3.2. Software details

All experiments were performed on a PC Microsoft windows platform. The PC

used had a 2.2 GHz Pentium 4 microprocessor. Programs used for implementing

algorithms were:

— Matlab 6.5 release 13 with neural network toolbox 4.0.1 for neural network

components.
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— SOM PAK developed by the Helsinki University of Technology Laboratory of

Information and Computer Science for clustering procedures.

— Weka-3-4 developed at the University of Waikato New Zealand for its command

line decision tree utilities. The decision tree algorithm used was J48 being the

equivalent of C4.5 version 8.

3.3. Module implementation and training

Modules for the subtasks found by our decomposition approaches have been imple-

mented as small fully connected three layered neural networks. The module learns

its subtask which is to distinguish the examples that define the subtask from all

other examples. The training set for the module is therefore composed of all exam-

ples allocated for training with the training output for each example being indicated

by 0.9 if it is associated with the subtask and 0.1 if it is not associated. Character

modules were trained in sequence for 10 trials. In each successive trial the examples

for the training, validation and test sets were drawn at random with replacement.

The validation set worked with the training set to grow the hidden layer of the neural

networks until there was no further improvement to be observed in the validation set

classification accuracy. All neural networks in this study used the validated training

cycle described in Fig. 2. The stopping criteria for the networks or the point where

training stops before each increment in hidden neurons used Matlabs’s net train-

ing parameters. Three parameters were used and set accordingly, epochs = 2,000,

min gradient = 1e-5 and validation fail = 30. The training, validation and test sets

were allocated 85%, 5% and 10% of the examples in the reduced dataset.

4. Methodology for Designing the Modular Neural Network

4.1. Task decomposition experiments

Our experiments began with finding parallel subtasks for this problem. Two

approaches were tried to partition the data. The first approach was to direct

decomposition through applying expert knowledge or knowledge of the problem

that is external to the dataset. In this, we apply something of what we know

about the structure of the data. In the second approach we applied an algorithm

to find the subtasks automatically. In this approach, we assume we know nothing

of how the data is structured. For this purpose we used a SOM self-organizing map

where the learning procedure is based upon a Euclidean Distance measure.

4.2. Subtasks for individual characters

In this experiment we used knowledge of the class distribution of character examples

to create subtasks. Each subtask is the simple recognition of a particular character.

The modules that corresponded to each subtask were trained to distinguish or

recognize a particular character’s examples from all the other examples.
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Fig. 2. ANN training cycle.
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Fig. 3. Task decomposition approaches.

4.3. Subtasks for character shapes

For these experiments we used knowledge of the shape of characters. We organized

subtasks to recognize groups of characters having similar graphical characteris-

tics. Each of the following three experiments have different groupings of characters

according to different specifications.
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4.3.1. Experiment with two groups

Group 1 — Characters predominantly composed of straight edges A,E,F,H,I,J,K,

L,M,N,T,U,V,W,X,Y,Z.

Group 2 — Characters having a curve within their shape B,C,D,G,O,P,Q,R,S.

4.3.2. Experiment with three groups

Group 1 — Characters having an open vertical shape U,V,W.

Group 2 — Characters that are closed loops Q,O.

Group 3 — All other characters A,B,C,D,E,F,G,H,I,J,K,L,M,N,P,R,S,T,X,Y,Z.

4.3.3. Experiment with nine groups

Group 1 — Horizontal top line E,F,J,T,Z.

Group 2 — Horizontal bottom line E,L,Z.

Group 3 — Horizontal center line A,E,F,H.

Group 4 — Vertical left line B,D,E,F,H,I,K,L,M,N,P,R.

Group 5 — Left curve C,G,S.

Group 6 — Right curve D,O,Q.

Group 7 — Right small curve top B,P,R.

Group 8 — Open shape at top U,V,W.

Group 9 — All remaining characters X,Y.

4.4. Decomposition using clustering to partition data

In these experiments we used an automated approach to find the subtasks by apply-

ing a clustering technique. A subtask was associated with data having similar prop-

erties. For this purpose we clustered data having a similar Euclidean distance from

a point that was determined by a self-organizing map SOM. The purpose of these

experiments was to observe the effectiveness of an automatic means to perform the

decomposition process. The SOM found an optimal number of clusters by having

the learning rate adjusted until the number of clusters were found to limit and at

which point the number of data items per cluster began to stabilize with repeat

iterations of the SOM. The data was clustered in three ways:

— subtasks from example clusters,

— subtasks from feature clusters,

— subtasks from feature clusters within example clusters.

4.5. Subtask combination experiments

Following the experimental stage for task decomposition, the training results for

modules found through this process were surveyed for each approach. The modules

found to have the most ability for their subtask or those modules that were highest
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in performance were chosen to be combined in a decision process which effectively

combined each of their contributions for the main task. Each module output was

combined in parallel for input to the decision module. The decision module was

trained using different algorithms to learn to coordinate the combined outputs to

one of 26 character classes. Three different algorithms were tried for the decision

module.

— Linear perceptron — Using Matlab’s linear perceptron with hard limiting trans-

fer function.

— Multi layered perceptron (ANN) — Using a three-layered neural network, the

same being used for the subtask modules.

— Decision Tree — Using a decision tree algorithm.

5. Results and Discussion for Design Experiments

5.1. Task decomposition results

To coincide with these experiments we have determined our own benchmark result

for test set classification using a single fully connected neural network. This value

was averaged at 70.60% having used the same experimental conditions outlined in

Sec. 2 and using the same training and validation sets intended for training the

modules. This value serves to make comparisons with the experimental results to

assess our proposed methods for finding modules.

The proposed neural network solution for the problem of character classification

is illustrated in Fig. 1. This illustration shows a simple structure of parallel char-

acter modules that function concurrently where each module provides an input to

a single combining or decision process. As we have already discussed there are two

issues with modular networks; finding modules and combining them. It is unknown

whether a general solution exists for all problems and assuming that they can be

decomposed, what determines the level of granularity of decomposition. In other

words to what extent do we decompose and what indicates the limits of decompo-

sition. Part of this study concentrates on finding the modules so that something

can also be learned from the approaches to task decomposition.

We made assumptions where subtasking was concerned in that the function of

a subtask is to be unique to the functions of other subtasks. We assumed that

correct subtasking would train a neural network module in a subtask of classifica-

tion that would produce superior performance to a monolithic multiple classifier.

From this we can assume that there exists for a decomposable problem, a group of

modules that will individually classify well for their part of the problem, but when

combined will produce a high multiple classification performance that is similar to

that obtained at the module level.

On the basis of our assumptions we have found through experiment that highly

accurate modules are associated with those methods that were directed by external
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knowledge assisting the decomposition process. In Table 1 for character level modu-

larization and in Tables 2–4 for modularization based on character shape similarity,

all of which are derived from knowledge-based decomposition, the average module

test result far exceeded our benchmark test result.

Character level modularization gave us best result of all the experiments within

the knowledge-based approach with an average test result of 98.16%. In addition,

this figure is comparable to the average training accuracy of 98.66% indicating on

average that the modules are able to learn their subtask well enough to generalize

Table 1. Character level training results.

Char Neurons Inputs Connections Train Valid Test

A 5 16 91 99.73 100 98.72
B 3 16 55 98.49 98.97 98.46
C 3 16 55 99.03 98.97 97.95
D 2 16 37 98.46 98.97 97.69
E 1 16 19 97.29 96.92 95.64
F 8 16 145 98.88 98.97 98.72
G 1 16 19 96.14 96.41 96.15
H 1 16 19 97.25 95.38 97.95
I 1 16 19 99.25 98.46 97.95
J 1 16 19 98.64 97.95 99.23
K 3 16 55 98.55 97.44 98.46
L 2 16 37 99.34 98.46 99.23
M 2 16 37 99.67 100 98.97
N 2 16 37 99.34 98.46 98.72
O 9 16 163 98.82 99.49 98.46
P 1 16 19 98.73 98.97 98.72
Q 3 16 55 98.52 98.97 97.95
R 1 16 19 97.22 97.44 95.64
S 4 16 73 97.62 96.41 96.92
T 5 16 91 99.22 98.97 99.49
U 6 16 109 99.19 98.97 97.95
V 3 16 55 99.43 98.97 99.49
W 1 16 19 99.13 100.0 99.23
X 3 16 55 98.70 98.97 98.46
Y 6 16 109 99.46 99.49 97.18
Z 4 16 73 99.28 100.0 98.97
Avg. 3.07 16 56.38 98.66 98.53 98.16

Max 9 16 163 99.73 100.00 99.49
Min 1 16 19 96.14 95.38 95.64

Table 2. Two character group training results.

Group Neurons Inputs Connections Train Valid Test

1 6 16 109 91.13 87.18 88.46
2 8 16 145 91.40 88.72 89.23
Avg. 7 16 127 91.26 87.95 88.84
Max 8 16 145 91.40 88.72 89.23
Min 6 16 109 91.13 87.18 88.46
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Table 3. Three character group training results.

Group Neurons Inputs Connections Train Valid Test

1 4 16 73 97.71 99.49 97.18
2 4 16 73 97.47 98.46 97.69
3 4 16 73 94.72 95.38 93.33
Avg. 4 16 73 96.63 97.77 96.06
Max 4 16 73 97.71 99.41 97.69
Min 4 16 73 94.72 95.38 93.33

Table 4. Nine character group training results.

Group Neurons Inputs Connections Train Valid Test

1 9 16 163 95.17 93.74 91.79
2 8 16 145 97.65 95.26 95.90
3 6 16 109 95.07 92.41 91.54
4 4 16 73 87.43 85.96 86.67
5 6 16 109 96.28 94.12 94.62
6 5 16 91 96.38 94.88 94.36
7 5 16 91 96.45 95.83 96.41
8 5 16 91 98.26 97.91 96.67
9 9 16 163 97.92 98.48 95.13
Avg. 6.3 16 115 95.62 94.28 93.67
Max 9 16 163 98.26 98.48 96.67
Min 4 16 73 87.43 85.96 86.67

over test data. A similar observation can be made for the best of the graphical

similarity experiments where for the three group experiment the test result was

96.06% and the train result was 96.63%. With respect to these experiments the

three-character group faired better than the nine-character group test result of

93.67% and much better than 88.84% for the two-group experiment. This indicates

that an optimal result is possible that is less than 9 modules by applying what

is known of the characteristics of letter characters. This to say that for a general

multiclass problem we could apply something of what is known of the relationships

between classes to the decomposing process to effectively create the modules of

a modular neural network.

In the clustering experiments, that were designed to automatically perform task

decomposition, the results show a deteriorating classifying performance at the mod-

ule level when compared with the benchmark. The results for the clustering experi-

ments, clustering of character examples in Table 5, clustering of the 16 features for

each example in Table 6 and clustering of the features of examples within the exam-

ple clusters in Table 7, all show low average module test results. There is a much

wider variance in individual module accuracy than found with the knowledge-based

experiments. This consequence is dependant upon the characteristics in the data

for a given problem. For the problem of character classification, it appears unsup-

ported to form modules from clusters of character examples and their features. In

conclusion, it has been discovered that the data can be organized in at least two
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Table 5. Example clustering average training results.

Statistic Clusters Neurons Inputs Train Valid Test

Average 7 12.31 16 66.57 69.77 54.70
Max 7 18.2 16 94.06 98.95 90.17
Min 7 6.8 16 40.85 48.57 32.85

Table 6. Feature clustering training results.

Statistic Clusters Neurons Inputs Train Valid Test

Average 6 3.97 2.66 14.00 20.44 14.02
Max 6 7.33 6.00 31.82 43.66 34.33
Min 6 2.33 1.00 4.00 7.00 4.66

Table 7. Example and feature clustering training results.

Statistic Clusters Neurons Inputs Train Valid Test

Average 51 2.98 2.50 56.28 61.74 55.65
Max 51 6.8 7.00 96.05 100 100
Min 51 1.2 1.00 2.88 11.25 1.54

Table 8. Classification results for the
decision module processes.

Classifier Train Test

Benchmark 73.35 70.60
Linear perceptron 42.82 38.40
Multilayered perceptron 82.05 77.69
Decision tree 96.62 86.49

different ways to result in highly predicting modules and that the characteristics

can be better managed with applied expert knowledge.

The question of granularity for task decomposition is also answered by use of

applied knowledge as decomposition follows a plan. The low test results for the

automated approach indicate additional decomposition may be necessary and that

the extent of this cannot be determined.

5.2. Subtask combination

The modules most suited for combination are the character level modules. There are

26 modules that correspond to the subtasks of individual character discrimination.

Referring to Table 8, the comparison of test results for the decision process for

these modules indicates that the decision tree with a result of 86.49% exceeds the

other decision approaches with the result for the linear perceptron being the worst

at 38.40%. The result for the multilayered perceptron at 77.69% was relatively only

a small improvement on our benchmark fully connected test result of 70.60%. Of the

algorithms used for decision it is clear that the linear perceptron is highly unsuitable

for this purpose. In deciding between decision tree and the multilayered perceptron,
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even though the decision tree provided a better test result of 86.49%, the difference

between the training and test result was greater than for the perceptron. This

indicates that the perceptron could generalize better and therefore learn the decision

task more capably. However the test result for the multilayered perceptron did not

compare reasonably with the average module test result of 98.16% in Table 1. We

speculate that if a decision module were to be based on the multilayered perceptron

and if trained with inputs that were the same as its output training vector, in the

ideal sense, it will yield a test result of 100%. However, when trained with the

combined outputs of the modules, the test result was low at 77.69% even though

the normalized combined output vector in comparison was 98% the same as the

training vector. It therefore should be possible to use a multilayered perceptron for

the decision process and the following section discusses causes for its current low

result. We further extend our experimentation to improve the decision result using

a multilayered perceptron.

6. The Problem of Module Combination

The question that needs to be answered is that given the high classification accu-

racies of the individual modules what could possibly be the output accuracy of the

decision module. We expect that the decision module accuracy should at least reflect

the behavior of its input modules. As this has not been the case, we conjecture that

some error propagation from these modules to the decision level has taken place

and we need to understand the nature of this propagation. In this section, we will

explain the relationship between the decision module and the individual modules

with a simple example and offer a solution to the problem with slight variations in

the module design. The aim of this section is to find

Accd = f(m1, m2, m3) (1)

where Accd = accuracy of the decision module, mi = accuracy of modules 1, . . . , n.

Let us take the example of creating a classifier for a 2 bit odd parity and even

problem. Only 2 input bits are considered so that we may illustrate this example,

Fig. 4. Also let us assume that this is a multiclass problem, in this Case, 2 class.

We modularize, using task-based modularization and hence obtain two modules —

one for solving the odd parity problem and another for solving the even parity

problem. We also assume that no hidden layer is used for both modules for simplistic

purposes. Now consider the following cases

Case 1: Propagation of errors for nonintersecting training examples. The

first figure shows the decision boundary after the training of the ANN module. As

can be seen, the classification accuracy for that module is 75% and the training

example for which the error occurs is the vector (0,1). Similarly from Fig. 2, we

can find that the module accuracy for the odd parity module is also 75% and the

training example for which the error occurs is the vector (1,1).
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Fig. 4. Modules — odd and even parity.

The above circumstance leads to the decision module having a classification

error of at least 50%, assuming we keep the threshold for both the modules same.

The threshold issue will be discussed in the next case. So, if the training examples

for which modules give error are disjoint, the error will be reflected in the decision

module as an additive term. Similarly it can be concluded that if the intersection

of the training examples for which the modules generate error is any value greater

than zero then this can be used to reduce the error of the decision module from

the summation of errors for all the modules. Following this, an expression can be

developed for the error term of the decision module.

n∑

i=1

mei − I1 ∩ I2 · · · ∩ In (2)

where mei is the error for module i and

Ii =

k⋃

j=1

lij (3)

which represents the union of all the examples for an individual module which

produce errors for module i.

It is quite interesting to observe that because of the nature of this intersection, it

is possible to reduce the error in the decision module. For example, by rotating the

decision hyperplane for the second module, it is possible to increase the number

of intersecting training examples. For example, in the above scenario after the

training of one module, we provide a higher penalty term for the training of the

second module for those examples which are not disjoint from the examples for

the training of the first module. Thus by using different penalty terms for different

example sets we can adjust the weights for the second module in such a way that

the disjoint example sets have less overlap between the modules. In training the
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modules using backpropagation of errors, for instance, the weight adjustment will

be as follows

δw ∝ Px (4)

where P is the new penalty term depending on the input vector x.

Also it is worth mentioning that the accuracy of the individual module remains

unchanged. However, although there is a solution, it can be quite complex to find

some optimum value when the number of modules are many.

Case 2: Considering threshold and interfering effects of the modules.

If we can class the errors of individual modules as either false positive or false

negative, this leads to an interesting occurrence. Let us consider the case for a false

negative error from the first module. For a multiclass problem the output class of

the decision module can be considered as

class = max(O1, O2, . . . , On) (5)

and

Oi = {1if ≥ t1, 0if < Ti}. (6)

Oi is the output of module i and Ti is the threshold.

For a false negative error in module 1, if all the threshold values for other

modules are less than the actual output, then some modification of the output for

module 1 can remove this error. In other words if

Ti < O1iε2, . . . , n (7)

then

O1 > T1. (8)

Changing the module output values will need a good choice of threshold for indi-

vidual modules to improve collective learning for the whole task. This is again,

a difficult task if not impossible.

For a false positive error for module 1, and also if any other module produces

the false positive error for the same input, the actual module for the class should

have a lower threshold value, which is less than all the other modules producing

the errors and thus needs adjusting thereafter.

Adjustment of the module outputs based on the type of class error leads to the

idea of using a decision tree or some rule induction algorithm, which may simplify

this process. The other solution is to choose an optimum vector for the threshold

values for all the modules but the determination of this vector however, would

expectedly incur high training times and learning complexity.
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From the above case discussions, the classification of the decision module for

combining n modules can be generalized as

Errd =

n∑

i=1

mei − I1 ∩ I2 · · · ∩ In − g(T1, T2, . . . , Tk) − h(T1, T2, . . . , Tk) + med. (9)

g and h represent the functions for threshold adjustment for false negative and false

positive errors for all the modules k = n, and med is the error after the training of

the decision module itself.

So in the above formulation it is interesting to note that propagation of errors

from the module level to the decision level can be quite high. However, it also sug-

gests that there are possibilities in which these errors can be minimized, by rotating

the decision planes, by adjusting the weights or by finding optimum threshold values

for the individual modules.

7. Methodology for Improved Modular Neural Network Design

The following experiments have been designed to improve the performance of the

decision module that has been implemented as a multilayered perceptron. These

experiments observed the effect of error propagation from the module level and

attempted to eliminate or significantly reduce them. As we have reasoned, the errors

at this level being due to those examples that did not classify correctly, propagated

to the decision module to adversely affect its performance. Two of three experiments

were proposed to verify this while the third experiment, which was composed of

two parts, used a combination of decision trees to supervise the modules and adjust

deficiencies in the module’s behavior. The details of the experiments:

1. Identify and isolate from the training set those examples that a character mod-

ule classified correctly. Train a neural network module to perform the decision

process with these examples only but include all examples for the test set.

2. Train a neural network module to perform the decision process with those

examples that did not classify correctly and determine test result for all test

examples.

3.1. Train a decision tree to detect the character module’s unclassified examples

from classified examples using only the training set. With the error examples

that were correctly classified by the decision tree, label them as false positive

and false negative error types. Train a second decision tree to detect the error

types from the unclassified error examples (use three labels).

3.2. With the error examples that were not correctly classified, label them as false

positive and false negative error types. Train a second decision tree to detect

the error types from the classifiable error examples (use three labels).

Figure 5 illustrates the supervision process for each module. The purpose of the

first decision tree is to detect the examples that cause classification error in the

module. The second decision tree detects the false positive errors from the false
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Fig. 5. Decision tree supervision process for modules.

negative errors in 1 of 2 scenarios in experiment 3 — those errors that the decision

tree can classify and those that it cannot. In either case, the supervision process

proceeds with correcting the module output. If the second decision tree detects an

example as being a false positive then the module output is adjusted low or set

to 0.1. If the example is a false negative the output is adjusted high or 0.9.

8. Results and Discussion for the Improved Design

The results for training the decision module appear in Table 9. Each case corre-

sponds to a condition that has been applied to the training set as outlined in the

steps of the previous section.

Case 1: Training set having classifiable examples only.

Case 2: Training set having unclassifiable examples only.

Case 3.1: Training set using all examples with the unclassifiable examples that the

decision tree process can detect, being modified.

Case 3.2: Training set using all examples with the unclassifiable examples that the

decision tree process cannot detect, being modified.

From Table 9, it can be seen that the test result of 76.66% is an improvement

over our benchmark result of 70.60%. The result for training with unclassifiable

examples clearly worsens the result. The test result of 69.23% in Case 3.1, gained by

modifying the module outputs where the decision tree correctly classified examples

causes error, surprisingly, was found to be much less than that of the benchmark.
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Table 9. Decision module result.

Training Set Conditions Train Test

Case 1 98.53 76.66
Case 2 51.50 23.85
Case 3.1 73.57 69.23
Case 3.2 93.63 92.66

However, in Case 3.2, the test result of 92.66% exceeded the benchmark for modi-

fying the error examples that the first decision tree in Fig. 5 did not classify.

In the third part of these experiments, it was noted that the first decision tree

could detect examples that did not cause error, almost completely. But it could

detect a good portion of the examples causing error. In the case of the second

decision tree, it did a better job in discriminating between the error types. But

where the test result improved dramatically using the second decision tree to train

on error examples that the first decision tree could not classify, needs some further

investigation for explanation.

The results support a decision process based upon a multilayered perceptron

that is assisted to train by decision trees modifying its inputs. The behavior of the

modules respond to varying characteristics that appear in the character data. For

the examples belonging to a particular character, a portion is learned by the neural

network and what it does not learn is learned by the decision tree.

Bench-Capon2 observed from experiments with an artificial data set that a neu-

ral network that learned patterns in the data were not affected by the addition

of irrelevant or noisy attributes provided that they had no functional relationship

with the output. The neural network was able to learn unimpeded. From this, we

could speculate that the neural network learns only character data having certain

properties or only that data which is suitable for learning. The studies of Quinlan11

and Collier and Waugh4 support this. They observed from experiments with arti-

ficial data, that neural networks learned patterns from data where attributes have

high independence and decision trees perform better in circumstances where neural

networks do not.

The application of decision trees in these experiments in sequence has parti-

tioned the data in an advantageous way, to permit the second decision tree to

learn better in the region where the first could not. It could be that the regions

of data where the first decision tree could and could not learn are associated with

different levels of dependence between the features. We could reason therefore that

the unclassifiable examples that do make a difference when modified, have some

increasing feature dependence that is favorable for decision tree learning.

An interestingly observation made throughout these experiments, is that the

difference between training and test results reduces markedly for the neural network

and decision tree combination at the decision level whereas, consulting Table 8,

this has not been the case when a neural network or decision tree has been used on

its own.
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Our test result for the decision module compares with and exceeds in most cases,

the test results from other neural network based methods that qualify as stand alone

and not ensembled. Currently the best result has been reported by Schwenk and

Bengio15 at 93.9%. We propose further work for our decision module with tests on

other multiclass problems to assess its suitability for broader application.

9. Conclusion

Two conclusions regarding task decomposition are drawn from our study. Decom-

posing a task into subtasks where there is knowledge of the structure of the data

can produce modules having a higher performance for their subtask than a single

full network does for its one task. The result of task decomposition can be equally

effective for different sets of modules found by directing the decomposing process

in terms of what is required from it. We have found for the UCI letters recognition

problem that task decomposition can be guided by knowledge of the similarity in

shape between characters or by class distribution of character information. This

suggests that other multiclass problems can be learned more effectively by modular

neural network where expert knowledge can be applied to find the modules.

An improved design for a modularized neural nework has emerged from our

studies on task decomposition and subtask combination for the overall classification

task of alphabetic characters. This design incorporates the modules found through

knowledge assisted task decomposition and combines them through a single neural

network-based decision module. Our design uses decision trees to learn from the

trained state of each character module, to recognize training examples that cannot

be classified correctly by the module. The rules induced can be used to clarify

the outputs of all the modules that will result in increased classification by the

decision module. The addition of a decision tree to supervise the function of each

module reduces the additive error effect of the modules and the detriment this has

on training the decision module.

Our approach provides an effective and simple solution for the combination

of separate subtasks of a modular neural network where the subtasks are highly

defined and concurrent. The performance of the modular neural network in our

study greatly improves upon the use of a fully connected network for this problem.

The test result for the fully connected network in our case was 70.60% classification

and the test result for the modular design was 92.66%.

The combination of neural network and decision tree has also been shown to

improve with the application of each on its own. In the case of the single fully con-

nected network the training result was 73.35% and test was 70.6%. In the case of the

decision tree, the training result was 94.70% and test 77.43%. Both learning pro-

cesses generalized poorly over test cases when compared with the combined result

for training which was 93.63% and for the test 92.66%. The similarity of test result

to the training result indicates that effective learning has taken place. Our method

for the design of a modularized neural network and its suitability for learning the
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recognition of alphabetic characters supports its application on other large multi-

class problems while preserving their known advantages over other approaches by

reducing computational complexity and training times through parallelism.
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