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Location Aware Keyword Query Suggestion
Based on Document Proximity
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Abstract—Keyword suggestion in web search helps users to access relevant information without having to know how to precisely

express their queries. Existing keyword suggestion techniques do not consider the locations of the users and the query results; i.e., the

spatial proximity of a user to the retrieved results is not taken as a factor in the recommendation. However, the relevance of search

results in many applications (e.g., location-based services) is known to be correlated with their spatial proximity to the query issuer. In

this paper, we design a location-aware keyword query suggestion framework. We propose a weighted keyword-document graph, which

captures both the semantic relevance between keyword queries and the spatial distance between the resulting documents and the

user location. The graph is browsed in a random-walk-with-restart fashion, to select the keyword queries with the highest scores as

suggestions. To make our framework scalable, we propose a partition-based approach that outperforms the baseline algorithm by up to

an order of magnitude. The appropriateness of our framework and the performance of the algorithms are evaluated using real data.

✦

1 INTRODUCTION

U Sers often have difficulties in expressing their web
search needs; they may not know the keywords that

can retrieve the information they require [1]. Keyword sug-
gestion (also known as query suggestion), which has become
one of the most fundamental features of commercial Web
search engines, helps in this direction. After submitting
a keyword query, the user may not be satisfied with the
results, so the keyword suggestion module of the search
engine recommends a set of m keyword queries that are
most likely to refine the user’s search in the right direction.
Effective keyword suggestion methods are based on click
information from query logs [2], [3], [4], [5], [6], [7], [8] and
query session data [9], [10], [11], or query topic models [12].
New keyword suggestions can be determined according to
their semantic relevance to the original keyword query. The
semantic relevance between two keyword queries can be
determined (i) based on the overlap of their clicked URLs in
a query log [2], [3], [4], (ii) by their proximity in a bipartite
graph that connects keyword queries and their clicked URLs
in the query log [5], [6], [7], [8], (iii) according to their co-
occurrences in query sessions [13], and (iv) based on their
similarity in the topic distribution space [12].

However, none of the existing methods provide location-
aware keyword query suggestion, such that the suggested
keyword queries can retrieve documents not only related to
the user information needs but also located near the user
location. This requirement emerges due to the popularity of
spatial keyword search [14], [15], [16], [17], [18] that takes
a user location and user-supplied keyword query as argu-
ments and returns objects that are spatially close and textu-
ally relevant to these arguments. Google processed a daily
average of 4.7 billion queries in 20111, a substantial fraction
of which have local intent and target spatial web objects (i.e.,
points of interest with a web presence having locations as
well as text descriptions) or geo-documents (i.e., documents
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1. http://www.statisticbrain.com/google-searches

associated with geo-locations). Furthermore, 53% of Bing’s
mobile searches in 2011 were found to have a local intent.2

To fill this gap, we propose a Location-aware Keyword
query Suggestion (LKS) framework. We illustrate the benefit
of LKS using a toy example. Consider five geo-documents
d1–d5 as listed in Figure 1(a). Each document di is associated
with a location di.λ as shown in Figure 1(b). Assume that
a user issues a keyword query kq = “seafood” at location
λq , shown in Figure 1(b). Note that the relevant documents
d1–d3 (containing “seafood”) are far from λq . A location-
aware suggestion is “lobster”, which can retrieve nearby
documents d4 and d5 that are also relevant to the user’s
original search intention. Previous keyword query sugges-
tion models (e.g., [6]) ignore the user location and would
suggest “fish”, which again fails to retrieve nearby relevant
documents. Note that LKS has a different goal and therefore
differs from other location-aware recommendation methods
(e.g., auto-completion/instant search [19], [20], tag recom-
mendation [21]). Section 5 provides a detailed discussion
about the differences between LKS and these models, while
in Section 4 we experimentally show that an adaptation of
the method in [21] is less effective than LKS.

The first challenge of our LKS framework is how to ef-
fectively measure keyword query similarity while capturing
the spatial distance factor. In accordance to previous query
suggestion approaches [3], [4], [5], [6], [7], [8], [10], [11], LKS
constructs and uses a keyword-document bipartite graph
(KD-graph for short), which connects the keyword queries
with their relevant documents as shown in Figure 1(c).
Different to all previous approaches which ignore locations,
LKS adjusts the weights on edges in the KD-graph to capture
not only the semantic relevance between keyword queries,
but also the spatial distance between the document locations
and the query issuer’s location λq . We apply a random walk
with restart (RWR) process [22] on the KD-graph, starting
from the user supplied query kq , to find the set of m key-

2. http://searchengineland.com/microsoft-53-percent-of-mobile-
searches-have-local-intent-55556
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Fig. 1. LKS Example

word queries with the highest semantic relevance to kq and
spatial proximity to the user location. RWR on a KD-graph
has been considered superior to alternative approaches [7]
and has been a standard technique employed in various
(location-independent) keyword suggestion studies [5], [6],
[7], [8], [10], [11].

The second challenge is to compute the suggestions
efficiently on a large dynamic graph. Performing keyword
suggestion instantly is important for the applicability of LKS
in practice. However, RWR search has a high computational
cost on large graphs. Previous work on scaling up RWR
search require pre-computation and/or graph segmenta-
tion [22], [23], [24], [25], [26]; part of the required RWR
scores are materialized under the assumption that the tran-
sition probabilities between nodes (i.e., the edge weights)
are known beforehand. In addition, RWR search algorithms
that do not rely on pre-computation (e.g., [27]) accelerate
the computation by pruning nodes based on their lower
or upper bound scores and also require the full transition
probabilities. However, the edge weights of our KD-graph
are unknown in advance, hindering the application of all
these approaches. To the best of our knowledge, no exist-
ing technique can accelerate RWR when edge weights are
unknown apriori (or they are dynamic). To address this
issue, we present a novel partition-based algorithm (PA)
that greatly reduces the cost of RWR search on such a
dynamic bipartite graph. In a nutshell, our proposal divides
the keyword queries and the documents into partitions and
adopts a lazy mechanism that accelerates RWR search. PA
and the lazy mechanism are generic techniques for RWR
search, orthogonal to LKS, therefore they can be applied to
speed up RWR search in other large graphs.

In summary, the contributions of this paper are:

• We design a Location-aware Keyword query Sugges-
tion (LKS) framework, which provides suggestions
that are relevant to the user’s information needs and
can retrieve relevant documents close to the query
issuer’s location.

• We extend the state-of-the-art Bookmark Coloring
Algorithm (BCA) [28] for RWR search to compute the
location-aware suggestions. In addition, we propose
a partition-based algorithm PA that computes the
scores of the keyword queries at the partition level
and adopts a lazy mechanism to greatly reduce the
computational cost of BCA.

• We evaluate the effect of locations in LKS through

an empirical study and demonstrate that useful
location-aware suggestions are provided. We also
show experimentally that PA is two times to one
order of magnitude faster than BCA.

The rest of the paper is organized as follows. The LKS
framework is introduced in Section 2. The baseline algo-
rithm and the partition-based algorithm are presented in
Section 3. We evaluate the location effect in the framework
and the performance of the algorithms in Section 4. Related
work is reviewed in Section 5 and we conclude in Section 6.

2 LKS FRAMEWORK

Consider a user-supplied query q with initial input kq ; kq
can be a single word or a phrase. Assuming that the query
issuer is at location λq , two intuitive criteria for selecting
good suggestions are: (i) the suggested keyword queries
(words or phrases) should satisfy the user’s information
needs based on kq and (ii) the suggested queries can retrieve
relevant documents spatially close to λq . The proposed LKS
framework captures these two criteria.

2.1 Keyword-Document Graph

Without loss of generality, we consider a set of geo-
documents D such that each document di ∈ D has a point
location di.λ.3 Let K be a collection of keyword queries
from a query log. We consider a directed weighted bipartite
graph G = (D,K,E) between D and K and refer to it
as the keyword-document graph (or simply KD-graph). If
a document di is clicked by a user who issued keyword
query kj in the query log, E contains an edge e from kj
to di and an edge e′ from di to kj . Initially, the weights
of edges e and e′ are the same and equal to the number
of clicks on document di, given keyword query kj [2].
Therefore, the direct relevance between a keyword query
and a clicked document is captured by the edge weight.
Furthermore, the semantic relevance between two keyword
queries is captured by their proximity in the graph G (e.g.,
computed as their RWR distance). Any updates in the query
log and/or the document database can be easily applied
on the KD-graph; for a new query/document, we add a
new node to the graph; for new clicks, we only need to

3. If a document relates to multiple locations, we can model it
as multiple documents, each referring to a single location. Location-
independent documents can also be included in our framework by
turning off the location awareness component for them.
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update the corresponding edge weights accordingly. As
an example, Figure 1(a) shows five documents d1–d5 and
three keyword queries k1–k3. The corresponding KD-graph
is shown in Figure 1(c). For the ease of presentation, the
edge weights are normalized (i.e., divided by the maximum
number of clicks in the log for any query-document pair).

2.2 Location-aware Edge Weight Adjustment

The initial KD-graph is what a classic keyword suggestion
approach would use [5], [6], [7], [8], [10], [11], because it
captures the semantics and textual relevance between the
keyword query and document nodes; i.e., the first criterion
of location-aware suggestion. In order to satisfy the second
criterion (i.e., location awareness), we propose to adjust
the edge weights in the KD-graph based on the spatial
relationships between the location of the query issuer and
the nodes of the KD-graph. Note that this edge adjustment
is query-dependent and dynamic. In other words, different
adjustment is used for each different query independently.

We now outline the details of the edge weights adjust-
ment. Recall that a user-supplied query q consists of two
arguments: an input keyword query kq (a word or a phrase)
and a query location λq . Given q, the weight w(e) of the
edge e from a keyword query node ki to a document node
dj is adjusted by the following function:

w̃(e) = β × w(e) + (1− β)× (1− dist(λq, dj .λ)) (1)

where w(e) is the initial weight of e in the KD-graph, w̃(e)
is the adjusted edge weight, dist(λq, dj .λ) is the Euclidean
distance between the query issuer’s location λq and docu-
ment dj , and parameter β ∈ [0, 1] is used to balance the
importance between the original (i.e., click-based) weight
and the distance of dj to the query location. Euclidean dis-
tances are normalized to take values in [0, 1]. This keyword-
to-document edge weight adjustment increases the weights
of the documents that are close to the user’s location.

Let D(ki) be the set of documents connected to a key-
word query ki ∈ K in the KD-graph. D(ki) may contain
multiple documents and the locations of them form a spatial
distribution. We propose to adjust the weights of the edges
pointing to ki by the minimum distance between λq and the
locations of documents inD(ki).

4 Such an adjustment favors
keyword query nodes which have at least one relevant doc-
ument close to the query issuer’s location λq . Specifically,
the weight w(e′) of the edge e′ from a document node dj to
a keyword query node ki is adjusted as follows:

w̃(e′) = β×w(e′)+ (1−β)× (1−mindist(λq, D(ki))) (2)

where mindist(λq, D(ki)) is the minimum Euclidean dis-
tance5 between λq and any document in D(ki).

For example, Figure 1(b) shows the locations of the 5 doc-
uments of Figure 1(a) and a query location λq ; Figure 1(d)
includes the (approximate) Euclidean distances between λq
and the five documents. Figure 2 illustrates how the edge

4. Since the locations of past query issuers are not always available
(e.g., due to privacy constraints), in this paper, we focus on the case
where only document locations are known. Therefore, the edge ad-
justments for keyword-to-document edges and document-to-keyword
edges are performed differently.

5. The effect of using the average distance to D(ki) is similar.

weights from keyword query nodes to document nodes
(Figure 2(a)) and from document nodes to keyword query
nodes (Figure 2(b)) are adjusted based on the query location,
assuming β = 0.5. Take the edge from k1 to d1 as a concrete
example. Its weight is calculated using Equation 1 where
dist(λq, d1.λ) = 1. The weight of the edge from d1 to k1
is computed using Equation 2 where D(k1) = {d1, d2} and
mindist(λq, D(k1)) = 0.9.

We remark that the original KD-graph G is constructed
only once in advance (as in previous work [5], [6], [7], [8],
[10], [11]). In addition, any update operations on the KD-
graph (discussed in Section 2.1) are independent to our
edge weight adjustment strategy, which is query-dependent.
Given a user-supplied query q, the adjusted graph Gq is
dynamically derived from G based on the query location
λq , used to compute suggestions for q, and then dropped.
During this process, Gq is maintained separately and G is
not changed, so that concurrent or follow up queries are not
affected. As we will discuss in Section 3.1, only a small por-
tion of edges, relevant to the current query, are adjusted and
cached, hence the adjustment is conducted efficiently and
on-demand, during the keyword query suggestion process.
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Fig. 2. Location-aware Edge Weight Adjustment

2.3 Location-aware Keyword Query Suggestion

We denote by Gq the KD-graph G after adjusting the edge
weights, based on the query location λq . Gq captures the
two criteria of selecting suggestions, i.e., relevance to kq and
closeness to λq . Thus, keyword queries close to kq in Gq are
likely to be relevant to kq and, at the same time, they result
in documents close to the query issuer. In order to find the
set of keyword queries for recommendation, we compute for
all keyword queries a graph proximity score with respect to
kq , based on the random walk with restart (RWR) process.
The top-m keyword queries in Gq with the highest scores
(excluding kq) are returned as the suggestions.

Formally, let ~ψ be a column vector recording the RWR

scores of all keyword queries in K based on Gq . ~ψ is
computed by [29]:

~ψ = (1− α)MT
DK

MT
KD

~ψ + α~ψq (3)

MDK is a document-by-keyword matrix and MKD is a
keyword-by-document matrix, storing the edge weights in

Gq ; both matrices are row-normalized. ~ψq is the initial score
vector having zeros at all positions except the position of
kq , where it has 1. Parameter α represents the probability
of a random walker jumping to the initial keyword query
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instead of randomly following an edge in graph Gq . Since
the user-supplied query kq also gets an RWR score, in the
end we compute the top-m keyword queries other than kq .

Example 1. Consider query q with initial input kq =
“seafood” and location λq = (0.2, 0.2) against the docu-
ments of Figure 1(a). The locations of the documents and
λq are shown in Figure 1(b). The KD-graph G is shown
in Figure 1(c) and the adjusted edge weights based on
λq are presented in Figure 2. The top-1 suggestion for
q is “lobster” according to Equation 3 given α = 0.5.
Note that “lobster” retrieves documents d4 and d5 that
are close to the query location, which cannot be achieved
by “seafood”. Also queries “lobster” and “seafood” are
semantically relevant.

3 ALGORITHMS

In this section, we introduce a baseline algorithm (BA) to
compute the location-aware suggestions (Section 3.1). Then,
we propose a more efficient partition-based algorithm (PA)
(Section 3.2).

3.1 Baseline Algorithm (BA)

We extend the popular Bookmark-Coloring Algorithm
(BCA) [28] to compute the top-m suggestions as a baseline
algorithm (BA). BCA models RWR as a bookmark coloring
process. Starting with one unit of active ink injected into
node kq , BA processes the nodes in the graph in descending
order of their active ink. Different from typical personalized
PageRank problems [27], [30] where the graph is homoge-
neous, our KD-graph Gq has two types of nodes: keyword
query nodes and document nodes. As opposed to BCA, BA
only ranks keyword query nodes; a keyword query node
retains α portion of its active ink and distributes 1−α portion
to its neighbor nodes based on its outgoing adjusted edge
weights, while a document node distributes all its active ink
to its neighbor nodes.

In our implementation, the weight of each edge e is
adjusted based on λq online, at the time when the source
node of e is distributing ink. This means that the edge
weight adjustment is done during BA (i.e., Gq needs not
be computed and materialized before the algorithm starts).
Moreover, a node may be processed several times; thus, the
adjusted weights of its outgoing edges are cached after the
node is first processed, for later usage. A node can distribute
ink when its active ink exceeds a threshold ǫ. Algorithm
BA terminates when either (i) the ink retained at the top-
mth keyword query node is more than the ink retained at
the top-(m+ 1)th keyword query node plus the sum of the
active ink of all nodes [30] or (ii) the active ink of each node
is less than ǫ (typically, ǫ = 10−5).

Algorithm 1 is a pseudo code of BA. Priority queue Q
maintains the nodes to be processed in descending order
of their active ink (line 1). Q initially contains one entry,
i.e., the user-supplied keywords kq with active ink 1 (line
2). Priority queue C , initially empty, stores the candidate
suggestions in descending order of their retained ink (line 1).
The sum of the active ink of all nodes AINK is set to 1 (line
3). Termination conditions (i) and (ii) are checked at lines 4
and 8, respectively. The processing of a keyword query node

ALGORITHM 1: Baseline BA
Input : G(D,K,E), q = (kq, λq), m, ǫ
Output: C

1 PriorityQueue Q← ∅, C ← ∅
2 Add kq to Q with kq.aink ← 1
3 AINK ← 1
4 while Q 6= ∅ and Q .top.aink ≥ ǫ do
5 Deheap the first entry top from Q
6 tm = the top-m entry from C

7 tm ′ = the top-(m+ 1) entry from C

8 if tm.rink > tm ′.rink + AINK then
9 break

10 distratio = 1
11 if top is a keyword query node then
12 distratio = 1− α
13 top.rink ← top.rink + top.aink × α
14 AINK ← AINK − top.aink × α
15 if there exist a copy t of top in C then
16 Remove t from C
17 top.rink ← top.rink + t .rink

18 Add top to C

19 for each node v connected to top in G do
20 v .aink ← top.aink × distratio × w̃(top, v)
21 if there exists a copy v′ of v in Q then
22 Remove v′ from Q; v .aink ← v .aink + v ′.aink

23 Add v to Q

24 return the top-m entries (excluding kq) in C

involves retaining α portion of its active ink (line 13) and
distributing 1− α portion to each of its neighbor document
nodes based on the adjusted edge weights (lines 19–23).
The total active ink AINK is modified accordingly (line 14).
As soon as a keyword query node has some retained ink,
it enters C . The processing of a document node involves
distributing all its active ink to neighbor keyword query
nodes according to the adjusted edge weights (lines 19–
23). The algorithm returns the top-m candidate suggestions
other than kq in C as the result (line 24).

Example 2. Figure 3 shows the steps of BA (for m = 1,
ǫ = 0.1 and α = 0.5), when applied to the adjusted
KD graph of our running example (see Example 1 and
Figures 1,2). The number next to each node indicates its
amount of active ink. The numbers in rounded rectangles
are the amount of retained ink. Initially, one unit amount
of ink is injected into node k2, i.e., the keyword query
kq = “seafood” supplied by the user. In the first iteration,
node k2 retains 0.5 amount of ink and distributes 0.5
amount of ink to its neighbor document nodes d1–d3
according to the adjusted edge weights. In the second
iteration, d3 distributes its active ink of amount 0.325
to its neighbor keyword query nodes k2 and k3. BA
terminates at the sixth iteration where the active ink
of each node is smaller than ǫ. The top-1 suggestion
(excluding user query k2) is k3 = “lobster”, with the
largest amount of retained ink (0.098).

3.2 Partition-based Algorithm (PA)

Algorithm BA can be slow for several reasons. First, at
each iteration, only one node is processed; thus, the active
ink drops slowly and the termination conditions are met
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Fig. 3. Illustration of Algorithm BA

after too many iterations. Second, given the large number
of iterations, the overhead of maintaining queue Q is sig-
nificant. Finally, the nodes distribute their active ink to all
their neighbors, even if some of them only receive a small
amount of ink. We note that existing pre-processing tech-
niques that can accelerate RWR search and BCA (e.g., the
pre-selection of hub nodes [28]) require complete knowledge
of the graph before the algorithm starts. Therefore, they are
not applicable to our problem, because the edge weights in
graph Gq depend on the query location, which is unknown
in advance. Applying a pre-computation technique for all
possible query locations (i.e., all possible Gq) has extreme
computational and storage requirements.

To improve the performance of BA, in this section, we
propose a partition-based algorithm (PA) that divides the
keyword queries and the documents in the KD-graphG into
groups. Let PK = {PK

i } be the partitions of the keyword
queries and PD = {PD

i } be the document partitions. Al-
gorithm PA follows the basic routine of algorithm BA, but
with the following differences:

(1) Node-Partition Graphs. PA uses two directed graphs
GKP and GDP constructed offline from the KD-graph G
and partitions PK and PD . In graph GKP , a keyword query
node ki connects to a document partition PD if ki connects
in G to at least one document in PD . Similarly, in graph
GDP , a document node dj connects to a keyword partition
PK if dj connects in G to at least one keyword query node
ki. As an example, in Figure 4, the document partitions are
PD
1 = {d1, d2} and PD

2 = {d3, d4, d5} and the keyword
query partitions are PK

1 = {k1} and PK
2 = {k2, k3}. The

edge weights are defined based on graph Gq , computed
during the execution of PA. Each edge weight shown in
Figure 4 indicates the portion of the ink to be distributed
to a partition P from a node v that is the sum of the
adjusted weights of the edges from node v to the nodes
in P according to Gq .

(2) Ink Distribution. In PA, each node distributes its active
ink to its neighbor partitions (contrast this to BA, where each
node distributes its active ink to each of its neighbor nodes).
The priority queue used in BA maintains the nodes that will
distribute ink, but the priority queue used in PA records
the partitions that will be processed. The ink received by
a partition is not spread to the nodes inside the partition
until this partition reaches the head of the priority queue.
The benefit is that a partition may receive ink from the
same node several times while waiting in the queue, so that
the nodes in this partition receive ink in batch when this
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Fig. 4. Node-Partition Graphs

partition reaches the head of the queue. In algorithm PA,
the active ink drops fast and the termination conditions may
be fulfilled early. Thus, the number of iterations needed is
largely reduced and so is the cost spent for maintaining the
priority queue Q. Moreover, since the number of partitions
is much smaller than that of nodes, the size of queue Q is
much smaller compared to that used in BA, so operations on
it are fast as well. As an example, in Figure 5, in algorithm
BA, node k2 distributes its active ink to each of its three
neighbor nodes d1–d3. However, in algorithm PA, the active
ink of k2 is only distributed to two recipients: partitions PD

1

and PD
2 ; an underlying document node will not receive the

ink, until its partition reaches the top of the queue.
(3) Lazy Distribution Mechanism. In BA, a node distributes

ink aggressively, i.e., each of its neighbor nodes receives ink
no matter how much it is. On the other hand, in algorithm
PA, we adopt a lazy distribution mechanism that relies on
threshold ǫ. If the amount of the ink to be distributed from a
node v to a partition P is smaller than ǫ, P does not receive
the ink immediately; instead, the ink is accumulated (i.e.,
buffered) at v. Later, if at some point the ink accumulated
at v for partition P exceeds ǫ, P receives it. Overall, this
lazy distribution mechanism delays the distribution of small
amounts of ink across the graph that would otherwise
result in many updates, reducing the computational cost
significantly. As a toy example in Figure 5(b), the amount
of ink (0.07) to be distributed from node k2 to partition PD

1

waits at k2 when ǫ = 0.1.
Algorithm 2 is a pseudocode for PA. Priority queue Q

maintains the partitions to be processed in descending order
of their keys (line 1). A partition waiting in the queue may
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Fig. 5. Ink Distribution Methods

have received ink from multiple nodes. Let P.ainkvi be the
ink received by partition P from node vi. The key of P in
the queue is the maximum value of P.ainkvi . Priority queue
C stores the candidate suggestions in descending order of
their retained ink, initialized as empty (line 1). Q initially
contains one entry referring to the keyword query partition
P containing the user supplied keywords with active ink 1
(line 2). The sum of the active ink of all nodes AINK is set to
1 (line 3). The termination conditions are the same as those
of algorithm BA (lines 4 and 8). For a partition Pt being
processed, PA firstly spreads its received ink to Pt’s nodes
(line 10). When processing a keyword query partition, each
keyword query node v inside retains α portion of its active
ink (line 15). The ranking of this keyword query node in C is
updated and the active ink AINK is modified (line 16). For
each document partition Pi connected from v in GKP , if the
amount of accumulated ink for Pi at v exceeds ǫ, partition
Pi receives the ink. Otherwise, the ink is accumulated at v
for Pi (lines 24–32). Similarly, when processing a document
partition, for each document node v inside the partition,
the lazy ink distribution mechanism is applied. As before,
the only difference is that document nodes do not retain
any ink. The algorithm finally returns the top-m candidate
suggestions in C as the result (line 33).

Note that the partitioning is done offline, and thus it does
not add any cost to the online query suggestion process.
In PA, the cost of maintaining the partition information
(in terms of both the memory usage and the CPU cost) is
negligible when the number of partitions is small (e.g., 16 –
64 as shown in our experiments).

Example 3. We illustrate algorithm PA (form=1, ǫ = 0.1, and
α = 0.5) using our running example (kq = “seafood”
and λq = (0.2, 0.2)). Figure 4 shows the node-partition
graphs. Figure 6 shows how the scores (ink) of the key-
word queries are computed. Initially, partition PK

2 con-
tains the user supplied keyword k2 having active ink 1.
In the first iteration, partition PK

2 is processed. Each key-
word query node inside partition PK

2 retains α portion
of its active ink. In this example, k2 retains 0.5 amount of
ink. Document partitions PD

1 and PD
2 connected from k2

according to graph GKP receive 0.175 and 0.325 amount
of ink, respectively. In the second iteration, document
partition PD

2 is processed. Each node inside PD
2 first

receives the ink from k2 and then distributes ink to
the connected keyword query partition PK

2 according
to graph GDP . In the third iteration, partition PK

2 is
processed. Each node inside PK

2 receives the ink from
d3. After that, node k3 accumulates ink for partition PD

2 ,
since the amount of ink for PD

2 is 0.097 (< ǫ). Similarly,
node k2 accumulates ink for partitions PD

1 and PD
2 .

ALGORITHM 2: PA

Input : G(D,K,E), GKP , GDP , q = (kq, λq), m, ǫ
Output: C

1 PriorityQueue Q← ∅, C ← ∅
2 Add partition P ∋ kq to Q with P.aink ← 1
3 AINK ← 1
4 while Q 6= ∅ and Q.top.ainkvi ≥ ǫ do
5 Deheap the top entry Pt from Q
6 tm = the top-m entry from C

7 tm ′ = the top-(m+ 1) entry from C

8 if tm.rink > tm ′.rink + AINK then
9 break

10 Spread the active ink to nodes in Pt

11 for each node v in partition Pt do
12 distratio = 1
13 if v is a keyword query node then
14 distratio = 1− α
15 v .rink ← v .rink + v .aink × α
16 AINK ← AINK − v .aink × α
17 if there exist a copy t of v in C then
18 Remove t from C
19 v .rink ← v .rink + t .rink

20 Add v to C

21 Get partition set P connected from v in GKP

22 else
23 Get partition set P connected from v in GDP

24 for each partition Pi in P do
25 ink ← v .aink × distratio × w̃(v, Pi)
26 if ink + v .acc.Pi ≥ ǫ then
27 Pi.aink ← ink + v .acc.Pi

28 if there exist a copy P ′

i of Pi in Q then
29 Remove P ′

i from Q;
Pi .aink ← Pi .aink + P ′

i .aink

30 Add Pi to Q

31 else
32 Accumulate ink at node v for Pi (v.acc.Pi)

33 return the top-m entries (excluding kq) in C

In the fourth iteration, partition PD
1 is processed. For

each node inside PD
1 , the ink to be distributed does not

exceed threshold ǫ, so that d1 and d2 accumulate ink for
partitions PK

1 and PK
2 . In the end, the top-1 suggestion

is keyword query k3 = “lobster”.

Partitioning Methods. We consider four partitioning meth-
ods for keyword query/document nodes, to be empirically
evaluated in Section 4.

Random Partitioning. Keyword queries are evenly and
randomly partitioned into a predetermined number of par-
titions. The same is done for the documents.

Spatial Partitioning. First, a regular grid is used to parti-
tion the Euclidean space of document locations. The doc-
uments whose locations lie in the same grid cell form
a partition. The keyword queries are partitioned accord-
ing to the document partitions. The idea is inspired by
the duality of word and document clustering [31]. Specifi-
cally, let PD = {PD

1 , P
D
2 , · · · , P

D
n } be the document par-

titions. We initialize N empty keyword query partitions
PK = {PK

1 , PK
2 , · · · , PK

N }. According to graph GKP ,
which connects keywords to document partitions, each
keyword query node ki is connected to a set of docu-
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Fig. 6. Illustration of Algorithm PA

ment partitions P (ki) = {PD
i }. Let PD

j be the document
partition connected from ki with the highest edge weight,
i.e., argmaxPD

j ∈P (ki) w(ki, P
D
j ). Keyword query node ki

is added to partition PK
j that has the same subscript j

as partition PD
j . In the end, some of the keyword query

partitions in PK might be empty, and thus are removed.
Textual Partitioning. Each document d is associated to a

vector d.ψ where each dimension refers to a keyword query
k connected to d in the KD-graph G and the value of this
dimension is the edge weight w(d, k). Let cos(di.ψ, dj .ψ)
be the cosine similarity between the vectors of documents di
and dj . A clustering algorithm, e.g., k-means, is applied on
the document vectors using the cosine similarity, so that the
document partitions are obtained. The keyword queries are
partitioned based on the document partitions in the same
way as in the spatial partitioning method.

Hybrid Partitioning. Let fH(di, dj) = γ×cos(di.ψ, dj .ψ)+
(1− γ)× dist(di.λ, dj .λ) be a hybrid distance between doc-
uments di and dj , considering both their Euclidean distance
and cosine similarity. A clustering algorithm, e.g., k-means,
is applied on the documents using the hybrid distance, so
that the document partitions are obtained. The keyword
queries are partitioned as in the previous methods.

4 EMPIRICAL STUDY

We conducted a set of experiments in order to evaluate LKS.
Section 4.1 presents our experimental setup. The effective-
ness of our LKS framework compared to query suggestion
that does not consider locations is evaluated in Section 4.2.
The runtime performance of algorithms BA and PA is eval-
uated in Section 4.3.

4.1 Setup

Two datasets AOL and TWEET are used in our evaluation.
AOL is based on a real query log of the AOL search
engine [32]. Each record in the log contains a keyword query,
the time when the query was submitted, and a URL clicked.
Since the locations of the URLs are not readily available
in the query log, we geo-located the URL domains with
the help of the Freegeoip6 project and removed the URLs

6. http://freegeoip.net

without any geo information. In addition, we cleaned the
query log by removing the keyword queries without click
information and with frequency less than 3. We added
an edge between a keyword query node ki and a URL
node dj if there exist records containing both ki and dj
in the query log. The edge weight was defined by the
number of records containing both ki and dj (i.e., the click
count). At last, the constructed KD-graph G has 629,875
keyword query nodes, 496,221 document nodes (URLs),
and 2,778,050 edges. Dataset TWEET is based on 3,198,266
tweets published inside the New York area, collected using
Twitter’s Streaming API7. Each tweet has a text message
and a location where the tweet is posted. Following the
methodology in [33], we extracted phrases of length 1 to
10 from the text messages and used them to model the
keyword queries. Only the phrases ending with either a
noun or an adjective and with frequency at least 3 are kept,
in order to reduce the number of noisy queries. We add
an edge between a keyword query node ki and a tweet
node dj if dj contains keywords ki. The edge weight is
the tf-idf score of ki w.r.t. dj . Afterwards, documents with
no connected keyword query nodes are removed. Finally,
the constructed KD-graph has 781,465 keyword queries,
1,482,064 documents (tweets), and 12,078,958 edges.

From each dataset, we randomly selected 100 keyword
queries and used them as a workload of user queries for
our experiments. For each keyword query, the user location
is considered to be the location of a randomly selected
document from those that contain the keywords. The rea-
soning behind this is that the query location distribution
typically tends to follow the distribution of the documents
that contain the query.

All tested methods were implemented using Java. The
experiments were run on a machine with Intel Core i7-
3770 3.40GHz and 16GB main memory. Our LKS framework
and the algorithms are evaluated under various parameter
settings, as shown in Table 1. For each parameter, we used
a wide range of values in order to test their effects. The
number of suggestions m is fixed to 5 (the performance of
the evaluated algorithms is not sensitive to it). Finally, the

7. https://dev.twitter.com/docs/api/streaming
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TABLE 1
Parameters

Description Parameter Values Default Value
Number of partitions N 1,4,16,64,256 16
RWR probability α 0.2,0.35,0.5,0.65,0.8 0.5
Edge weight adjustment
param.

β 0,0.25,0.5,0.75,1 0.5

Threshold (×10−5) ǫ 0.1,0.5,1,5,10 1
Number of documents (M) |D| 0.5, 1, 1.5, 2, 2.5 1.5

default partitioning method for PA is Spatial Partitioning.

4.2 Effectiveness of the LKS framework

In this section, we assess the effectiveness of LKS using
both real examples and quantitative measurements, verify-
ing whether the keyword suggestions are (i) semantically
relevant to the original query and (ii) able to find documents
that are close to the query location.

Case Study. We first demonstrate the effectiveness of con-
sidering the user location in query suggestion, by showcas-
ing query examples on the TWEET data set. Consider a user-
supplied keyword query with kq = “airport”. Figures 7
and 8 show the top-1 suggestion for kq considering two
different query locations λq and using various values of
β. In all plots, the triangle denotes the query location, the
crosses denote the processed documents by the PA algorithm
(i.e., the documents that distribute ink during the course of
the algorithm), and the circles are the retrieved document by
the suggested keywords close to the query location (located
within 10km from the query location). When β = 1, LKS
ignores the query location; thus, no matter where the query
location is, the suggestion for the user supplied keyword
“airport” is always “LaGuardia Airport” (the most relevant
phrase to “airport” when disregarding location data) as
shown in Figures 7(a) and 8(a). When the query location
is close to LaGuardia Airport, the suggested keywords
“LaGuardia Airport” can retrieve some relevant documents
nearby (the circles in Figure 7(a)). However, when the query
location is close to Newark, there are no relevant documents
around related to the suggestion (no circle in Figure 8(a)).

When 0 < β < 1 (β = 0.5 in this example), the
suggestion depends on the query location. Keywords “La-
Guardia Airport” are suggested when the query is issued
near LaGuardia (Figure 7(b)), while “Newark Liberty In-
ternational Airport” is the top suggestion when the query
location is close to Newark (Figure 8(b)). Each of the two
suggestions can retrieve relevant documents (circles) close
to the corresponding query location. When β = 0, the
suggestion only depends on the query location and can
fetch relevant documents nearby as shown in Figures 7(c)
and 8(c). However, sometimes the suggestion is less specific
(i.e., less relevant) compared to the case of β = 0.5, e.g.,
“Newark Liberty International Airport” vs. “Newark Liberty”.
This is because the spatial-only recommendation favors the
queries having more relevant documents close to the query
location, regardless of their textual relevance. When the
query location is near JFK, “John F Kennedy International
Airport” and “Kennedy International” are reported when β
is set to 0.5 and 1.0, respectively. We omit the details due to
space constraints.

We also observe that for small β values, fewer docu-
ments are involved in the computation (crosses) and only
the nearby documents are considered. For example, the
number of crosses is 2296, 2177, and 822 in Figures 8(a),
8(b), and 8(c), respectively. Moreover, small β values result
in more general query suggestions, which retrieve more
nearby documents. As an example, the number of circles
is 600 and 630 in Figures 8(b) and 8(c), respectively.

A case where LKS is especially useful is when there
are no relevant documents near the user location. LKS
recommends to the user alternative query keywords, which
match the user’s intention and at the same time find nearby
documents. For example, on our AOL dataset the query
“louis vuitton” is recommended when an original query
“prada” is issued at the place where no document is retrieved
nearby by “prada”. Suggestion “louis vuitton” succeeds in
finding some relevant documents close to the user location.

Quantitative Study. Designing quantitative evaluation met-
rics for LKS is challenging, because it is hard to establish
the ground truth for suggestions and an online system for
user evaluation is not yet available. Considering the two
criteria of good suggestions, we evaluate (i) the semantic
relevance of the suggested keywords (together with their
retrieved nearby documents) w.r.t. the user’s initial query
and (ii) the number of nearby documents retrieved by the
query suggestions. As a competitor to our LKS framework,
we implemented the influence tag co-occurrence (INF) method
proposed in [21]. INF is designed to employ both spatial
and textual information into tag recommendation for Flickr
and has been shown to be more effective than alternative
approaches [21]. Given a photo p published at p.loc and a
tag t, the task is to retrieve k tag recommendations to t.
The idea is that if a tag t′ co-occurs with t in a photo p′,
they are considered textually relevant. In the meantime, if p′

is close to p (i.e., dist(p′.loc, p.loc) is small), the relevance
between t′ and t is even higher. In INF, the relevance
between t and t′ is defined according to a influence score

inf(t, t′) =
∑

p′∈P∩P ′ 2
−

−dist(p′,p)
r

|P∪P ′| . Here P and P ′ are the

sets of photos containing tag t and t′, respectively, and r
is a parameter to adjust the importance of spatial distance.
To apply INF in keyword suggestion, we consider the co-
occurrence of keywords in the same document and exploit a
similar relevance function. We tested various r values from
0.1 to 0.0001 and observed that with decreasing r, more
nearby documents are retrieved, but the semantic relevance
of the suggested keywords declines. Thus, in the following,
we present only the results with r = 0.001, which in
our experiments retains the best balance between the two
factors.

We first report the average number of nearby documents
retrieved by (a) the original query, (b) the queries suggested
by INF, and (c) the queries suggested by our LKS frame-
work, over the workload of TWEET when varying parame-
ters α (in Equation 3) and β (in Equation 1). Figure 9(a) plots
the number of documents retrieved by the original input
and the keyword queries suggested by INF or LKS, within
a ratio ρ of the maximum Euclidean distance between any
pair of documents (ρ = {0.05, 0.1}). The queries suggested
by INF can retrieve some more nearby locations. However,
the number of documents retrieved by the LKS-suggested
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queries is significantly higher than that of either the original
input, or the INF suggested keyword queries, for all α
values, showing the value of LKS w.r.t. the location criterion.
Obviously, for larger ρ values more documents are retrieved.
Also, the number of documents decreases as α increases.
The reason is that for small α values, the distributed ink
reaches more documents compared to the case where α is
large. Hence, more document nodes near the query location
participate in the ink distribution process and more relevant
queries are reached and included in the top-m ranking.
As special cases, when α = 1, no keyword queries can
be returned because all the ink is retained by the original
query, while when α = 0, no restart is involved in the
random walk, hence the result is independent of the input.
Figure 9(b) reports the number of documents retrieved by
the original input and the keyword queries suggested by
INF or LKS when varying β. The number of documents
retrieved by the queries suggested by LKS decreases as β
increases. This is because a large β weighs the user location
low; the textual relevance criterion dominates the spatial
closeness criterion, therefore fewer nearby documents are
relevant to the suggestions. Note that our experiments on
AOL show similar results and are thus omitted.

Next, we evaluate how relevant the suggested keyword
queries are to the user’s information needs. To begin with,

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.2 0.35 0.5 0.65 0.8

N
u

m
b

er
 o

f 
d

o
cu

m
en

ts

α

LKS (ρ0.05)
INF (ρ0.05)

Original (ρ0.05)

LKS (ρ0.1)
INF (ρ0.1)

Original (ρ0.1)

(a) Varying α

 0

 20

 40

 60

 80

 100

 120

0 0.25 0.5 0.75 1

N
u

m
b

er
 o

f 
d

o
cu

m
en

ts

β

LKS (ρ0.05)
INF (ρ0.05)

Original (ρ0.05)

LKS (ρ0.1)
INF (ρ0.1)

Original (ρ0.1)

(b) Varying β

Fig. 9. Number of Retrieved nearby Documents

we first evaluate the textual relevance between the original
input and the keyword queries suggested by INF or LKS,
following a similar approach used in [34], [35], [36]. Specif-
ically, we utilize the Open Directory Project database (ODP,
a.k.a. DMOZ)8, which provides a comprehensive human
edited directory of the Web. ODP can match a given query
to a hierarchy of categories. For example, the query “Hard
Disk” matches category “Computers: Hardware: Storage:

8. http://www.dmoz.org



TECHNICAL REPORT, DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF HONG KONG 10

Hard Disk” and the query “Memory” matches “Computers:
Hardware: Components: Memory”. Hence, the relevance
between two queries can be evaluated by the similarity
between their corresponding categories C1 and C2 in the
hierarchy. Similarity is measured by the length of the longest
common path prefix P (C1, C2) normalized by the length
of the longer path in the hierarchy, i.e., sim(C1, C2) =
|P (C1,C2)|

max{|C1|,|C2|}
. For example, the similarity between “Hard

Disk” and “Memory” is 2/4 as the longest common path
“Computers: Hardware” has length 2. In our experiments,
we evaluated the relevance between the original input and
the top suggested keyword queries by INF or LKS, based on
their most similar categories provided by ODP. The results
are presented in Figure 10(a). The first observation is that
the LKS-based suggestions are generally more promising
than INF based ones, unless β is close to 0 (spatial only).
This is because INF relies merely on co-occurrence to judge
textual relevance, which cannot capture many hidden se-
mantic relationships between keyword queries. LKS, on the
other hand, captures textual proximity based on the whole
structure of KD-graph and thus retrieves more reliable
suggestions. In addition, we also observe that LKS achieves
best ODP similarity when β is selected between 0.25 and
0.75. Naturally, when β is small (e.g. β → 0), the graph is
over-biased to spatial closeness and cannot reflect textual
relevance clearly. On the other hand, when β is large (e.g.,
β → 1), the graph does not benefit from the local intent of
the input query.

After the direct evaluation of suggested query keywords
in the previous experiment, we now evaluate the nearby
documents retrieved by them. Let {doi } be the set of top-
10 documents retrieved by the original query and {dsi}
be the set of top-10 documents retrieved by a suggested
query within a spatial range (ρ = 0.1), where i indicates
the ranking position of a document. We compute the co-
sine similarity cos(doi , d

s
i ) between the documents with the

same ranking position from the two sets {doi } and {dsi}.
We adopt the nDCG measure of [37] to aggregate these
cosine similarities so that the document similarity is reduced
logarithmically, proportionally to its ranking position.

COS =
cos(do1, d

s
1) +

∑10
i=2 cos(d

o
i , d

s
i )/log(i)

1 +
∑10

i=2 1/log(i)
.

The higher the value of COS is, the closer the nearby
documents are to user’s information needs. Besides, we also
compare the textual relevance (i.e., tf × idf ) of documents
{dsi} and {doi } w.r.t. the original query. Let soi and ssi be
the textual score of document doi and dsi w.r.t. the original
query, respectively. We take the ratio of ssi to soi for the
same ranking position. Similar to COS , these ratios are
aggregated as TS . Figure 10(b) shows the average COS

and TS over the workload of TWEET when varying β. The
results are mostly consistent with Figure 10(a). LKS again
has better textual quality than INF unless β is very small
(< 0.25). In the meantime, LKS achieves best effectiveness
at non-extreme β values, where it takes advantage of both
the textual relationships from the original KD-graph, and
the local intent of the input query.

Considering the above factors, we conclude that an
average value of β (e.g., 0.25 < β < 0.75) should be

used in order for the keyword query suggestions to have
a sufficient number of documents near the user location as
results, which also meet the information needs of the user.
In summary, our LKS framework, which balances between
relevant and nearby search results, is very effective, based
on our experimental analysis.
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Fig. 10. Textual Relevance Evaluation

4.3 Efficiency

In this section, we evaluate the performance of BA and
PA on the two data sets under various parameter settings
and report their average runtime (over the workload of 100
queries9).
Varying ǫ. Both BA and PA follow the general idea of
BCA [28], and their runtime depends on parameter ǫ. The
smaller ǫ is, the smaller the error incurred by BCA (and
BA/PA) on computing the PageRank scores on Gq . We find
that when ǫ ≤ 10−8, the top query suggestions become
stable. Thus, we consider the top suggestions calculated
using ǫ = 10−8 as the base for computing the approximation
error of the top suggestions calculated using ǫ > 10−8.
Following [27], the error is computed as 1− AP where AP

is the average precision of the retrieved results compared to
the true ones. An appropriate ǫ value should be selected so
that (1) the computation can be finished in real time and (2)
the error rate is reasonably low. Figure 11 shows that the
response time of BA drops dramatically as ǫ increases, since
a large ǫ significantly reduces the number of iterations in BA
and saves many computations. However, the approximation
error is high for large values of ǫ. On the other hand, PA runs
fast even for small values of ǫ, for which the approximation
error is low. PA outperforms BA by 1-2 orders of magnitude
when ǫ is smaller than 10−6. Therefore, under the same time
constraint (e.g. < 1s), PA can support smaller ǫ values, and
can thus guarantee a lower error rate.

Because of ǫ, BA and PA may produce different sug-
gestions, but the differences are mainly in the low-ranked
suggestions. In practice, users only consider the highly
ranked suggestions. In our experiments, the top-5 sugges-
tions offered by BA and PA are identical in 98% and 99% of
the times on AOL and TWEET, respectively.
Varying α. Parameter α in Equation 3 indicates the random
walk restart probability that corresponds to the proportion
of ink retained on a query node. As shown in Figure 12
the response times of both BA and PA decrease as α in-
creases. This is because for larger α, more amount of ink

9. Experiments with larger workloads gave us similar results.
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Fig. 11. Response Time when Varying ǫ (×10−5)

is retained at the keyword query nodes; thus, the amount
of active ink drops quickly and the termination condition
is satisfied early. We observe that PA is more robust to α
and outperforms BA significantly when α is small. In the
special case, when α = 1, all the ink will be retained on the
query node in the beginning, thus both algorithms terminate
immediately returning no results. In the other extreme case,
when α = 0, no ink is retained in any node at each step,
therefore the ink keeps being redistributed until the random
walk process converges to a stable state. In this case, the
final scores of the nodes only depend on the structure of
the graph, and not on the starting node (query node); no
matter what query is given, the suggestions are always the
same (i.e., similar to global PageRank scores). Therefore,
both extreme cases (α = 1 or 0) cannot give useful results
and are not considered.
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Varying β. Parameter β in Figure 13 shows the response
time when varying β. Both BA and PA are bell-shaped.
When β approaches 0 or 1, only the documents that are
either close to the query location or have high textual
relevance to the user supplied keywords are involved in
the computation. However, when β is close to 0.5, the
response time increases slightly, since more documents are
considered, i.e., the ones that are a bit far from the query
location but with high textual relevance and the ones that
are close to the query location but with slightly low textual
relevance. Algorithm PA outperforms BA for all values of β
by a wide margin.
Varying Partitioning Methods and Number of Partitions.
We evaluate the four partitioning methods introduced in
Section 3.2 using various number of partitions on the two
datasets. The result is shown in Figure 14. The performance
of PA seems to be insensitive to which partitioning ap-
proach is used. This can be attributed to the fact that the
KD-graph and its corresponding matrices are very sparse.
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Therefore, the difference between the clusters formed by
these approaches is not significant enough to influence the
performance of PA. In the future, we plan to study the ap-
plicability of PA on otherwise distributed scenarios (where
transition matrices are denser). The number of partitions
N , on the other hand, directly affects the performance. PA
performs best when the number of partitions is between
16 and 64. This is because when N is small, e.g., 1 and
4, the lazy distribution mechanism has little effect, since
the size of each partition is large and there is little chance
that the ink is being accumulated. Thus, the cost saved by
the ink accumulation is limited. In the special case N = 1
(a single keyword / document partition), every keyword
/ document node distribute their ink regardless of their
remaining ink (i.e., there is no priority order). On the other
hand, when N is large (e.g., 256), the lazy distribution
mechanism is applied for too many partitions and the
bookkeeping overhead at each node for the accumulated ink
per partition is high, negatively affecting the performance
of PA and counterbalancing the savings due to the lazy
distribution. As a special case when N = max{|K|, |D|}
(i.e., each keyword / document itself forms a partition), the
PA algorithm falls back to BA.
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Varying dataset size. To test the effect of data size, we con-
structed a large TWEETUS dataset from about 10M tweets
published in general U.S. area, in similar way to the TWEET
dataset. We use subsets of TWEETUS with various numbers
of documents / keywords. Figure 15 reports the response
time of BA and PA when |D| varies from 0.5M to 2.5M. Note
that with different |D|, the corresponding keyword node set
size |K| also changes, as shown on the top of Figure 15.
Based on the experiments, PA constantly outperforms BA
by 3-4 times with various |D| or |K| settings.
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5 RELATED WORK

Related work on query suggestion is discussed in Sec-
tion 5.1. Techniques for RWR computation are reviewed in
Section 5.2.

5.1 Keyword Query Suggestion

Keyword query suggestion approaches can be classified
into three main categories: random walk based approaches,
learning to rank approaches, and clustering based ap-
proaches. We also briefly review alternative methods that
do not belong to any of these categories. To the best of
our knowledge, no previous work considers user location
in query suggestion.

Random Walk based Approaches. The methods in this
category use a graph structure to model the information
provided by query logs, and then apply a random walk
process on the graph to compute the suggestions. Craswell
and Szummer [5] apply such an approach on the query-click
graph and suggest queries based on personalized PageRank
scores. Mei et al. [6] rank queries based on hitting time,
which reflects the probability that a random walker arrives
a node within certain steps. Song et al. [7] combine both
the clicked and skipped URLs from users in the query-URL
bipartite graphs in order to also consider rare query sugges-
tions (using clicked URLs only favors popular queries). This
work was extended in [38] to achieve diversification for the
recommended queries; the suggested queries are re-ranked
in a way that maximizes the diversification function. Zhu et
al. [39] generate query recommendations by considering di-
versity and relevance in a unified way during RWR search.
Miyanishi et al. [8] introduce Time-aware Structured Query
Suggestion (TaSQS), an algorithm for presenting query sug-
gestions along a timeline. Our proposed LKS framework
is orthogonal to and can be easily integrated in all the
suggestion methods that use the query-URL bipartite graph.

Boldi et al. [10] proposed an approach that applies RWR
from the original query or from a small set of queries rep-
resenting the recent querying history of the current user on
a query-flow graph. Deng et al. [36] investigate and develop
an entropy-biased framework for modeling click graphs, in
which common clicks on frequent and general pages are
given less weight than the ones on less frequent but more
specific pages. Anagnostopoulos et al. [9] formulate the
query-recommendation problem as a decision problem on
how to perturb the transition probabilities between queries
in the query-flow graph so as to maximize the expected

utility of a random walk. Song et al. [11] mine a term-
transition graph from search engine logs and apply a topic-
based unsupervised Pagerank model that suggests queries
based on the topic distribution and term-transition proba-
bility within each topic. The idea of our LKS framework can
be applied to methods that use a query-flow graph, since
the query history may also have location information. This
is an interesting subject for our future work.
Learning to Rank Approaches. Some query suggestion
approaches [13] are based on learning models trained from
co-occurrences of queries in search logs. Another learning-
to-rank approach [40] is trained based on several types of
query features, including query performance prediction. Li
et al. [12] train a hidden topic model. For each candidate
query, its posterior distribution over the hidden topic space
is determined. Given a user query q, a list of suggestions
is produced based on their similarity to q in the topic dis-
tribution space. Our work is not based on learning models;
in the future, it would be interesting to study how these
models can be extended to consider location information.
Clustering based Approaches. Beeferman and Berger [3]
view the query log as a query-URL bipartite graph. By
applying an agglomerative clustering algorithm on the ver-
tices in the graph, query clusters can be identified. Then,
given a user-supplied query q, the queries that belong to
the same cluster as q does are returned to the user as
suggestions. [41] further extended the approach to also
take into account the similarity between the query content
during clustering. In [2], a similar approach is proposed:
the queries are modeled as term-weighted vectors and then
clustered. The vector of a query q includes the clicked URLs
by the users who posed q as terms and the weights are
calculated based on term frequency and the click popularity
of the URL in the answers of q. Cao et al. [4] take into
account the immediately preceding queries as context in
query suggestion. They summarize queries in search logs
into concepts by clustering a query-URL bipartite graph.
User session data are converted to concept sequences and
indexed by a suffix tree. The query sequence submitted by
the user is mapped to a sequence of concepts; the suffix
tree is then searched to find query suggestions. Finally, Li
et al. [42] cluster queries from search logs to extract query
concepts, based on which recommended queries are selected
and employ a probabilistic model and a greedy heuristic
algorithm to achieve recommendation diversification. Lo-
cation information could also be considered in all these
clustering models. Such an approach is out of the scope of
our current work, but we are interested in investigating its
effectiveness in the future.
Miscellaneous Approaches. Zhang and Nasraoui [43] try
to create a graph with edges between consecutive queries
in each session, weighted by the textual similarity between
these queries. A candidate suggestion for a given query is
given a score based on the length of the path between the
two queries, aggregated across all sessions in a query log
where the query and the suggestion co-occurred. Cucerzan
and White [44] propose to generate query suggestions based
on user landing pages (that is, the web pages that users end
a query with, through post-query browsing). Given a user
query, they utilize its recorded landing pages and suggest
to the user other queries that have these landing pages
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in their top ranked results. A probabilistic mechanism [33]
generates query suggestions from the corpus without using
query logs.
Location-aware type-ahead search. References [19] and [20]
both study the problem of location-aware type-ahead search
(LTAS), also known as instant search. LTAS finds documents
near a user location, as the user types in a keyword query
character by character. This problem is more related to
keyword query completion than to the query suggestion
problem that we study in this paper, since the recommended
keywords must have the user’s input as prefix. On the
other hand, the query suggestion problem that we study in
this paper takes a completed query and recommends other
queries that are semantically relevant without the constraint
that the suggestions should have the original user query
as prefix. Therefore, our LKS framework is more flexible
and can help users to express various aspects of a topic.
The suggested keywords can be different than the user-
supplied keywords, but they should be textually relevant.
In addition, the methods for LTAS are very different to
our LKS algorithms, as they take advantage of the prefix
requirement to reduce the search space (with the help of trie
data structures).
Location-aware suggestions based on user history. Google
[45] provides location-based query suggestions by simply
selecting the user’s past search queries that have results
close to the user’s current location. These suggestions may
be insufficient if the user did not perform any historical
searches near her current location. In addition, query sug-
gestion based on location only may not match the user’s
search intent. On the other hand, our framework aims at
suggesting keyword queries that satisfy the user’s infor-
mation needs and have nearby results, irrespectively to the
user’s search history.
Query relaxation. The database research community has
studied a relevant problem to query suggestion, called query
relaxation. The objective is to generalize an SQL query in
case it returns too few or no results [46]. Query relaxation
approaches cannot be applied for keyword query sugges-
tion, because they require the relaxed query to contain the
results of the original query, which is not essentially the case
in query suggestion.

5.2 Random Walk Computation

Random walk with restart (RWR), also known as Personal-
ized PageRank (PPR), has been widely used for node simi-
larity measures in graph data, especially since its successful
application by the Google search engine [47].
Pre-computation based Approaches. Some matrix-based
methods [22], [23] solve PPR by pre-computing the in-
version matrix. Tong et al. [22] propose a matrix-based
approach B LIN that reduces the pre-computation cost of
the full matrix inversion by partitioning the graph. Fujiwara
et al. [23] propose a K-dash method that finds the top-k
nodes with the highest PPR scores, based on a LU decom-
position of the transition matrix. Alternative to matrix-based
approaches, Monte Carlo (MC) methods [24], [25], [26] can
be used to simulate the RWR process. Fogaras et al. [24]
propose to approximate PPR by pre-computing and approx-
imating for each node u a set of ending vertices for random

walks starting from u. If u later becomes a query node, its
PPR is approximated according to the distribution of these
vertices. Similarly, Bahmani et al. [25] approximate PPR by
counting the number of times a node is visited by pre-
computed random walk paths. All above methods require
the apriori knowledge of the complete graph; however, in
our problem, the edge weights are dynamically adjusted
according to the user location, thus these approaches are
inapplicable.
Online Approaches. MC can also be applied online, without
relying on pre-computations; a number of random walks are
tried from the query node and the PPR score of other nodes
are estimated from these samples [26]. However, as shown
later in [27], a large number of (expensive) random walks are
required in order to achieve acceptable precision. Fujiwara
et al. [27] propose a method for efficient ad-hoc top-k PPR
search with exact node ranking. They compute the random
walk (without restart) probabilities of the nodes, and em-
ploy the probabilities to estimate upper/lower bounds of
the candidate nodes. This approach is applicable when the
complete transition matrix is available beforehand, however,
obtaining the complete transition matrix in our problem
involves the multiplication of two matrices and it is very
expensive. Berkhin [28] proposes the Bookmark Coloring
Algorithm (BCA) to derive an approximation of the PPR
vector. Gupta et al. [30] extend BCA and employ early
termination heuristics for the top-k PPR calculation. We
extend algorithm BCA [28] as our baseline algorithm (BA)
to compute the location-aware suggestions.

6 CONCLUSION

In this paper, we proposed an LKS framework providing
keyword suggestions that are relevant to the user informa-
tion needs and at the same time can retrieve relevant docu-
ments near the user location. A baseline algorithm extended
from algorithm BCA [28] is introduced to solve the problem.
Then, we proposed a partition-based algorithm (PA) which
computes the scores of the candidate keyword queries at
the partition level and utilizes a lazy mechanism to greatly
reduce the computational cost. Empirical studies are con-
ducted to study the effectiveness of our LKS framework
and the performance of the proposed algorithms. The result
shows that the framework can offer useful suggestions and
that PA outperforms the baseline algorithm significantly. In
the future, we plan to further study the effectiveness of
the LKS framework by collecting more data and designing
a benchmark. In addition, subject to the availability of
data, we will adapt and test LKS for the case where the
locations of the query issuers are available in the query
log. In addition, we believe that PA can also be applied
to accelerate RWR on general graphs with dynamic edge
weights and we will investigate its general applicability in
the future. Moreover, the current version of PA seems to
be independent of the partitioning method. It would be
interesting to investigate whether alternative partitioning
heuristics can further reduce the cost of the algorithm.
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