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Abstract—Peer-to-Peer (P2P) computing has emerged as a 
popular model aiming at further utilizing Internet information 
and resources, complementing the available client-server ser-
vices. However, the mechanism of peers randomly choosing 
logical neighbors without any knowledge about underlying 
physical topology can cause a serious topology mismatching 
between the P2P overlay network and the physical underlying 
network. The topology mismatching problem brings a great 
stress in the Internet infrastructure and greatly limits the per-
formance gain from various search or routing techniques. 
Meanwhile, due to the inefficient overlay topology, the flood-
ing-based search mechanisms cause a large volume of unneces-
sary traffic. Aiming at alleviating the mismatching problem 
and reducing the unnecessary traffic, we propose a location-
aware topology matching (LTM) technique, an algorithm of 
building an efficient overlay by disconnecting low productive 
connections and choosing physically closer nodes as logical 
neighbors while still retaining the search scope and reducing 
response time for queries. LTM is scalable and completely dis-
tributed in the sense that it does not require any global knowl-
edge of the whole overlay network when each node is optimiz-
ing the organization of its logical neighbors. The effectiveness 
of LTM is demonstrated through simulation studies. 

Keywords-peer-to-peer; topology mismatching; blind flooding; 
location-aware topology matching; search efficiency 

I. INTRODUCTION 
There are mainly three different architectures for P2P sys-

tems: centralized, decentralized structured, and decentralized 
unstructured [18]. In centralized model, such as Napster [6], 
central index servers are used to maintain a directory of 
shared files stored on peers so that a peer can search for the 
whereabouts of a desired content from an index server. How-
ever, this architecture creates a single point of failure, and its 
centralized nature of the service also makes systems vulner-
able to denial of service attacks [15]. Decentralized P2P sys-
tems have the advantages of eliminating reliance on central 
servers and providing greater freedom for participating users 
to exchange information and services directly between each 
other. In decentralized structured models, such as Chord [33], 
Pastry [27], Tapestry [38], and CAN [24], the shared data 
placement and topology characteristics of the network are 
tightly controlled based on distributed hash functions. 

This paper focuses on decentralized unstructured P2P sys-
tems, such as Gnutella [3] and KaZaA [5]. File placement is 
random in these systems, which has no correlation with the 

network topology [37]. Unstructured P2P systems are most 
commonly used in today's Internet. The most popular search 
mechanism in use is to blindly “flood” a query to the network 
among peers (such as in Gnutella) or among supernodes 
(such as in KaZaA). A query is broadcast and rebroadcast 
until a certain criterion is satisfied. If a peer receiving the 
query can provide the requested object, a response message 
will be sent back to the source peer along the inverse of the 
query path. This mechanism ensures that the query will be 
“flooded” to as many peers as possible within a short period 
of time in a P2P overlay network. A query message will also 
be dropped if the query message has visited the peer before.  

Studies in [31] and [29] have shown that P2P traffic con-
tributes the largest portion of the Internet traffic based on 
their measurements on some popular P2P systems, such as 
FastTrack (including KaZaA and Grokster) [2], Gnutella, and 
DirectConnect. Measurements in [25] have shown that even 
95% of any two nodes are less than 7 hops away, the flood-
ing-based routing algorithm generates 330 TB/month in a 
Gnutella network with only 50,000 nodes. A large portion of 
the heavy P2P traffic caused by inefficient overlay topology 
and the blind flooding is unnecessary, which makes the un-
structured P2P systems being far from scalable [26]. There 
are three reasons for this problem. First, the mechanism of a 
peer randomly choosing logical neighbors without any 
knowledge about the underlying physical topology causes 
topology mismatching between the P2P logical overlay net-
work and physical underlying network. Because of the mis-
match problem, the same message may traverse the same 
physical link multiple times, causing a large amount of un-
necessary traffic. Second, a query may be flooded to multiple 
paths that are merged to the same peer. In this case, only the 
traffic along one of the paths is necessary. Finally, two 
neighboring peers may forward the same query message to 
each other before they receive the query message from each 
other. Thus, the same query message may traverse the same 
logical link twice. 

Aiming at alleviating the mismatch problem, reducing the 
unnecessary traffic, and addressing the limits of existing so-
lutions, we propose a location-aware topology matching 
(LTM) scheme, in which each peer issues a detector in a 
small region so that the peers receiving the detector can re-
cord relative delay information. Based on the delay informa-
tion, a receiver can detect and cut most of the inefficient and 
redundant logical links, and add closer nodes as its direct 
neighbors. Our simulation studies show that the total traffic 
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and response time of the queries can be significantly reduced 
by LTM without shrinking the search scope. We also show 
that the overhead of issuing detectors is trivial compared with 
the query cost savings.  

Our proposed LTM can be used to complement other 
search techniques, such as forwarding-based search mecha-
nisms [37] or cache-based schemes [14, 19, 20] that will be 
discussed in Section II. In this paper, we will show this effec-
tiveness by a case study of combining LTM and response 
index caching scheme, in which query responses are cached 
in passing peers along the returning path. Our study shows 
that only one tenth of original traffic cost is necessary to 
cover the same number of peers, and the average response 
time is reduced by around 80%.  

The rest of the paper is organized as follows. Section II 
discusses related work. Section III presents the location-
aware topology matching (LTM) scheme. Section IV de-
scribes our simulation methodology. Performance evaluation 
of the LTM is presented in Section V, and we conclude the 
work in Section VI.   

II. RELATED WORK 
Many efforts have been made to avoid the large volume 

of unnecessary traffic incurred by the flooding-based search 
in decentralized unstructured P2P systems. In general, three 
types of approaches have been proposed to improve search 
efficiency in unstructured P2P systems: forwarding-based, 
cache-based, and overlay optimization. The three different 
kinds of approaches can be used together to complement each 
other. 

In forwarding-based approaches, instead of relaying the 
query messages to all its logical neighbors except the incom-
ing peer, a peer selects a subset of its neighbors to relay the 
query. In Directed BFS proposed in [37], each peer maintains 
statistic information based on some metrics, such as the num-
ber of results received from neighbors from previous queries 
or the latency of the connection with that neighbor. A peer 
selects a subset of the neighbors, such as the neighbors that 
have returned the largest number of results from previous 
queries, or the neighbors that have low latency, to send its 
query. A k-walker query algorithm is proposed in [18], in 
which a query is sent to k different walkers (relay neighbors) 
from the source peer. For a peer in each walker, it just ran-
domly selects one neighbor to relay the query. For each 
walker, the query processing is done sequentially. A hybrid 
periodical flooding (HPF) approach proposed in [39] im-
proves the search efficiency by selecting forwarding 
neighbors based on multiple metrics and addressing the par-
tial coverage problem to balance the search cost and response 
time. 

The second approach is cache-based including data index 
caching and content caching. Centralized P2P systems pro-
vide centralized index servers to keep indices of shared files 
of all peers. KaZaA utilizes cooperative superpeers, each of 
which is an index server of a subset of peers. Some systems 

distribute the function of keeping indices to all peers [20]. In 
Local Indices policy [37], each peer maintains an index of 
files available in the nodes within given hops of itself. When 
a peer receives a query, it can process the query on behalf of 
all nodes within the given hops of itself. Having observed the 
locality of queries, the authors in [19, 32] further propose that 
each peer cache query strings and results that flow through it. 
Three different strategies to replicate data (file content or 
query responses) on multiple peers have been evaluated in 
[14]. The three strategies are different on the ratio of alloca-
tions according to the ratio of query rates. Transparent query 
caching [22] is proposed to cache query hits at a gateway of 
an organization based on an observation of query locality in 
peers within the gateway. Caching file contents has also been 
studied. For example, an ideal cache (infinite capacity and no 
expiration) simulator [29] is built for KaZaA P2P traffic to 
cache file contents, which has shown that caching would 
have a large effect on a wide-scale P2P system on reducing 
traffic volume and bandwidth demands. 

The third approach is based on overlay topology optimi-
zation that is closely related to what we are presenting in this 
paper. Here we briefly introduce three types of solutions and 
their comparisons with our approach. End system multicast, 
Narada, is proposed in [13], which first constructs a rich con-
nected graph on which to further construct shortest path 
spanning trees. Each tree rooted at the corresponding source 
using well-known routing algorithms. This approach intro-
duces large overhead of forming the graph and trees in a 
large scope, and does not consider the dynamic joining and 
leaving characteristics of peers. The overhead of Narada is 
proportional to the multicast group size. Our proposed LTM 
is easy to implement and adaptive to the dynamic nature of 
P2P systems with the overhead that is only proportional to 
the square of the average number of neighbors. Researchers 
have also considered to cluster close peers based on their IP 
addresses (e.g., [17, 21]). We believe there are two limita-
tions for this approach. First, the mapping accuracy is not 
guaranteed by this approach. Second, this approach may af-
fect the searching scope in P2P networks. In contrast, our 
technique is measurement based and can accurately and dy-
namically connect the physically closer peers, and disconnect 
physically distant peers. Furthermore, our scheme does not 
shrink the search scope. Recently, researchers in [36] have 
proposed to measure the latency between each peer to multi-
ple stable Internet servers called “landmarks”. The measured 
latency is used to determine the distance between peers. This 
measurement is conducted in a global P2P domain. In con-
trast, our measurement is conducted in many small regions, 
significantly reducing the network traffic with high accuracy. 
Gia [12] introduced a topology adaptation algorithm to en-
sure that high capacity nodes are indeed the ones with high 
degree and low capacity nodes are within short reach of high 
capacity nodes. It addresses a different matching problem in 
overlay networks, but does not address the topology mis-
matching problem between the overlay and physical net-
works. 
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Figure 1.  An example of P2P overlay 
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Figure 2.  Unnecessary traffic on logical link A2A3 and B1B3 

III. LOCATION-AWARE TOPOLOGY MATCHING  
In a P2P system, all participating peers form a P2P network 
over a physical network. A P2P network is an abstract, logi-
cal network called an overlay network. Maintaining and 
searching operations of a Gnutella peer are specifically de-
scribed in [4]. When a new peer wants to join a P2P network, 
a bootstrapping node provides the IP addresses of a list of 
existing peers in the P2P network. The new peer then tries to 
connect with these peers. If some attempts succeed, the con-
nected peers will be the new peer's neighbors. Once this peer 
connects into a P2P network, the new peer will periodically 
ping the network connections and obtain the IP addresses of 
some other peers in the network. These IP addresses are 
cached by this new peer. When a peer leaves the P2P network 
and then wants to join the P2P network again (no longer the 
first time), the peer will try to connect to the peers whose IP 
addresses have already been cached. The mechanism that a 
peer joins a P2P network, the fact of a peer randomly joining 
and leaving, and the nature of flooding search make an inef-
ficient mismatched overlay network and cause large amount 
of unnecessary traffic. In this section, we first use examples 
to explain the unnecessary traffic and the mismatching prob-
lem. We then describe our proposed LTM technique in detail.  

 

 

Figure 3.  Topology mismatching problem 

A. Unnecessary Traffic 
Figure 1 shows an example of a P2P overlay topology 

where solid lines denote overlay connections among logical 
P2P neighbors. Consider the case when node S sends a query. 
A solid arrow represents a delivery of the query message 
along one logical connection. The query is relayed by many 
peers, which incurs a lot of unnecessary traffic. Figure 2 
shows two subsets of the P2P overlay in Figure 1. In the left 
of Figure 2, after A1 forwards the query to A2 and A3, if none 
of A2 or A3 knows the other one will receive the same query 
from A1, they will forward the query to each other. The pair 
of transmission between A2 and A3 is unnecessary. Similarly, 
in the right of Figure 2, B3 may receive the same query mes-
sage twice, and depending on the delay of the connections, B3 
will forward the message to B1 if it receives B4’s message 
earlier than the same message from B1. In these cases, it is 
clear that the search scope of the query from node S will not 
shrink without logical connections of A2A3 and B1B3. 

B. Topology Mismatching 
Studies in [25] have shown that only 2 to 5 percent of 

Gnutella connections link peers within a single autonomous 
system (AS). But more than 40 percent of all Gnutella peers 
are located within the top 10 ASes. This means that most 
Gnutella-generated traffic crosses AS borders so as to in-
crease topology mismatching costs. The same message can 
traverse the same physical link multiple times, causing large 
amount of unnecessary traffic. 

As we have discussed, the stochastic peer connection and 
peers randomly joining and leaving a P2P network can cause 
topology mismatching between the P2P logical overlay net-
work and the physical underlying network. For example, 
Figure 3(a) is another subset of the P2P system of Figure 1. 
Figures 3(a) and 3(b) are two overlay topologies on top of the 
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TABLE 1: TTL2-DETECTOR MESSAGE BODY 

 Source IP Address Source Timestamp 
Byte offset 0                           3 4                            7 

 
 Source IP Address Source Timestamp TTL1 IP Address TTL1 Timestamp 
Byte offset 0                           3 4                            7 8                         11  12                           15 
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Figure 4.  Peer P receives d(i, S, v) multiple times 

underlying physical topology shown in Figure 3(c). Suppose 
C1 and C3 are in the same autonomous system (AS), while C2 
and C4 are in another AS. We assume that the physical link 
delay between C1 and C4 is much longer than all of the other 
links in Figure 3(c). Clearly, in the inefficient overlay of Fig-
ure 3(a), the query message from source S will traverse the 
longest link C1C4 4 times, which is a scenario of topology 
mismatching. If we can construct an efficient overlay shown 
in Figure 3(b), the message needs to traverse all the physical 
links in Figure 3(c) only once. 

C. Three Main Operations of LTM 
Optimizing inefficient overlay topologies can fundamen-

tally improve P2P search efficiency. If the system can detect 
and disconnect the low productive logical connections such 
as A2A3 and B1B3 shown in Figure 2, and switch the connec-
tions of C1C2, C2C3 and C3C4 shown in Figure 3(a) to C3C1, 
C1C4 and C4C2 shown in Figure 3(b), the total network traffic 
could be significantly reduced without shrinking the search 
scope of queries. This is the basic principle of our proposed 
location-aware topology matching technique. Three opera-
tions are defined in LTM: TTL2 detector flooding, low pro-
ductive connection cutting, and source peer probing. 

1) TTL2-detector flooding 
Based on Gnutella 0.6 P2P protocol [4], we design a new 

message type called TTL2-detector. In addition to the 
Gnutella’s unified 23-byte header for all message types, a 
TTL2-detector message has a message body in two formats 
as shown in Table 1. The short format is used in the source 
peer, which contains the source peer’s IP address and the 
timestamp to flood the detector. The long format is used in a 
one-hop peer that is a direct neighbor of the source peer, 
which includes four fields: Source IP Address, Source Time-

stamp, TTL1 IP Address, TTL1 Timestamp. The first two 
fields contain the source IP address and the source timestamp 
obtained from the source peer. The last two fields are the IP 
address of the source peer’s direct neighbor who forwards the 
detector, and the timestamp to forward it. In the message 
header, the initial TTL value is 2. The payload type of the 
detector can be defined as 0x82. 

Each peer floods a TTL2-detector periodically. We use 
d(i, S, v) to denote the TTL2-detector who has the message 
ID of i with TTL value of v, and is initiated by S. We use 
N(S) to denote the set of direct logical neighbors of S, and use 
N2(S) to denote the set of peers being two hops away from S. 
A TTL2-detector can only reach peers in N(S) and N2(S). We 
use network delay between two nodes as a metric for measur-
ing the cost between nodes. The clocks in all peers can be 
synchronized by current techniques in an acceptable accu-
racy1. By using the TTL2-detector message, a peer can com-
pute the cost of the paths to a source peer. As an example in 
Figure 4(a), when peer P receives a d(i, S, 1), it can calculate 
the cost of link SP from Source Timestamp and the time P 
receives the d(i, S, 1) from S. When P receives a d(i, S, 0), it 
can calculate the cost of link SN1 from TTL1 Timestamp and 
Source Timestamp, and N1P from TTL1 Timestamp and the 
time P receives the d(i, S, 0) from N1. As we can see in an 
inefficient overlay topology, the peers in set N2(S) may re-
ceive d(i, S, v) more than once, such as peer P in Figure 4(a)-
(c). If a peer receives d(i, S, v) multiple times, it will conduct 
the operations in the second step of LTM, low productive 
connection cutting. 

2) Low productive connection cutting 
There are three cases for any peer P who receives d(i, S, 

v) multiple times. 

Case 1: P receives both d(i, S, 1) and d(i, S, 0) as shown 
in Figure 4(a). In this case, d(i, S, 1) comes from path SP, 
while d(i, S, 0) comes from SN1P. The costs of SP, SN1, and 
N1P can be calculated from the timestamps recorded in d(i, S, 
0) and d(i, S, 1). If SP or N1P has the largest cost among the 
three connections, P will put this connection into its will-cut 
list that is a list of connections to be cut later. If SN1 has the 
largest cost, P will do nothing. Note that LTM is fully dis-
tributed and all peers do the same LTM operations. In the 
case of SN1 having the largest cost, N1 will put this connec-
tion into N1’s will-cut list. A peer will not send or forward 
queries to connections in its will-cut list, but these connec-

                                                           
1 Current implementation of NTP version 4.1.1 in public domain can reach 
the synchronization accuracy down to 7.5 milliseconds [7]. Another ap-
proach is to use distance to measure the communication cost, such as the 
number of hops weighted by individual channel bandwidth. 

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004



 

tions have not been cut in order for query responses to be 
delivered to the source peer along the inverse search path.  

Case 2: P receives multiple d(i, S, 0)s from different 
paths as shown in Figure 4(b). In LTM, P randomly takes 
two of the paths, such as SN1P and SN2P in Figure 4(b), to 
process at each time. Other paths, if any, will be handled in 
the next round of optimization. Thus, one important factor to 
affect the performance of LTM is the frequency for each peer 
to issue TTL2-detector messages. Our simulation results in 
Section V will show that the optimal LTM frequency is de-
termined by the average peer lifetime and query frequency. 
Peer P can calculate the costs of SN1, SN2, N1P and N2P. If 
N1P or N2P has the largest cost, P will put it into its will-cut 
list. If SN1 or SN2 has the largest cost, P will do nothing. As 
we have discussed above, SN1 or SN2 having the largest cost 
will be cut by one of the other three nodes. 

Case 3: P receives one d(i, S, 1) and multiple d(i, S, 0)s as  
shown in Figure 4(c). In this case, P will process the path 
receiving d(i, S, 1) and one path randomly selected from the 
multiple paths of d(i, S, 0)s forming a scenario of Case 1.  

A connection in a will-cut list will be disconnected when 
it has been in the list for a certain time period. Our simulation 
results in Section V will show that a period of 50 seconds is 
optimal in a system with the average number of neighbors of 
6, peer average lifetime of 10 minutes, and query frequency 
of 0.3 queries per peer per minute. If a connection is cut by P, 
the IP address of the other node in this connection and the 
cost of the connection will be recorded in P’s cut list. The cut 
list in a peer records the information of the connections dis-
connected by this peer and is designed to be used when the 
peer attempts to make a new connection so that the connec-
tions in the cut list will not be established again. 

3) Source peer probing 
For a peer P who receives only one d(i, S, 0) during a cer-

tain time period (e.g., 10 seconds), and ))()(( 2 SNSNP −∈ , 
it will try to obtain the cost of PS by checking its cut list first. 
If S is not in the list, P will probe the distance to S (see Figure 
5). After obtain the cost of PS, P will compare this cost with 
the costs of SN1 and N1P. If PS has the largest cost, P will not 
keep this connection. Otherwise, this connection will be cre-
ated. In the Internet, the cost of SP and the cost of PS may 
not be the same. We use the cost of PS to estimate the cost of 
SP. 

Now let’s look back the inefficient overlay topology 
shown in Figure 3(a). Figures 6(a)-(f) illustrate the process 
that LTM optimizes the overlay by using three operations 
discussed above. 

D. Traffic Overhead of LTM 
The simplicity of blind flooding makes it very popular in 

practice. This mechanism relays a query message to all its 
logical neighbors, except the incoming peer. For each query, 
each peer records the neighbors that relay the query to it. 
Therefore, in the worst case, the same query message can be 
sent on each logical link at most twice as illustrated in Figure  

P

S

N1?

  

Figure 5.  Source peer probing 

(a) (b)

C3

C2C1

C4

C3

C2C1

C4

probing

C3

C2C1

C4

X

cutting

C3

C2C1

C4

(c)

probing

C3

C2C1

C4X

(d)

cutting

C3

C2C1

C4

X

(e)

probing

(f)

cutting

  

Figure 6.  An example of LTM 

1. For an overlay network with n peers, we use cn to denote 
the average number of neighbors, and use ce to denote the 
average cost of the logical links. The total traffic caused by a 
query is less than or equal to n cn ce. In a typical P2P system, 
the value of n (more than millions) is much greater than cn  
(less than tens) [31], so we can view both cn and ce as con-
stant numbers. Thus, in the flooding-based search, the traffic 
incurred by one query from an arbitrary peer in a P2P net-
work is O(n). As observed in [32], each peer issues 0.3 que-
ries per minute in average. Thus, the per minute traffic in-
curred by a P2P network with n peers is O(n2).  

Recall that each d(i, S, v) has a TTL value of 2 in a source 
peer. So the traffic for one time LTM optimization in all 
peers is at most 2ncn

2ce. If each peer conducts LTM k times 
per minute, the total traffic is 2kncn

2ce. Our simulation results 
will show that the best value for k is 2 or 3. Thus, the per 
minute traffic overhead incurred by LTM to the P2P network 
is O(n). 

Compared with the query traffic savings, the traffic over-
head from LTM is trivial, which will be quantitatively shown 
in Section V.B. 
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One question is why we don’t use TTLj-detector with a 
TTL of j>2 in a source peer so that cycles with more than 4 
links can be detected and broken. There are two reasons for 
not doing so. First, if j>2, the traffic caused by detector flood-
ing will be increased significantly. Second, if the most ex-
pensive connection in a cycle is cut and its cost is not sub-
stantially larger than the costs of other links in the cycle, a 
query initiated from any of the two end peers in the broken 
cycle will need to traverse a path much more expensive than 
the cost on the cut connection to reach another end peer.  

IV. SIMULATION METHODOLOGY 
We describe the three performance metrics we use in our 

simulations, our simulation setup, and parameter settings. 

A. Performance Metrics 
A well-designed search mechanism should seek to opti-

mize both efficiency and Quality of Service (QoS). Effi-
ciency focuses on better utilizing resources, such as band-
width and processing power, while QoS focuses on user-
perceived qualities, such as number of returned results and 
response time. In unstructured P2P systems, the QoS of a 
search mechanism generally depends on the number of peers 
being explored (queried), response time, and traffic overhead. 
If more peers can be queried by a certain query, it is more 
likely that the requested object can be found. So we use three 
performance metrics: average traffic cost versus search 
scope, average neighbor distance, and query response time. 

Traffic cost is one of the parameters seriously concerned 
by network administrators. Heavy network traffic limits the 
scalability of P2P networks [26] and is also a reason why a 
network administrator may prohibit P2P applications. We 
define the traffic cost as network resource used in an infor-
mation search process of P2P systems, which is a function of 
consumed network bandwidth and other related expenses. 

Search scope is defined as the number of peers that que-
ries have reached in an information search process. Thus, 
with the same traffic cost, we aim to maximize the search 
scope; while with the same search scope, we aim to minimize 
the traffic cost. 

Average neighbor distance (D) is used to evaluate the op-
timization results of a logical topology. Let Di be the average 
delay between the source peer i and all its logical neighbors. 
The value D is defined as the average of all Di’s (i.e., all 
peers in the P2P network). Minimizing average neighbor 
distance implies a better matching with the underlying physi-
cal network. 

Response time of a query is one of the parameters con-
cerned by P2P users. We define response time of a query as 
the time period from when the query is issued until when the 
source peer received a response result from the first re-
sponder. 

B. Simulation Setup 
To evaluate effectiveness of LTM, we first generate net-

work topologies. Based on generated networks, we simulate 
P2P flooding search, host joining/leaving behavior, LTM, 
and index caching. 

1) Topology generation 
Two types of topologies, physical topology and logical 

topology, are generated in our simulation. The physical to-
pology should represent the real topology with Internet char-
acteristics. The logical topology represents the overlay P2P 
topology built on top of the physical topology. All P2P nodes 
are in a subset of nodes in the physical topology. The com-
munication cost between two logical neighbors is calculated 
based on the physical shortest path between this pair of 
nodes. To simulate the performance of different search 
mechanisms in a more realistic environment, the two topolo-
gies must accurately reflect the topological properties of real 
networks in each layer. 

Previous studies have shown that both large scale Internet 
physical topologies [34] and P2P overlay topologies [28] 
follow the small world and power law properties. Power law 
describes the node degree while the small world describes 
characteristics of path length and clustering coefficient [11]. 
The study in [28] found that the topologies generated using 
the AS Model have the properties of the small world and 
power law. BRITE [1] is a topology generation tool that pro-
vides the option to generate topologies based on the AS 
Model. Using BRITE, we generate 5 physical topologies 
each with 22,000 nodes. The logical topologies are generated 
with the number of peers (nodes) ranging from 2,000 to 
8,000.  The average number of neighbors of each node is 
ranging from 4 to 10. 

We simulate LTM for all the generated logical topologies 
on top of each of the 5 generated physical topologies. We 
also simulate this approach in a real-world P2P topology 
(based on DSS Clip2 trace). We obtained consistent results 
on the real-world topology and the generated topologies. In 
order to show a thorough performance discussion, we only 
present our performance on various generated topologies.  

2) Flooding search simulation  
Our simulation is based on observed distributions. Con-

tent popularity of a publisher follows Zipf-like distribution 
(aka Power Law) [8, 10], where the relative probability of a 
request for the ith most popular page is proportional to 1/iα, 
with α typically taking on some value less than unity. The 
observed value of the exponent varies from trace to trace. 
The request distribution does not follow the strict Zipf's law 
(for which α=1), but instead does follow a more general Zipf-
like distribution. Query word frequency does not follow a 
Zipf distribution [16, 35]. User’s query lexicon size does not 
follow a Zipf distribution [35] but with a heavy tail. Both the 
overall traffic and the traffic from 10% popular nodes are 
heavy-tailed in terms of the host connectivity, traffic volume, 
and average bandwidth of the hosts [31]. Studies in [30] have 
suggested a log-quadratic distribution (10-α2) for stored file 
locality and transfer file locality. The time length that nodes 
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remain available follows a log-quadratic curve [30], which 
could be approximated by two Zipf distributions. 

In our simulation, we simulate flooding search used in 
Gnutella network by conducting the Breath First Search algo-
rithm from a specific node. A search operation is simulated 
by randomly choosing a peer as the sender, and a keyword 
according to Zipf distribution. In our first simulation, 
100,000 search operations are simulated.  

3) A dynamic P2P environment  
P2P networks are highly dynamic with peers joining and 

leaving frequently. The observations in [31] have shown that 
over 20% of the logical connections in a P2P last 1 minute or 
less, and around 60% of the IP addresses keep active in Fast-
Track for no more  than 10 minutes each time after they join 
the system. The measurement reported in [28] indicated that 
the median up-time for a node in Gnutella and Napster is 60 
minutes. Studies in [9] have argued that measurement accord-
ing to host IP addresses underestimates peer-to-peer host 
availability and have shown that each host joins and leaves a 
P2P system 6.4 times a day on average, and over 20% of the 
hosts arrive and depart every day. Although the numbers they 
provided are different to some extent, they share the same 
point that the peer population is quite transient. We simulate 
the joining and leaving behavior of peers via turning on/off 
logical peers. In our simulation, every node issues 0.3 queries 
per minute, which is calculated from the observation data 
shown in [32], i.e., 12,805 unique IP addresses issued 
1,146,782 queries in 5 hours. When a peer joins, a lifetime in 
seconds will be assigned to the peer. The lifetime of a peer is 
defined as the time period the peer will stay in the system. 
The lifetime is generated according to the distribution ob-
served in [28]. The mean of the distribution is chosen to be 
10 minutes [31]. The value of the variance is chosen to be 
half of the value of the mean. The lifetime will be decreased 
by one after passing each second. A peer will leave in next 
second when its lifetime reaches zero. During each second, 
there are a number of peers leaving the system. We then ran-
domly pick up (turn on) the same number of peers from the 
physical network to join the overlay. 

4) Combining LTM with index cache 
To investigate whether LTM could be employed together 

with other approaches, we also simulate a strategy of combin-
ing LTM with a response index caching scheme, in which 
query responses are cached in passing peers along the return-
ing path. In our simulation, each peer keeps a local cache and 
a response index cache. The size of a response index cache is 
bounded by 200 items. The average number of neighbors is 6. 

V. PERFORMANCE EVALUATION 
We present our simulation results in this section. Our 

simulation results on overlay networks of 2,000 nodes, 3,000 
nodes, 5,000 nodes, and 8,000 nodes on top of 22,000-nodes 

Internet-like physical networks are consistent. We only pre-
sent the results based on the overlay network with 8,000 
nodes. 

A. Effectiveness of LTM in Static Environment 
In our first simulation, we study the effectiveness of LTM 

in a static P2P environment where the peers do not join and 
leave frequently. This will show that without changing the 
overlay topology, how many LTM optimization steps are 
required to reach a better topology matching. 

1) Traffic cost vs. search scope 
The goal of LTM scheme is to reduce traffic cost as much 

as possible while retaining the same search scope. Figure 7 
compares the traffic cost incurred by the original Gnutella-
like system and by the system after one-step LTM optimiza-
tion. One-step means every peer makes LTM optimization 
only once. 

In Figure 7, the curve of ‘cn-neigh’ shows the average 
traffic cost caused by a query to cover the search scope in x-
axis, where in the system the average number of logical 
neighbors is cn. The dashed curves represent performance 
results without using LTM, while solid curves represent the 
results with LTM optimizations. Figure 7 shows that to cover 
the same search scope, one-step LTM reduces the traffic cost 
significantly, and the reduction rate increases as the search 
scope increases. In other words, with a given traffic cost, 
LTM will increase its search scope. Figure 8 shows that the 
traffic cost decreases when LTM is conducted multiple times, 
where the search scope is all 8000 peers. We can see that the 
traffic cost reduction reaches to a threshold after the second 
or third step LTM optimization. LTM can be convergent as 
fast as in 2-3 steps. 

2) Average neighbor distance and response time 
Average neighbor distance reflects effectiveness of LTM 

on topology matching. Figure 9 shows the average neighbor 
distance versus LTM optimization steps. Compared with the 
original Gnutella-like network without LTM scheme (0 opti-
mization steps), one-step LTM optimization reduces average 
neighbor distance by about 55%, and more steps of LTM 
may cut average neighbor distance to around 65%. 

Short query response time is always desirable in P2P sys-
tems. The simulation results in Figure 10 show that LTM can 
effectively shorten the query response time by about 62%. 
The tradeoff between query traffic cost and response time has 
been discussed in [38]. P2P systems with a large number of 
average connections offer a faster search speed while increas-
ing traffic. One of the strengths of LTM scheme is that it re-
duces both query traffic cost and response time without de-
creasing the query success rate.  
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B. LTM in Dynamic Environment 
We further evaluate the effectiveness of LTM in dynamic 

P2P systems and explore the best frequency for each peer to 
conduct LTM. We first discuss the performance impact of the 
will-cut list and the cut list. The average number of logical 
neighbors we use is 6. 

1) Effectiveness of will-cut list (W-C) 
From our simulation results in dynamic environments, we 

found that with the same search scope the query success rate in 
dynamic environments is decreased by about 5% compared 
with the static environment, as shown in Figure 11 (compare 
curves of static Gnutella-like and dynamic Gnutella-like). One 
extreme case is when the search scope is 100%, which means 
that each query can reach all peers and we guarantee the query 
result is available in at least one of the peers. The search suc-
cess rate is expected to be 100% in this case, but it is only 
95%. The reason of the 5% loss in query success rate is that 
the query responses cannot be returned due to peers’ dynamic 
leaving behavior. We call this phenomena response loss prob-
lem.  

If we don’t use the will-cut list in LTM, a connection will 
be cut immediately when it is found to be low productive, 
which will cause a very serious response loss problem because 
many responses may not be returned due to the cut connec-
tions. The curve of LTM without W-C in Figure 11 shows that 
the query success rate is significantly decreased by 30-40% 
without using the will-cut list. The LTM is conducted once 
every minute in this simulation. Retaining query success rate is 

the reason we design the will-cut list, each of which can hold 
20 connections in our simulation. The up to 20 low productive 
connections will not be used to forward queries, but only used 
to return query results. The lifetime of the connections in a 
will-cut list determines the query success rate. In Figure 11, a 
curve of LTM with W-C-n means the lifetime of a will-cut con-
nection is n seconds.  We can see that the query success rate 
can be retained if the connections can be kept in the will-cut 
list for 50 seconds.  

2) Effectiveness of cut list 
If we don’t use the cut list, a connection that has just been 

cut may be established again. Thus the LTM optimization rate 
will be limited. Figure 12 compares the overhead incurred by 
LTM with and without the use of the cut list. The fluctuations 
of the curves represent the dynamic nature of the network as 
time goes. The curve of LTM-k means each peer conducts 
LTM for k times per minute. We can see that the use of the cut 
list reduces traffic overhead by about 50% compared with the 
case without using the cut list. 

3) Effectiveness and frequency of LTM 
We use the will-cut list and the cut list in this part of simu-

lation. Compared with a Gnutella-like system, Figures 13 and 
14 show the effectiveness of LTM on reducing average traffic 
cost and query response time. Since LTM adds some traffic 
overhead due to the TTL2 detector flooding, there exists an 
optimal frequency for each peer to conduct LTM independ-
ently. We simulate LTM in different frequencies ranging from 
1/4 to 4 times every minute. We consider a frequency to be 
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Figure 7.  Traffic cost vs. search scope  Figure 8.  Traffic reduction vs. optimization step 
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Figure 9.  Average neighbor distance vs. optimization step Figure 10.  Average response time vs. optimization step 
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optimal if the next higher frequency does not increase the op-
timization by more than 3% compared with the current fre-
quency. Results in Figures 13 and 14 show that under the as-
sumption that peer average lifetime in a P2P system is 10 min-
utes, and 0.3 queries are issued by each peer per minute, the 
optimal frequency for every peer to conduct LTM is twice per 
minute. With this frequency, about 75% reduction on traffic 
cost and 65% reduction on response time can be achieved. 
(average lifetime and query frequency) in our simulation. Fig-
ure 15 shows that LTM can be conducted less frequently if 
peer average lifetime is longer. Figure 16 shows that LTM 
should be conducted more frequently if more queries are is-
sued. Both figures show that a larger average number of 
neighbors requires a higher LTM frequency.  

C. Combining LTM and Query Index Caching 
In this part, we evaluate a strategy of combining LTM with 

response index caching scheme. We compare the traffic cost 
and response time in a Gnutella-like system without any opti-
mization, with query index caching only, with one-step LTM 
optimization only, and with one-step LTM optimization plus 
query index caching. Results in Figures 17 and 18 show that 
by combining LTM and query index caching the traffic cost is 
reduced by about 10 times without shrinking the search scope, 
and the average query response time is reduced by about 7 
times.  

VI. CONCLUSION AND FUTURE WORK 
We have evaluated our proposed location-aware topology 

matching, LTM, in both static and dynamic environments. 

Simulations in static P2P environments show that the signifi-
cant performance benefit of LTM is consistent with various 
network sizes and average numbers of neighbors. In simulation 
studies of dynamic environments, we have investigated the 
optimal LTM frequency in a more realistic P2P environment. 
The results show that LTM achieves about 75% reduction on 
traffic cost and about 65% reduction on query response time. 
The impacts of peer average lifetime and query frequency on 
optimal LTM frequency have also been studied. We also show 
that our design of the will-cut list and the cut list can improve 
the performance of LTM. The ability that LTM can comple-
ment other advanced search approaches has been showed by a 
combination strategy of LTM with query index caching. 

In LTM, each peer is aware of the location of other peers 
within a distance of two hops. The major advantage of LTM is 
that it is not only able to timely match the logical topology 
with the physical topology to significantly improve the search 
efficiency; it also guarantees to retain the search scope. This 
contribution makes LTM truly unique and highly effective. In 
addition, LTM is completely decentralized and scalable. 

Future work on LTM will lead in two directions. One is to 
investigate the possibility of integrating LTM with other exist-
ing advanced search approaches to further improve search per-
formance. The other one is to deploy and test an LTM proto-
type based on current version of Gnutella open source code in 
PlanetLab [23], an open, shared testbed for developing wide 
area network services. Note that the public domain Network 
Time Protocol (NTP) [7] can be embedded in our LTM to ob-
tain an accurate timestamp measurement. 
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Figure 11.  Effectiveness of will-cut list Figure 12.  Effectiveness of cut list 
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Figure 17.  Traffic cost of four schemes Figure 18.  Average response time of four schemes 
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