
Location-Aware Topology Matching in P2P Systems

Yunhao Liu, Xiaomei Liu, Li Xiao
Dept. of Computer Science and Engineering

Michigan State University
East Lansing, MI 48824

{liuyunha, liuxiaom, lxiao}@cse.msu.edu

Lionel M. Ni
Dept. of Computer Science

Hong Kong Univ. of Science and Technology
Kowloon, Hong Kong

ni@cs.ust.hk

Xiaodong Zhang
Dept. of Computer Science

College of William and Mary
Williamsburg, VA 23187

zhang@cs.wm.edu

Abstract—Peer-to-Peer (P2P) computing has emerged as a
popular model aiming at further utilizing Internet information
and resources, complementing the available client-server ser-
vices. However, the mechanism of peers randomly choosing
logical neighbors without any knowledge about underlying
physical topology can cause a serious topology mismatching
between the P2P overlay network and the physical underlying
network. The topology mismatching problem brings a great
stress in the Internet infrastructure and greatly limits the per-
formance gain from various search or routing techniques.
Meanwhile, due to the inefficient overlay topology, the flood-
ing-based search mechanisms cause a large volume of unneces-
sary traffic. Aiming at alleviating the mismatching problem
and reducing the unnecessary traffic, we propose a location-
aware topology matching (LTM) technique, an algorithm of
building an efficient overlay by disconnecting low productive
connections and choosing physically closer nodes as logical
neighbors while still retaining the search scope and reducing
response time for queries. LTM is scalable and completely dis-
tributed in the sense that it does not require any global knowl-
edge of the whole overlay network when each node is optimiz-
ing the organization of its logical neighbors. The effectiveness
of LTM is demonstrated through simulation studies.

Keywords-peer-to-peer; topology mismatching; blind flooding;
location-aware topology matching; search efficiency

I. INTRODUCTION
There are mainly three different architectures for P2P sys-

tems: centralized, decentralized structured, and decentralized
unstructured [18]. In centralized model, such as Napster [6],
central index servers are used to maintain a directory of
shared files stored on peers so that a peer can search for the
whereabouts of a desired content from an index server. How-
ever, this architecture creates a single point of failure, and its
centralized nature of the service also makes systems vulner-
able to denial of service attacks [15]. Decentralized P2P sys-
tems have the advantages of eliminating reliance on central
servers and providing greater freedom for participating users
to exchange information and services directly between each
other. In decentralized structured models, such as Chord [33],
Pastry [27], Tapestry [38], and CAN [24], the shared data
placement and topology characteristics of the network are
tightly controlled based on distributed hash functions.

This paper focuses on decentralized unstructured P2P sys-
tems, such as Gnutella [3] and KaZaA [5]. File placement is
random in these systems, which has no correlation with the

network topology [37]. Unstructured P2P systems are most
commonly used in today's Internet. The most popular search
mechanism in use is to blindly “flood” a query to the network
among peers (such as in Gnutella) or among supernodes
(such as in KaZaA). A query is broadcast and rebroadcast
until a certain criterion is satisfied. If a peer receiving the
query can provide the requested object, a response message
will be sent back to the source peer along the inverse of the
query path. This mechanism ensures that the query will be
“flooded” to as many peers as possible within a short period
of time in a P2P overlay network. A query message will also
be dropped if the query message has visited the peer before.

Studies in [31] and [29] have shown that P2P traffic con-
tributes the largest portion of the Internet traffic based on
their measurements on some popular P2P systems, such as
FastTrack (including KaZaA and Grokster) [2], Gnutella, and
DirectConnect. Measurements in [25] have shown that even
95% of any two nodes are less than 7 hops away, the flood-
ing-based routing algorithm generates 330 TB/month in a
Gnutella network with only 50,000 nodes. A large portion of
the heavy P2P traffic caused by inefficient overlay topology
and the blind flooding is unnecessary, which makes the un-
structured P2P systems being far from scalable [26]. There
are three reasons for this problem. First, the mechanism of a
peer randomly choosing logical neighbors without any
knowledge about the underlying physical topology causes
topology mismatching between the P2P logical overlay net-
work and physical underlying network. Because of the mis-
match problem, the same message may traverse the same
physical link multiple times, causing a large amount of un-
necessary traffic. Second, a query may be flooded to multiple
paths that are merged to the same peer. In this case, only the
traffic along one of the paths is necessary. Finally, two
neighboring peers may forward the same query message to
each other before they receive the query message from each
other. Thus, the same query message may traverse the same
logical link twice.

Aiming at alleviating the mismatch problem, reducing the
unnecessary traffic, and addressing the limits of existing so-
lutions, we propose a location-aware topology matching
(LTM) scheme, in which each peer issues a detector in a
small region so that the peers receiving the detector can re-
cord relative delay information. Based on the delay informa-
tion, a receiver can detect and cut most of the inefficient and
redundant logical links, and add closer nodes as its direct
neighbors. Our simulation studies show that the total traffic

This work was partially supported by the US National Science Founda-
tion (NSF) under grant CCR-0098055, ACI-0129883, and ACI-0325760, by
Michigan State University IRGP Grant 41114, and by Hong Kong RGC
Grant HKUST6161/03E.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

and response time of the queries can be significantly reduced
by LTM without shrinking the search scope. We also show
that the overhead of issuing detectors is trivial compared with
the query cost savings.

Our proposed LTM can be used to complement other
search techniques, such as forwarding-based search mecha-
nisms [37] or cache-based schemes [14, 19, 20] that will be
discussed in Section II. In this paper, we will show this effec-
tiveness by a case study of combining LTM and response
index caching scheme, in which query responses are cached
in passing peers along the returning path. Our study shows
that only one tenth of original traffic cost is necessary to
cover the same number of peers, and the average response
time is reduced by around 80%.

The rest of the paper is organized as follows. Section II
discusses related work. Section III presents the location-
aware topology matching (LTM) scheme. Section IV de-
scribes our simulation methodology. Performance evaluation
of the LTM is presented in Section V, and we conclude the
work in Section VI.

II. RELATED WORK
Many efforts have been made to avoid the large volume

of unnecessary traffic incurred by the flooding-based search
in decentralized unstructured P2P systems. In general, three
types of approaches have been proposed to improve search
efficiency in unstructured P2P systems: forwarding-based,
cache-based, and overlay optimization. The three different
kinds of approaches can be used together to complement each
other.

In forwarding-based approaches, instead of relaying the
query messages to all its logical neighbors except the incom-
ing peer, a peer selects a subset of its neighbors to relay the
query. In Directed BFS proposed in [37], each peer maintains
statistic information based on some metrics, such as the num-
ber of results received from neighbors from previous queries
or the latency of the connection with that neighbor. A peer
selects a subset of the neighbors, such as the neighbors that
have returned the largest number of results from previous
queries, or the neighbors that have low latency, to send its
query. A k-walker query algorithm is proposed in [18], in
which a query is sent to k different walkers (relay neighbors)
from the source peer. For a peer in each walker, it just ran-
domly selects one neighbor to relay the query. For each
walker, the query processing is done sequentially. A hybrid
periodical flooding (HPF) approach proposed in [39] im-
proves the search efficiency by selecting forwarding
neighbors based on multiple metrics and addressing the par-
tial coverage problem to balance the search cost and response
time.

The second approach is cache-based including data index
caching and content caching. Centralized P2P systems pro-
vide centralized index servers to keep indices of shared files
of all peers. KaZaA utilizes cooperative superpeers, each of
which is an index server of a subset of peers. Some systems

distribute the function of keeping indices to all peers [20]. In
Local Indices policy [37], each peer maintains an index of
files available in the nodes within given hops of itself. When
a peer receives a query, it can process the query on behalf of
all nodes within the given hops of itself. Having observed the
locality of queries, the authors in [19, 32] further propose that
each peer cache query strings and results that flow through it.
Three different strategies to replicate data (file content or
query responses) on multiple peers have been evaluated in
[14]. The three strategies are different on the ratio of alloca-
tions according to the ratio of query rates. Transparent query
caching [22] is proposed to cache query hits at a gateway of
an organization based on an observation of query locality in
peers within the gateway. Caching file contents has also been
studied. For example, an ideal cache (infinite capacity and no
expiration) simulator [29] is built for KaZaA P2P traffic to
cache file contents, which has shown that caching would
have a large effect on a wide-scale P2P system on reducing
traffic volume and bandwidth demands.

The third approach is based on overlay topology optimi-
zation that is closely related to what we are presenting in this
paper. Here we briefly introduce three types of solutions and
their comparisons with our approach. End system multicast,
Narada, is proposed in [13], which first constructs a rich con-
nected graph on which to further construct shortest path
spanning trees. Each tree rooted at the corresponding source
using well-known routing algorithms. This approach intro-
duces large overhead of forming the graph and trees in a
large scope, and does not consider the dynamic joining and
leaving characteristics of peers. The overhead of Narada is
proportional to the multicast group size. Our proposed LTM
is easy to implement and adaptive to the dynamic nature of
P2P systems with the overhead that is only proportional to
the square of the average number of neighbors. Researchers
have also considered to cluster close peers based on their IP
addresses (e.g., [17, 21]). We believe there are two limita-
tions for this approach. First, the mapping accuracy is not
guaranteed by this approach. Second, this approach may af-
fect the searching scope in P2P networks. In contrast, our
technique is measurement based and can accurately and dy-
namically connect the physically closer peers, and disconnect
physically distant peers. Furthermore, our scheme does not
shrink the search scope. Recently, researchers in [36] have
proposed to measure the latency between each peer to multi-
ple stable Internet servers called “landmarks”. The measured
latency is used to determine the distance between peers. This
measurement is conducted in a global P2P domain. In con-
trast, our measurement is conducted in many small regions,
significantly reducing the network traffic with high accuracy.
Gia [12] introduced a topology adaptation algorithm to en-
sure that high capacity nodes are indeed the ones with high
degree and low capacity nodes are within short reach of high
capacity nodes. It addresses a different matching problem in
overlay networks, but does not address the topology mis-
matching problem between the overlay and physical net-
works.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

S

C3

C2C1

B2

A1

C4

B4B3

A2

A3

B1

Figure 1. An example of P2P overlay

A1 A2

A3 B2

B4B3

B1

Figure 2. Unnecessary traffic on logical link A2A3 and B1B3

III. LOCATION-AWARE TOPOLOGY MATCHING
In a P2P system, all participating peers form a P2P network
over a physical network. A P2P network is an abstract, logi-
cal network called an overlay network. Maintaining and
searching operations of a Gnutella peer are specifically de-
scribed in [4]. When a new peer wants to join a P2P network,
a bootstrapping node provides the IP addresses of a list of
existing peers in the P2P network. The new peer then tries to
connect with these peers. If some attempts succeed, the con-
nected peers will be the new peer's neighbors. Once this peer
connects into a P2P network, the new peer will periodically
ping the network connections and obtain the IP addresses of
some other peers in the network. These IP addresses are
cached by this new peer. When a peer leaves the P2P network
and then wants to join the P2P network again (no longer the
first time), the peer will try to connect to the peers whose IP
addresses have already been cached. The mechanism that a
peer joins a P2P network, the fact of a peer randomly joining
and leaving, and the nature of flooding search make an inef-
ficient mismatched overlay network and cause large amount
of unnecessary traffic. In this section, we first use examples
to explain the unnecessary traffic and the mismatching prob-
lem. We then describe our proposed LTM technique in detail.

Figure 3. Topology mismatching problem

A. Unnecessary Traffic
Figure 1 shows an example of a P2P overlay topology

where solid lines denote overlay connections among logical
P2P neighbors. Consider the case when node S sends a query.
A solid arrow represents a delivery of the query message
along one logical connection. The query is relayed by many
peers, which incurs a lot of unnecessary traffic. Figure 2
shows two subsets of the P2P overlay in Figure 1. In the left
of Figure 2, after A1 forwards the query to A2 and A3, if none
of A2 or A3 knows the other one will receive the same query
from A1, they will forward the query to each other. The pair
of transmission between A2 and A3 is unnecessary. Similarly,
in the right of Figure 2, B3 may receive the same query mes-
sage twice, and depending on the delay of the connections, B3
will forward the message to B1 if it receives B4’s message
earlier than the same message from B1. In these cases, it is
clear that the search scope of the query from node S will not
shrink without logical connections of A2A3 and B1B3.

B. Topology Mismatching
Studies in [25] have shown that only 2 to 5 percent of

Gnutella connections link peers within a single autonomous
system (AS). But more than 40 percent of all Gnutella peers
are located within the top 10 ASes. This means that most
Gnutella-generated traffic crosses AS borders so as to in-
crease topology mismatching costs. The same message can
traverse the same physical link multiple times, causing large
amount of unnecessary traffic.

As we have discussed, the stochastic peer connection and
peers randomly joining and leaving a P2P network can cause
topology mismatching between the P2P logical overlay net-
work and the physical underlying network. For example,
Figure 3(a) is another subset of the P2P system of Figure 1.
Figures 3(a) and 3(b) are two overlay topologies on top of the

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

TABLE 1: TTL2-DETECTOR MESSAGE BODY

 Source IP Address Source Timestamp
Byte offset 0 3 4 7

 Source IP Address Source Timestamp TTL1 IP Address TTL1 Timestamp
Byte offset 0 3 4 7 8 11 12 15

P

S

N1

N2

P

N1

S

N2

P

N1

S(a)

(b) (c)

Figure 4. Peer P receives d(i, S, v) multiple times

underlying physical topology shown in Figure 3(c). Suppose
C1 and C3 are in the same autonomous system (AS), while C2
and C4 are in another AS. We assume that the physical link
delay between C1 and C4 is much longer than all of the other
links in Figure 3(c). Clearly, in the inefficient overlay of Fig-
ure 3(a), the query message from source S will traverse the
longest link C1C4 4 times, which is a scenario of topology
mismatching. If we can construct an efficient overlay shown
in Figure 3(b), the message needs to traverse all the physical
links in Figure 3(c) only once.

C. Three Main Operations of LTM
Optimizing inefficient overlay topologies can fundamen-

tally improve P2P search efficiency. If the system can detect
and disconnect the low productive logical connections such
as A2A3 and B1B3 shown in Figure 2, and switch the connec-
tions of C1C2, C2C3 and C3C4 shown in Figure 3(a) to C3C1,
C1C4 and C4C2 shown in Figure 3(b), the total network traffic
could be significantly reduced without shrinking the search
scope of queries. This is the basic principle of our proposed
location-aware topology matching technique. Three opera-
tions are defined in LTM: TTL2 detector flooding, low pro-
ductive connection cutting, and source peer probing.

1) TTL2-detector flooding
Based on Gnutella 0.6 P2P protocol [4], we design a new

message type called TTL2-detector. In addition to the
Gnutella’s unified 23-byte header for all message types, a
TTL2-detector message has a message body in two formats
as shown in Table 1. The short format is used in the source
peer, which contains the source peer’s IP address and the
timestamp to flood the detector. The long format is used in a
one-hop peer that is a direct neighbor of the source peer,
which includes four fields: Source IP Address, Source Time-

stamp, TTL1 IP Address, TTL1 Timestamp. The first two
fields contain the source IP address and the source timestamp
obtained from the source peer. The last two fields are the IP
address of the source peer’s direct neighbor who forwards the
detector, and the timestamp to forward it. In the message
header, the initial TTL value is 2. The payload type of the
detector can be defined as 0x82.

Each peer floods a TTL2-detector periodically. We use
d(i, S, v) to denote the TTL2-detector who has the message
ID of i with TTL value of v, and is initiated by S. We use
N(S) to denote the set of direct logical neighbors of S, and use
N2(S) to denote the set of peers being two hops away from S.
A TTL2-detector can only reach peers in N(S) and N2(S). We
use network delay between two nodes as a metric for measur-
ing the cost between nodes. The clocks in all peers can be
synchronized by current techniques in an acceptable accu-
racy1. By using the TTL2-detector message, a peer can com-
pute the cost of the paths to a source peer. As an example in
Figure 4(a), when peer P receives a d(i, S, 1), it can calculate
the cost of link SP from Source Timestamp and the time P
receives the d(i, S, 1) from S. When P receives a d(i, S, 0), it
can calculate the cost of link SN1 from TTL1 Timestamp and
Source Timestamp, and N1P from TTL1 Timestamp and the
time P receives the d(i, S, 0) from N1. As we can see in an
inefficient overlay topology, the peers in set N2(S) may re-
ceive d(i, S, v) more than once, such as peer P in Figure 4(a)-
(c). If a peer receives d(i, S, v) multiple times, it will conduct
the operations in the second step of LTM, low productive
connection cutting.

2) Low productive connection cutting
There are three cases for any peer P who receives d(i, S,

v) multiple times.

Case 1: P receives both d(i, S, 1) and d(i, S, 0) as shown
in Figure 4(a). In this case, d(i, S, 1) comes from path SP,
while d(i, S, 0) comes from SN1P. The costs of SP, SN1, and
N1P can be calculated from the timestamps recorded in d(i, S,
0) and d(i, S, 1). If SP or N1P has the largest cost among the
three connections, P will put this connection into its will-cut
list that is a list of connections to be cut later. If SN1 has the
largest cost, P will do nothing. Note that LTM is fully dis-
tributed and all peers do the same LTM operations. In the
case of SN1 having the largest cost, N1 will put this connec-
tion into N1’s will-cut list. A peer will not send or forward
queries to connections in its will-cut list, but these connec-

1 Current implementation of NTP version 4.1.1 in public domain can reach
the synchronization accuracy down to 7.5 milliseconds [7]. Another ap-
proach is to use distance to measure the communication cost, such as the
number of hops weighted by individual channel bandwidth.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

tions have not been cut in order for query responses to be
delivered to the source peer along the inverse search path.

Case 2: P receives multiple d(i, S, 0)s from different
paths as shown in Figure 4(b). In LTM, P randomly takes
two of the paths, such as SN1P and SN2P in Figure 4(b), to
process at each time. Other paths, if any, will be handled in
the next round of optimization. Thus, one important factor to
affect the performance of LTM is the frequency for each peer
to issue TTL2-detector messages. Our simulation results in
Section V will show that the optimal LTM frequency is de-
termined by the average peer lifetime and query frequency.
Peer P can calculate the costs of SN1, SN2, N1P and N2P. If
N1P or N2P has the largest cost, P will put it into its will-cut
list. If SN1 or SN2 has the largest cost, P will do nothing. As
we have discussed above, SN1 or SN2 having the largest cost
will be cut by one of the other three nodes.

Case 3: P receives one d(i, S, 1) and multiple d(i, S, 0)s as
shown in Figure 4(c). In this case, P will process the path
receiving d(i, S, 1) and one path randomly selected from the
multiple paths of d(i, S, 0)s forming a scenario of Case 1.

A connection in a will-cut list will be disconnected when
it has been in the list for a certain time period. Our simulation
results in Section V will show that a period of 50 seconds is
optimal in a system with the average number of neighbors of
6, peer average lifetime of 10 minutes, and query frequency
of 0.3 queries per peer per minute. If a connection is cut by P,
the IP address of the other node in this connection and the
cost of the connection will be recorded in P’s cut list. The cut
list in a peer records the information of the connections dis-
connected by this peer and is designed to be used when the
peer attempts to make a new connection so that the connec-
tions in the cut list will not be established again.

3) Source peer probing
For a peer P who receives only one d(i, S, 0) during a cer-

tain time period (e.g., 10 seconds), and))()((2 SNSNP −∈ ,
it will try to obtain the cost of PS by checking its cut list first.
If S is not in the list, P will probe the distance to S (see Figure
5). After obtain the cost of PS, P will compare this cost with
the costs of SN1 and N1P. If PS has the largest cost, P will not
keep this connection. Otherwise, this connection will be cre-
ated. In the Internet, the cost of SP and the cost of PS may
not be the same. We use the cost of PS to estimate the cost of
SP.

Now let’s look back the inefficient overlay topology
shown in Figure 3(a). Figures 6(a)-(f) illustrate the process
that LTM optimizes the overlay by using three operations
discussed above.

D. Traffic Overhead of LTM
The simplicity of blind flooding makes it very popular in

practice. This mechanism relays a query message to all its
logical neighbors, except the incoming peer. For each query,
each peer records the neighbors that relay the query to it.
Therefore, in the worst case, the same query message can be
sent on each logical link at most twice as illustrated in Figure

P

S

N1?

Figure 5. Source peer probing

(a) (b)

C3

C2C1

C4

C3

C2C1

C4

probing

C3

C2C1

C4

X

cutting

C3

C2C1

C4

(c)

probing

C3

C2C1

C4X

(d)

cutting

C3

C2C1

C4

X

(e)

probing

(f)

cutting

Figure 6. An example of LTM

1. For an overlay network with n peers, we use cn to denote
the average number of neighbors, and use ce to denote the
average cost of the logical links. The total traffic caused by a
query is less than or equal to n cn ce. In a typical P2P system,
the value of n (more than millions) is much greater than cn
(less than tens) [31], so we can view both cn and ce as con-
stant numbers. Thus, in the flooding-based search, the traffic
incurred by one query from an arbitrary peer in a P2P net-
work is O(n). As observed in [32], each peer issues 0.3 que-
ries per minute in average. Thus, the per minute traffic in-
curred by a P2P network with n peers is O(n2).

Recall that each d(i, S, v) has a TTL value of 2 in a source
peer. So the traffic for one time LTM optimization in all
peers is at most 2ncn

2ce. If each peer conducts LTM k times
per minute, the total traffic is 2kncn

2ce. Our simulation results
will show that the best value for k is 2 or 3. Thus, the per
minute traffic overhead incurred by LTM to the P2P network
is O(n).

Compared with the query traffic savings, the traffic over-
head from LTM is trivial, which will be quantitatively shown
in Section V.B.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

One question is why we don’t use TTLj-detector with a
TTL of j>2 in a source peer so that cycles with more than 4
links can be detected and broken. There are two reasons for
not doing so. First, if j>2, the traffic caused by detector flood-
ing will be increased significantly. Second, if the most ex-
pensive connection in a cycle is cut and its cost is not sub-
stantially larger than the costs of other links in the cycle, a
query initiated from any of the two end peers in the broken
cycle will need to traverse a path much more expensive than
the cost on the cut connection to reach another end peer.

IV. SIMULATION METHODOLOGY
We describe the three performance metrics we use in our

simulations, our simulation setup, and parameter settings.

A. Performance Metrics
A well-designed search mechanism should seek to opti-

mize both efficiency and Quality of Service (QoS). Effi-
ciency focuses on better utilizing resources, such as band-
width and processing power, while QoS focuses on user-
perceived qualities, such as number of returned results and
response time. In unstructured P2P systems, the QoS of a
search mechanism generally depends on the number of peers
being explored (queried), response time, and traffic overhead.
If more peers can be queried by a certain query, it is more
likely that the requested object can be found. So we use three
performance metrics: average traffic cost versus search
scope, average neighbor distance, and query response time.

Traffic cost is one of the parameters seriously concerned
by network administrators. Heavy network traffic limits the
scalability of P2P networks [26] and is also a reason why a
network administrator may prohibit P2P applications. We
define the traffic cost as network resource used in an infor-
mation search process of P2P systems, which is a function of
consumed network bandwidth and other related expenses.

Search scope is defined as the number of peers that que-
ries have reached in an information search process. Thus,
with the same traffic cost, we aim to maximize the search
scope; while with the same search scope, we aim to minimize
the traffic cost.

Average neighbor distance (D) is used to evaluate the op-
timization results of a logical topology. Let Di be the average
delay between the source peer i and all its logical neighbors.
The value D is defined as the average of all Di’s (i.e., all
peers in the P2P network). Minimizing average neighbor
distance implies a better matching with the underlying physi-
cal network.

Response time of a query is one of the parameters con-
cerned by P2P users. We define response time of a query as
the time period from when the query is issued until when the
source peer received a response result from the first re-
sponder.

B. Simulation Setup
To evaluate effectiveness of LTM, we first generate net-

work topologies. Based on generated networks, we simulate
P2P flooding search, host joining/leaving behavior, LTM,
and index caching.

1) Topology generation
Two types of topologies, physical topology and logical

topology, are generated in our simulation. The physical to-
pology should represent the real topology with Internet char-
acteristics. The logical topology represents the overlay P2P
topology built on top of the physical topology. All P2P nodes
are in a subset of nodes in the physical topology. The com-
munication cost between two logical neighbors is calculated
based on the physical shortest path between this pair of
nodes. To simulate the performance of different search
mechanisms in a more realistic environment, the two topolo-
gies must accurately reflect the topological properties of real
networks in each layer.

Previous studies have shown that both large scale Internet
physical topologies [34] and P2P overlay topologies [28]
follow the small world and power law properties. Power law
describes the node degree while the small world describes
characteristics of path length and clustering coefficient [11].
The study in [28] found that the topologies generated using
the AS Model have the properties of the small world and
power law. BRITE [1] is a topology generation tool that pro-
vides the option to generate topologies based on the AS
Model. Using BRITE, we generate 5 physical topologies
each with 22,000 nodes. The logical topologies are generated
with the number of peers (nodes) ranging from 2,000 to
8,000. The average number of neighbors of each node is
ranging from 4 to 10.

We simulate LTM for all the generated logical topologies
on top of each of the 5 generated physical topologies. We
also simulate this approach in a real-world P2P topology
(based on DSS Clip2 trace). We obtained consistent results
on the real-world topology and the generated topologies. In
order to show a thorough performance discussion, we only
present our performance on various generated topologies.

2) Flooding search simulation
Our simulation is based on observed distributions. Con-

tent popularity of a publisher follows Zipf-like distribution
(aka Power Law) [8, 10], where the relative probability of a
request for the ith most popular page is proportional to 1/iα,
with α typically taking on some value less than unity. The
observed value of the exponent varies from trace to trace.
The request distribution does not follow the strict Zipf's law
(for which α=1), but instead does follow a more general Zipf-
like distribution. Query word frequency does not follow a
Zipf distribution [16, 35]. User’s query lexicon size does not
follow a Zipf distribution [35] but with a heavy tail. Both the
overall traffic and the traffic from 10% popular nodes are
heavy-tailed in terms of the host connectivity, traffic volume,
and average bandwidth of the hosts [31]. Studies in [30] have
suggested a log-quadratic distribution (10-α2) for stored file
locality and transfer file locality. The time length that nodes

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

remain available follows a log-quadratic curve [30], which
could be approximated by two Zipf distributions.

In our simulation, we simulate flooding search used in
Gnutella network by conducting the Breath First Search algo-
rithm from a specific node. A search operation is simulated
by randomly choosing a peer as the sender, and a keyword
according to Zipf distribution. In our first simulation,
100,000 search operations are simulated.

3) A dynamic P2P environment
P2P networks are highly dynamic with peers joining and

leaving frequently. The observations in [31] have shown that
over 20% of the logical connections in a P2P last 1 minute or
less, and around 60% of the IP addresses keep active in Fast-
Track for no more than 10 minutes each time after they join
the system. The measurement reported in [28] indicated that
the median up-time for a node in Gnutella and Napster is 60
minutes. Studies in [9] have argued that measurement accord-
ing to host IP addresses underestimates peer-to-peer host
availability and have shown that each host joins and leaves a
P2P system 6.4 times a day on average, and over 20% of the
hosts arrive and depart every day. Although the numbers they
provided are different to some extent, they share the same
point that the peer population is quite transient. We simulate
the joining and leaving behavior of peers via turning on/off
logical peers. In our simulation, every node issues 0.3 queries
per minute, which is calculated from the observation data
shown in [32], i.e., 12,805 unique IP addresses issued
1,146,782 queries in 5 hours. When a peer joins, a lifetime in
seconds will be assigned to the peer. The lifetime of a peer is
defined as the time period the peer will stay in the system.
The lifetime is generated according to the distribution ob-
served in [28]. The mean of the distribution is chosen to be
10 minutes [31]. The value of the variance is chosen to be
half of the value of the mean. The lifetime will be decreased
by one after passing each second. A peer will leave in next
second when its lifetime reaches zero. During each second,
there are a number of peers leaving the system. We then ran-
domly pick up (turn on) the same number of peers from the
physical network to join the overlay.

4) Combining LTM with index cache
To investigate whether LTM could be employed together

with other approaches, we also simulate a strategy of combin-
ing LTM with a response index caching scheme, in which
query responses are cached in passing peers along the return-
ing path. In our simulation, each peer keeps a local cache and
a response index cache. The size of a response index cache is
bounded by 200 items. The average number of neighbors is 6.

V. PERFORMANCE EVALUATION
We present our simulation results in this section. Our

simulation results on overlay networks of 2,000 nodes, 3,000
nodes, 5,000 nodes, and 8,000 nodes on top of 22,000-nodes

Internet-like physical networks are consistent. We only pre-
sent the results based on the overlay network with 8,000
nodes.

A. Effectiveness of LTM in Static Environment
In our first simulation, we study the effectiveness of LTM

in a static P2P environment where the peers do not join and
leave frequently. This will show that without changing the
overlay topology, how many LTM optimization steps are
required to reach a better topology matching.

1) Traffic cost vs. search scope
The goal of LTM scheme is to reduce traffic cost as much

as possible while retaining the same search scope. Figure 7
compares the traffic cost incurred by the original Gnutella-
like system and by the system after one-step LTM optimiza-
tion. One-step means every peer makes LTM optimization
only once.

In Figure 7, the curve of ‘cn-neigh’ shows the average
traffic cost caused by a query to cover the search scope in x-
axis, where in the system the average number of logical
neighbors is cn. The dashed curves represent performance
results without using LTM, while solid curves represent the
results with LTM optimizations. Figure 7 shows that to cover
the same search scope, one-step LTM reduces the traffic cost
significantly, and the reduction rate increases as the search
scope increases. In other words, with a given traffic cost,
LTM will increase its search scope. Figure 8 shows that the
traffic cost decreases when LTM is conducted multiple times,
where the search scope is all 8000 peers. We can see that the
traffic cost reduction reaches to a threshold after the second
or third step LTM optimization. LTM can be convergent as
fast as in 2-3 steps.

2) Average neighbor distance and response time
Average neighbor distance reflects effectiveness of LTM

on topology matching. Figure 9 shows the average neighbor
distance versus LTM optimization steps. Compared with the
original Gnutella-like network without LTM scheme (0 opti-
mization steps), one-step LTM optimization reduces average
neighbor distance by about 55%, and more steps of LTM
may cut average neighbor distance to around 65%.

Short query response time is always desirable in P2P sys-
tems. The simulation results in Figure 10 show that LTM can
effectively shorten the query response time by about 62%.
The tradeoff between query traffic cost and response time has
been discussed in [38]. P2P systems with a large number of
average connections offer a faster search speed while increas-
ing traffic. One of the strengths of LTM scheme is that it re-
duces both query traffic cost and response time without de-
creasing the query success rate.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

B. LTM in Dynamic Environment
We further evaluate the effectiveness of LTM in dynamic

P2P systems and explore the best frequency for each peer to
conduct LTM. We first discuss the performance impact of the
will-cut list and the cut list. The average number of logical
neighbors we use is 6.

1) Effectiveness of will-cut list (W-C)
From our simulation results in dynamic environments, we

found that with the same search scope the query success rate in
dynamic environments is decreased by about 5% compared
with the static environment, as shown in Figure 11 (compare
curves of static Gnutella-like and dynamic Gnutella-like). One
extreme case is when the search scope is 100%, which means
that each query can reach all peers and we guarantee the query
result is available in at least one of the peers. The search suc-
cess rate is expected to be 100% in this case, but it is only
95%. The reason of the 5% loss in query success rate is that
the query responses cannot be returned due to peers’ dynamic
leaving behavior. We call this phenomena response loss prob-
lem.

If we don’t use the will-cut list in LTM, a connection will
be cut immediately when it is found to be low productive,
which will cause a very serious response loss problem because
many responses may not be returned due to the cut connec-
tions. The curve of LTM without W-C in Figure 11 shows that
the query success rate is significantly decreased by 30-40%
without using the will-cut list. The LTM is conducted once
every minute in this simulation. Retaining query success rate is

the reason we design the will-cut list, each of which can hold
20 connections in our simulation. The up to 20 low productive
connections will not be used to forward queries, but only used
to return query results. The lifetime of the connections in a
will-cut list determines the query success rate. In Figure 11, a
curve of LTM with W-C-n means the lifetime of a will-cut con-
nection is n seconds. We can see that the query success rate
can be retained if the connections can be kept in the will-cut
list for 50 seconds.

2) Effectiveness of cut list
If we don’t use the cut list, a connection that has just been

cut may be established again. Thus the LTM optimization rate
will be limited. Figure 12 compares the overhead incurred by
LTM with and without the use of the cut list. The fluctuations
of the curves represent the dynamic nature of the network as
time goes. The curve of LTM-k means each peer conducts
LTM for k times per minute. We can see that the use of the cut
list reduces traffic overhead by about 50% compared with the
case without using the cut list.

3) Effectiveness and frequency of LTM
We use the will-cut list and the cut list in this part of simu-

lation. Compared with a Gnutella-like system, Figures 13 and
14 show the effectiveness of LTM on reducing average traffic
cost and query response time. Since LTM adds some traffic
overhead due to the TTL2 detector flooding, there exists an
optimal frequency for each peer to conduct LTM independ-
ently. We simulate LTM in different frequencies ranging from
1/4 to 4 times every minute. We consider a frequency to be

0 1000 2000 3000 4000 5000 6000 7000 8000
0

10

20

30

40

50

60

70

80

90

100

Search scope (nodes)

A
ve

ra
g
e
 tr

a
ffi

c
co

st
 p

e
r q

u
er

y
(1

05)
4-neigh
4-neigh (LTM)
6-neigh
6-neigh (LTM)
8-neigh
8-neigh (LTM)
10-neigh
10-neigh (LTM)

0 2 4 6 8 10

0

10

20

30

40

50

60

70

80

90

100

LTM optimization (steps)

A
ve

ra
g
e
 tr

a
ffi

c
co

st
 p

e
r q

u
er

y
(1

05)

4 neigh
6 neigh
8 neigh
10 neigh

Figure 7. Traffic cost vs. search scope Figure 8. Traffic reduction vs. optimization step

0 1 2 3 4 5 6 7 8 9
30

40

50

60

70

80

90

100

LTM optimization (steps)

A
ve

ra
ge

 n
ei

gh
bo

r d
is

ta
nc

e
 (%

)

4 neigh
6 neigh
8 neigh
10 neigh

0 2 4 6 8 10

8

10

12

14

16

18

20

22

24

26

LTM optimization (steps)

A
ve

ra
ge

 r
es

p
on

se
 ti

m
e

pe
r
qu

e
ry

4 neigh
6 neigh
8 neigh
10 neigh

Figure 9. Average neighbor distance vs. optimization step Figure 10. Average response time vs. optimization step

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

optimal if the next higher frequency does not increase the op-
timization by more than 3% compared with the current fre-
quency. Results in Figures 13 and 14 show that under the as-
sumption that peer average lifetime in a P2P system is 10 min-
utes, and 0.3 queries are issued by each peer per minute, the
optimal frequency for every peer to conduct LTM is twice per
minute. With this frequency, about 75% reduction on traffic
cost and 65% reduction on response time can be achieved.
(average lifetime and query frequency) in our simulation. Fig-
ure 15 shows that LTM can be conducted less frequently if
peer average lifetime is longer. Figure 16 shows that LTM
should be conducted more frequently if more queries are is-
sued. Both figures show that a larger average number of
neighbors requires a higher LTM frequency.

C. Combining LTM and Query Index Caching
In this part, we evaluate a strategy of combining LTM with

response index caching scheme. We compare the traffic cost
and response time in a Gnutella-like system without any opti-
mization, with query index caching only, with one-step LTM
optimization only, and with one-step LTM optimization plus
query index caching. Results in Figures 17 and 18 show that
by combining LTM and query index caching the traffic cost is
reduced by about 10 times without shrinking the search scope,
and the average query response time is reduced by about 7
times.

VI. CONCLUSION AND FUTURE WORK
We have evaluated our proposed location-aware topology

matching, LTM, in both static and dynamic environments.

Simulations in static P2P environments show that the signifi-
cant performance benefit of LTM is consistent with various
network sizes and average numbers of neighbors. In simulation
studies of dynamic environments, we have investigated the
optimal LTM frequency in a more realistic P2P environment.
The results show that LTM achieves about 75% reduction on
traffic cost and about 65% reduction on query response time.
The impacts of peer average lifetime and query frequency on
optimal LTM frequency have also been studied. We also show
that our design of the will-cut list and the cut list can improve
the performance of LTM. The ability that LTM can comple-
ment other advanced search approaches has been showed by a
combination strategy of LTM with query index caching.

In LTM, each peer is aware of the location of other peers
within a distance of two hops. The major advantage of LTM is
that it is not only able to timely match the logical topology
with the physical topology to significantly improve the search
efficiency; it also guarantees to retain the search scope. This
contribution makes LTM truly unique and highly effective. In
addition, LTM is completely decentralized and scalable.

Future work on LTM will lead in two directions. One is to
investigate the possibility of integrating LTM with other exist-
ing advanced search approaches to further improve search per-
formance. The other one is to deploy and test an LTM proto-
type based on current version of Gnutella open source code in
PlanetLab [23], an open, shared testbed for developing wide
area network services. Note that the public domain Network
Time Protocol (NTP) [7] can be embedded in our LTM to ob-
tain an accurate timestamp measurement.

0 20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

100

Search scope in percentage(%)

S
u
cc

e
ss

 r
a
te

(%
)

static Gnutella-like
dynamic Gnutella-like
LTM with W-C-50
LTM with W-C-30
LTM without W-C

0 10 20 30 40 50

1

2

3

4

5

6

7

8

9

10

Time

T
ra

ffi
c

ov
er

he
ad

 p
er

 m
in

ut
e(

10
3)

LTM-1 no cut-list
LTM-1 with cut-list
LTM-2 no cut-list
LTM-2 with cut-list

Figure 11. Effectiveness of will-cut list Figure 12. Effectiveness of cut list

0 10 20 30 40 50
2

4

6

8

10

12

14

16

18

20

Time

T
ra

ffi
c

co
st

 p
e
r
m

in
u
te

 (
1
05)

Gnutella-Like
LTM-1/2
LTM-1
LTM-2
LTM-3
LTM-4

0 10 20 30 40 50

6

8

10

12

14

16

18

20

22

24

26

Time

R
e
sp

on
se

 ti
m

e
pe

r q
ue

ry

Gnutella-Like
LTM-1/2
LTM-1
LTM-2
LTM-3
LTM-4

Figure 13. Total traffic vs. LTM frequeny Figure 14. Response time vs. LTM frequency

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

Average peer life time

B
e
st

 L
T

M
 fr

eq
u
en

cy

6-neigh
8-neigh

10

0
10

1
10

2
1.5

2

2.5

3

3.5

4

4.5

Queries per node per minute

B
e
st

 L
T

M
 fr

eq
u
en

cy

6-neigh
8-neigh

Figure 15. Optimal LTM frequency vs. average peer lifetime Figure 16. Optimal LTM frequency vs. average query frequency

5 10 15 20 25 30
0

10

20

30

40

50

60

Queries (104)

T
ra

ffi
c

co
st

 p
e
r
q
u
e
ry

 (
1
05) Gnutella-like

Cache
LTM
Cache+LTM

5 10 15 20 25 30

0

5

10

15

20

25

Queries (104)

R
e
sp

on
se

 ti
m

e
p
er

 q
ue

ry

Gnutella-like
Cache
LTM
Cache+LTM

Figure 17. Traffic cost of four schemes Figure 18. Average response time of four schemes

REFERENCES
[1] BRITE", http://www.cs.bu.edu/brite/
[2] Fasttrack", http://www.fasttrack.nu
[3] Gnutella", http://gnutella.wego.com/
[4] The Gnutella protocol specification 0.6", http://rfc-

gnutella.sourceforge.net
[5] KaZaA", http://www.kazaa.com
[6] Napster", http://www.napster.com
[7] NTP: The Network Time Protocol", http://www.ntp.org/
[8] V. Almeida, A. Bestavros, M. Crovella, and A. d. Olivera, "Character-

izing Reference Locality in the WWW," in Proceedings of the IEEE
Conference on Parallel and Distributed Information Systems (PDIS),
1996.

[9] R. Bhagwan, S. Savage, and G. M. Voelker, "Understanding Availabil-
ity," in Proceedings of the 2nd International Workshop on Peer-to-Peer
Systems(IPTPS'03), 2003.

[10] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, "Web Caching
and Zipf-like Distributions: Evidence and Implications," in Proceed-
ings of IEEE INFOCOM'99, 1999.

[11] T. Bu and D. Towsley, "On Distinguishing between Internet power law
topology generators," in Proceedings of IEEE INFOCOM'02, 2002.

[12] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker,
"Making Gnutella-like P2P Systems Scalable," in Proceedings of ACM
SIGCOMM, 2003.

[13] Y. Chu, S. G. Rao, and H. Zhang, "A case for end system multicast," in
Proceedings of ACM SIGMETRICS, 2000.

[14] E. Cohen and S. Shenker, "Replication strategies in unstructured peer-
to-peer networks," in Proceedings of ACM SIGCOMM'02, 2002.

[15] O. D. Gnawali, "A Keyword-Set search system for peer-to-peer net-
works," Master's thesis, Massachusetts Institute of Technology, June
2002.

[16] B. J. Jansen, A. Spink, J. Bateman, and T. Saracevic, "Real Life Infor-
mation Retrieval: a study of User Queries on the Web," SIGIR Forum,
vol. 32, pp. 5-17, 1998.

[17] B. Krishnamurthy and J. Wang, "Topology modeling via cluster
graphs," in Proceedings of SIGCOMM Internet Measurement Work-
shop, 2001.

[18] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, "Search and replication
in unstructured peer-to-peer networks," in Proceedings of the 16th
ACM International Conference on Supercomputing, 2002.

[19] E. P. Markatos, "Tracing a large-scale peer to peer system: an hour in
the life of gnutella," in Proceedings of the 2nd IEEE/ACM Interna-
tional Symp. on Cluster Computing and the Grid, 2002.

[20] D. A. Menasce and L. Kanchanapalli, "Probabilistic Scalable P2P Re-
source Location Services," ACM SIGMETRICS Performance Evalua-
tion Review, vol. 30, pp. 48-58, 2002.

[21] V. N. Padmanabhan and L. Subrananian, "An investigation of geo-
graphic mapping techniques for Internet hosts," in Proceedings of ACM
SIGCOMM'01, 2001.

[22] S. Patro and Y. C. Hu, "Transparent Query Caching in Peer-to-Peer
Overlay Networks," in Proceedings of the 17th International Parallel
and Distributed Processing Symposium (IPDPS), 2003.

[23] L. Peterson, D. Culler, T. Anderson, and T. Roscoe, "A blueprint for
introducing disruptive technology into the Internet," in Proceedings of
HOTNETS, 2002.

[24] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, "A
scalable content-addressable network," in Proceedings of ACM SIG-
COMM'01, 2001.

[25] M. Ripeanu, A. Iamnitchi, and I. Foster, "Mapping the Gnutella Net-
work," IEEE Internet Computing, 2002.

[26] Ritter,"Why Gnutella can't scale. No, really",
http://www.tch.org/gnutella.html

[27] A. Rowstron and P. Druschel, "Pastry: Scalable, distributed object
location and routing for large-scale peer-to-peer systems," in Proceed-

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

ings of International Conference on Distributed Systems Platforms,
2001.

[28] S. Saroiu, P. Gummadi, and S. Gribble, "A Measurement Study of
Peer-to-Peer File Sharing Systems," in Proceedings of Multimedia
Computing and Networking (MMCN), 2002.

[29] S. Saroiu, K. P.Gummadi, R. J. Dunn, S. D. Gribble, and H. M. Levy,
"An Analysis of Internet Content Delivery Systems," in Proceedings of
the 5th Symposium on Operating Systems Design and Implementation,
2002.

[30] M. T. Schlosser and S. D. Kamvar, "Availability and locality measure-
ments of peer-to-peer file systems," in Proceedings of In proceedings
of ITCom: Scalability and Traffic Control in IP Networks, 2002.

[31] S. Sen and J. Wang, "Analyzing peer-to-peer traffic across large net-
works," in Proceedings of ACM SIGCOMM Internet Measurement
Workshop, 2002.

[32] K. Sripanidkulchai,"The popularity of Gnutella queries and its implica-
tions on scalability", http://www-
2.cs.cmu.edu/~kunwadee/research/p2p/gnutella.html

[33] R. M. Stoica, D. Karger, M. F. Kaashoek, and H. Balakrishnan, "Chord:
A scalable peer-to-peer lookup service for Internet applications," in
Proceedings of ACM SIGCOMM'01, 2001.

[34] H. Tangmunarunkit, R. Govindan, S. Jamin, S. Shenker, and W. Will-
inger, "Network Topology Generators: Degree-Based vs. Structural," in
Proceedings of ACM SIGCOMM'02, 2002.

[35] Y. Xie and D. O'Hallaron, "Locality in Search Engine Queries and Its
Implications for Caching," in Proceedings of IEEE INFOCOM'02,
2002.

[36] Z. Xu, C. Tang, and Z. Zhang, "Building topology-aware overlays
using global soft-state," in Proceedings of International Conference on
Distributed Computing Systems (ICDCS'03), 2003.

[37] B. Yang and H. Garcia-Molina, "Efficient search in peer-to-peer net-
works," in Proceedings of International Conference on Distributed
Computing Systems (ICDCS'02), 2002.

[38] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph, "Tapestry: An infra-
structure for fault-resilient wide-area location and routing," Technical
Report UCB//CSD-01-1141, U.C.Berkeley 2001.

[39] Z. Zhuang, Y. Liu, L. Xiao, and L. M. Ni, "Hybrid Periodical Flooding
in Unstructured Peer-to-Peer Networks," in Proceedings of Interna-
tional Conference on Parallel Processing(ICPP'03), 2003.

0-7803-8356-7/04/$20.00 (C) 2004 IEEE IEEE INFOCOM 2004

