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Abstract—Peer-to-Peer (P2P) computing has emerged as a popular model aiming at further utilizing Internet information and

resources. However, the mechanism of peers randomly choosing logical neighbors without any knowledge about underlying physical

topology can cause a serious topology mismatch between the P2P overlay network and the physical underlying network. The topology

mismatch problem brings great stress in the Internet infrastructure. It greatly limits the performance gain from various search or routing

techniques. Meanwhile, due to the inefficient overlay topology, the flooding-based search mechanisms cause a large volume of

unnecessary traffic. Aiming at alleviating the mismatching problem and reducing the unnecessary traffic, we propose a location-aware

topology matching (LTM) technique. LTM builds an efficient overlay by disconnecting slow connections and choosing physically closer

nodes as logical neighbors while still retaining the search scope and reducing response time for queries. LTM is scalable and

completely distributed in the sense that it does not require any global knowledge of the whole overlay network. The effectiveness of

LTM is demonstrated through simulation studies.

Index Terms—Peer-to-peer, topology matching, flooding, location-aware topology, search efficiency.
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1 INTRODUCTION

SINCE the emergence of peer-to-peer file sharing applica-
tions, such as Napster, Gnutella, and KaZaA, millions of

users have started using their home computers for more
than browsing the Web and exchanging e-mails. Peers join
the network by connecting to at least one of the active peers
in the P2P overlay network. Each peer acts as both a client
who requests information and services and a server who
produces and/or provides information and services.

There are mainly three different architectures for P2P

systems: centralized, decentralized structured, and decen-

tralized unstructured [18]. In the centralized model, such as

Napster [6], central index servers are used to maintain a

directory of shared files stored on peers so that a peer can

search for the whereabouts of a desired content from an

index server. However, this architecture creates a single

point of failure and its centralized nature of the service also

makes systems vulnerable to denial of service attacks [15].

Decentralized P2P systems have the advantages of elim-

inating reliance on central servers and providing greater

freedom for participating users to exchange information

and services directly between each other. In decentralized

structured models, such as Chord [33], Pastry [27], Tapestry

[38], and CAN [24], the shared data placement and topology

characteristics of the network are tightly controlled based
on distributed hash functions.

This paper focuses on decentralized unstructured P2P
systems, such as Gnutella [3] and KaZaA [5]. File placement
is random in these systems, which has no correlation with
the network topology [37]. Unstructured P2P systems are
most commonly used in today’s Internet. The most popular
search mechanism in use is to blindly flood a query to the
network among peers (such as in Gnutella) or among
supernodes (such as in KaZaA). A query is broadcast and
rebroadcast until a certain criterion is satisfied. If a peer
receiving the query can provide the requested object, a
response message will be sent back to the source peer along
the inverse of the query path and the query will not be
further forwarded from this responding peer. This mechan-
ism ensures that the query will be “flooded” to as many
peers as possible within a short period of time in a
P2P overlay network. A query message will also be
dropped if the query message has visited the peer before.

Studies in [31] and [29] have shown that P2P traffic
contributes the largest portion of the Internet traffic based on
their measurements on some popular P2P systems, such as
FastTrack (including KaZaA andGrokster) [2], Gnutella, and
DirectConnect. Measurements in [25] have shown that, even
given that 95 percent of any two nodes are less than seven
hops away and the message time-to-live (TTL = 7) is
preponderantly used, the flooding-based routing algorithm
generates 330 TB/month in a Gnutella network with only
50,000 nodes. A large portion of the heavy P2P traffic caused
by inefficient overlay topology and the blind flooding is
unnecessary, which makes the unstructured P2P systems
far from scalable [26]. There are three reasons for this
problem. First, the mechanism of a peer randomly choosing
logical neighbors without any knowledge about the under-
lying physical topology causes topology mismatch between
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the P2P logical overlay network and physical underlying
network. Because of the mismatch problem, the same
message may traverse the same physical link multiple
times, causing a large amount of unnecessary traffic.
Second, a query may be flooded to multiple paths that are
merged to the same peer. In this case, only the traffic along
one of the paths is necessary. Finally, two neighboring peers
may forward the same query message to each other before
they receive the query message from each other. Thus, the
same query message may traverse the same logical link
twice.

Aiming at alleviating the mismatch problem, reducing
the unnecessary traffic, and addressing the limits of existing
solutions, we propose a location-aware topology matching
(LTM) scheme. In LTM, each peer issues a detector in a
small region so that the peers receiving the detector can
record relative delay information. Based on the delay
information, a receiver can detect and cut most of the
inefficient and redundant logical links and add closer nodes
as its direct neighbors. Our simulation studies show that the
total traffic and response time of the queries can be
significantly reduced by LTM without shrinking the search
scope. We also show that the overhead of issuing detectors
is trivial compared with the query cost savings.

Our proposed LTM can be used to complement other
search techniques, such as forwarding-based search me-
chanisms [37] or cache-based schemes [14], [19], [20] that
will be discussed in Section 2. In this paper, we will show
this effectiveness by a case study of combining LTM and the
response index caching scheme, in which query responses
are cached in passing peers along the returning path. Our
study shows that only one tenth of the original traffic cost is
necessary to cover the same number of peers and the
average response time is reduced by around 80 percent.

The rest of the paper is organized as follows: Section 2
discusses related work. Section 3 presents the location-
aware topology matching (LTM) scheme. Section 4 de-
scribes our simulation methodology. Performance evalua-
tion of the LTM is presented in Section 5 and we conclude
the work in Section 6.

2 RELATED WORK

Many efforts have been made to avoid the large volume of
unnecessary traffic incurred by the flooding-based search in
decentralized unstructured P2P systems. In general, three
types of approaches have been proposed to improve search
efficiency in unstructured P2P systems: forwarding-based,
cache-based, and overlay optimization. The three different
kinds of approaches can be used together to complement
each other.

In forwarding-based approaches, instead of relaying the
query messages to all its logical neighbors except the
incoming peer, a peer selects a subset of its neighbors to
relay the query. In Directed BFS, proposed in [37], each peer
maintains statistic information based on some metrics, such
as the number of results received from neighbors for
previous queries or the latency of the connection with that
neighbor. A peer selects a subset of the neighbors, such as
the neighbors that have returned the largest number of
results for previous queries or the neighbors that have low

latency, to send its query. A k-walker query algorithm is
proposed in [18] in which a query is sent to k different
walkers (relay neighbors) from the source peer. For a peer
in each walker, it just randomly selects one neighbor to
relay the query. For each walker, the query processing is
done sequentially. A hybrid periodical flooding (HPF)
approach proposed in [39] improves the search efficiency
by selecting forwarding neighbors based on multiple
metrics and addressing the partial coverage problem to
balance the search cost and response time.

The second approach is cache-based, including data
index caching and content caching. Centralized P2P systems
provide centralized index servers to keep indices of shared
files of all peers. KaZaA utilizes cooperative superpeers,
each of which is an index server of a subset of peers. Some
systems distribute the function of keeping indices to all
peers [20]. In Local Indices policy [37], each peer maintains
an index of files available in the nodes within given hops of
itself. When a peer receives a query, it can process the query
on behalf of all nodes within the given hops of itself.
Having observed the locality of queries, the authors in [19],
[32] further propose that each peer cache query strings and
results that flow through it. Three different strategies to
replicate data (file content or query responses) on multiple
peers have been evaluated in [14]. The three strategies are
different on the ratio of allocations according to the ratio of
query rates. Transparent query caching [22] is proposed to
cache query hits at a gateway of an organization based on
an observation of query locality in peers within the
gateway. Caching file contents has also been studied. For
example, an ideal cache (infinite capacity and no expiration)
simulator [29] is built for KaZaA P2P traffic to cache file
contents, which has shown that caching would have a large
effect on a wide-scale P2P system on reducing traffic
volume and bandwidth demands.

The third approach is based on overlay topology
optimization that is closely related to what we are
presenting in this paper. Here, we briefly introduce three
types of solutions and their comparisons with our
approach. End system multicast, Narada, is proposed in
[13], which first constructs a rich connected graph on which
to further construct shortest path spanning trees. Each tree
rooted at the corresponding source using well-known
routing algorithms. This approach introduces large over-
head for forming the graph and trees in a large scope and
does not consider the dynamic joining and leaving char-
acteristics of peers. The overhead of Narada is proportional
to the multicast group size. This approach is infeasible to
large-scale P2P systems. Our proposed LTM is easy to
implement and adaptive to the dynamic nature of
P2P systems with the overhead that is only proportional
to the square of the average number of neighbors.
Researchers have also considered clustering close peers
based on their IP addresses (e.g., [17], [21]). We believe
there are two limitations for this approach. First, the
mapping accuracy is not guaranteed by this approach.
Second, this approach may affect the searching scope in
P2P networks. In contrast, our technique is measurement-
based and can accurately and dynamically connect the
physically closer peers, and disconnect physically distant
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peers. Furthermore, our scheme does not shrink the search
scope. Recently, researchers in [36] have proposed to
measure the latency between each peer to multiple stable
Internet servers called “landmarks.” The measured latency
is used to determine the distance between peers. This
measurement is conducted in a global P2P domain and
needs the support of additional landmarks. Similarly, this
approach also affects the search scope in P2P systems. In
contrast, our measurement is conducted in many small
regions, significantly reducing the network traffic with high
accuracy. Gia [12] introduced a topology adaptation
algorithm to ensure that high capacity nodes are indeed
the ones with high degree and low capacity nodes are
within short reach of high capacity nodes. It addresses a
different matching problem in overlay networks, but does
not address the topology mismatch problem between the
overlay and physical networks.

3 LOCATION-AWARE TOPOLOGY MATCHING

In a P2P system, all participating peers form a P2P network
over a physical network. A P2P network is an abstract,
logical network called an overlay network. Maintaining and
searching operations of a Gnutella peer are specifically
described in [4]. When a new peer wants to join a
P2P network, a boot-strapping node provides the
IP addresses of a list of existing peers in the P2P network.
The new peer then tries to connect with these peers. If some
attempts succeed, the connected peers will be the new
peer’s neighbors. Once this peer connects into a
P2P network, the new peer will periodically ping the
network connections and obtain the IP addresses of some
other peers in the network. These IP addresses are cached
by this new peer. When a peer leaves the P2P network and
then wants to join the P2P network again (no longer the first
time), the peer will try to connect to the peers whose
IP addresses have already been cached. The mechanism by
which a peer joins a P2P network, the fact of a peer
randomly joining and leaving, and the nature of flooding
search make an inefficient mismatched overlay network
and cause a large amount of unnecessary traffic. In this
section, we first use examples to explain the unnecessary

traffic and the mismatching problem. We then describe our
proposed LTM technique in detail.

3.1 Unnecessary Message Duplications in Overlay
Connections

Fig. 1 shows an example of a P2P overlay topology where
solid lines denote overlay connections among logical
P2P neighbors. Consider the case when node S sends a
query. A solid arrow represents a delivery of the query
message along one logical connection. The query is relayed
by many peers, which incurs a lot of unnecessary traffic.
Fig. 2 shows a subset of the P2P overlay in Fig. 1. In Fig. 2,
after B2 forwards the query to B1, B4 forwards to B3. Since
neither of B1 or B3 knows the other one has received the
same query, they will forward the query to each other. It is
clear that the search scope of the query from node S will not
shrink without logical connection B1B3.

3.2 Topology Mismatch

Studies in [25] have shown that only 2 to 5 percent of
Gnutella connections link peers within a single autonomous
system (AS). But, more than 40 percent of all Gnutella peers
are located within the top 10 ASes. This means that most
Gnutella-generated traffic crosses AS borders so as to
increase topology mismatch costs. Even if there is no
message duplication in overlay connections, the same
message can still traverse the same physical link multiple
times due to mismatch problem, causing a large amount of
unnecessary traffic.

For example, Fig. 3a is another subset of the P2P system
of Fig. 1. Fig. 3a and Fig. 3b are two overlay topologies on
top of the underlying physical topology shown in Fig. 3c.
Suppose C1 and C3 are in the same autonomous system
(AS), while C2 and C4 are in another AS. We assume that
the physical link delay between C1 and C4 is much longer
than all of the other links in Fig. 3c. Clearly, in the inefficient
overlay of Fig. 3a, the query message from source S will
traverse the longest link C1C4 four times, which is a
scenario of topology mismatch. If we can construct an
efficient overlay shown in Fig. 3b, the message needs to
traverse all the physical links in Fig. 3c only once.

3.3 Three Main Operations of LTM

Optimizing inefficient overlay topologies can fundamen-
tally improve P2P search efficiency. If the system can detect
and disconnect the logical connections, such as B1B3 shown
in Fig. 2, and switch the connections of C1C2, C2C3, and
C3C4 shown in Fig. 3a to C3C1, C1C4, and C4C2 shown in
Fig. 3b, the total network traffic could be significantly
reduced without shrinking the search scope of queries. This
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Fig. 1. An example of P2P overlay.

Fig. 2. Unnecessary traffic on logical link B1B3.



is the basic principle of our proposed location-aware
topology matching technique. Three operations are defined
in LTM: TTL2 detector flooding, slow connection cutting,
and source peer probing.

3.3.1 TTL2-Detector Flooding

Based on the Gnutella 0.6 P2P protocol [4], we design a new
message type called TTL2-detector. In addition to the
Gnutella’s unified 23-byte header for all message types, a
TTL2-detector message has a message body in two formats,
as shown in Table 1. The short format is used in the source
peer, which contains the source peer’s IP address and the
timestamp to flood the detector. The long format is used in
a one-hop peer that is a direct neighbor of the source peer,
which includes four fields: Source IP Address, Source
Timestamp, TTL1 IP Address, and TTL1 Timestamp. The
first two fields contain the source IP address and the source
timestamp obtained from the source peer. The last two
fields are the IP address of the source peer’s direct neighbor,
who forwards the detector, and the timestamp to forward it.
In the message header, the initial TTL value is 2. The
payload type of the detector can be defined as 0x82.

Each peer floods a TTL2-detector periodically. We use
dði; S; vÞ to denote the TTL2-detector who has the message
ID of i with TTL value of v and is initiated by S. We use
NðSÞ to denote the set of direct logical neighbors of S and
use N2ðSÞ to denote the set of peers that are two hops away
from S. A TTL2-detector can only reach peers in NðSÞ and
N2ðSÞ. We use network delay between two nodes as a
metric for measuring the cost between nodes. The clocks in
all peers can be synchronized by current techniques in an
acceptable accuracy.1 By using the TTL2-detector message,
a peer can compute the cost of the paths to a source peer. As
an example, in Fig. 4a, when peer P receives a dði; S; 1Þ, it
can calculate the cost of link SP from Source Timestamp and
the time P receives the dði; S; 1Þ from S. When P receives a

dði; S; 0Þ, it can calculate the cost of link SN1 from TTL1
Timestamp and Source Timestamp, and N1P from TTL1
Timestamp and the time P receives the dði; S; 0Þ from N1. As
we can see in an inefficient overlay topology, the peers in
setN2ðSÞmay receive dði; S; vÞmore than once, such as peer
P in Fig. 4a, Fig. 4b, and Fig. 4c. If a peer receives dði; S; vÞ
multiple times, it will conduct the operations in the second
step of LTM, slow connection cutting.

3.3.2 Slow Connection Cutting

There are three cases for any peer P who receives dði; S; vÞ
multiple times.

Case 1: P receives both dði; S; 1Þ and dði; S; 0Þ, as shown in
Fig. 4a. In this case, dði; S; 1Þ comes from path SP, while
dði; S; 0Þ comes from SN1P. The costs of SP, SN1, andN1P can
be calculated from the timestamps recorded in dði; S; 0Þ and
dði; S; 1Þ. If SP or N1P has the largest cost among the three
connections, Pwill put this connection into itswill-cut list that
is a list of connections to be cut later. IfSN1 has the largest cost,
P will do nothing. Note that LTM is fully distributed and all
peers do the same LTM operations. In the case of SN1 having
the largest cost, N1 will put this connection into N1’s will-cut
list. A peer will not send or forward queries to connections in
its will-cut list, but these connections have not been cut in
order for query responses to be delivered to the source peer
along the inverse search path.

Case 2: P receives multiple dði; S; 0Þs from different paths,
as shown in Fig. 4b. In LTM, P randomly takes two of the
paths, such as SN1P and SN2P in Fig. 4b, to process at each
time. Other paths, if any, will be handled in the next round
of optimization. Thus, one important factor to affect the
performance of LTM is the frequency for each peer to issue
TTL2-detector messages. Our simulation results in Section 5
will show that the optimal LTM frequency is determined by
the average peer lifetime and query frequency. Peer P can
calculate the costs of SN1, SN2, N1P, and N2P. If PN1 or PN2

has the largest cost, P will put it into its will-cut list. If SN1

or SN2 has the largest cost, P will do nothing. As we have
discussed above, SN1 or SN2 having the largest cost will be
cut by one of the other three nodes.

Case 3: P receives one dði; S; 1) and multiple dði; S; 0Þs, as
shown in Fig. 4c. In this case, P will process the path
receiving dði; S; 1Þ and one path randomly selected from the
multiple paths of dði; S; 0Þs, forming a scenario of Case 1.

A connection in a will-cut list will be disconnected when
it has been in the list for a certain time period. Our
simulation results in Section 5 will show that a period of
50 seconds is optimal in a system with the average number
of neighbors of six, peer average lifetime of 10 minutes, and
query frequency of 0.3 queries per peer per minute. If a
connection is cut by P , the IP address of the other node in
this connection and the cost of the connection will be
recorded in P ’s cut list. The cut list in a peer records the
information of the connections disconnected by this peer
and is designed to be used when the peer attempts to make
a new connection so that the connections in the cut list will
not be established again.

3.3.3 Source Peer Probing

For a peer P who receives only one dði; S; 0Þ during a certain
timeperiod (e.g., 10 seconds), andP 2 ðN2ðSÞ �NðSÞÞ, itwill
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Fig. 3. Topology mismatch problem. (a) Inefficient overlay. (b) Efficient
overlay. (c) Underlying physical topology.



try to obtain the cost of PS by checking its cut list first. If S is

not in the list, P will probe the distance to S (see Fig. 5). After

obtain the cost of PS,P will compare this costwith the costs of

SN1 and PN1. If PS has the largest cost, P will not keep this

connection. Otherwise, this connection will be created. In the

Internet, the cost of SP and the cost of PSmay not be the same.

We use the cost of PS to estimate the cost of SP.
Now, let’s look back at the inefficient overlay topology

shown in Fig. 3a. Fig. 6a, Fig. 6b, Fig. 6c, Fig. 6d, Fig. 6e, and

Fig. 6f illustrate the process where LTM optimizes the

overlay by using three operations discussed above.

3.4 Traffic Overhead of LTM

The simplicity of blind flooding makes it very popular in

practice. This mechanism relays a query message to all its

logical neighbors, except the incoming peer. For each query,

each peer records the neighbors that relay the query to it.

Therefore, in the worst case, the same query message can be

sent on each link at most twice, as illustrated in Fig. 1. For

an overlay network with n peers, we use cn to denote the

average number of neighbors and use ce to denote the

average cost of the logical links. The total traffic caused by a

query is less than or equal to n cn ce. In a typical P2P system,

the value of n (more than millions) is much greater than cn
(less than tens) [31]. So, we can view both cn and ce as

constant numbers. Thus, in the flooding-based search, the

traffic incurred by one query from an arbitrary peer in a

P2P network is OðnÞ. As observed in [32], each peer issues

0.3 queries per minute in average. Thus, the per minute
traffic incurred by a P2P network with n peers is Oðn2Þ.

Recall that each dði; S; vÞ has a TTL value of 2 in a source
peer. So, the traffic for one-time LTM optimization in all
peers is at most 2n c2n ce. If each peer conducts LTM k times
per minute, the total traffic is 2kn c2n ce. Our simulation
results will show that the best value for k is 2 or 3. Thus, the
per minute traffic overhead incurred by LTM to the P2P
network is OðnÞ.

Compared with the query traffic savings, the traffic
overhead from LTM is trivial, which will be quantitatively
shown in Section 5.3.

One question is why we do not use TTLj-detector with a
TTL of j > 2 in a source peer so that cycles with more than
four links can be detected and broken. There are two
reasons for not doing so. First, if j > 2, the traffic caused by
detector flooding will be increased significantly. Second, if
the most expensive connection in a cycle is cut and its cost is
not substantially larger than the costs of other links in the
cycle, a query initiated from any of the two end peers in the
broken cycle will need to traverse a path much more
expensive than the cost on the cut connection to reach
another end peer.

4 SIMULATION METHODOLOGY

We describe the three performance metrics we use in our
simulations, our simulation setup, and parameter settings.

4.1 Performance Metrics

A well-designed search mechanism should seek to optimize
both efficiency and Quality of Service (QoS). Efficiency
focuses on better utilizing resources, such as bandwidth
and processing power, while QoS focuses on user-perceived
qualities, such as number of returned results and response
time. In unstructured P2P systems, the QoS of a search
mechanism generally depends on the number of peers
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TTL2-Detector Message Body

Fig. 4. Peer P receives d(i, S, v) multiple times. Fig. 5. Source peer probing.



being explored (queried), response time, and traffic over-
head. If more peers can be queried by a certain query, it is
more likely that the requested object can be found. So, we
use three performance metrics: average traffic cost versus
search scope, average neighbor distance, and query
response time.

Traffic cost is one of the parameters with which network
administrators are seriously concerned. Heavy network
traffic limits the scalability of P2P networks [26] and is also
a reason why a network administrator may prohibit
P2P applications. We define the traffic cost as network
resource used in an information search process of
P2P systems, which is mainly a function of consumed
network bandwidth and other related expenses. Specifi-
cally, in this work, we assume all the messages have the
same length. When messages traverse an overlay connec-
tion during the given time period, the traffic cost (Tc) is
given by: Tc ¼ M � L, where M is the number of messages
that traverse the overlay connection and L represents the
number of physical links in this overlay connection.

Search scope is defined as the number of peers that
queries have reached in an information search process.
Thus, with the same traffic cost, we aim to maximize the
search scope, while, with the same search scope, we aim to
minimize the traffic cost.

Average neighbor distance (D) is used to evaluate the
optimization results of a logical topology. Let Di be the
average delay between the source peer i and all its logical
neighbors. The value D is defined as the average of all Dis
(i.e., all peers in the P2P network). Minimizing average
neighbor distance implies a better matching with the
underlying physical network.

The response time of a query is one of the parameters with
which P2P users are concerned. We define the response

time of a query as the time period from when the query is
issued until when the source peer receives a response result
from the first responder. In P2P systems, each query
normally receives more than one response from different
peers. To better measure the search quality, we define
search latency as the time period from when the query is
issued until when the source peer receives response results
from 50 percent of all the content holders in the system.

4.2 Simulation Setup

To evaluate the effectiveness of LTM, we first generate
network topologies. Based on generated networks, we
simulate P2P flooding search, host joining/leaving beha-
vior, LTM, and index caching.

4.2.1 Topology Generation

Two types of topologies, physical topology and logical
topology, are generated in our simulation. The physical
topology should represent the real topology with Internet
characteristics. The logical topology represents the overlay
P2P topology built on top of the physical topology. All
P2P nodes are in a subset of nodes in the physical topology.
The communication cost between two logical neighbors is
calculated based on the physical shortest path between this
pair of nodes. To simulate the performance of different
search mechanisms in a more realistic environment, the two
topologies must accurately reflect the topological properties
of real networks in each layer.

Previous studies have shown that both large scale
Internet physical topologies [34] and P2P overlay topologies
[28] follow the small world and power law properties.
Power law describes the node degree while the small world
describes characteristics of path length and clustering
coefficient [11]. The study in [28] found that the topologies
generated using the AS Model have the properties of the
small world and power law. BRITE [1] is a topology
generation tool that provides the option of generating
topologies based on the AS Model. Using BRITE, we
generate five physical topologies each with 22,000 nodes.
The logical topologies are generated with the number of
peers (nodes) ranging from 2,000 to 8,000. The average
number of neighbors of each node ranges from 4 to 10.

We simulate LTM for all the generated logical topologies
on top of each of the five generated physical topologies.

4.2.2 Flooding Search Simulation

Our simulation is based on observed distributions as follows:
The content popularity of a publisher follows a Zipf-like
distribution (aka Power Law) [8], [10], where the relative
probability of a request for the ith most popular page is
proportional to 1=i�, with � typically taking on some value
less than unity. The observed value of the exponent varies
from trace to trace. The request distribution does not follow
the strict Zipf’s law (for which � ¼ 1), but, instead, does
follow a more general Zipf-like distribution. Query word
frequency does not follow a Zipf distribution [16], [35]. The
user’s query lexicon size does not follow a Zipf distribution
[35], but with a heavy tail. Both the overall traffic and the
traffic from 10 percent of the popular nodes are heavy-tailed
in terms of the host connectivity, traffic volume, and average
bandwidth of the hosts [31]. Studies in [30] have suggested a
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log-quadratic distribution (10��2 ) for stored file locality and
transfer file locality. The time length that nodes remain
available follows a log-quadratic curve [30], which could be
approximated by two Zipf distributions.

In our simulation, we simulate the flooding search used in
the Gnutella network by conducting the Breath First Search
algorithm from a specific node. A search operation is
simulated by randomly choosing a peer as the sender, and a
keyword according to Zipf distribution. In our first simula-
tion, 100,000 search operations are simulated sequentially.

4.2.3 A Dynamic P2P Environment

P2P networks are highly dynamic, with peers joining and
leaving frequently. The observations in [31] have shown
that over 20 percent of the logical connections in a P2P last
1 minute or less and around 60 percent of the IP addresses
keep active in FastTrack for no more than 10 minutes each
time after they join the system. The measurement reported
in [28] indicated that the median up-time for a node in
Gnutella and Napster is 60 minutes. Studies in [9] have
argued that measurement according to host IP addresses
underestimates peer-to-peer host availability and have
shown that each host joins and leaves a P2P system 6.4 times
a day on average and more than 20 percent of the hosts
arrive and depart every day. Although the numbers they
provided are different to some extent, they share the same
point that the peer population is quite transient. We
simulate the joining and leaving behavior of peers via
turning on/off logical peers. In our simulation, every node
issues 0.3 queries per minute, which is calculated from the
observation data shown in [32], i.e., 12,805 unique IP
addresses issued 1,146,782 queries in 5 hours. When a peer
joins, a lifetime in seconds will be assigned to the peer. The
lifetime of a peer is defined as the time period the peer will
stay in the system. The lifetime is generated according to
the distribution observed in [28]. The mean of the
distribution is chosen to be 10 minutes [31]. The value of
the variance is chosen to be half of the value of the mean.
The lifetime will be decreased by one after passing each
second. A peer will leave in the next second when its
lifetime reaches zero. During each second, there are a
number of peers leaving the system. We then randomly
pick up (turn on) the same number of peers from the
physical network to join the overlay.

4.2.4 Combining LTM with Index Cache

To investigate whether LTM could be employed together
with other approaches, we also simulate a strategy of
combining LTM with a response index caching scheme in
which query responses are cached in passing peers along
the returning path. In our simulation, each peer keeps a
local cache and a response index cache. The size of a
response index cache is bounded by 200 items. The average
number of neighbors is six.

5 PERFORMANCE EVALUATION

We present our simulation results in this section. Our
simulation results on overlay networks of 2,000 nodes,
3,000 nodes, 5,000 nodes, and 8,000 nodes on top of a
22,000-node Internet-like physical networks are consistent.

Due to page limitations, we only present the results based
on the overlay network with 8,000 nodes.

5.1 The Amount of Mismatching

We first quantitatively evaluate how serious the topology
mismatch problem is in Gnutella-like networks. We gen-
erate 1,000,000 queries on different topologies with an
average number of neighbors being 4, 6, 8, and 10,
respectively. We track the response of each query message
to see if the response path is a mismatching path. We count
a path as a mismatching path if a peering node in the path
has been visited more than once. Fig. 7 gives an example to
show the rational of our measurement. Fig. 7b and Fig. 7c
illustrate two different underlying physical network topol-
ogies of the overlay shown in Fig. 7a. Only nodes A, B, C,
and D are peering nodes. Node Y is not a peering node. We
can see that, in Fig. 7c, the overlay path of A ! B ! C ! D
traverses physical link BD twice and the peering node D is
visited three times. In Fig. 7b, node Y is also visited more
than once, but we do not count the overlay path of A !
B ! C ! D as a mismatching path. This is because a revisit
to Y cannot be avoided since Y is not a peering node. Our
results show that about 75 percent of the paths suffer from
the topology mismatch problem. Although the mismatch
problem is a little less serious when the average number of
neighbors increases, the mismatching degree is not very
sensitive to the average number of neighbors when the
number is changed from 4 to 10. However, we expect the
mismatching degree can be significantly reduced if the
average number of neighbors increases significantly. The
extremely large average number of neighbors is not realistic
in existing P2P networks.

5.2 Effectiveness of LTM in Static Environment

In our first simulation, we study the effectiveness of LTM in
a static P2P environment where the peers do not join and
leave frequently. This will show, without changing the
overlay topology, how many LTM optimization steps are
required to reach a better topology matching.

5.2.1 Traffic Cost versus Search Scope

The goal of the LTM scheme is to reduce traffic cost as
much as possible while retaining the same search scope.
Fig. 8 compares the traffic cost incurred by the original
Gnutella-like system and by the system after one-step
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LTM optimization. One-step means every peer makes LTM
optimization only once. Since this simulation is based on a
static P2P environment, we do not include traffic cost
incurred by LTM operations. The traffic overhead of LTM is

included by simulation results in dynamic environments
shown in Fig. 15.

In Fig. 8, the curve of “cn-neigh” shows the average
traffic cost caused by a query to cover the search scope in
the x-axis, where, in the system, the average number of

logical neighbors is cn. The dashed curves represent
performance results without using LTM, while solid curves
represent the results with LTM optimizations. Fig. 8 shows
that, to cover the same search scope, one-step LTM reduces

the traffic cost significantly and the reduction rate increases
as the search scope increases. In other words, with a given
traffic cost, LTM will increases its search scope. Fig. 9 shows
that the traffic cost decreases when LTM is conducted

multiple times, where the search scope is all 8,000 peers. We
can see that the traffic cost reduction reaches a threshold
after the second or third step LTM optimization. LTM can
be convergent as fast as in two to three steps.

5.2.2 Average Neighbor Distance, Response Time, and

Search Latency

Average neighbor distance reflects the effectiveness of LTM
on topology match problem. Fig. 10 shows the average

neighbor distance versus LTM optimization steps.
Compared with the original Gnutella-like network with-

out LTM scheme (zero optimization steps), one-step LTM

optimization reduces average neighbor distance by about

55 percent and more steps of LTM may cut average

neighbor distance to around 65 percent.
Short query response time is always desirable in P2P

systems. The simulation results in Fig. 11 and Fig. 12 show

that LTM can effectively shorten the query response time

and search latency by about 62 percent and 55 percent,

respectively. The trade off between query traffic cost and

response time has been discussed in [39]. P2P systems with

a large number of average connections offer a faster search

speed while increasing traffic. One of the strengths of the

LTM scheme is that it reduces both query traffic cost and

response time without decreasing the query success rate.
Our other simulation results also show that different

densities of logical peers or physical nodes will not impact

the effectiveness of LTM. The average traffic cost is only

proportional to the average number of neighbors and

average cost logical links, which is consistent with previous

analysis.

5.3 LTM in Dynamic Environment

We further evaluate the effectiveness of LTM in dynamic

P2P systems and explore the best frequency for each peer to

conduct LTM. We first discuss the performance impact of

the will-cut list and the cut list. The average number of

logical neighbors we use is six.
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Fig. 8. Traffic cost versus search scope.

Fig. 9. Traffic reduction versus optimization step.

Fig. 10. Average neighbor distance versus optimal step,

Fig. 11. Average response time versus optimal step.



5.3.1 Effectiveness of Will-Cut List (W-C)

From our simulation results in dynamic environments, we
found that, with the same search scope, the query success
rate in dynamic environments is decreased by about
5 percent compared with the static environment, as shown
in Fig. 13 (compare curves of static Gnutella-like and dynamic
Gnutella-like). One extreme case is when the search scope is
100 percent, which means that each query can reach all
peers and we guarantee the query result is available in at
least one of the peers. The search success rate is expected to
be 100 percent in this case, but it is only 95 percent. The
reason for the 5 percent loss in query success rate is that the
query responses cannot be returned due to peers’ dynamic
leaving behavior. We call this phenomena the response loss
problem.

If we do not use the will-cut list in LTM, a connection
will be cut immediately when it is found to be a slow
connection, which will cause a very serious response loss
problem because many responses may not be returned due
to the cut connections. The curve of LTM without W-C in
Fig. 13 shows that the query success rate is significantly
decreased by 30-40 percent without using the will-cut list.
The LTM is conducted once every minute in this simulation.
Retaining the query success rate is the reason we design the
will-cut list, each of which can hold 20 connections in our
simulation. The up to 20 slow connections will not be used
to forward queries, but only used to return query results.
The lifetime of the connections in a will-cut list determines

the query success rate. In Fig. 13, a curve of LTM with W-C-n
means the lifetime of a will-cut connection is n seconds. We
can see that the query success rate can be retained if the
connections can be kept in the will-cut list for 50 seconds.

5.3.2 Effectiveness of Cut List

If we do not use the cut list, a connection that has just been cut
may be established again. Thus, the LTM optimization rate
will be limited. Fig. 14 compares the overhead incurred by
LTMwith andwithout the use of the cut list. The fluctuations
of the curves represent the dynamic nature of the network as
time goes. The curve of LTM-k means each peer conducts
LTM for k times perminute.We can see that the use of the cut
list reduces traffic overhead by about 50 percent compared
with the case without using the cut list.

5.3.3 Effectiveness and Frequency of LTM

We use the will-cut list and the cut list in this part of
simulation. Compared with a Gnutella-like system, Fig. 15
and Fig. 16 show the effectiveness of LTM on reducing
average traffic cost and query response time. Since LTM
adds some traffic overhead due to the TTL2 detector
flooding, there exists an optimal frequency for each peer
to conduct LTM independently. We simulate LTM in
different frequencies ranging from 1/4 to 4 times every
minute. We consider a frequency to be optimal if the next
higher frequency does not increase the optimization by
more than 3 percent compared with the current frequency.
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Fig. 12. Average search latency versus optimal step.

Fig. 13. Effectiveness of will-cut list.

Fig. 14. Effectiveness of cut list.

Fig. 15. Total traffic versus LTM frequency.



Results in Fig. 15 and Fig. 16 show that, under the
assumption that peer average lifetime in a P2P system is
10 minutes and 0.3 queries are issued by each peer per
minute, the optimal frequency for every peer to conduct
LTM is twice per minute. With this frequency, about
75 percent reduction on traffic cost and 65 percent reduction
on response time can be achieved.

As we have mentioned, different values of peer average
lifetime and query frequency have been presented by
previous studies [9], [28], [31], [32]. We further tune the two
parameters (average lifetime and query frequency) in our
simulation. Fig. 17 shows that LTM can be conducted less
frequently if peer average lifetime is longer. Fig. 18 shows that
LTM should be conducted more frequently if more queries
are issued. Both figures show that a larger average number of
neighbors require a higher LTM frequency.

5.4 Combining LTM and Query Index Caching

In this part, we evaluate a strategy of combining LTM with
response index caching scheme. We compare the traffic cost
and response time in a Gnutella-like system without any
optimization, with query index caching only, with one-step
LTM optimization only, and with one-step LTM optimiza-
tion plus query index caching. Results in Fig. 19 and Fig. 20
show that, by combining LTM and query index, caching the
traffic cost is reduced by about 10 times without shrinking
the search scope and the average query response time is
reduced by about seven times.

6 CONCLUSION AND FUTURE WORK

We have evaluated our proposed location-aware topology

matching, LTM, in both static and dynamic environments.

Simulations in static P2P environments show that the

significant performance benefit of LTM is consistent with

various network sizes and average numbers of neighbors. In

simulation studies of dynamic environments, we have

investigated the optimal LTM frequency in a more realistic

P2P environment. The results show that LTM achieves about

75 percent reduction on traffic cost and about 65 percent

reduction on query response time. The impacts of peer

average lifetime and query frequency on optimal LTM
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Fig. 16. Response time versus LTM frequency.

Fig. 17. Optimal LTM frequency versus average peer lifetime.

Fig. 18. Optimal LTM frequency versus average query frequency.

Fig. 20. Average response time of four schemes.

Fig. 19. Traffic cost of four schemes.



frequency have also been studied. We also show that our
design of the will-cut list and the cut list can improve the
performance of LTM. The ability that LTM can complement
other advanced search approaches has been shown by a
combination strategy of LTM with query index caching.

In LTM, each peer is aware of the location of other peers
within a distance of two hops. The major advantage of LTM
is that it is not only able to timely match the logical topology
with the physical topology to significantly improve the
search efficiency; it also guarantees to retain the search
scope. This contribution makes LTM truly unique and
highly effective. In addition, LTM is completely decentra-
lized and scalable.
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