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Abstract—Location-based analytics will enable a

plethora of new services for 5G verticals and will empower

the optimized use of network resources. Such analytics

build on enhanced 5G positioning obtained through new

positioning signals and procedures defined within 5G

standardization, together with the integration of hetero-

geneous technologies for achieving sub-meter accuracy.

This paper proposes an end-to-end architecture integrated

within the 5G network infrastructure to provide location-

based analytics as a service. We also present an overview

of cutting-edge applications in 5G and beyond, focusing on

people-centric and network-centric location-based analytics.

Index Terms—5G, localization, analytics, network man-

agement, machine learning.

I. INTRODUCTION

The 5G cellular network and its long-term evo-

lution are targeting the design of pervasive cyber-

physical systems, whose operation and control de-

pend on accurate location information. This is ad-

dressed by enhancing 5G networks and devices (un-

der discussion in 3GPP Rel. 17) towards localization

functionalities, thus elevating location information

to a first class network service [1], [2]. Besides

the localization of users, there is a growing interest

in location-based analytics, i.e., the analysis of the

location and behaviour of people and things in

public areas, roads, and buildings, through dedicated

infrastructures or by relying on user devices [3]–

[10]. While closely related, location-based analytics

are not a mere extension of user equipment (UE)

localization, but rather a new paradigm that enables

a large variety of scenarios and applications, includ-

ing security, transportation and smart cities, as well

as opportunistic networking.

Location-based analytics can be classified as

people-centric and network-centric. People-centric

analytics refer to the ensemble of information re-

lated to people presence and movements in physical

spaces (e.g., people counting, dynamic map creation

and people flow tracking, fusion of spatiotemporal

data with multimodal information, and anomalous

behaviour detection) [3]–[7]. Network-centric ana-

lytics refer to the ensemble of information related

to network operation (e.g., network planning, fault

detection, resilience, location-aware diagnosis and

troubleshooting) [8]–[10]. On the one hand, the

ability to operate 5G networks in both sub-6 GHz

and Millimeter Wave (mmWave) frequency bands

and the use of massive antenna arrays significantly

extend the capabilities of people-centric localiza-

tion. On the other hand, such new 5G features,

including beamforming, multi-connectivity, and the

adoption of new spectrum portions pose new chal-

lenges for autonomous network management. As a

consequence, the exploitation of location informa-

tion related to user equipment can boost the effi-

ciency of network management for the provisioning

of dynamic services.

The provision of location-based analytics relies

on complex features and mobility patterns extracted

from raw location data within physical and network

events. This calls for an extension of the network

functions (e.g., the scheduler) to interface with

location data in a multi-layer and flexible architec-

ture that i) facilitates secure sharing and re-use of

accurate location and context data for diverse local-

ization services, and ii) combines the different net-

work functions for the extraction of location-based

analytics. Moreover, network functions should be

served on top of the 5G infrastructure and the pure

5G connectivity. There is a unique opportunity for

network providers to make location-based analytics

a network-native service in 5G and beyond, which

will be pivotal to creating new disruptive services

and to optimize network performance.

This paper proposes a full-stack architecture inte-

grated with the 5G network infrastructure (Sec. II)

to serve a plethora of services requiring location-

based analytics. Such analytics rely on enhanced

positioning provided in 5G, also integrating hetero-
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Fig. 1: System architecture for localization analytics as a service.

geneous data and device-free localization (Sec. III).

Then, we detail a set of case studies on people-

centric and network-centric analytics (Sec. IV).

II. END-TO-END ARCHITECTURE

We propose new system functionalities integrated

in the 5G network infrastructure (spanning network

edges and data centers) to allow operators and ser-

vice providers to expose location-based analytics as

a service. Such functionalities leverage 5G network

information combined with heterogeneous data from

other radio access technologies [2] (see Sec. III).

A. Localization and analytics functions

We propose the use of virtualization techniques

to run the localization and analytics functions as

virtual functions, i.e., providing an augmentation

of the 5G architecture by leveraging on the ETSI

network function virtualization framework, which

represents the 3GPP standard for operators to deploy

5G network functions in virtualized infrastructures.

This augmentation of the 5G architecture offers

operators and service providers the possibility to

expose new location-based analytics to third parties

and exploit location data for smart network man-

agement applications.

Fig. 1 presents a comprehensive view of the

proposed system architecture and includes details

of how the location-related functions coexist on top

of a virtualized infrastructure, for their on-demand

deployment in the form of localization services.

The proposed system is compliant with the 3GPP

5G Core architecture and makes use of a ser-

vice based architecture that integrates with the 5G

network functions and augments it with atomized

and independent location functions. Specifically, the

system is aligned with the enhanced 3GPP Loca-

tion Service (eLCS) architecture, which specifies

5G network functions, interfaces, and workflows

for location-related functionalities [1]. Here, the

location management function (LMF) coordinates

and calculates the user position for location-based

services requested by external or internal eLCS

clients, including other network functions.

In our proposed system architecture, the local-

ization enablers provide the other system functions

with user device location data (e.g., coordinates,

velocity, direction). In particular, localization en-

ablers implement two type of LMFs (see Sec. III)

deployed on-demand to fulfill specific positioning

requirements: i) integration of New Radio (NR),

global navigation satellite system (GNSS), WiFi;

and ii) device-free localization. Such LMFs provide

location data to the location data analytics func-

tions (LDAFs) for the provision of location-based

analytics. Such LDAFs are deployed on-demand
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and combined according to the localization service

requirements and objectives. LDAFs can be consid-

ered as LCS clients and use positioning data from

localization enablers LMFs. LDAFs for people-

centric and network-centric apply descriptive, pre-

dictive, prescriptive, and diagnostic algorithms to

respectively perform statistical analysis on location

and network data, assess future possible conditions,

search for actions to be taken, and determine the

causes for specific conditions.

Finally, the integrity, security, and privacy func-

tions provide authentication and advanced crypto-

graphic techniques on the localization and analytics

data to be exposed towards external applications,

secure conditional sharing techniques and data man-

agement policies (e.g., anonymization, obfuscation).

B. Localization analytics as service APIs

The localization analytics are exposed as services

through application programming interfaces (APIs)

consisting of pipelines of functions, which are

linked together to provide the application with the

requested output. This process relies on a workflow

execution engine, i.e. the management and network

orchestration, which translates the service request

into a number of functional steps, involving one or

more localization functions.

The localization analytics output is passed to the

application via service APIs, either by exposing the

output as an on-demand RESTful service or by

exposing it as a continuous data stream. This is

done via dedicated access control functions within

the API layer. In summary, the overall proposed

approach has the main goal to enable a flexible and

composable platform where the various localization

functions can be combined while facilitating sharing

and re-use of some of the key functionalities (e.g.,

those for the localization enablers or data security

and privacy) across different localization services.

III. 5G POSITIONING

This section presents the ongoing 3GPP standard-

ization activities and the research in the area of

5G localization, to better define the eLCS involved

within the proposed architecture. We also provide

an overview on the main technologies that can be

fused together with 5G location data for enhanced

localization, with a special focus towards device-

free localization.

A. 5G standardization, metrics and use cases

Positioning in 5G was introduced in Rel. 15

for non-standalone operation (5G networks aided

by existing 4G infrastructure) and continued in

Rel. 16 with standalone NR operation, with fur-

ther enhancements expected in Rel. 17. From a

theoretical standpoint, positioning in 5G relies on

single value estimation, where each measurement

used for localization corresponds to the estimate of

a single-value metric. In particular, 3GPP Rel. 16

compliant solutions mainly rely on downlink time

difference of arrival (DL-TDoA ) and beamforming

angle of arrival (AoA). Depending on the use case,

some received signal strength indicators (RSSIs)

such as the reference signal received power (RSRP)

and the reference signal received quality (RSRQ)

can be also used for positioning. For instance, for

people monitoring and flow control, fingerprinting-

based solutions for 3GPP reference signals using

machine learning can deliver accurate positioning

results with online data.

Richer information increases the accuracy, es-

pecially in challenging environments, and can be

extended to use soft information [11] to improve

the positioning accuracy for 5G use cases. New

compelling applications relying on high-precision

positioning technology in autonomous applications,

high integrity and reliability in addition to high

accuracy and low latency become a necessity.

Integrity is the measure of trust that can be placed

in the correctness of information supplied by a

navigation system. It includes the ability of a system

to provide timely warnings to user devices in case

of failure. In 3GPP Rel. 17, integrity has started to

be considered mainly for GNSS localization to sup-

port well-known automotive and railway use cases.

Nevertheless, integrity solutions are becoming in-

creasingly important also for 5G positioning and for

providing accurate, timely, and reliable positioning

data for people-centric and network-centric services.

B. Heterogeneous location data fusion

The fusion of radio access technology (RAT)-

dependent and RAT-independent location data in

a hybrid fashion is beneficial for the demanding

positioning requirements on accuracy, latency and

integrity level for 5G use cases. Although 3GPP al-

ready provides support for RAT-independent meth-

ods, new technology trends suggest that we are
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moving from having several independent chipsets

in smartphones, towards the integration in a single

chipset, turning the vision of heterogeneous location

data fusion into reality in the coming years.

The GNSS is almost fully supported in 3GPP for

both 4G and 5G. The combination of 5G cellular

positioning and GNSS is needed for many use cases

in which one technology is not fully operating or has

limited coverage, such as in tunnels or urban canyon

scenarios. Studies show that use of even only one

high-accuracy 5G round-trip-time observable can

remarkably improve the horizontal positioning ac-

curacy with respect to GNSS stand-alone solutions

by relaxing the positioning problem and improving

the geometry of the solution [12].

Concerning the integration of other RAT-

independent positioning methods, the combination

of ranging measurements for a UE from multiple

WiFi access points (APs) and 5G NR cells, for

both indoor and outdoor scenarios, is envisaged to

accomplish high-accuracy positioning. However, in

5G networks, the location server may not have the

information about the WiFi APs exact locations;

this limits the usefulness of WiFi data at the loca-

tion server. In such cases, for instance, smartphone

movements can be estimated using WiFi Fine Time

Measurement ranging measurements [13] without

relying on the knowledge of the AP position. These

data can be integrated in a network-based location

system defined in 3GPP, where the network collects

round-trip-time measurements sent from the UE.

In this context, the large bandwidth of mmWave

networks not only provides very high accuracy po-

sitioning, but enables simultaneous localization and

mapping (SLAM) though AoA information. SLAM

in mmWave networks relies on anchor location

estimation, device localization, and environment

mapping for both physical and virtual anchors. A

low complexity SLAM algorithm fully integrated

with a mmWave communication system is feasible

with median error smaller than 0.3-0.5 m [14].

C. Device-free localization

Device-free localization addresses the identifica-

tion and analysis of signals backscattered by single

and multiple device-free targets (persons, vehicles,

etc.) and relies on sensor radar networks.Such net-

works sense the wireless environment to infer the

location of targets from signal reflections and ob-

structions and can take advantage of any modulated

signal at any frequency of operation.

The ultra-low latency connectivity and a finer

radar range resolution enabled by 5G are paving

the way to the use of 5G NR waveforms for

radar networks. As an example application, device-

free localization has been proposed in [15] as an

integrated radar service for future vehicle networks.

In this context, the use of mmWave technology is

particularly relevant since the reduced wavelength

at mmWave allows the use of massive arrays with

electronic steering capabilities, thus enhancing the

directionality properties for detection and tracking

of device-free targets.

IV. FROM LOCALIZATION TO ANALYTICS

The ubiquity of sensors in the 5G ecosystem

provides unprecedented opportunities for obtaining

large-scale mobility attributes as well as for un-

derstanding human mobility patterns. Such ubiq-

uity also enables to exploit the correlation between

human activities and network events. This section

presents a set of case studies for location-based

people-centric and network-centric analytics, with

examples that can be implemented as LDAFs within

the proposed system architecture.

A. People-centric location-based analytics

People-centric analytics provide insights and em-

power domains such as smart cities and transporta-

tion and can enable a number of 5G services in such

contexts.

1) Group detection and people counting: There

is a growing interest in designing crowd-centric

device-free [5] and device-based [6] methods for

group detection and people counting that infer the

number of targets directly from the measured data

without estimating their locations.

This use case considers people counting and

group detection based on wireless activity of mobile

devices using wireless scanners. City-scale measure-

ments [7] are conducted to analyze crowd mobility

and Group-In method [6] is developed for group

inference from wireless traces. In particular, we

consider the scalability of group detection in the

city-scale pilot study conducted in Gold Coast,

Australia. We applied graph algorithms in [6] at a
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Fig. 2: People counts and number of groups observed every

10 minutes based on wireless activities in the Gold Coast city.

The results show equal time units in the one week period.

large scale using WiFi and 5G datasets for verifying

the feasibility of group detection in large areas.

The parameters are trained in controlled laboratory

environments, after which the obtained models are

applied to the larger-scale data. In the centralized

computing phase of Group-In, we apply the wire-

less fingerprint match algorithm based on RSSIs.

In the group-inference phase, the highly-connected

subgraphs algorithm is applied.

Fig. 2 shows the observations from Group-In

application to a one-week period (10 min. time

interval, 30 sec. sampling time). We observe a

positive correlation between the number of groups

and the number of people. Data have a daily trend

with a peak value (up to 110 people) every day.

Initial results indicate that Group-In can be applied

to analyze larger datasets such as city-scale data

for long periods, and it can be used to create gen-

eral group behaviour insights. Accurate localization

through 5G will lead to more granular insights for

people counting and group behaviour identification.

Moreover, similar insights can be produced in real

time for much larger regions through wide deploy-

ment and availability of the 5G infrastructure.

2) Mobility clustering: This use case investi-

gates the mobility patterns in large-scale mobility

datasets, which can be implemented within the

proposed architecture using as input 5G LMFs. Such

datasets exhibit challenges in terms of granularity,

regularity, and accuracy, which motivate the use

of modern deep learning techniques to be imple-

mented as LDAFs. In this context, we investigated

recurrent networks based sequence-to-sequence au-

toencoders [4] for human mobility analysis. We

conducted unsupervised spatiotemporal clustering

on the OpenPFLOW dataset [3], which represents

walking, biking and commuting mobility in the

city of Tokyo for 24h at regular 1 min. timesteps.

The autoencoding model is formed by stacking

layers of gated recurrent units in an encoder/decoder

structure.

After training, spatiotemporal aspects of the mo-

bility data are encoded in the latent space repre-

sented by the encoder output. There we apply prin-

ciple component analysis, and then use K-Means

method to detect clusters. Fig. 3 shows the process

applied to walking trajectories from [3]. The visual-

ization on the actual Tokyo map indicates potential

trends such as regional, sub-regional, and cross-

regional mobility concentration, as well as patterns

of stationary and non-stationary behavior across

different time periods. The fusion of 5G location

data from heterogeneous technologies together with

additional contextual information, as enabled by

the proposed end-to-end architecture, will further

improve such mobility analytics and enable, for

example, dedicated network functions for anomaly

detection of irregular trajectories and the interplay

with other aspects of human activity.

B. Network-centric location-based analytics

Two use cases are now presented to show

the use of location-based analytics for net-

work management: network optimization for effi-

cient service provisioning considering the dynamic

changes in the network; and location-aware diag-

nosis/troubleshooting for the maintenance of the

cellular network by identifying problems as well as

ensuring the resilience of the network itself.

1) Network optimization: An example of promis-

ing techniques for location-aware network optimiza-

tion is pencil beamforming based on the estimated

UE position. We have performed a preliminary

analysis for the impact of pencil beamforming on

the QoS of 5G networks and the ElectroMagnetic

field (EMF) exposure. To this aim, an open-source

simulator has been developed [9] that is able to

synthesize the traffic beams for each gNB, both

in direction and beamwidth, by exploiting user

equipment (UE) localization accuracy. Each beam

is directed towards the centre of a circular area in

which the UE is assumed to be, where the diameter
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Fig. 3: Pedestrian mobility autoencoder-based clustering in Tokyo.

of this circular area indicates the uncertainty level

for UE location estimate.

Table I presents the values of the average EMF

[V/m] and the average throughput [Mbps] according

to different location uncertainty levels. Results show

that an increase of the location uncertainty level

results in a higher EMF (due to possible overlap

of the wider beams) and a lower throughput (the

higher beam width lowers the beam’s directivity).

Therefore, accurate localization that reduces uncer-

tainty levels helps to reduce the EMF exposure

while increasing the throughput.

2) Network diagnosis: Location-aware network

diagnosis can rely on contextualized indicators, i.e.,

time-series metrics combining location and cellular

network measurement. Such indicators are extracted

from the network measurements reported by the

users in different areas of interest, including the

cell coverage, center, and edge. This concept can be

especially beneficial for 5G ultra-dense scenarios,

characterized by a high dynamicity of users and an

increased demand due to the reduced coverage areas

and inter-site distances [10]. Supported by the high-

accuracy localization provided by 5G systems, novel

developments have aspired to complete automation

of the definition of the areas of interest. This has led

to an increased number of available contextualized

indicators that can be used for diagnosis: each cell

coverage area, center, edge, influencing area on

other cells and area being influenced by each of

their neighbours.

Figure 4 compares the performance of failure di-

agnosis mechanisms using classic metrics only with

the use of both classic and contextualized metrics

TABLE I: Average EMF [V/m] and average throughput

[Mbps] for different values of location uncertainty level.

2 m 4 m 8 m 16 m 20 m

Avg EMF

[V/m]
0.797 1.558 2.948 4.700 5.509

0.795 1.555 2.944 4.694 5.502EMF C.I.

[V/m] 0.798 1.561 2.952 4.706 5.516

Avg

throughput

[Mbps]

422.001 138.593 43.518 13.159 9.255

411.683 134.197 41.776 12.583 8.860Thr. C.I.

[V/m] 432.318 142.999 45.261 13.735 9.650

(fusion). This is done for the indoor ultra-dense

scenario with 12 picocells and multiple modelled

failures presented in [10]. Network diagnosis is per-

formed based on three classifiers, namely k-nearest

neighbors, discriminant analysis classification and

multiclass error-correcting output codes classifica-

tion. Results show how for the different classifiers

the use of contextualized data considerably de-

creases the diagnosis error rate with respect to only

using classical metrics, thus providing a powerful

tool for 5G failure management. The availability of

localization data for the generation of the location-

enriched metrics allow the median diagnosis error

rate for the three classifiers to be reduced signif-

icantly, going below 1% for disc and multiclass.

This demonstrates the relevance of location-aware

information for improving failure management of

5G networks.

V. CONCLUSION

This paper has proposed a new system archi-

tecture for the provision of location-based analyt-

ics as a service, which will enable a plethora of
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Fig. 4: Comparison between the diagnosis error rate (DER) ob-

tained by classic and location-enriched contextualized metrics

in an ultra-dense scenario, using k-nearest neighbors (KNN),

discriminant analysis classification (disc) and multiclass error-

correcting output codes classification (ECOC).

people-centric and network-centric applications for

5G verticals. The system architecture is proposed

as an augmentation of the 5G architecture, where

network and user data from heterogeneous technolo-

gies are combined to extract on-demand analytics

that can serve third party applications or can be

used to optimize the network performance. Example

analytics for people grouping, mobility clustering,

network optimization, as well as network diagnosis

have been presented.
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