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Abstract—Web service recommendation is of great impor-
tance when users face a large number of functionally-equivalent
candidate services. To recommend Web services that best fit a
user’s need, QoS values which characterize the non-functional
properties of those candidate services are in demand. But in
reality, the QoS information of Web service is not easy to
obtain, because only limited historical invocation records exist.
To tackle this challenge, in recent literature, a number of QoS
prediction methods are proposed, but they still demonstrate
disadvantages on prediction accuracy. In this paper, we design a
location-based hierarchical matrix factorization (HMF) method
to perform personalized QoS prediction, whereby effective service
recommendation can be made. We cluster users and services into
several user-service groups based on their location information,
each of which contains a small set of users and services. To
better characterize the QoS data, our HMF model is trained in
a hierarchical way by using the global QoS matrix as well as
several location-based local QoS matrices generated from user-
service clusters. Then the missing QoS values can be predicted by
compactly combining the results from local matrix factorization
and global matrix factorization. Comprehensive experiments
are conducted on a real-world Web service QoS dataset with
1,974,675 real Web service invocation records. The experimental
results show that our HMF method achieves higher prediction
accuracy than the state-of-the-art methods.
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I. INTRODUCTION

Nowadays, more and more Web services designed by dif-
ferent organizations emerge on the Internet, providing a variety
of functionalities. These Web services are widely employed
as components in complex distributed systems, which greatly
reduce software development time. But during the developing
process, the developer will often find out a lot of functionally-
equivalent Web services due to the fact that the number of Web
services is experiencing a rapid growth. Consequently, Web
service recommendation [1], [2] is recognized as an effective
solution to assist developers in determining the most suitable
candidate services.

To facilitate effective Web service recommendation, the
quality of candidate services needs to be assessed from non-
functional properties. Quality-of-Service (QoS) is a group of
attributes (e.g., response time, throughput, reputation, etc.) that
are usually employed to characterize the non-functional prop-
erties of Web services [3], [4], [5]. In principle, during Web
service recommendation, services with similar functionalities
are compared with each other automatically based on their
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Fig. 1. Web Services Invocation Scenario

QoS properties. Then the most suitable Web services in terms
of user-defined QoS requirements can be recommended to the
user. As a result, the user can just select from a small list of
Web services returned by the recommendation system instead
of struggling in all candidate services.

However, in practice, it is not easy to obtain the QoS values
of all the candidate services, due to the following three reasons:
1) The QoS values need to be assessed from point of view
of users, because different users may perceive different QoS
values. 2) Only a limited number of service invocation records
exist, since each user usually just invokes a handful of Web
services. 3) It is time-consuming and resource-consuming to
assess all the QoS values by invoking candidate services one
by one, due to the large number of users and services. The
QoS values of Web services observed by different users can
be represented as a user-service matrix, whose rows represent
users, columns represent services and entries are observed QoS
values. But there are many missing values in the user-service
matrix. To address this problem, QoS prediction is proposed
to get approximated QoS values for those missing values in
the user-service matrix.

Matrix factorization (MF) is a model-based collaborative
filtering method, which has been used to make QoS pre-
diction and widely studied in recent years. As other model-
based collaborative filtering methods do, matrix factorization
trains a model according to historical invocation records and
uses patents found to predict QoS values for the missing
values in the user-item matrix. In matrix factorization, we
suppose that user-perceived QoS values are determined by
a few latent features. These latent features (e.g. network
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bandwidth, I/O operations, firewalls) not only affect users,
but also have impact on the service side. Thus, the user-
service matrix is approximated by two low-rank matrices,
which represent the influence of latent features on users as
well as services, respectively. Matrix factorization achieves
good performance in traditional recommendation systems (e.g.
movie recommendation systems) where entries in matrix are
user-given ratings on different items (e.g. movies). Because
each existing entity in that matrix is rated by a specific user,
which is subjective, it can reflect the user’s preference on an
item. However, in Web service context, user-perceived QoS
values of services are largely affected by physical factors.
Location is such a key factor. For example, users and services
in close locations tend to have small response time values.
In Fig. 1, we have users and services which are in three
location regions. Among all invocations, corresponding QoS
values (e.g. response time values) of invocations in the same
location region are more likely to have higher similarity (they
tend to be small) compared with those cross-region ones.

To make fully use of the location information and improve
the performance of our model, we propose a hierarchical
matrix factorization method to predict QoS values for the
unobserved user-service pairs. We firstly make use of cluster-
ing methods to separate users and services into several user-
service groups according to their location. After that, QoS
values of these users and services are represented as local user-
service matrices. Different from global matrix which contains
all users and services, local matrices only contain users and
services in the same location region (same as cluster in this
paper). A simple way to utilize location information is to only
conduct matrix factorization on local matrices and simply put
together their prediction results. However, it will degrade the
prediction performance because we don’t use any information
of global matrix at all. To utilize both global and local
information, our model performs matrix factorization on local
matrices and global matrix sequentially in each approximation
step. This model is run in a hierarchical way that in each
approximation step, we linearly combine the predicted results
of both global matrix and local matrices. Finally, based on the
integrated predicted results, services with the best QoS values
are recommended to corresponding users.

The main contributions of this paper are as follows:

• A hierarchical matrix factorization model is designed
to effectively improve the prediction accuracy. Our
model leverages location of users and services and
takes global and local information into consideration
at the same time.

• Extensive experiments are conducted on a real world
Web service QoS dataset with 339 users and 5825
services. Experimental results prove that our method
is better than other state-of-the-art methods.

The rest of this paper is organized as follows: Section II de-
scribes the framework of our service recommendation method.
Our proposed hierarchical matrix factorization model is ex-
plained in detail in Section III. Section IV presents experiments
and discusses the experiment results. Section V introduces
some related work. Finally, we conclude our work and discuss
some future improvement directions in Section VI.

2. Clustering Based on Location

1. Form Global User-service Matrix

. . .User-service
Group 1

User-service
Group 2

Local
MF 1

User-service
Group K

Local
MF 2

Local
MF K

. . .

Local Information

Global Matrix Factorization

4. QoS Recommendation

3. Hierarchical Matrix Factorization

Fig. 2. Framework of Hierarchical Web Service Recommendation System

II. FRAMEWORK OF WEB SERVICE RECOMMENDATION

As we mentioned in Section. I, nowadays developers tend
to utilize existing Web services provided by third parties to
build complex distributed systems. An important issue for them
is to choose the most suitable services among all functionally-
equivalent ones without invoking all service candidates by
themselves. Our recommendation system acts as a platform
for these users to share their historical invocation records
and obtain believable service recommendation according to
their non-functional needs. The overview of our QoS-based
hierarchical Web service recommendation system is shown in
Fig. 2, which includes these main steps:

1) We collect and formalize existing information of user-
s and services, including their IP address, longitude,
latitude, invocation records shared by them, to name a
few. Then all existing Web service invocation records
will be used to form a global user-service matrix. Due
to the fact that most of the users only called a few
Web services before, the global matrix is very sparse.

2) In this step, we utilize longitude and latitude infor-
mation to map users as well as services into a 2-
dimensional space. Then we cluster all user nodes
and service nodes into several user-service groups
according to their coordinates in that space. In our
method, each group contains both users and services,
which coincides with the idea to make use of loca-
tion of users and services at the same time. After
clustering, users, services and their corresponding
invocation records in each group can be used to form
a local user-service matrix.

3) The above mentioned steps can be viewed as prepro-
cessing steps, whose outcomes are one global matrix
and several local matrices. Then our hierarchical
matrix factorization model is used to predict missing
values. In each approximation step, we firstly perform
matrix factorization on all local matrices. After lo-
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Fig. 3. An Example of QoS Prediction by Hierarchical Matrix Factorization (α = 0.8)

cal matrix factorization, we obtain approximate QoS
values for local matrices, which are referred to local
information in Fig. 2. Then we calculate QoS values
in global matrix. Instead of using only the product
of user feature vectors and service feature vectors
like traditional matrix factorization methods, for QoS
values between users and services in user-service
groups, we linearly combine predicted result of global
matrix factorization and local matrix factorization to
obtain the final prediction. User feature vectors and
service feature vectors are columns of low-rank ma-
trices used to perform QoS prediction during matrix
factorization.

4) Now, all unobserved entries in the global matrix
are predicted by our hierarchical matrix factorization
model. Thus, our system is ready to recommend the
services with the most suitable non-functional prop-
erties to all users in our system based on predicted
results. For example, if an existing user, who is the
i-th one in our global matrix, wants to find out a Web
service with least response time among functionally-
equivalent candidates. We just need to take out the i-
th row from the global matrix, which can be regarded
as a 1-dimensional vector. The service with the small-
est numeric value in this vector will be recommended
to that user.

III. HIERARCHICAL MATRIX FACTORIZATION

A. Overview

Our hierarchical matrix factorization consists of two main
steps, which are clustering step and prediction step (modeling
step). In clustering step (Subsection. III-B), users and services
are clustered into different user-service groups according to
their location information. In prediction step, our model is
trained hierarchically on historical invocation records. There
are two procedures in each training iteration, which are local
matrix factorization (Subsection. III-C) and global matrix
factorization (Subsection. III-D). Local matrix factorization
will be done first and the result of it is used by global matrix
factorization in each iteration.

To explain the “hierarchical” concept clearly, a straight-
away example is given in Fig. 3. In this example, we assume
there is one local matrix for simplicity, which means one user-
service group is found by k-means. The calculation of Local

Matrix k (Rk
local = (Uk)TSk) is local matrix factorization,

while the remaining part of this figure is global matrix factor-
ization. In global matrix factorization, the product of two low-
rank matrices UT and S is calculated at first, which is Global
Matrix in Fig. 3. Then we combine Global Matrix and Local
Matrix k to obtain the hierarchical prediction in this iteration,
which is the rightmost matrix in this figure. uk

1 , uk
2 in Local

Matrix k and u1, u3 in Global Matrix are actually the same
users, respectively. sk1 ,sk2 ,sk3 and sk4 are corresponding services
in Local Matrix k to s1, s2, s4 and s5 in Global Matrix.
Blocks in matrix containing QoS values between users and
services which are both in the user-service group are marked
as grey background, while the remaining ones are white. In
the following, we will focus on block (u3, s5) in the rightmost
matrix. To predict the QoS value R(3, 5) inside, we calculate
in this way:

R(3, 5) = 0.8×Rglobal(3, 5) + (1− 0.8)×Rk
local(2, 4) (1)

where Rglobal(3, 5) is the QoS value of (u3, s5) in Global
Matrix and Rk

local(2, 4) is the QoS value of (uk
2 , s

k
4) in Local

Matrix k. The impact of parameter α will be discussed in
Section. IV-D.

B. Users and Services Clustering

Location is used in our hierarchical matrix factorization
method to improve prediction accuracy because of these fol-
lowing reasons: (1) Location information, which is represented
by longitude and latitude in this paper, is an attribute that
owned by every user and service. (2) Longitude and latitude of
all users as well as services can be crawled on the Internet. (3)
In Web service context, location does carry valuable informa-
tion because geographically-close nodes tend to share similar
network infrastructure, which to an extent affects QoS values
such as response time. Although users and services located
in close places may employ different network configurations,
which also affect QoS values to varying degrees, it has been
observed that this distinction has much less influence than
the location information [6]. Because matrix factorization
performs better on matrix with smaller variance, users and
services are clustered into some user-services groups according
to their longitude and latitude, which form local matrices in
our method.

Since longitude and latitude information is selected to
cluster user nodes and service nodes, now the problem is how
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to cluster 2-dimensional points into different groups. We chose
k-means to cluster nodes in this problem because it is fast
and tends to form globular clusters, which fits our locational
similarity concept well. One big problem of k-means algorithm
is that the clustering effect is closely related to the choice of
initial mean points. However, in this problem, since user nodes
as well as service nodes are all 2-dimensional, it is convenient
for us to visualize all the points and predefine suitable initial
mean points. After clustering, we may find out some clusters
in which the number of users or services is very limited (close
to or even less than the number of latent features we set
in our model). This phenomenon often exists because of the
geographical maldistribution of users or services in real-world
datasets. Users and services belong to those clusters are defined
as outliers. For these outliers, we do not consider them in local
matrix factorization, but they will be used in the global matrix
factorization step. Because too few users or services do not
carry enough information to train the local matrix factorization
model well, which leads to inaccurate prediction results.

C. Local Matrix Factorization

We employ traditional matrix factorization to perform
prediction for all local user-service matrices. In local matrix
factorization, each local user-service matrix is predicted by
two low-rank matrices Uk and Sk, whose sizes are d × mk

and d × nk, where mk is the number of users, nk is the
number of services and d is the number of latent features in
our model. For matrix Uk or Sk, columns represent how much
corresponding latent features will affect QoS values on user
side or service side. Missing QoS values in local user-service
matrix k are predicted by minimizing the following formula:

Lk =
1

2

mk∑
i=1

nk∑
j=1

Ikij(R
k
ij − (Uk

i )
TSk

j )
2

+
λk
u

2
‖Uk‖2F +

λk
s

2
‖Sk‖2F (2)

where Ikij indicates whether QoS value on service j observed

by user i in local matrix k is missing. If it is missing, Ikij will

be 0, otherwise, its value is 1. Rk
ij means the available QoS

value that user i experienced on service j in local matrix k.
The rest two terms are regularization terms that help us get rid
of overfitting issues.

To get a local minimum of the objective function in Equ. 2,
we apply the gradient descent algorithm on both Uk

i and Sk
j :

(Uk
i )

′ ← Uk
i − ηku

∂Lk

∂Uk
i

(3)

(Sk
j )

′ ← Sk
j − ηks

∂Lk

∂Sk
j

(4)

where ∂Lk

∂Uk
i

and ∂Lk

∂Sk
j

are calculated by:

∂Lk

∂Uk
i

=

nk∑
j=1

Ikij((U
k
i )

TSk
j −Rk

ij)(S
k
j ) + λk

uU
k
i (5)

∂Lk

∂Sk
j

=

mk∑
i=1

Ikij((U
k
i )

TSk
j −Rk

ij)((U
k
i )

T ) + λk
sS

k
j (6)

We set λk
u = λk

s in all experiments to reduce the complexity

of our model.

D. Global Matrix Factorization

As mentioned in Section I, matrix factorization predicts
all missing values by minimizing the error between prediction
results and historical QoS records. In traditional matrix factor-
ization, location information is not taken into consideration,
which to some extent degrades the performance of the model.
But we observed that the global user-service matrix can
actually be regarded as several user-service groups, where
users and services are located in similar places, and remainders
which are geographically far apart from those groups. Thus, we
cluster users and services into user-service groups according
to longitude and latitude, each of which contains QoS values
with small variance that benefits the performance of matrix
factorization. An extreme idea to utilize knowledge given by
local matrices is to only apply matrix factorization model
on those user-service groups independently, which will make
fully use of local information but lead to the loss of global
structure. Thus, to consider both global and local information,
it is natural to predict QoS values by the linear combination of
matrix factorization on global matrix as well as local matrices.
Hence, the following term is designed:

αUT
i Sj + (1− α)R̂k

ij (7)

where UT
i and Sj represent global user feature vector and

global service feature vector respectively. R̂k
ij is calculated

by (Uk
i )

TSk
j , which are the corresponding local ones. Notice

that although Ui and Uk
i are related to the same user, the

value of i is actually different because the numbers of users in
these two matrices are not equal. We both use i here just for
simplicity and clarity. It is also the case for Sj and Sk

j . This
term integrates the approximate values given by global vectors
and local vectors, which coincides with the idea to utilize both
global structure and local information at the same time. α is a
tunable parameter that indicates how much global information
we use in our hierarchical model. The value of α is related to
the dataset we use. This term will be integrated into traditional
matrix factorization to obtain our hierarchical model:

L=
1

2

m∑
i=1

n∑
j=1

Iij(Rij − (αUT
i Sj + (1− α)R̂k

ij))
2

+
λu

2
‖U‖2F +

λs

2
‖S‖2F (8)

Since some users and services do not belong to any user-
service groups, for those corresponding missing QoS values,
we only use global matrix factorization to perform prediction.
To formalize this concept, α is selected by:

α =

{
1 if ui or sj or both are not in any local groups

αk if ui and sj are both in local group k
(9)

Similar to local matrix factorization, we apply gradient de-
scent to approximate. User feature vectors and service feature
vectors are updated as following:

U ′
i ← Ui − ηu

∂L
∂Ui

(10)

S′
j ← Sj − ηs

∂L
∂Sj

(11)
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where ∂L
∂Ui

and ∂L
∂Sj

are calculated by:

∂L
∂Ui

=
n∑

j=1

Iij(αU
T
i Sj + (1− α)R̂k

ij

−Rij)(αSj) + λuUi (12)

∂L
∂Sj

=
m∑
i=1

Iij(αU
T
i Sj + (1− α)R̂k

ij

−Rij)(αU
T
i ) + λsSj (13)

In all experiments, we set λu = λs for simplicity.

IV. EXPERIMENTS

A. Dataset Description

A real-world dataset consisting of 339 users and 5,825
services is used in all our experiments. This dataset contains
much useful information about users and services, including
IP address of each user, WSDL address of each service, users’
longitude as well as latitude and so on. This dataset was
introduced in detail in a related paper [7]. However, longitude
and latitude information of services was not published. Thus
we obtain their location information by an iplocation service 1.

B. Metrics

We use Mean Absolute Error (MAE) and Normalized Mean
Absolute Error (NMAE) to measure the prediction accuracy of
our proposed model. The definition of MAE is:

MAE =

∑
ij

|Rij − R̂ij |

N
(14)

where Rij represents the observed QoS value between user

i and service j, while R̂ij denotes the QoS value predicted
by our hierarchical matrix factorization model between the
corresponding user-service pair. N is the number of missing
QoS values in the user-service matrix. Different from MAE
that calculate the absolute average error, NMAE is the standard
MAE normalized by the mean of expected QoS values [1]:

NMAE =
MAE∑

ij

Rij/N
(15)

C. Comparison

To prove the effectiveness of our hierarchical matrix fac-
torization method, we ran extensive experiments on state-of-
the-art QoS prediction methods and compare our method with
them. Here is a brief introduction about those popular methods:

• UMEAN: UMEAN uses the mean of QoS values
perceived by a user on all services he/she called.

• IMEAN: In this method, we predict a QoS value by
calculating the mean of all existing historical records
on that service observed by different users.

• UPCC: This approach [8] utilize historical invocation
records of similar users to perform prediction.

1http://www.iplocation.net/

TABLE I. PARAMETERS

Parameter Value

λu, λs 35

λ1
u, λ1

s 10

λ2
u, λ2

s 20
Dimensionality 10

TABLE II. VALUE OF α

Density 0.15 0.20 0.25 0.30
α 0.8 0.8 0.8 0.9

• IPCC: The overall idea of this approach is the same
with UPCC, but instead of making use of similar users,
it pays attention to digging out some services alike.
Then the QoS values of similar services observed by
the specific user are used in prediction step.

• WSRec: This method [1] is the hybrid one that linear-
ly combines UPCC and IPCC, which takes advantage
of both similar users and similar services.

• PMF: This method is proposed by Mnih and Salakhut-
dinov [9]. The product of two low-rank matrices is
used as the predicted user-service matrix.

• LBR2: Lo et al. [6] considered location of users and
add a related regularization term to PMF model.

Since the user-service matrix is sparse in real-world cases,
we randomly remove some historical records to make our
experiments more realistic. Then we will have some user-
service matrices with different densities. In our experiment,
each QoS prediction method is run on 4 different matrices,
whose densities are 15%, 20%, 25% and 30% respectively. A
matrix with 20% density means that there are 20% available
user-service invocation records for us to regard as training set,
while the remaining 80% are ones waiting to be predicted. K-
means algorithm helps us separate all the users and services
into 5 user-service groups. After the check of the number of
users and services in each group, 3 groups are deleted because
there are too few users in them. As we mention in Section. III,
the number of useful groups is significantly related to the
distribution of user nodes and service nodes as well as the
number of nodes in the dataset. The parameters we used in
our experiment are listed in Table. I and Table. II. For the
purpose of simplicity, we set α1 = α2 in all our experiments,
and α is used to represent for these two.

Table. III shows us the MAE and NMAE of different
methods on 4 matrices with density from 15% to 30%. The
MAE and NMAE of all methods decrease as the matrix density
become larger, which means more information of users and
services will benefit the prediction performance. Besides, it
is obvious that the MAE and NMAE of our method are
consistently lower than others under all matrix density settings.
That means our method outperforms others under all circum-
stances. Thus, performing matrix factorization hierarchically
and making use of geographical information really help us
improve QoS prediction model in prediction accuracy.
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TABLE III. PERFORMANCE COMPARISON

Density = 15% Density = 20% Density = 25% Density = 30%Methods
MAE NMAE MAE NMAE MAE NMAE MAE NMAE

UMEAN 0.8767 0.9650 0.8735 0.9608 0.8740 0.9604 0.8735 0.9599
IMEAN 0.6823 0.7512 0.6806 0.7489 0.6781 0.7453 0.6789 0.7461
UPCC 0.5196 0.5740 0.4911 0.5368 0.4715 0.5168 0.4574 0.5019
IPCC 0.5244 0.5753 0.4629 0.5079 0.4389 0.4814 0.4211 0.4681

WSRec 0.4999 0.5501 0.4530 0.4961 0.4310 0.4727 0.4147 0.4593
PMF 0.4626 0.5091 0.4420 0.4865 0.4275 0.4705 0.4173 0.4595
LBR2 0.4596 0.5060 0.4404 0.4846 0.4242 0.4667 0.4153 0.4574
HMF 0.4547 0.5006 0.4327 0.4766 0.4171 0.4589 0.4088 0.4501

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.456

0.46

0.464

0.468

0.472

0.476

M
A

E

α

(a) Density = 15%

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.432

0.436

0.44

0.444

0.448

0.452

M
A

E

α

(b) Density = 20%

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.415

0.419

0.423

0.427

0.431

0.435

M
A

E

α

(c) Density = 25%

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.408

0.41
0.412
0.414
0.416
0.418

0.42
0.422

M
A

E

α

(d) Density = 30%

Fig. 4. Impact of α on MAE

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.5

0.504

0.508

0.512

0.516

0.52

0.524

N
M

A
E

α

(a) Density = 15%

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.476

0.48

0.484

0.488

0.492

0.496

N
M

A
E

α

(b) Density = 20%

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.457

0.461

0.465

0.469

0.473

0.477
N

M
A

E

α

(c) Density = 25%

0.4 0.5 0.6 0.7 0.8 0.9 1.0
0.45

0.452
0.454
0.456
0.458

0.46
0.462
0.464

N
M

A
E

α

(d) Density = 30%

Fig. 5. Impact of α on NMAE

D. Impact of α

In our hierarchical matrix factorization model, parameter α
controls how much local information we use in QoS prediction
procedure. If α is set to be 1, no local information is taken
into consideration. If α is 0, QoS values, whose corresponding
users and services are in the same user-service group, are
predicted by local matrix factorization independently without
any information from global context. That is to say, we only
use historical invocation records of geographically-close users
and services to perform prediction. In a word, α is utilized
to keep a good balance between global context and local
information. To study the influence of α on our model and
find an optimal one, we tune density from 15% to 30%, with
a step size 5%.

Fig. 4 and Fig. 5 show us, under 4 different matrix density
settings, the change of MAE and NMAE as the value of α
varies from 0.4 to 1.0. We can see that given matrix density
15%, 20% or 25%, both MAE and NMAE are the lowest
when α is around 0.8. That means our hierarchical matrix
factorization model performs the best when α = 0.8 for density
15%, 20% or 25%, while for density 30%, α = 0.9 is the most
suitable choice.

In this paragraph, we will raise a discussion for the
condition that matrix density is 15%. We observe from the
figure that when α is 0.4, both MAE and NMAE are high. As

the value of α changes from 0.4 to 0.8, MAE as well as NMAE
drop down sharply at first but become smoothly as α gets close
to the optimal value. That indicates too little global context
usage harms the performance of our model. Adding the impact
of global context will highly increase the prediction accuracy
at the beginning, but the effect becomes small when the model
is near a balance between local information and global context.
We can also notice that when α is larger than 0.8, the MAE
and NMAE get larger, which tells us that ignorance of local
information will lead to the degradation of performance. When
matrix density is 20%, 25% or 30%, the changing tendency
and the reason of the change is similar to what we have just
discussed.

E. Impact of Dimensionality

In our proposed method, dimensionality means the number
of latent features that will affect the user-perceived QoS values
on services. If this parameter is small, it indicates that only a
few key latent features determine QoS value. If dimensionality
is set to be a large number, it is assumed that there are many
latent features contribute collectively to the final prediction
result. To study the impact of dimensionality on our model we
tune α = 0.4 and α = 0.8 for matrix density 15%, 20%, or
25%. When density is 30%, α was set to be 0.4 and 0.9.

Fig. 6 and Fig. 7 illustrate the impact of dimensionality
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Fig. 8. Impact of Matrix Density

on MAE and NMAE of our model respectively. Both MAE
and NMAE are high at first and decrease rapidly as dimension
increase. It shows that only few latent features can not lead
to a good prediction result, so we can effectively improve
the performance by raising the dimensionality. However, the
speed of decrease slows down as the dimensionality goes up.
When dimensionality exceeds a threshold, MAE and NMAE
even begin to increase little by little. These can be explained
by following two reasons: (1) If dimensionality is larger than
a threshold, our model comes across the overfitting problem,
which will degrade the performance. (2) The number of users
as well as services in our local user-service groups is smaller
than that of the global matrix. When making use of local
information, an oversize dimensionality will result in bad
prediction performance. Thus the overall prediction accuracy
will be affected negatively.

F. Impact of Matrix Density

In the problem context discussed in this paper, matrix
density is the ratio of the number of observed user-service
invocation records against the product of the number of users
and services. It also indicates how much available information
we have to help us make prediction. To study the effect of
matrix density, we set α = 0.8. Besides, we consider three
different values of dimensionality, which are 10, 30 and 50.

Fig. 8 shows us the corresponding MAE and NMAE of our
model from matrix density 2% to 20% with a step size 2%. The
figure illustrates that as the matrix density goes up, the MAE
and NMAE decrease rapidly at first. When matrix density
becomes larger, the speed of decrease slows down. That means,
when there are hardly any historical invocation records in the
user-service matrix, the best way to improve recommendation
performance is to motivate users to report more QoS values
or try some services which have not been called before. But
when the number of invocation records grows larger, it would
be better to focus on improvement of prediction model instead.

V. RELATED WORK

In recent years, service computing [10], [11], [12], [13],
[14] has attracted more and more attention from industry
communities as well as academic circles. Among all topics
in service computing, QoS-aware service selection and service
composition are studied in a large number of literatures [15],
[16], [17], [18], whose goal is to decide which candidate ser-
vices to be used as components in complex systems. However,
most of the research work has a necessary precondition: QoS
values of all candidate services for corresponding users are
already known, which is always not satisfied in real-world
cases. Thus, many researchers begin to focus on QoS pre-
diction issues, which aims at analyzing existing user-services
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invocation records and then predict those unobserved ones.

Collaborative filtering was applied to this problem by Shao
et al. [8] first. In their paper, a user-based collaborative filtering
method was proposed, which makes prediction for a specific
user based on similar users. Zheng et al. [1] designed a
hybrid approach to leverage both user-based and item-based
collaborative filtering. Chen et al. [3] built a region model
before collaborative filtering step, their method can be tuned
to trade off speed and recommendation accuracy. Tang et
al. [4] raised an hierarchical method to predict QoS values
on user side and service side separately. Different from pre-
vious methods that directly dig out neighbors on all historical
records, they seek similar users in the same Autonomous
System (AS) and country first. These collaborative filtering
methods are classified as memory-based collaborative filtering
techniques. Although these methods have a good performance
when there are enough user-service invocation records, they do
not perform well when the matrix becomes bigger and sparser.

Compared with memory-based collaborative filtering meth-
ods, model-based collaborative filtering methods can provide
us with more precise prediction result. The overall idea of
model based methods is to train a model according to existing
data and use that trained model to predict missing QoS values.
Probabilistic matrix factorization (i.e. matrix factorization in
this paper) was proposed by Salakhutdinov et al. [9]. Lo et
al. [5] raised an extended matrix factorization approach, whose
main contribution is two novel relational regularization terms
that can improve prediction accuracy. They also proposed a
location-aware matrix factorization model [6]. In that work,
they designed two user-location-aware matrix factorization
models, each of which extended by a location regularization
term. However, location information of services is neglected,
which is actually helpful in improving prediction accuracy. In
this paper, the model proposed utilizes geographical informa-
tion of both users and services simultaneously. Besides, our
model is run in a hierarchical way, which means it can make
use of not only global context, but also local information.

VI. CONCLUSION AND FUTURE WORK

This paper proposes a new model-based collaborative fil-
tering method to predict missing QoS values in the user-
service matrix and recommend the most suitable Web services
to certain users. Geographically-close users and services are
clustered to form groups, which makes up several small user-
service matrices. A hierarchical matrix factorization model
is designed to integrate global matrix factorization and local
matrix factorization. Empirical analysis shows that our model
outperforms the state-of-the-art methods.

In the future, we will continue to improve our model. First-
ly, we can try out more sophisticated ways to combine global
matrix factorization and local matrix factorization. Regarding
how to cluster users and services, we will use other information
in addition to location. We can also allow a user node or a
service node belong to more than one clusters.
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