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ABSTRACT
The high bandwidth and low latency of the modern internet has
made possible the deployment of distributed computing platforms.
The XenoServer platform provides a distributed computing plat-
form open to all and presents three major new challenges for re-
source discovery: Firstly, network location is key for effectively
provisioning services, to mitigate against high-latency, high-load
or component failure. Secondly, many services require a presence
on several servers, with inter-related requirements. Finally, as the
platform is open with respect to users and servers, large numbers
of queries and updates are expected.

To address these requirements we introduce and evaluate Xeno-
Search, a new distributed service for selecting the machines to
host components of multi-node distributed systems and which is
uniquely able to express and efficiently answer complex queries
with inter-related location constraints. We demonstrate that Xeno-
Search represents a trade-off between accuracy and query time
which avoids exhaustive search and supports multiple resources.
In addition the performance of the algorithm and the quality of its
server selections is investigated and the performance of the dis-
tributed service shown to be invariant as the number of nodes or
items indexed increases.

Categories and Subject Descriptors
C.2.4 [Computer Communication Networks]: Distributed sys-
tems—Distributed applications, Distributed Databases; E.1 [Data
Structures]: Distributed data structures; H.3.4 [Information Stor-
age and Retrieval]: Systems and Software—Distributed systems
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Algorithms
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1. INTRODUCTION
Location and resource availability are key factors in the effec-

tive use of computing resources for network-centered applications,
whether they are owned by the largest multi-national or a home
user. The impressive increases in throughput gained by harnessing
distributed resources, the commercial advantage of a well-designed
e-commerce site or the lucrative revenue available to a new on-line
game can all be negated if users experience high-latency, high-load
or failure of the hosting machine or network connection.

The advent of distributed computing systems like Planet-Lab [1],
XenoServers [2] and the Grid [3] addresses many of these problems
by providing platforms on which an organization or user can deploy
an application on remote servers for short timescales.

1.1 Requirements
The XenoServer platform requires a resource discovery system

that brings together a unique set of features:

1.1.1 Location
Ensuring good quality of service is not simply a case of cor-

rectly provisioning hosting machines; latency and reliability must
also be considered. As shown in [4] propagation delay is becoming
the dominant factor in latency, and therefore the location of appli-
cation components becomes important: they must be at network
locations which are close to the expected users, have sufficient re-
source provisioning for the number of expected users, and exhibit
low correlated probabilities of failure. To achieve this resource dis-
covery systems need to accept location constraints as well as the
conventional resource constraints.

1.1.2 Multiple-Resources
In general we must aim to select an optimal set of nodes for

whole service deployment given complex inter-related constraints.
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1.1.3 Scalability
The XenoServer platform is open both with respect to users and

resources, and therefore its resource discovery system must be scal-
able with respect to items indexed, query load and, to a lesser extent
update load.

The requirement for scalability, in addition to the normal con-
cerns for availability and locality to users, leads us to choose a Peer-
to-Peer (P2P) implementation. Recent efforts to provide P2P re-
source discovery have mostly focused on distributed range search-
ing (e.g. SWORD [5] for Planet-Lab and Mercury [6] for Dis-
tributed Game Objects) or unstructured query flooding (e.g. P2P
Grid resource discovery [7, 8]). P2P is a wide and varied term en-
compassing high churn unstructured P2P file-sharing systems and
structured overlays running on well-provisioned servers. In our
case we are considering the latter type and assume that any “nodes”
used for the search system will be well-provisioned server-class
machines active over months rather than minutes.

1.2 Contributions
Through the presentation and evaluation of our own resource dis-

covery system, XenoSearch, developed for the XenoServer plat-
form, this paper makes two main contributions applicable to the
wider area of general resource discovery:

Firstly, we explore a whole new philosophy of resource discov-
ery which makes location a key concern and allows expressive
queries based on location. In XenoSearch we add to the stan-
dard notion of “closest” resource discovery the ability to request
the distribution of servers for fault-tolerance and low-latency, and
the combination of these operators through boolean operations.

Secondly, a new algorithmic approach to distributed resource
discovery is taken. In XenoSearch the initial stage of query sim-
plification is greatly enhanced. Previous P2P resource discovery
systems have largely just performed a distributed range query for
an attribute and then matched the resources in that range to the
query. In XenoSearch, global summary information about both the
location space and resource attributes are used to intelligently pick
the correct nodes to send queries to and hence to greatly improve
query accuracy.

XenoSearch is at the convergence of many of the approaches
to resource discovery, combining overlays and their semantics
from P2P systems with the multi-resource queries of Grid match-
making; extending the flexible queries of spatial database technol-
ogy; and using the web-search philosophy of providing the querier
with a ranked set of results to choose from.

1.3 Overview
After defining a generalized model for distributed resource dis-

covery in Section 2, we begin our description of XenoSearch.
XenoSearch extends the generalized model from Section 2, to use
summary information from its spatial index to optimize the sim-
plification of queries. We commence in Section 3 with the novel
query language developed to support location-based queries.

The XenoSearch algorithm, described in Section 4, allows the
efficient minimization of user-provided cost/benefit functions over
the inter-related locations of multiple resources, its spatial index
definition allowing both centralized and distributed implementa-
tions. While a centralized implementation follows naturally from
the definition, a scalable distributed implementation is more in-
volved and is described in Section 5.

The performance of XenoSearch is demonstrated in Section 6,
where it is shown to perform well under a variety of workloads.
Following this we survey related work in Section 7 and conclude in
Section 8.

Final
Results

Simplified
Query

Possible
Results

Updates

Index

Query

Simplifier

Optimizer

Resources/Machines

Query

Figure 1: The general structure of resource discovery systems.

2. EXISTING DISTRIBUTED RESOURCE
DISCOVERY

There are clear requirements on resource discovery systems
within distributed computing platforms: to index the location, cur-
rent resources and total resources of the machines; design protocols
for obtaining updates; and specify a query format which includes
support for location-based constraints.

Most resource discovery systems in this area use a three stage
process. In the first stage queries are simplified into a form suitable
for the index (e.g. ranges of attribute values). Secondly this simple
form is used to search the index. In a distributed setting, aggrega-
tion occurs if results are obtained from more than one node. In the
third stage the results from the index search are combined to give
results for the complete query and the most optimal full results are
returned that satisfy all the constraints in the query. Normally at
this stage an exhaustive search is still infeasible so heuristics are
used by and optimizer to produce final results. Ranking may also
occur based on how well each result fits the constraints.

This setup is shown in Figure 1. The simplification of the query
is key to the performance of the algorithm in the distributed case
as it dictates how many remote servers are involved in the query
resolution and how many superfluous results are returned. These
affect the overall system load and network traffic and hence the
user-perceived query latency.

Despite differences in implementation (for example push or pull
updates, automatic or manual clustering, where the various stages
are performed, etc.) this is the model that systems like SWORD [5]
and Mercury [6] use. It is also the basic model followed by Xeno-
Search. In most cases, exhaustive search is likely to be infeasible,
as it is characterized by an exponential function in the number of
search terms; early investigations performed showed that exhaus-
tive search query time scaled as O(Ns), where N is the number of
machines indexed and s is the number of servers in the query.
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far(near(C1, C2, S1), near(S3, S4)) ∧ far(near(C1, C3, S2), near(S3, S4)) ∧ S5
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Figure 2: An example query, used for our running example, and the graph generated from it. In the example, client C1 is located at
(1.5, 1.5), C2 at (0.0, 1.5) and C3 at (1.5, 0.0).
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Figure 3: How distance in the location space is correlated to
Autonomous System (AS). Here distance is the maximum dis-
tance between any two host in the same AS as a fraction of the
maximum distance in the location space.

3. QUERY LANGUAGE
Here we define our new query language for the specification

of spatial queries. Location requirements are defined recursively
using the primitives of disjunction (∨), conjunction (∧), proxim-
ity (near(A1, . . . , An)), distribution (far(A1, . . . , An)) and terms
representing fixed locations (e.g. clients’ positions in the network
– Ci) and free servers to locate (Si) — i.e. the resource request
terms to be matched to machines. These queries are preprocessed
to a disjunctive normal form in which each disjunction expresses
an alternative way to satisfy the query.

3.1 The near predicate
The near predicate is used to encourage a group of servers to

be selected between which low-latency communication is possible.
For example, this might be used between a machine which is to pro-
vide back-end storage and a group of machines which are to pro-
vide front-end access. An optional maximum distance can be sup-
plied if it is essential that the chosen servers are sufficiently close.

Otherwise, the final ranking will rate selections with very close ma-
chines over those in which less proximity has been achieved.

3.2 The far predicate
The far predicate is used to encourage dispersion of a group of

servers. By analogy with the near predicate, a minimum separation
can be specified if necessary. Note that far may be used for two
different purposes: first, it causes machines to be scattered through
the network – to reduce mean distance from client to nearest ma-
chine for an unknown global workload. Second; we envisage many
users employing it to provide protection against correlated failures,
due to organizational disconnection, without collecting expensive
large-scale uptime statistics.

We justify the latter experimentally by taking 30,000 (IP-
address, network-location) pairs calculated, from the Skitter data
set, and finding their Autonomous System (AS) number using
RouteViews BGP information1. From this we selected ASs for
which we had more than one location and then calculated the max-
imum distance between such locations in a common AS. Figure 3
plots the resulting distance as a fraction of the location space. From
the graph we see that only 4.5% of ASs in our survey have a dis-
tance larger than a quarter of our location space. The results that
AS number and location are well-correlated suggests that being far
in the location space is a good indication of low correlated network
failures.

The far predicate is not ideal for every situation, in a different
scenario an application could require different semantics. The def-
inition of far given here is likely to spread the far terms to the fur-
thest edges of the network, this means machines in far places or
on slow connections. It would instead be better to also require that
they are close to the center of the location space. The behaviors of
the far predicate can be modified to this behaviors through the use
of a global query option.

3.3 Example
As a running example we use a simple query which contains only

one disjunction. This is shown in Figure 2 along with a correspond-

1We discuss the Skitter data in more detail in Section 6 where we
use it as the basis of further experiments. The RouteViews system
is described at http://www.routeviews.org.
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Figure 4: The output from stage one: coarse-grained placement
of constrained clusters, to blocks in spatial index.

ing graph which summarizes it. Each of the nodes in the graph
(A . . . D) is a cluster, which encodes a near(A1, . . . , An) rela-
tionship. Clusters can contain any number of fixed locations (e.g.
the first two items in cluster A) and servers to be found (e.g. the
last item in cluster A). If the cluster contains one or more fixed loca-
tions then it is called a constrained cluster otherwise a free cluster.
The links between the various clusters are far relationships, encod-
ing the far(A1, . . . , An) terms. The conjunction (∧) operator is
encoded by simply combining the graphs that are produced in each
of its branches into a single graph. Cluster D has no far links and
contains one free server, S5, indicating that the location of S5 can
be anywhere.

The algorithm tries to assign real machines to the free servers
in a set of graphs, returning a ranked list of various possible con-
figurations. The algorithm aims to minimize the distance between
selected machines and fixed locations within clusters, while maxi-
mizing the distance between all clusters separated by far(. . .) rela-
tionships.

4. THE HIGHER LEVEL ALGORITHM
In this section we introduce the algorithm used for answering

queries of the form described in Section 3. The algorithm operates
over a spatial index which leads naturally to a centralized imple-
mentation. We then detail, in Section 5, our scalable distributed im-
plementation based on the same index structure. The algorithm ex-
tends the model from Section 2, using summary information from
the index to optimize the simplification of the query and therefore
improve the accuracy of the results from complex queries, even
when XenoSearch is fully distributed.

Our algorithm consists of four stages, which are performed for
each of the graphs produced from the query. Stages one and two
deal with coarse-grained assignment of clusters to spatial regions,
with stage one dealing with the constrained clusters and stage two
the free clusters. These stages correspond to the “Query Simpli-
fication” box in Figure 1 and seek to maximize the distances be-
tween clusters with far relationships. These stages try to maximize
the distance between clusters which are required to be far apart.
The third stage deals with the detailed assignment of servers to ma-
chines, through an index-search. Finally stage four, seeking to min-
imize the distances within each cluster aggregates and optimizes
the results (“Optimizer” from Figure 1).

4.1 Spatial Data Structure
The algorithm works over a data structure that decomposes the

location space at a number of different levels into 2ld identical
blocks of equal hyper-volume, with l the level and d the dimen-
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SWAP
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Key

Graph edge (far relation)

Free cluster

Constrained cluster

A

B

A

B

A

B

Figure 5: The two kinds of transformation that are used when
placing the free clusters C and D around the constrained clus-
ters A and B

sionality of the co-ordinate based location space. Level 0 covers the
whole index, level 1 splits each of the dimensions into two equal
halves, level 2 splits each of the resulting sections into half again
on each dimension and so on. The output of the second stage of the
algorithm, shown in Figure 6, also shows the decomposition of a
two dimensional index.

As well as storing the machines’ locations, the data structure can
provide summary information about the number of blocks at each
level that are non-empty. These summaries are used during the ini-
tial coarse-grained search in order to ensure that the selected blocks
contain sufficient servers to match the query.

We have implemented this data model as a quad-tree-based data
structure [9] for the centralized case and a gossip based (see Sec-
tion 5) data structure for the distributed resource discovery system.

4.2 Detailed Algorithm Description
The algorithm proceeds in four stages, repeated for each of the

graphs that make up the query.

4.2.1 First Stage
The first stage places the constrained clusters. Each cluster is

mapped to a hyper-cube exactly large enough to contain all of the
fixed locations within the cluster, and centered at their average. All
blocks that intersect this hyper-cube are considered for assignment
to the cluster; if a block has already been assigned to another clus-
ter, then we assign it to both clusters iff it contains fixed locations
from both. If it contains fixed locations from only one cluster, it
is assigned only to that; otherwise the block is assigned to neither
cluster. This is demonstrated in Figure 4.

4.2.2 Second Stage
In the second stage of the algorithm we perform simulated an-

nealing [10] with the goal of placing free clusters so that they re-
spect the far relationships in the graph. We start with an arbitrary
placement and proceed by considering two possible kinds of trans-
formation which can be applied at random in each round. These
are shown in Figure 5.

A cost function is used which is the negative of the total distance
of all the far relations; hence the annealing attempts to place clus-
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Figure 7: The output from stage three and four: detailed Server placement, using the two coarse-grained placements from Figure 6

ters far apart. In fact the distance from the center of the space to all
the clusters is added if the query specifies that clusters should be
placed away from the edges of the space. As is normal for simu-
lated annealing, if a change increases the cost function by δf then

it is accepted with probability e(−
δf
T ); if it does not increase the

cost then it is always accepted. We perform this step a number of
times for each graph (fixing the total number of times across all the
graphs) to obtain a number of candidate graph assignments and run
stages three and four on each of these assignments. The output of
stage two for our example is shown in Figure 6.

4.2.3 Third and Fourth Stages
These stages of the algorithm are concerned with mapping the

servers to machines in the index. This is done one cluster at a
time (in decreasing number of fixed servers per cluster), and ini-
tially involves an index-search for the whole cluster. We restrict
the blocks searched to the ones assigned to that cluster by coarse-
grained placement. This drastically cuts the running time compared

with naively forming the cross product of the server-to-machine as-
signments.

If there are no results for a particular server a different graph
assignment may give a result which satisfies all free clusters. In the
case where constrained clusters are unsatisfied, a nearest-neighbor
search can be used.

In the fourth stage we construct groups of machines for each
cluster which that satisfy the query. Each group is stored as a map:
a mapping from free servers (from the query) to actual machine
advertisements in which no machine appears twice within a single
group. Several of these groups are constructed by a simple scan
through the list of candidate machines returned for each server.
Each list is sorted according to distance from the set of cluster cen-
ters which have a far relationship with this cluster. These lists are
then ranked according to the total distance between all the machines
assigned to the cluster.

Finally, these maps are combined over all the clusters and ranked
using the global ranking function and the required number re-
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turned. The function is based on that used in simulated annealing
in Stage 2, but we add in the total distance of all the near relations
and scale all the terms accordingly so comparisons can be made
between graphs. In stage 4 other attributes are considered and the
maps constructed obey these. These stages are demonstrated in Fig-
ure 7. There is the possibility of using a back-tracking depth-first
search algorithm instead of the simple optimizer described here, if
the constraints are very complex. Such an algorithm would con-
sider more assignments, but experience from SWORD [5] suggests
this would greatly increase the query time.

5. PEER-TO-PEER IMPLEMENTATION
The distributed version of our algorithm is implemented based

on an index distributed over a set of mutually-trusting nodes. Gos-
siping techniques are employed to separate the maintenance and
distribution of summaries from the implementation of the algo-
rithm using them. Note that we do not consider issues of churn
since we expect nodes to be well-provisioned machines remaining
active over months rather than minutes. The basic architecture of a
node is illustrated in Figure 8, the numbers indicating the algorithm
stages from Section 4.2.

Nodes determine the network location [11] of the indexed ma-
chines, by the use of a co-ordinate location system. These co-
ordinates are then mapped to points in a single-dimensional 128-
bit key space by using a Hilbert curve, chosen as it gives better
clustering than other space-filling curves [12]. As described in
Section 4.1, the location space is partitioned into blocks, which
each correspond to as single range in the transformed space. Fur-
thermore, each continuous resource (e.g. CPU time, network band-
width) is mapped to a separate 128-bit key space that is divided into
a series of resource bands.

The nodes are also mapped to positions in the flattened location
space, with each node acting as the primary authoritative repository
for information about the machines occurring in blocks between it
and its successor in the key space. A primary repository constructs
a summary Bloom filter [13] for each of the blocks and for each of
the resource bands for which it is responsible.

As demonstrated in Figure 9, a node also acts as a secondary
replication repository for the blocks owned by the following k (the

replication factor) nodes in the key space and holds summaries for
the remaining blocks. Nodes acting as replication repositories for a
block hold a (possibly delayed) version of the state about machines
in that region in order to support fail-over from the primary.

To enable efficient searching, each node maintains and propa-
gates the following state:

• Location Space: for each location space block, the network
address of its primary repository and a Bloom filter summary
of the machines within it.

• Resources: the per-node resource band summaries, which are
aggregated at each node to give an overall summary for each
resource band.

The summaries allow nodes to identify blocks in which there
are likely to be machines that meet a combination of location and
resource based constraints, from the intersection of the Bloom fil-
ters held for the block and any bands spanned by resource queries.
Summary information is exchanged between nodes using gossip.

Performing the final machine assignment is the only search stage
that requires communicating messages to other node(s) in the sys-
tem in order to return the machines matching the query. This is
done on a per cluster basis for efficiency, but is logically done per
server. Bloom filters are passed with the query for efficient primary
filtering. As the information is replicated, any of the primary or
replication repositories can be queried to allow load balancing, and
several may be queried in parallel to increase robustness and speed.

The communication substrate uses a reliable datagram service
with TCP-style congestion-control built upon a gossiped routing
table. Routing information and congestion control information is
held for all the other nodes; this information is less than 100 bytes
per node so with 10,000 nodes the routing table is still less than
1MB. We only expect hundreds of search nodes.

A further innovation in the routing substrate is for each node to
record a “probably dead” flag along with its state for each other
node. This flag is set when reliable datagrams are repeatedly un-
acknowledged and, when set, messages are sent to the node’s first
predecessor: this causes a node to fail over from using a primary
repository to using a replication repository. If the predecessor also
considers the node probably dead it will process the request as
replication repository otherwise it will forward it on to the node.
Only the predecessor of a node can make a real liveness decision
and as NodeIds are location based, probing is mostly local and only
done by the one node holding up to date gossip timestamps.

A node receiving a message that does not fall within its primary
range will normally forward it on to the destination. That node
can make sure the sender’s routing table is updated, either to clear
the probably dead flag or to add a new entry if it is a new node. If
the final destination is dead the closest live predecessor will receive
the message, realize its successor might be dead, and initiate failure
recovery.

6. RESULTS
We evaluate the scalability and fidelity of our search system us-

ing three metrics: the time taken to respond to a query, the volume
of network traffic generated by queries and the accuracy of query
results when compared with a exhaustive search of all possible ma-
chine assignments.

We deployed our prototype implementation over 200 Planet-Lab
nodes, as well as in local small-scale simulations; k (the replica-
tion factor, see Section 5) was set to 5 which gave us the best
trade-off between traffic and resilience. The nodes were seeded
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with synthetic information about 10,000 potential distributed com-
puting platform servers, which we generated by combining the net-
work location of machines from the Skitter data set2 and resource
availability information from Planet Lab3. Ten types of query are
preformed 100 times each. Each query searches for between one
and ten servers, with each server being in a separate cluster.

6.1 Accuracy
Figure 10 compares the accuracy of the search algorithm against

an ‘optimal’ assignment using exhaustive search and a user search
through searching for each server in the query individually, for the
top ranked result returned. In performing this experiment we seek
to justify the use of our new algorithmic approach to resource dis-
covery: using an enhanced query simplification stage.

The optimal assignment minimizes the sum of the distances be-
tween terms in near relationships, less the distances between terms

2The data used in this research was collected as part of CAIDA’s
skitter initiative, http://www.caida.org. Support for skitter is pro-
vided by DARPA, NSF and CAIDA membership.
3http://www.planet-lab.org/doc/Reference.php#ProcSensor

in far relationships. The algorithm used to search individually for
servers, uses the underlying index to search for each server in the
query in turn, starting with the most constrained and proceeding
to the less constrained servers, feeding back the locations of the
servers already found. This models the traditional single server ap-
proach to resource discovery. To make the comparisons clear and
only based on algorithm choice (not network characteristics) the
centralized version of the XenoSearch algorithm is used.

To make exhaustive searches feasible a small data sets and query
was used; the results are averaged over 20 different random selec-
tions of 800 items from the Skitter data set. For each set 30 different
queries were tried, with equal numbers of one, two and three cluster
queries. This gives 600 queries per point. The XenoSearch algo-
rithm looks to constantly be about 5% worse than the ideal solution
while searching for each server individually gives just over 25%.
This shows that the use of a two stage assignment of free servers;
first to blocks, then to a machine within that block does not signif-
icantly degrade accuracy. Both the XenoSearch and single server
algorithms have a slight linear increase in query time with both the
number of clusters in a query and machines indexed (omitted due
to space considerations), but the single server is approximately 10
times faster in general (10ths seconds for single server and sec-
onds for XenoSearch). Therefore the XenoSearch algorithm makes
a sensible accuracy/time trade-off between the fast but inaccurate
single server algorithm and the very accurate but very slow exhaus-
tive algorithm.

6.2 Number of Resources Indexed
If our system is to be scalable in the number of items indexed,

then the index structure should give a near constant query time as
the number of resources indexed changes. Figure 11 demonstrates
that the small linear scaling with the number of items seen in the
centralized version is no longer present. This is because query
times are dominated by the time of sending messages through the
network. Again there is a slight linear increase in the query time
with the number of clusters in the query.

In this experiment we look at the effect that varying the clusters
in a query and the number of items has on the traffic generated by a
query. We expect the network traffic to be constant with the number
of indexed items and linear in number of clusters. We measure the
total traffic generated by a query at the initiator node.
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Figure 11: Mean query time for queries performed with
2500. . . 30000 items in the index.
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Figure 12: Mean network traffic queries performed with
2500. . . 30000 items in the index.

The results (Figure 12) show that total query traffic does not scale
with the number of items, although the amount of traffic is highly
dependent on the number of clusters, starting at around 1Kb for
single cluster queries and increasing to approximately 13-15Kb for
ten clusters, the large variation being due to retries when Planet
Lab is highly loaded. We believe these levels of traffic are accept-
able for a complex resource discovery query, being of comparable
size to a web page displaying the results. The gossip system pro-
duced between 5-7Kb/s of background network traffic at the initia-
tor node during these experiments. The accuracy is not affected by
the choice of algorithm implementation, therefore these results are
not shown.

6.3 Number of nodes Participating
Our system was designed to give constant query time, across

systems with a wide number of member nodes. This is achieved by
the summary tables in which nodes retain outline information about
the full key space. Figure 13 confirms this for our five example
query classes. The system should continue to scale in this way
so long as the churn rate is low compared with the rate at which
summary information is exchanged by gossiping. The results show
that queries take less than 2.2 seconds even in the worst case. There
is a hint that small networks (< 20 nodes) will be faster. This is
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Figure 13: Mean query time for five example query classes per-
formed using 10. . . 200 nodes. Shown with standard deviation.

due to much more of the data being held at the initiating node as
the replication factor is close to the number of nodes.

Since the query time is sensitive to external effects, we include
error bars. These demonstrate that when the mean query time is
high, so is the variance. In particular although minimum query
time is relatively stable, we occasionally observe a high maximum
query time (about twice the mean), hence we often use the median.
These effects are due to high-load at the searching node and high
congestion.

The number of clusters is the dominant factor in the time taken,
with the total time scaling linearly and each new cluster adding
less than a quarter of a second; this agrees with our earlier results.
Furthermore, our current implementation trades off the actual query
time against factors such as the volume of data transferred between
nodes which we limit to prevent congestion.

Again the network traffic (results omitted for space) do not scale
with the number of nodes and scale linearly with the number of
clusters in the query.

6.4 Query Load
This section presents some results on how the system scales with

query load, this is an important consideration in an open platform
as there is un-limited number of users of the system. It also al-
lows three set-ups to be compared; centralized, a pair of co-located
servers (ie a server cluster) and a distributed system.

The following set up is used; C clients are deployed on different
Planet Lab machines and issue 100 queries of a uniform type, in
a back-to-back fashion. Each client issues queries to each of the
N (again deployed on different Planet Lab machines) nodes under
test in a cyclical fashion, randomly picking the node to send the first
request to. The cluster pair systems use the most lightly-loaded pair
of Planet Lab nodes at a common site.

Figure 14 compares the results for one cluster queries with one
client and twenty-five clients. The twenty-five clients case has a
minimum (around 5–10 nodes), which has shifted from 1 node
in the monotonically increasing one client case. With twenty-five
clients the 1 and 2 node systems have high query times, of up to
3 1/4 seconds, but even the five node system can exploit enough
parallelism to give a query time similar to the one client case.

The query time for the centralized system is slightly lower than
the one node distributed system, because of the extra efficiency of
the centralized index. The cluster pair system has a query time of
about half that of the centralized index, as the processing is shared
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Figure 14: Comparing Query Time with 1 and 25 Clients, for
various numbers of nodes (one cluster queries).

between the two nodes. It is also 30% better than the two node dis-
tributed system, due to the effect of wide-area network delays. The
performance of the twenty-five client system never reaches that of
the one client system, as there is always some contention between
queries, because the nodes contacted in a query are not disjoint.

These results point to significant amounts of parallelism between
concurrent queries, even for a single node system. For example
in the one node case the average time for a query with one client
is 282ms and for twenty-five clients 3168ms. Naively we might
expect the twenty-five client case to be twenty-five times the one
client case 282 × 25 = 7050ms, but this is well over twice the
measured value, suggesting that over 50% of each query is paral-
lelizable. In a large part this is due to TCP connections being set
up in parallel. This is different to the parallelism leveraged in the
query due to distributing the query processing over many nodes.

We investigate systems with between two and ten nodes more
closely to see how the changing query load affects the number of
nodes responsible for minimal query time. This is shown in Fig-
ure 15, for five, fifteen and twenty-five clients, using results for two
cluster queries as they show the results clearly. As expected, the
minimum query time does constantly shift, being higher for more
clients; for five clients it seems to be around two nodes in a clus-
ter, for fifteen about four nodes and twenty-five around six nodes.
In addition the minimum seems to be shallower as the number of
clients increases. A third trend is that more clients means a longer
query time, even when comparing optimal numbers of nodes in the
system, there is an overall trend for slightly higher query times as
the number of clients increases.

Figure 15 has a number of features that differ from those in Fig-
ure 14. For example, with twenty-five clients the centralized case is
not twice that of the cluster-pair. The anomalies are due to search
nodes becoming saturated and no longer able to service the query
load. In many cases this actually causes the median time to drop as
the clients finish at different times and some clients execute some of
their queries on a network with a lower query load. This affects the
two-node, cluster pair and centralized cases with 25 clients. Fur-
ther the cluster pair and centralized cases with 15 clients is nearly
saturated.

Similar results were also seen as the complexity of queries are
increased; as the number of clusters in a query is increased the
optimal number of nodes for the distributed set-up increases, for
example see Figure 16.
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7. RELATED WORK
A wide variety of resource discovery systems have been pro-

posed; encompassing a range of problems beyond those addressed
in this paper. Here we classify related work according to the style of
query it supports and the implementation used to evaluate queries.

7.1 Centralized and Hierarchical Information
Systems

Historically resource discovery has been built around searches
through a directory for a single object. Systems may be centralized
(e.g. SLP [14]) or hierarchical (e.g. SSDS [15] and DNS [16]) or
anycast [17], but still focus on locating only a single server at a
time. There has also been considerable work on locating a single
‘nearby’ server: a selection of approaches are compared by Guyton
and Schwartz [18]. In their work on Astrolabe, van Renesse et al.
use Bloom filters combined hierarchically to summarize interest
in publish/subscribe groups [19], providing wide-area hierarchical
resource discovery. SDIMS [20] this with DHT style routing and
Willow [21] also combines this with publish/subscribe.

7.2 Bi-lateral Matching
Recent work in the grid community has focused on extending

the kinds of queries to include bi-lateral matching — allowing both
the provider and the consumer to provide descriptive attributes,
constraints on the other party or parties and a ranking function.
This was pioneered in the Condor matchmaker system [22] which
allows single resources to be matched and extended by Gang-
Matching [23] to provide multi-resource matching and by Red-
line [24] to allow set-matching where constraints could also be
aggregate over the resources returned. Further work on ontology-
based resource matching uses semantic web technology to break
the need for all providers and consumers to agree on the names and
values of attributes.

7.3 Peer-to-Peer Range Searching
There have been a number of resource discovery systems sup-

porting range-based queries above peer-to-peer networks. The
XenoSearch-I system [25] allows a single server to be selected on
the basis of attributes such as CPU load, or location within a range
of network co-ordinates. [26] is similar work looking at performing
multi-dimensional searches using a Hilbert space map to associate
servers with locations in a Chord [27] network. Both do not suggest
how a series of inter-related servers would be chosen. The Prefix
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Figure 16: Comparing Query Time with 1 and 2 clusters, for
various numbers of nodes (with one client).

Hash Table (PHT) [28] is built upon a Distributed Hash Table and
provides a mechanism for building an maintaining a distributed trie
on which ranges searches are performed.

SWORD [5] provides resource discovery for Planet Lab. Clients
initiate queries by contacting nodes in a distributed hash table;
an optimizer on the chosen node tries to find the best set of ma-
chines to satisfy a query. SWORD relies on range searches so can-
not efficiently search for inter-related servers in the location space.
SWORD also requires the user to form their own clusters of servers,
our system performs this automatically. The Mercury [6] resource
discovery system uses structured peer-to-peer networks called hubs
to manage attributes, these are liked by a few inter-hub links. Mer-
cury is used to provide a substrate for a publish-subscribe system
for distributed multi-player game objects.

7.4 Spatial Databases
Traditional spatial databases support location based queries us-

ing multi-dimensional indexing schemes using trees e.g. [9, 29] or
grid-like partitioning e.g. [30]. The VA file [31] in particular is very
similar to the data-structure from our scheme, approximating mul-
tidimensional indexes by splitting it into 2b cells, assigning each a
unique bit-string and creating a list of these approximations. For a
wider survey see [32].

7.5 Peer-to-Peer Databases
Peer-to-peer distribution techniques have also been applied in the

database community; work at UCSB [33, 34] has centered on pro-
viding caches for range based database searches, assuming static,
non-distributed data, whereas our scheme looks to serve a situation
in which the data is dynamic. Iris [35] and Sophia [36] provide a
more dynamic database like system for querying wide-area sensor
network.

Pier [37] seeks to service databases queries over a Peer-to-Peer
network, but this system only supports a limited number of query
types. Using CAN, Harren et al. investigated supporting ‘join’
operators by the temporary creation of new DHT name-space [38].
Further efforts to apply Peer-to-Peer distribution to databases in-
clude [39, 40] all forsaking some of the strict database invariants to
allow efficient wide-area distributed databases.

8. CONCLUSION
This paper has presented XenoSearch, a new distributed resource

discovery system which provides a novel query language able to ex-
press complex inter-related location-based queries. It also demon-
strated how to perform searches for resources that match such
queries and we have evaluated the performance of the resulting sys-
tem in a wide range of settings on a wide-area deployment.

XenoSearch has been shown to provide a good trade-off between
the exhaustive search (with perfect accuracy but infeasible query
time) and the use of single resource algorithms (with fast query
times but low accuracy). This justifies the use our new approach of
incorporating complex query simplification to improve query accu-
racy with complex queries. In addition this algorithm still retains
good scalability: the performance of the distributed XenoSearch al-
gorithm has been shown in general not to be affected by the number
of items in the index or number of search nodes.

Therefore XenoSearch possesses all the features required of a re-
source discovery system: servicing location-based queries for plac-
ing whole distributed systems in a scalable fashion.

The results presented here suggest that the optimal number of
nodes to provision for the system must take into account query
load. Although there is a clear network size that produces the
fastest query time, there is still a penalty for higher loads. Further
work to consider is measuring the effect of other system parameters
on the optimal number of nodes for the query time metric (or any
other metric). It is likely that these results are indicative of other
peer-to-peer systems and therefore given a better model of opti-
mal performance, monitoring software could be developed which
continually measures a Peer-to-Peer system and uses the model to
dynamically provision (over long time-scales to avoid churn) the
optimal system size.

In addition XenoSearch provides the equivalent of a lightweight
distributed spatial database, giving rise to further work to investi-
gate other applications which could relax some of the strict seman-
tics of databases and take advantage of the service.
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