
Research Article

Location-Based Test Case Prioritization for Software
Embedded in Mobile Devices Using the Law of Gravitation

Xiaolin Wang ,1,2 Hongwei Zeng,1 Honghao Gao ,3,4 Huaikou Miao ,1

and Weiwei Lin 1,2

1School of Computer Engineering and Science, Shanghai University, Shanghai 200444, China
2Shanghai Key Laboratory of Computer Software Evaluating and Testing, Shanghai 200444, China
3Computing Center, Shanghai University, Shanghai 200444, China
4Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai 200072, China

Correspondence should be addressed to Honghao Gao; gaohonghao@shu.edu.cn

Received 19 July 2018; Revised 26 October 2018; Accepted 25 November 2018; Published 2 January 2019

Guest Editor: Jaegeol Yim

Copyright © 2019 Xiaolin Wang et al. ,is is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is
properly cited.

Considering that some intelligent software in mobile devices is related to location of sensors and devices, regression testing for it
faces a major challenge. Test case prioritization (TCP), as a kind of regression test optimization technique, is beneficial to improve
test efficiency. However, traditional TCP techniques may have limitations on testing intelligent software embedded in mobile
devices because they do not take into account characteristics of mobile devices.,is paper uses a smart mall as a scenario to design
a novel location-based TCP technique for software embedded in mobile devices using the law of gravitation. First, test gravitation
is proposed by applying the idea of universal gravitation. Second, a specific calculation model of test gravitation is designed for a
smart mall scenario.,ird, how to create a faulted test case set is designed by the pseudocode. Fourth, a location-based TCP using
the law of gravitation algorithm is proposed, which utilizes test case information, fault information, and location information to
prioritize test cases. Finally, an empirical evaluation is presented by using one industrial project. ,e observation, underlying the
experimental results, is that our proposed TCP approach performs better than traditional TCP techniques. In addition, besides
location information, the level of devices is also an important factor which affects the prioritization efficiency.

1. Introduction

Nowadays, the Internet of ,ings (IoT) develops more and
more widely [1]. It is based on wireless sensor networks
(WSNs) which combine intelligent software and sensor
devices andmakes smart home and smart city possible [2, 3].
With the development of hardware (chips) and software
(intelligent systems), smart mobile devices (such as smart
dust) are gradually emerging, which integrate sensors,
processors, intelligent software, and communications. Smart
mobile devices not only have an ability to transmit and
monitor information but also perform sophisticated in-
telligent information processing and intelligent prediction
by the intelligent software [4] and location-based service
(LBS) [5]. ,e software in each device has its specific
functions. For example, some devices are used to monitor

and process temperature information and others are used to
process population information. Devices are provided with
location-dependent information and interact with other
devices in a location-dependent way. It is location in-
formation and software complexity of devices that make
software testing face a major challenge in IoT.

Regression testing, reusing test suites, is performed on a
modified program to install confidence that the system
behaves correctly and that modifications have not adversely
affected unchanged portions of the program [6]. Test case
prioritization (TCP), sorting test cases depending on some
criteria, is a way to increase the efficiency of regression
testing [7]. It aims at improving the rate of fault detection.
Traditional TCP techniques mainly focus on the algorithm
design for testing software to improve test prioritization
efficiency. However, in IoT, traditional TCP techniques have

Hindawi
Mobile Information Systems
Volume 2019, Article ID 9083956, 14 pages
https://doi.org/10.1155/2019/9083956

mailto:gaohonghao@shu.edu.cn
http://orcid.org/0000-0002-3604-0640
http://orcid.org/0000-0001-6861-9684
http://orcid.org/0000-0001-7291-7801
http://orcid.org/0000-0002-3133-5669
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/9083956

limitations because they do not take into account the
characteristics of hardware devices, such as location
information.

,e law of gravitation, according to Newton’s Philoso-
phiae Naturalis Principia Mathematica [8], indicates that
there is a force of gravitational attraction existing between
any two objects, which is given by the following equation:

F � G
m1m2

r2
, (1)

where G is the universal gravitational constant, m1 is the
mass of one object,m2 is the mass of the other object, r is the
radius of separation between the center of masses of each
object, and F is the force of attraction between two objects.
,e universal gravitation has been applied to the field of data
analysis. For example, many research studies make data
gravitation (simulating the universal gravitation) applicable
to machine learning [9–11]. In IoT, if we can utilize the law
of gravitation to prioritize test cases, will it improve the test
efficiency?

In this paper, a new location-based TCP using the law of
gravitation technique is developed to solve TCP problem of
software embedded in mobile devices. ,is technique is
designed for adapting to a smart mall scenario. It is not just a
test case prioritization approach but additionally enables to
make characteristics of devices utilized, thereby allowing the
order of test cases to be beneficial for test efforts. Test
gravitation is defined in this technique. Under this definition,
a specific calculation model of test gravitation for a smart mall
scenario is designed. First, it calculates the masses of each test
case and each faulted test case. ,e creation of a faulted test
case set is related with the occurred faults which detected by
those preselected test cases that test different-location-area
device representatives. ,en, the distance between two spe-
cific test cases can be calculated according to location in-
formation of devices. For each test case, test gravitation is
calculated from this test case to each faulted test case. Finally,
test cases are prioritized based on test gravitation.

,e contributions of this work include the following:

(i) Test gravitation is proposed based on the law of
gravitation. A specific calculation model of test
gravitation adapted to a smart mall scenario is given.
Specially, the creation of the faulted test case set
used in the calculation of test gravitation is designed
in detail.

(ii) A location-based TCP using the law of gravitation
technique is proposed, and its algorithm is designed
by the pseudocode. Its feasibility is illustrated with a
small example.

(iii) An empirical evaluation is presented by using one
industrial project. In addition, it discusses whether
different evaluation metrics (with or without con-
sidering severities of faults) will influence the ex-
perimental conclusions. It is also discussed what
factors affect the prioritization efficiency.

,e rest of this paper is organized as follows: Section 2
describes test case prioritization problem, traditional TCP
techniques, special TCP techniques, and TCP problem in

a smart mall scenario. Section 3 presents a location-based
TCP using the law of gravitation method and simulates its
feasibility with an example. Section 4 describes an empirical
evaluation and analyzes the results. Section 5 discusses some
related work on test case prioritization and mobile appli-
cation testing. Finally, the conclusions and future work are
given in Section 6.

2. Background

2.1. TestCase PrioritizationMethodology. Regression testing,
attempting to validate modified version P′ of the original
program P, checks the results for conformance with re-
quirements [12]. Many techniques have been proposed to
improve the cost-effectiveness of regression testing. Test case
prioritization is one of these approaches, which rearranges
test cases to increase the rate of fault detection during the
whole regression testing.

Test case prioritization problem is a research hotspot in
the field of software testing. It sorts test cases by using some
criteria to detect more faults as fast as possible. A complete
definition of TCP problem was first proposed by Rothermel
et al. [13]:

Given a test suite already selected (T), the set of all
possible prioritizations (orderings) of T (PT), and an ob-
jective function from PT to the real numbers (f), which yields
an award value for that ordering.

Problem. Find T′ ∈ PT such that (∀T″)(T″ ∈ PT)(T″ ≠
T′)[f(T′)≥f(T″)].

Many test case prioritization techniques have been
proposed during the past two decades. Elbaum and Roth-
ermel et.al [13–16] discussed test case prioritization tech-
niques of the fine-grained entity, such as coverage
prioritization (statement or branch coverage, etc.) and fault-
exposing-potential (FEP) prioritization. Meanwhile, total
strategy and additional strategy are proposed [15]. Both are
built on a Greedy algorithm which selects a local optimal
solution within the search space at each round. Srikanth et al.
[17–19] proposed a value-driven approach called PORT
which does not require structural coverage information. ,e
PORT algorithm was based on four factors: customer pri-
ority, requirements volatility, implementation complexity,
and fault proneness of the requirements. Arafeen and Do
[20] proposed a test case prioritization technique using
requirement-based clustering. It incorporated traditional
code analysis information which could improve the effec-
tiveness of test case prioritization techniques.

2.2. Traditional TCP Techniques. Existing TCP method-
s—prioritizing test cases based on coverage [16] or re-
quirement [19], or even time-aware [21, 22]—are all based
on the optimization of software system itself. ,at is to say,
traditional TCP methods focus on improvement of methods
themselves. ,e factors they consider are based on char-
acteristics of software and do not involve characteristics of
hardware. Most of the software they test is also cross-
platform web application.

2 Mobile Information Systems

,ere are several classical test case prioritization tech-
niques, introduced as follows:

Random prioritization [16]. Random prioritization
orders test cases randomly. It is simple and convenient,
but unstable.

Total coverage prioritization [16]. It orders test cases
based on the descendent number of units covered by
these test cases. When multiple test cases cover the same
number of units, the order is determined randomly.

Additional coverage prioritization [16]. It orders test
cases to achieve maximized coverage as early as pos-
sible. It first picks the test case with the greatest cov-
erage and then successively adds those test cases that
cover the most yet uncovered parts.

Prioritization of Requirements for Test (PORT) [17–19].
It orders test cases based on the descending order of
weighted priority (WP) values so that the test case with
a higher WP value will be ordered in the front.

Optimal prioritization [16]. It prioritizes test cases using
the faults, and it can obtain the ordering of test cases
that maximizes a test suite’s rate of fault detection. It
provides an upper bound on the effectiveness of the
other heuristics.

2.3. TCP Techniques Utilizing the Execution Information.
When a test case has been executed, it generates execution
information, such as its fault detection. As regression testing
becomesmore complex, scholars have considered the impact
of execution information of test history to the current test
prioritization.

2.3.1. History-Based TCP. A history-based TCP technique
[23] sorts test cases according to the selection probabilities
calculated from test history. It defines the selection proba-
bility of each test case as follows:

P0 � h1,

Pk � αhk +(1− α)Pk−1,
{ (2)

where P is selection probability, h is test history, and α is a
smoothing constant used to weight individual histories.

,ree test histories (based upon each test case’s execution
history, its fault detection, and the program entities it covers)
have been investigated on the effect of test prioritization.,eir
experimental results show that historical information may be
useful in reducing costs and increasing the effectiveness of
long-running regression testing processes.

2.3.2. Adaptive TCP. As a main method of dynamic pro-
gramming [24], the adaptive idea is also used in test case
prioritization. Two types of adaptive TCP techniques are
introduced here. ,ey all take advantage of the impact of
occurred faults to prioritize test cases in current test round.

(1) Adaptive TCP guided by output inspection. An adaptive
test case prioritization guided by output inspection [25],

which combines the test-case scheduling process and the
test-case execution process, prioritizes test cases as the
following process:

First, it calculates the initial fault-detection capability of
all test cases based on the execution information of the
previous output and then selects a test case t with the largest
fault-detection capability. Second, t is executed on the
modified program, and it records the output of t. ,ird, it
modifies the fault-detection capability of remaining un-
selected test cases based on t’s output and selects the test case
with the largest modified fault-detection capability. Fourth,
it repeats the preceding two steps until all the test cases have
been prioritized and run.

(2) TCP based on adaptive sampling strategy. TCP tech-
niques using cluster filtering [26, 27] select and prioritize
test cases as the following process: first, it partitions the test
suite based on cluster analysis; then, it selects test cases
according to sampling strategy; finally, it prioritizes the
selected test cases. In the sampling strategies, the adaptive
sampling strategy is that it first initially selects one exe-
cution at random from each cluster and then all others of its
cluster are selected if the first one selected from the cluster
is a failure.

2.4. TCP Problem in a Smart Mall Scenario. Figure 1 is a
simple distribution diagram of mobile devices for a smart
mall scenario. In the figure, a wireless transmitter icon
represents a smart mobile device mentioned and studied in
this paper. ,e cloud icon represents central processing. A
person with a mobile phone represents a handheld mobile
device. Among them, white devices are distributed around
specific locations (stores) to monitor and process specific-
location information. Black devices are distributed in the
middle of the mall to monitor certain types of information
and perform distributed information processing. Each
mobile device in the mall has its own unique function; that
is, its internal intelligent software achieves specific re-
quirements. Integrated testing of the software in devices
throughout the mall becomes extremely complicated. For
example, in the case like Figure 2, each restaurant has a
mobile device that manages information about this res-
taurant. It can, via Internet, monitor the number of in-
coming customers/remaining seats, the number of dishes,
the temperature, etc., and pushes location preferences, food
preferences, etc. to guests (other mobile devices) entering
the restaurant. In the hall of the mall, there are restaurant-
proxy mobile devices that collect real-time restaurant and
people data, via wireless network. It also intelligently
pushes the best restaurants (vacant, near, etc.) to the mall
customers (other mobile devices) at the current moment
via Internet. ,is can schedule mall customers in real time,
which may avoid occurring the case that all customers
crowded in front of one restaurant. All data need to be
transmitted to the control center for large-scale data
processing via wireless network.

When discussing TCP problem in a smart mall scenario,
traditional TCP methods can be improved by adding

Mobile Information Systems 3

location information in sorting test cases to adapt the test
order for the new scenario. Mobile devices are located in
different locations, making them communicate more fre-
quently (functionally interact more closely) with other close-
range devices. According to distances between devices, the
correlation between functions of intelligent software at-
tached to devices is also strong or weak. As shown in Fig-
ure 1, software functions of the black device on the left side
should have a greatest relationship with software functions
of the other three white devices which communicate with
this black device. Test cases test software functions of mobile
devices. We set the granularity of a test case as testing all of
the functional requirements of a mobile device. In this way,
the node graph between traditional test cases becomes a
node graph between actual mobile devices (Figure 3). In
Figure 3, the left ellipse is a test-case node graph where a
circle icon indicates a test case, and the right ellipse is a
device node graph where a square icon indicates a mobile
device. r represents the distance between test cases or de-
vices. e virtual distance between test cases is mapped to
the actual distance between devices.

3. Location-Based TCP Using the
Law of Gravitation

 is section combines test case information, fault in-
formation, and location information to propose a new
location-based TCP technique using the law of gravitation.

3.1. Test Gravitation. Test gravitation (TG) is introduced to
simulate the universal gravitation in our method. Test

gravitation F between two test cases ta and tb can be defined
as follows:

F � G
m ta()m tb()

r2
, (3)

where G is the test gravitational constant, m(ta) and m(tb)
are the masses of ta and tb, respectively, and r is the distance
between ta and tb.

G is related to the environment of regression testing. If
the criterion ofm and r is certain,G should be unique. In this
paper, we will not research its influence on the proposed
method. So, G is set as 1.

Different attributes of a test case can represent different
substances that make up this test case. If this test case de-
tected faults, the attributes of a fault, which is as another type
of substances, are also included to make up this test case. e
weight of two types of attributes (substances) together makes
up the total mass of this test case.

Definition 1. Test case massm. e massm(t) of a test case t
is defined as follows:

m(t) � μ∑
n

i�1

wi +(1− μ)∑
e

j�1

∑
k

i�1

wi, (4)

where n is the total number of attributes of t,wi is the weight
of ith attribute of t, e is the total number of faults which t
detects, k is the total number of attributes of a fault, wi is the
weight of ith attribute of this fault, and μ is a smoothing
constant, which is 0< μ≤ 1.

For instance, in the implementation process, w1 can be
represented as the coverage of a test case and w2 can be

A restaurant

People/seats

Wireless
network

Proxy

People in
malls

Restaurants/
seats/location

Wireless
network

Control
center

Internet

Dishes

Temperature

Figure 2: Simple software functions and communication structures for restaurant applications.

Figure 1: A simple mobile device distribution for a smart mall.

4 Mobile Information Systems

represented as the importance level of a test case; w1 can be
represented as the location level of a fault, w2 can be rep-
resented as the severity of a fault, and so on.

Because faults cannot be known in advance during the
actual testing process, there are two ways to obtain faults and
their attributes. One way is presetting faults, which can be
given based on expert decision or deep learning; the other
way is utilizing occurred faults.

Definition 2. Distance r. It indicates the distance between
two test cases, denoted as r(ta, tb).

For instance, r can be calculated according to the
business level (tree relationship) between test cases or
according to the spatial distance between devices they are
located.

3.2. TG Calculation Model. In a smart mall scenario,
according to the above definitions, we design a specific
calculation model of TG to make preparations for priori-
tizing test cases. is model calculates a force F from a test
case to a faulted test case.

(1) Importance level (TI) of a test case t is selected as the
only attribute of t. TI is determined by the functional
level of the mobile device (DL) which t tests. e
mass of t is

m(t) � DL(d), (5)

where d is the device tested by t.DL is divided into 5
levels. It can use a linear assignment, such as
n(n ∈ 1, 2, 3, 4, 5{ }), or a nonlinear assignment, such
as an(a ∈ Z, n ∈ 1, 2, 3, 4, 5{ }).

(2) Fault severity (FS) is selected as the only attribute of a
fault f. e values of FS and TI(DL) compose
m(t(f)); that is

m t(f)() � μDL d(f)() +(1− μ)∑
e

j�1

FS fj(), (6)

where d(f) is the device tested by the faulted test case
t(f) and fj is jth fault detected by t(f). FS is divided
into 5 levels, like DL.

Occurred faults, detected by preselected test cases in
current test round, are used to create a set of faulted

test cases (FTS). e formation of a FTS will be
described in detail in Section 3.3.

(3) Spatial location distance of devices is selected to
calculate r. r is the 3-dimensional Euclidean distance
between a device which a test case tests and a device
which a faulted test case tests, as shown in Figure 4. It
is defined as follows:

r ti, t(f)() � ED di, d(f)(), (7)

where di is the device whose software is tested by ti,
and d(f) is the device tested by t(f).

(4) From the above, a specific calculation model of TG
between a test case ti and a faulted test case t(f) is as
follows:

F ti, t(f)() � Gm ti()m t(f)()
r ti, t(f)()2

,

G � 1,

m ti() � DL di(),

m t(f)() � μDL d(f)() +(1− μ)∑
e

j�1

FS fj(),

0< μ< 1,

r ti, t(f)() � ED di, d(f)(),




(8)

where di is the device whose software is tested by ti,
d(f) is the device tested by t(f) which detected e
faults, and fj is jth fault detected by t(f).

3.3. FaultedTestCaseSet. Occurred faults which detected by
some preselected test cases in the current test round are
used as the faults mentioned in Section 3.2, so how to
collect these occurred faults to create a FTS is an important
step. e fault attaches to the device. We use clusters of
devices to obtain a FTS. Algorithm 1 describes a clustering
process of devices. Euclidean distance is used as the dis-
similarity metric.

r
t1

t2

t3

t4

t5

t6

r
d1

d2

d3

d4

d5

d7

d6

t7

Figure 3: A test-case node graph maps to a device node graph.

Mobile Information Systems 5

After devices clustered, one device is selected randomly
from each cluster as the representative of this cluster. Test
cases that test these representatives are put into a test subset
ST. ST is executed. If faults occurred, the test cases which
detected these faults are combined into a FTS. Algorithm 2
shows the pseudocode of this process.

3.4. Location-Based TCP Using the Law of Gravitation
Algorithm

Definition 3. Test case priority P. It indicates the priority of a
test case in the execution order. ,e priority P is defined as
follows:

P �∑h
i�1

Fi, (9)

where h is the number of faulted test cases and Fi is the force
F of this test case to the ith faulted test case. ,e larger the P
value is, the earlier this test case will execute.

Algorithm 3 shows the location-based TCP using the law
of gravitation approach. Its input is a test suite T. Its output
is the prioritized test order T′. First, m of each test case t is
calculated according to the level of a mobile device which t
tests. Second, a faulted test case set FTS is created according
to algorithms 1 and 2. m of each faulted test case t(f) is
calculated based on both FS and DL. ,ird, the distance r
between each t and each t(f) can be calculated according to
location information of devices. Fourth, for each t, the force
F is computed from this t to each t(f). Fifth, the priority P of
each t is calculated according to F. Finally, test cases are
sorted in descending order of P to obtain a prioritized test
execution order T′.

3.5. Example for Simulating Smart Mall. We simulate a
smart mall scenario with Figure 5 to explain how to pri-
oritize test cases. ,ere are five mobile devices (d1–d5) in the
figure, shown by squares. Each device is tested by a test case
for its internal intelligent software functions. So, there are
five test cases (t1-t5), shown by circles. Assume that the
devices are clustered into 2 clusters: c1(d1, d2, d3) and
c2(d4, d5). d2 and d4 are extracted randomly to be device
representatives, and a subset ST {t2, t4} is formed. After ST
run, two faults (f1 and f2) are found by t2, which are shown by
stars in the figure. A dashed line in the figure shows the 3-
dimensional Euclidean distance between two devices.

In the above example, let us consider a test case pri-
oritization problem defined over a set of five test cases
T(t1, t2, t3, t4, t5)with a set of one faulted test case FTS (t(f)1)
from Table 1. From Figure 5, according to the location of
devices, the distances between test cases are obtained, as in
Table 1. We suppose that all faults (including their Severity
levels) detected in current testing round are shown in
Table 2.

We take t1 as a sample and calculate the force F of t1 to
t(f)1, as F1 � 0.135. According to Equation (9), we get the
priority value of t1 which is P1 � 0.135. Similarly, the priority
P of t2, t3, t4, and t5 are P2 � 22.5, P3 � 0.28125, P4 � 0.0002,
and P5 � 0.000225. ,e prioritization order is t2-t3-t1-t5-t4,
and the APFDc [28] value of this order is 78.57%. According
to Table 2, the optimal prioritization sorts test cases as the
order t2-t3-t1-t5-t4 (or t2-t3-t1-t4-t5), whose APFDc value is
78.57%. ,e random prioritization sorts test cases as one
order t5-t1-t3-t2- t4, whose APFDc value is 41.43%. It can be
seen that the effect of our location-based TCP using the law
of gravitation has a good effect, which is even consistent with
the optimal prioritization.

4. Empirical Evaluation

To investigate the effectiveness of the method, called
location-based TCP, using the law of gravitation (L-TCP
from now on), an empirical evaluation is performed in terms
of the following research questions:

(i) RQ1: Is L-TCP approach more effective in the rate
of fault detection than other traditional prioritiza-
tion techniques?

,is research question aims at understanding
whether the L-TCP method can detect faults earlier
than other traditional test case prioritization tech-
niques. To answer this question, this paper applies
four traditional TCP techniques for comparison.

(ii) RQ2:When evaluating the efficiency of techniques, is
there any difference in the experimental conclusions
for whether or not considering faults severities?

Whether or not to consider severity of a fault will
undoubtedly make a difference in the judgment of
the prioritization effect. ,is research question
mainly discusses the influence of two evaluation
metrics on the experimental conclusions.

(iii) RQ3: In addition to location information, what
other factors the prioritization efficiency is also
related to?

In the smart mall scenario, test prioritization effi-
ciency of software may be related to the information
of mobile devices. ,is research question combines
analyses of the above two questions to discuss
factors that influence the efficiency of prioritization.

4.1. Object. ,e object used in this experimental study is a
real industrial project which is for chip testing and has

f d1

r(tm, tf)

dm

d1

tf

tm tn

dn dm

ED(dm, d1) ED(dn, d1)

dn

r(tn, tf)

Figure 4: ,e distance between a test case and a faulted test case
maps to the distance between devices.

6 Mobile Information Systems

approximately 140,000 lines of codes (LOC), totally. It has
many versions, and each version has a few of requirements.
,e test suite of each version is relatively small. ,e gran-
ularity of test cases is coarse-grained. ,at is to say, each test
case may contain dozens or even hundreds of test scripts, but
it tests only one chip function (requirement). ,ese features
can be used to simulate test data for a smart mall scenario.
First of all, functions of the hardware chip are similar to
those of smart devices, so characteristics of the faults may be
similar, too. Second, each test case covers only one specific
requirement, which can simulate to test one mobile device.
,ird, there are many rounds (versions) of regression
testing, and there are new test cases introduced in each
round, which can simulate a step-by-step integration testing
environment for the smart mall scenario. ,e project data
include the number of test cases, the functional re-
quirements covered by test cases, the faults detected by test

cases, the fault severities, and so on. We use this project data
as a basis and then simulate the distance data between
devices. Finally, they are formed into a complete data re-
quired for this experiment. ,ere are six versions chosen for
this experiment. ,e basic information is shown in Table 3.

4.2. Variables and Measures

4.2.1. Independent Variables. To address our research
questions, one independent variable is manipulated: test case
prioritization technique. Besides our proposed L-TCP ap-
proach, the following traditional test case prioritization
approaches are also implemented for comparison.

(i) Random (R): this technique uses random prioriti-
zation technique to order test cases without using
location information of devices in prioritization.

Input: D � d1, d2, · · ·dn{ }, k //a device set, and the number of clusters
Output: C //a set of k clusters

(1) C � ∅;
(2) put each d ∈ D as a cluster c;
(3) add all clusters into C; //Initialization: get a single-cluster set C
(4) Do //Iteration: make clusters merge.
(5) For each ci, cj ∈ C
(6) If (ci and cj have the minimum 3-dimensional Euclidean distance)
(7) merge ci and cj into a new cluster cnew;
(8) delete ci and cj from C;
(9) C � C∪ cnew{ };
(10) End if

(11) End for
(12) Until ,e number of clusters in C is k //Break condition

ALGORITHM 1: Clustering.

Input:
C � c1, c2, · · · cm{ } //a set of device clusters
T � t1, t2, · · · tm{ } //a set of test cases

Output:
FTS //a set of faulted test cases

(1) FTS � ∅;
(2) While (FTS �� ∅) do
(3) ST � ∅;
(4) For each c ∈ C
(5) Randomly select one d (i.e., ds) from c;
(6) Select the test case t ∈ T (i.e., ts) which tests the software of ds;
(7) ST � ST∪ ts{ };
(8) End for

(9) For each t ∈ ST
(10) Execute t;
(11) if (t detects faults) then
(12) put t into FTS;
(13) End if
(14) End for

(15) End while
(16) Return FTS

ALGORITHM 2: Creating a FaS.

Mobile Information Systems 7

(ii) Total coverage (TC): this technique uses total
coverage prioritization technique to order test cases
without using location information of devices in
prioritization.

(iii) Additional coverage (AC): this technique uses ad-
ditional coverage prioritization technique to order
test cases without using location information of
devices in prioritization.

(iv) Requirement prioritization (PORT): this technique
uses prioritization of requirements for test tech-
nique to order test cases without using location
information of devices in prioritization.

4.2.2. Dependent Variable and Metric. Details on the
measures for the dependent variables of these experiments
are given here.

Input: Test suite T
Output: Prioritized test suite T′
General process:
Begin

(1) Calculate m of each t in T
(2) Cluster devices according to Algorithm 1
(3) Create a FTS according to Algorithm 2
(4) Calculate m of each t(f)j in FTS
(5) for each ti in T
(6) for each t(f)j in FTS
(7) Calculate r between ti and t(f)j
(8) Calculate Fj of ti to t(f)j
(9) end for
(10) Calculate P of ti
(11) end for
(12) Sort all t in T based on the descending order of P and obtain the new test execution order, being T′
(13) return T′

End

ALGORITHM 3: Location-based TCP using the law of gravitation.

r = 100

r = 10

r = 8

t1 d1

t2

t3

d2
f2

f1

d3

t4

t5d5

d4

r = 20

r = 200

r = 150

r = 80

Figure 5: A testing example simulating a smart mall.

Table 1: Information of T and FTS.

T m FTS m r(t, t(f)) t(f)1

t1 3 t(f)1 4.5 t1 10
t2 5 t2 1
t3 4 t3 8
t4 1 t4 150
t5 2 t5 200

Table 2: All faults detected by test cases.

f1 f2 f3 f4 FS

t1 √ f1 3
t2 √ √ f2 1
t3 √ f3 1
t4 f4 2
t5

Table 3: Basic information of ChipTest.

Version v-9 v-10 v-11 v-12 v-13 v-14

New requirements 5 9 5 8 7 16
New test cases 9 9 5 8 7 16
Total test cases 9 18 23 31 38 54
Faults 7 8 5 8 7 8

8 Mobile Information Systems

APFD. Tomeasure how rapidly a prioritized test suite detects
faults, average percentage of fault detection (APFD) is used
as the dependent variable.

APFD [28], the weighted average of the percentage of
faults detected, focuses on the rate of fault detection during
the testing life of a test suite. It assumes that the faults
severities are equivalent. ,e equation of APFD is as
follows:

APFD � 1−TF1 + TF2 + · · · + TFm
nm

+
1

2n
, (10)

where n is the number of test cases,m is the number of faults,
and TFi is the index of the first test case that reveals the ith
fault in the execution order T.,e value ofAPFD varies from
0 to 100%. Since n and m are fixed for any orders, a higher
APFD value indicates that the faults are detected earlier
during the testing process.

APFDc. When considering faults severities, we use APFDc
[28], the (cost-cognizant) weighted average percentage of
faults detected, to reward test case orders proportionally to
their rate of units of fault severity detected. We assume that
test case costs are identical. ,e equation of APFDc is
simplified as follows:

APFDc � 1−∑mi�1 fsi × TFi()
n ×∑mi�1fsi +

1

2n
, (11)

where fsi is the severity of the ith fault and other symbols
have the same definition as in the equation of APFD.

4.3. Case Study Design. Suppose that there are many smart
mobile devices in a mall and each device is responsible for its
own unique functions. We now need to test the functionality
of their internal intelligence software. We assume that one
test case is in charge of testing one device, and it tests all of
the software functionality of this device.

First, it collects data. To conduct the comparative ex-
periments, five types of data information are required, in-
cluding test case, levels of test cases (devices), fault, severities
of faults, distance of devices, and coverage information.

,e preparation of test case, fault, severities of faults, and
coverage information is trivial because it is already available
in the original data of the object system. For the preparation
of the levels of test cases (devices), we grade test cases
according to their name description. ,e preparation of the
distance between mobile devices requires us to give them
values by simulating the smart mall scenario.

Second, it performs test case prioritization techniques.
,is experimental study implements five approaches (TC,
AC, R, PORT, and L-TCP) for comparison. Because of the
indeterminacy of some prioritization techniques, each
technique runs 20 times for each experiment and the average
values are presented as results.,e smoothing constant is set
μ � 50%.

,ird, it calculates APFD and APFDc for each prioritized
test order from each technique. All measure values are
compared across different techniques. ,e results emerging
from this comparison are presented in the Section 4.4.

All the experiments are conducted on the same com-
puter which is configured as 64-bit windows 8 operating
system, Intel(R) Core(TM) i3-2130 CPU and 4GB memory.

4.4. Results and Analysis. In this section, we present the
results of the experiment(s) and analyze their relevance to
our research questions above.

4.4.1. RQ1: Comparison with Traditional TCP Techniques.
Figure 6 shows the box plots of five techniques across all the
system versions of ChipTest. ,e horizontal axis shows
versions, and each box in a version presents one TCP
technique. ,e vertical axis presents APFD values. Each
boxplot shows the median, upper/lower quartile, and max/
min APFD values achieved by a technique.

From the boxplot, L-TCP, as indicated by APFD scores,
significantly outperforms the others because its median
point reaches up to the highest. Besides L-TCP, PORT
performs better with a higher median point. TC, AC, and R
have a similar effect, and their median points of APFD locate
approximately between 40% and 65%.

For instance, let us choose the data of v-9 for analysis.
We useM(Median, Q1, Q3) to denote the median, first, and
third quartiles APFD values for each technique and M1-M5
to denote the five techniques: TC, AC, R, PORT, and L-TCP,
respectively. So, results of the five techniques are M1(38.89,
29.37, 48.02), M2(34.13, 29.37, 43.25), M3(38.1, 31.35, 46.43),
M4(45.24, 40.88, 46.83), and M5(78.57, 78.57, 78.57), re-
spectively, which clearly indicates that L-TCP overall per-
forms better than the others.

For evaluating the confidence level of the observed re-
sults, we test their statistical significance. First, a single
sample K-S test is used to check the normal distribution of
the data of each technique from 120 executions (20 running
× 6 versions). ,e significance level is α � 0.05. ,eir results
are as follows: in Table 4, the first row is the names of TCP
approaches mentioned above. ,e second row shows the
judge of normal distribution for TC, AC, R, PORT, and
L-TCP. ,e third row shows their significance probability
values under the null hypothesis.

From Table 4, their results accept the null hypothesis (p
values are all greater than 0.05). So, APFD values of the five
prioritization techniques satisfy a normal distribution.

Next, the paired-samples t-test is employed to obtain
sufficient statistical evidence. f1 and f2 are defined as the
values of APFD, which are prioritized by two prioritization
approaches, respectively.

,e following two hypotheses are considered:

H0: f1 � f2, if two techniques have the same effectiveness
in the rate of fault detection.

H1: f1 > f2, if f1 is significantly better than f2.

If the p value is less than the significance level (α � 0.05),
we can reject the null hypothesis and accept the alternative
hypothesis.

Table 5 reports the results of statistical testing by using
the data from 120 executions. ,eir results show that L-TCP

Mobile Information Systems 9

is statistically significantly better than other TCP techniques
because its t values are greater than 0 and p values are less
than 0.05.

For instance, compared with TC, the p value of L-TCP
equals 0.000 and its t value equals 22.947, so we can reject the
null hypothesis that L-TCP and TC have the same effec-
tiveness in the rate of fault detection and accept the alter-
native hypothesis that L-TCP is significantly better than TC.

4.4.2. RQ2: Effects of Different Evaluation Metrics. In the
evaluation metrics of fault-detection rate, APFD is one that
does not consider faults severities and APFDc is one that
considers faults severities.

Figure 7 shows APFD and APFDc distributions of dif-
ferent techniques in different versions. As can be seen from
Figure 7, L-TCP has highest values in bothAPFD andAPFDc
evaluations. at is to say, the prioritization effect of L-TCP
is the best among other techniques, regardless of whether or
not faults severities are considered in evaluation. In addition,
the trend of other techniques is similar in both evaluations
(except in version 9 and version 11); that is, PORT is a
second best technique besides L-TCP. In version 9, APFD
evaluation shows that effects of TC, AC, R, and PORT are
similar, as shown in Figure 7(a). However, in APFDc
evaluation, PORT is significantly better than the other three
techniques in version 9, as shown in Figure 7(b). In version
11, APFD evaluation shows that PORT is significantly better
than the others, but in the evaluation of APFDc, AC is
slightly better than PORT.

 erefore, from the results, whether or not considering
faults severities will not affect the conclusion of RQ 1, that is,
L-TCP is superior to other techniques. It is just that the
degree of excellence varies across different metrics.

4.4.3. RQ3: Factors Affecting Prioritization Efficiency.
From the analysis of the results of RQ1 and RQ2, it can be
seen that L-TCP is the best technique to improve the rate of
faults detection. In addition to L-TCP, PORT is the second
best performing technique.

In-depth analysis shows that, first of all, according to the
characteristics of test data, L-TCP mainly affects the pri-
oritization efficiency by location information of devices.
 at is, in the smart mall scenario, location information is
the main factor affecting the test order efficiency of in-
telligent software embedded in mobile devices. Second, in
the smart mall scenario, PORT sorts test cases according to
the priority of software functions of mobile devices in this
experiment. e functional priority of a device determines
the level of a device, and the device level determines the mass
of a test case which tests this device. In retrospect, in the
smart mall scenario, the test gravitation calculation model
considers both device location information and device level,
which are the main factors that influence the test prioriti-
zation efficiency. So, this may be the reason why L-TCP can
achieve better sorting results in this smart mall scenario.

4.5.�reats to Validity. In terms of the internal validity, the
choice of the smoothing constant μ can affect the results. In
this paper, the selection of this parameter has been based on
equalization, that is, μ � 50%. Further investigations can
study the effect of the smoothing constant.

 e threats to external validity are from the object, its
test data, and its faults used by this experimental study.
To reduce this threat in the object, the experimental object
we select is the system that tests chips, which is an object that
is relatively close to the simulated scenario. Moreover, we
select multiple successive versions (6 versions) for

v-14v-13v-12v-11v-10v-9

100

80

60

40

20

0

L-TCP

PORT

R

AC

TC

–

–

–
–

–
–

∗∗

∗∗

∗

Figure 6: APFD distributions of different techniques in different
versions. ∗Discrete value; “open circle” indicates an extreme value;
–median value.

Table 4: Sample K-S test results of APFD values of the five TCP
techniques.

TC AC R PORT L-TCP

Normal distribution? Y Y Y Y Y
Sig. 0.976 0.709 1 0.977 0.773

Table 5: Statistical test results from comparing APFD values of L-
TCP to four opponent techniques.

L-TCP

p value t

TC 0.000 22.947
AC 0.000 21.728
R 0.000 25.486
PORT 0.000 28.295

10 Mobile Information Systems

experiments to simulate step-by-step integration testing of a
smart mall scenario. ,e second external threat lies in the
test data in this object. Although the data are relatively real, it
is not complete enough for the research in this paper. For
incomplete data (such as the lack of distances between
devices), we try to simulate the data supplement according to
the scenario.,e third external threat is the faults. For faults,
we use actual real faults in order to be closer to the real
scenario.

,e threat to construct validity lies in whether the ex-
perimental results are measured in a correct way. To reduce
this threat, firstly, APFD is used to measure the effectiveness
of a prioritized test case order since APFD can measure the
rate of fault detection and has been widely used in the
evaluation of the test case prioritization problem. Second,
APFDc is also used to measure accurately the rate of units of
fault severity detected since it considers faults severities.

5. Related Work

Test case prioritization has been an interesting research field
for nearly two decades. Rothermel et al. [13] firstly proposed
the complete definition of TCP problem which is finding a
permutation of T in order to maximize some objective
functions. ,ey focus on code-coverage TCP methods at
code-level [13–16]. In 2001, Elbaum conducted specific re-
search for TCP metrics, including APFD and APFDc [28].
APFD metric proclaims that all faults have the same severity
and all test cases have equal costs. APFDc, units of fault
severity detected per unit test cost, considers unifying test
case costs and fault severities. ,eir study was primarily
focused on white-box testing but not on black-box testing.
Zhang et al. [29] considered requirement priorities to TCP
and proposed an algorithm called TCP_RP_TC. ,e

prioritization technique must predict requirement priorities
and test costs before test suite execution, but the prediction
was difficult in practice. Chu-Ti et al. [30] presented a
history-based TCPmethod with software version awareness.
Yuchi et al. [31] designed and analyzed TCP using weight-
basedmethods for GUI applications. Garg and Datta [32, 33]
used test case prioritization in web applications based on
modified functionalities or database changes. Saha et al. [34]
proposed a fully automated and lightweight test prioriti-
zation approach (REPiR) to address the problem of re-
gression test prioritization by reducing it to a standard
information retrieval problem so that the differences be-
tween two program versions formed the query and the tests
constituted the document collection. Some researchers [35]
focused on test case prioritization based on mutation
analysis. It is an effective method, but the cost is expensive.
Another novel refactoring-based approach (RBA) was
proposed by Alves et al. [36] which reordered an existing test
sequence utilizing a set of refactoring fault models. It
promoted early detection of refactoring faults. Wang and Ali
et al. [37] proposed a resource-aware multiobjective opti-
mization solution with a fitness function defined based on
four cost-effectiveness measures. Prioritizing test cases for
the testing of location-aware services was proposed by Zhai
et al. [38, 39], and it brings in service selection into a test case
prioritization technique for testing the location-based web
services.

Mobile application testing is a research direction for
testing on mobile devices. However, most of mobile ap-
plication testing focuses on performance testing or stand-
alone testing which sees the software of mobile devices as a
stand-alone software. Gao et al. [40] provided a general
tutorial on mobile application testing that first examined
testing requirements and then looked at current approaches

0

20

40

60

80

100

v-9 v-10 v-11 v-12 v-13 v-14

TC

AC

R

PORT

L-TCP

(a)

TC

AC

R

PORT

L-TCP

0

20

40

60

80

100

v-9 v-10 v-11 v-12 v-13 v-14

(b)

Figure 7: APFD and APFDc distributions of different techniques in different versions: the histograms of (a) APFD and (b) APFDc.

Mobile Information Systems 11

for both native and Web apps for mobile devices. Muccini,
Di Francesco, and Esposito [41] investigated new research
directions on mobile applications testing automation, by
answering three research questions. Given the first research
question (RQ1) are mobile applications (so) different from
traditional ones, so to require different and specialized new
testing techniques?, the natural answer seems to be yes, they
are. About (RQ2) what are the new challenges and research
directions on testing mobile applications?, the challenges
seem to be many, related to the contextual and mobility
nature of mobile applications. As far as concern (RQ3)which
is the role automation may play in testing mobile applica-
tions?, some potentials for automation have been outlined,
being aware that a much deeper and mature study shall be
conducted. Dantas et al. [42] proposed a set of testing re-
quirements, elicited using the results of an extensive research
on how the testing process for mobile applications is done in
the literature and in practice. Morla and Davies [43] created
a test environment that supports the evaluation of key as-
pects of location-based applications without the extensive
resource investment necessary for a full application
implementation and deployment. Zhang and Adipat [44]
proposed a generic framework for conducting usability tests
for mobile applications through discussing research ques-
tions, methodologies, and usability attributes. Vilkomir [45]
evaluated the effectiveness of coverage approaches for
selecting mobile devices (i.e., smartphones and tablets) to
test mobile software applications. Amalfitano et al [46]
addressed the problem of testing a mobile app as an event-
driven system by taking into accounts both context events
and GUI events. Kim, Choi, and Wong [47] proposed a
method to support performance testing utilizing a database
established through benchmark testing in emulator-based
test environment at the unit test level.

6. Conclusion

,is paper proposes a location-based TCP using the law of
gravitation approach. It introduces test gravitation, which
combines three factors (test case information, fault in-
formation, and location information), to prioritize test cases.
Test case information involves the level of mobile device.
Fault information includes the severity of fault. In addition,
we use occurred faults to create a faulted test case set. It is
obtained in three steps: devices clustering, test subset ex-
traction, and running preselected test cases. Location in-
formation involves the actual location of devices. It is used to
calculated the 3-dimensional Euclidean distance between
two devices. Finally, it experimentally verifies the effec-
tiveness of L-TCP technique in comparison with several
traditional test case prioritization techniques.

,e experimental results show that the median APFD
value of L-TCP is 78.57%, which is higher than the values of
the baseline methods. When employing the paired-samples
t-test, L-TCP’s t values are greater than 0 and p values are
less than 0.05. Specially, (1) comparing with TC, the p value
of L-TCP equals 0.000 and its t value equals 22.947; (2)
comparing with AC, the p value of L-TCP equals 0.000 and
its t value equals 21.728; (3) comparing with R, the p value of

L-TCP equals 0.000 and its t value equals 25.486; and (4)
comparing with PORT, the p value of L-TCP equals 0.000
and its t value equals 28.295. ,ese results indicate that
L-TCP is statistically significantly better than other TCP
techniques and it can detect more faults than others at the
same time consumption.

When considering the factor of faults severities during
the evaluation, the conclusion that L-TCP is superior to
other techniques will not be affected. It is just that its degree
of excellence varies across different metrics. In the smart
mall scenario, location information of devices is the main
factor which influences the prioritization performance.
Furthermore, the level of devices is also important.

,e next step is to expand the scope of empirical
evaluation and try to make the conclusion more accurate.
Moreover, how to give an appropriate parameter is also a
research direction.

Data Availability

,e data used to support the findings of this study are
available from the corresponding author upon request.

Conflicts of Interest

,e authors declare that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

,is work was supported by the National Natural Science
Foundation of China (grant nos. 61572306 and 61502294),
the IIOT Innovation and Development Special Foundation
of Shanghai (grant no. 2017-GYHLW-01037), and the
CERNET Innovation Project (grant nos. NGII2017051 and
NGII20170206).

Supplementary Materials

,e ChipTest Data.xlsx file is the data of the project used in
the experimental study of my paper. ,e results.xlsx file is
the detailed results of my experimental study. ,e result
analysis.xlsx file includes the original graphs of the results
analysis, which are also shown in my paper. (Supplementary
Materials)

References

[1] C. Stergiou, K. E. Psannis, B.-G. Kim, and B. Gupta, “Secure
integration of IoT and cloud computing,” Future Generation
Computer Systems, vol. 78, pp. 964–975, 2018.

[2] G. Han, L. Zhou, H. Wang, W. Zhang, and S. Chan, “A source
location protection protocol based on dynamic routing in
WSNs for the Social Internet of ,ings,” Future Generation
Computer Systems, vol. 82, pp. 689–697, 2018.

[3] L. Atzori, A. Iera, and G. Morabito, “,e internet of things: a
survey,” Computer networks, vol. 54, no. 15, pp. 2787–2805,
2010.

[4] H. Liu, Z. Hu, A. Mian, H. Tian, and X. Zhu, “A new user
similarity model to improve the accuracy of collaborative

12 Mobile Information Systems

http://downloads.hindawi.com/journals/misy/2019/9083956.f1.zip
http://downloads.hindawi.com/journals/misy/2019/9083956.f1.zip

filtering,” Knowledge-Based Systems, vol. 56, pp. 156–166,
2014.

[5] P. M. Adams, G. W. B. Ashwell, and R. Baxter, “Location-
based services—an overview of the standards,” BT Technology
Journal, vol. 21, no. 1, pp. 34–43, 2003.

[6] G. Rothermel and M. J. Harrold, “A safe, efficient regression
test selection technique,” ACM Transactions on Software
Engineering and Methodology, vol. 6, no. 2, pp. 173–210,
1997.

[7] X. Chen, J. H. Chen, X. L. Ju, and Q. Gu, “Survey of test case
prioritization techniques for regression testing,” Ruan Jian
Xue Bao/Journal of Software, vol. 24, no. 8, pp. 1695–1712,
2013.

[8] I. Newton, Philosophiae Naturalis Principia Mathematica,
Royal Society, London, UK, 1st edition, 1687.

[9] L. Peng, B. Yang, Y. Chen, and A. Abraham, “Data gravitation
based classification,” Information Sciences, vol. 179, no. 6,
pp. 809–819, 2009.

[10] C. Wang and Y. Q. Chen, “Improving nearest neighbor
classification with simulated gravitational collapse,” in Pro-
ceedings of International Conference on Natural Computation,
pp. 845–854, Springer, Changsha, China, August 2005.

[11] M. Indulska and M. E. Orlowska, “Gravity based spatial
clustering,” in Proceedings of 10th ACM international sym-
posium on Advances in geographic information systems,
pp. 125–130, ACM, New York, NY, USA, November 2002.

[12] G. Rothermel and M. J. Harrold, “Analyzing regression test
selection techniques,” IEEE Transactions on Software Engi-
neering, vol. 22, no. 8, pp. 529–551, 1996.

[13] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Prioritizing
test cases for regression testing,” in Proceedings of In-
ternational Symposium on Software Testing and Analysis,
pp. 102–112, ACM, Portland, OR, USA, August 2000.

[14] G. Rothermel, R. H. Untch, C. Chengyun Chu, and
M. J. Harrold, “Prioritizing test cases for regression testing,”
IEEE Transactions on Software Engineering, vol. 27, no. 10,
pp. 929–948, 2001.

[15] G. Rothermel, R. H. Untch, C. Chu et al., “Test case priori-
tization: an empirical study,” in Proceedings of IEEE In-
ternational Conference on Software Maintenance (ICSM’99),
pp. 179–188, IEEE, Oxford, England, UK, August-September
1999.

[16] S. Elbaum, A. G. Malishevsky, and G. Rothermel, “Test case
prioritization: a family of empirical studies,” IEEE Trans-
actions on Software Engineering, vol. 28, no. 2, pp. 159–182,
2002.

[17] H. Srikanth and L. Williams, “Requirements-based test case
prioritization,” IEEE Transactions on Software Engineering,
vol. 28, 2002.

[18] H. Srikanth, L. Williams, and J. Osborne, “System test case
prioritization of new and regression test cases,” in Proceedings
of 2005 International Symposium on Empirical Software
Engineering, p. 10, Noosa Heads, Queensland, Australia,
November 2005.

[19] H. Srikanth and S. Banerjee, “Improving test efficiency
through system test prioritization,” Journal of Systems and
Software, vol. 85, no. 5, pp. 1176–1187, 2012.

[20] M. J. Arafeen and H. Do, “Test case prioritization using
requirements-based clustering,” in Proceedings of 2013 IEEE
Sixth International Conference on Software Testing, Verifica-
tion and Validation (ICST), pp. 312–321, IEEE, Luxembourg,
March 2013.

[21] K. R. Walcott, M. L. Soffa, G. M. Kapfhammer et al.,
“Timeaware test suite prioritization,” in Proceedings of 2006

International Symposium on Software Testing and Analysis,
pp. 1–12, ACM, Shanghai, China, May 2006.

[22] S. Alspaugh, K. R. Walcott, M. Belanich et al., “Efficient time-
aware prioritization with knapsack solvers,” in Proceedings of
the 1st ACM International Workshop on Empirical Assessment
of software Engineering Languages and Technologies: held in
conjunction with the 22nd IEEE/ACM International Confer-
ence on Automated Software Engineering (ASE) 2007,
pp. 13–18, ACM, New York, NY, USA, 2007.

[23] J. M. Kim and A. Porter, “A history-based test prioritization
technique for regression testing in resource constrained en-
vironments,” in Proceedings of 24rd International Conference
on Software Engineering ICSE 2002, pp. 119–129, IEEE,
Orlando, FL, USA, May 2002.

[24] X. Luo, Y. Lv, R. Li, and Y. Chen, “Web service QoS prediction
based on adaptive dynamic programming using fuzzy neural
networks for cloud services,” IEEE Access, vol. 3, pp. 2260–
2269, 2015.

[25] D. Hao, X. Zhao, and L. Zhang, “Adaptive test-case priori-
tization guided by output inspection,” in Proceedings of 2013
IEEE 37th Annual Computer Software and Applications
Conference (COMPSAC), pp. 169–179, IEEE, Kyoto, Japan,
July 2013.

[26] W. Dickinson, D. Leon, and A. Podgurski, “Finding failures
by cluster analysis of execution profiles,” in Proceedings of
23rd International Conference on Software Engineering,
pp. 339–348, IEEE Computer Society, Toronto, ON, Canada,
May 2001.

[27] D. Leon and A. Podgurski, “A comparison of coverage-based
and distribution-based techniques for filtering and priori-
tizing test cases,” in Proceedings of International Symposium
on Software Reliability Engineering, pp. 442–453, Denver, CO,
USA, November 2003.

[28] S. Elbaum, A. Malishevsky, and G. Rothermel, “Incorporating
varying test costs and fault severities into test case prioriti-
zation,” in Proceedings of 23rd International Conference on
Software Engineering ICSE 2001, pp. 329–338, IEEE, Toronto,
Canada, May 2001.

[29] X. Zhang, C. Nie, B. Xu et al., “Test case prioritization based
on varying testing requirement priorities and test case costs,”
in Proceedings of Seventh International Conference on Quality
Software QSIC’07, pp. 15–24, IEEE, Portland, Oregon, USA,
October 2007.

[30] C. T. Lin, C. D. Chen, C. S. Tsai et al., “History-based test case
prioritization with software version awareness,” in Pro-
ceedings of 2013 18th International Conference on Engineering
of Complex Computer Systems (ICECCS), pp. 171-172, IEEE,
Singapore, July 2013.

[31] C.-Y. Huang, J.-R. Chang, and Y.-H. Chang, “Design and
analysis of GUI test-case prioritization using weight-based
methods,” Journal of Systems and Software, vol. 83, no. 4,
pp. 646–659, 2010.

[32] D. Garg, A. Datta, and T. French, “A two-level prioritization
approach for regression testing of web applications,” in
Proceedings of 19th Asia-Pacific Software Engineering Con-
ference (APSEC), vol. 2, pp. 150–153, IEEE, Hong Kong,
China, December 2012.

[33] D. Garg and A. Datta, “Test case prioritization due to database
changes in web applications, Software Testing,” in Proceedings
of 2012 IEEE Fifth International Conference on Verification
and Validation (ICST), pp. 726–730, IEEE, Montreal, QC,
Canada, April 2012.

[34] R. K. Saha, L. Zhang, S. Khurshid et al., “An information
retrieval approach for regression test prioritization based on

Mobile Information Systems 13

program changes,” in Proceedings of 37rd International
Conference on Software Engineering ICSE 2015, pp. 268–279,
IEEE, Firenze, Italy, May 2015.

[35] R. Just and F. Schweiggert, “Higher accuracy and lower run
time: efficient mutation analysis using non-redundant mu-
tation operators,” Software Testing, Verification and Re-
liability, vol. 25, no. 5–7, pp. 490–507, 2014.

[36] E. L. G. Alves, P. D. L. Machado, T. Massoni, and M. Kim,
“Prioritizing test cases for early detection of refactoring
faults,” Software Testing, Verification and Reliability, vol. 26,
no. 5, pp. 402–426, 2016.

[37] S. Wang, S. Ali, T. Yue et al., “Enhancing test case prioriti-
zation in an industrial setting with resource awareness and
multi-objective search,” in Proceedings of 38th International
Conference on Software Engineering Companion, pp. 182–191,
ACM, Austin, Texas, USA, May 2016.

[38] K. Zhai, B. Jiang, and W. K. Chan, “Prioritizing test cases
for regression testing of location-based services: metrics,
techniques, and case study,” IEEE Transactions on Services
Computing, vol. 7, no. 1, pp. 54–67, 2014.

[39] K. Zhai, B. Jiang, W. K. Chan et al., “Taking advantage of
service selection: a study on the testing of location-based web
services through test case prioritization,” in Proceedings of
2010 IEEE International Conference on Web Services (ICWS),
pp. 211–218, IEEE, Miami, FL, USA, July 2010.

[40] J. Gao, X. Bai, W.-T. Tsai, and T. Uehara, “Mobile application
testing: a tutorial,” Computer, vol. 47, no. 2, pp. 46–55, 2014.

[41] H. Muccini, A. Di Francesco, and P. Esposito, “Software
testing of mobile applications: challenges and future research
directions,” in Proceedings of 7th International Workshop on
Automation of Software Test, pp. 29–35, IEEE Press, Zurich,
Switzerland, June 2012.

[42] V. L. L. Dantas, F. G. Marinho, A. L. da Costa et al., “Testing
requirements for mobile applications,” in Proceedings of 24th
International Symposium on Computer and Information Sci-
ences ISCIS 2009, pp. 555–560, IEEE, Guzelyurt, Northern
Cyprus, Turkey, September 2009.

[43] R. Morla and N. Davies, “Evaluating a location-based ap-
plication: a hybrid test and simulation environment,” IEEE
Pervasive computing, vol. 3, no. 3, pp. 48–56, 2004.

[44] D. Zhang and B. Adipat, “Challenges, methodologies, and
issues in the usability testing of mobile applications,” In-
ternational Journal of Human-Computer Interaction, vol. 18,
no. 3, pp. 293–308, 2005.

[45] S. Vilkomir, “Multi-device coverage testing of mobile appli-
cations,” Software Quality Journal, vol. 26, no. 2, pp. 197–215,
2017.

[46] D. Amalfitano, A. R. Fasolino, P. Tramontana et al., “Con-
sidering context events in event-based testing of mobile ap-
plications,” in Proceedings of 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation
Workshops (ICSTW), pp. 126–133, IEEE, Luxembourg, March
2013.

[47] H. Kim, B. Choi, and W. E. Wong, “Performance testing of
mobile applications at the unit test level,” in Proceedings of
Dird IEEE International Conference on Secure Software In-
tegration and Reliability Improvement SSIRI 2009, pp. 171–
180, IEEE, Shanghai, China, July 2009.

14 Mobile Information Systems

Computer Games
 Technology

International Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi

www.hindawi.com

 Journal of

Engineering
Volume 2018

Advances in

Fuzzy
Systems

Hindawi
www.hindawi.com

Volume 2018

International Journal of

Reconfigurable

Computing

Hindawi

www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

 Artificial
Intelligence

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Civil Engineering
Advances in

Hindawi
www.hindawi.com Volume 2018

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi

www.hindawi.com Volume 2018

Hindawi

www.hindawi.com Volume 2018

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi

www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Engineering
 Mathematics

International Journal of

Robotics
Journal of

Hindawi
www.hindawi.com Volume 2018

Hindawi
www.hindawi.com Volume 2018

Computational Intelligence
and Neuroscience

Hindawi
www.hindawi.com Volume 2018

Mathematical Problems
in Engineering

Modelling &
Simulation
in Engineering
Hindawi

www.hindawi.com Volume 2018

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2013
Hindawi
www.hindawi.com

The Scientific
World Journal

Volume 2018

Hindawi
www.hindawi.com Volume 2018

Human-Computer
Interaction

Advances in

Hindawi
www.hindawi.com Volume 2018

 Scientific
Programming

Submit your manuscripts at

www.hindawi.com

https://www.hindawi.com/journals/ijcgt/
https://www.hindawi.com/journals/je/
https://www.hindawi.com/journals/afs/
https://www.hindawi.com/journals/ijrc/
https://www.hindawi.com/journals/acisc/
https://www.hindawi.com/journals/aai/
https://www.hindawi.com/journals/ace/
https://www.hindawi.com/journals/jece/
https://www.hindawi.com/journals/jcnc/
https://www.hindawi.com/journals/am/
https://www.hindawi.com/journals/ijbi/
https://www.hindawi.com/journals/ijem/
https://www.hindawi.com/journals/jr/
https://www.hindawi.com/journals/cin/
https://www.hindawi.com/journals/mpe/
https://www.hindawi.com/journals/mse/
https://www.hindawi.com/journals/tswj/
https://www.hindawi.com/journals/ahci/
https://www.hindawi.com/journals/sp/
https://www.hindawi.com/
https://www.hindawi.com/

