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Abstract—One of the main issues in mobile services’ research
(M-service) is supporting M-service availability, regardless of
the user’s context (physical location, device employed, etc.).
However, most scenarios also require the enforcement of con-
text-awareness, to dynamically adapt M-services depending
on the context in which they are requested. In this paper, we
focus on the problem of adapting M-services depending on the
users’ location, whether physical (in space) or logical (within a
specific distributed group/application). To this end, we propose
a framework to model users’ location via a multiplicity of local
and active service contexts. First, service contexts represent the
mean to access to M-services available within a physical locality.
This leads to an intrinsic dependency of M-service on the users’
physical location. Second, the execution of service contexts can
be tuned depending on who is requesting what M-service. This
enables adapting M-services to the logical location of users (e.g.,
a request can lead to different executions for users belonging to
different groups/applications). The paper firstly describes the
framework in general terms, showing how it can facilitate the
design of distributed applications involving mobile users as well as
mobile agents. Then, it shows how the MARS coordination mid-
dleware, implementing service contexts in terms of programmable
tuple spaces, can be used to develop and deploy applications and
M-services coherently with the above framework. A case study
is introduced and discussed through the paper to clarify our
approach and to show its effectiveness.

Index Terms—Context-awareness, coordination infrastructures,
M-services, mobility, multiagent systems.

I. INTRODUCTION

M
OBILITY is becoming a sine qua non characteristic

of current information and communication technolo-

gies scenarios, and several efforts are being spent to support

mobility in different areas. In particular, mobile service (M-ser-

vice) technologies focus on the increasing need to support

the ubiquitous provisioning of electronic services to mobile

users, i.e., to nomadic users carrying some sorts of portable

computer-based devices.

In the past few years, the mainstream focus of M-service

researches has been rooted on the anytime-anywhere principle:

requests for services by mobile users should be always satisfied

in an unchanged and transparent way, regardless of the time

at which a service is requested and of the place from which it

is requested [22], [23]. However, this is not the full picture. In

fact, in several cases, the design and development of effective

M-services should explicitly take into account the characteristics

of the context from which a service is requested [15]. These

Manuscript received August 15, 2003. This work was supported by the
Italian MIUR and CNR in the Progetto Strategico IS-MANET, Infrastructures
for Mobile Ad-Hoc Networks. This paper was recommend by Guest Editors
B. Benatallah and Z. Maamar.

The authors are with University of Modena and Reggio Emilia, 41100
Modena, Italy (e-mail: cabri.giacomo@unimo.it; leonardi.letizia@unimo.it;
mamei.marco@unimo.it; zambonelli.franco@unimo.it).

Digital Object Identifier 10.1109/TSMCA.2003.819496

characteristics may include, among the others: the type of

device exploited to access a service, the physical location

of the user, its personal preferences, or the preferences of a

group to which the user belongs. In general, the capability

of designing and deploying context-aware services [20], [30],

i.e., services whose execution can be dynamically adapted

to the characteristics of the context, can provide a strongly

added value to M-services technologies. For instance, a tourist

visiting a town may find extremely useful to have access

to services that automatically adapt the type and format of

information provided depending on the capabilities of his/her

display (e.g., automatically selecting appropriate fonts), on

his/her current location (e.g., providing information only about

reasonably close restaurants), and on his/her current personal

budget (e.g., providing information about cheap restaurants).

In this paper, we focus on the specific problem of location-

dependent services, i.e., context-aware services whose execution

can be dynamically adapted depending on the current location

of users. We emphasize that our concept of location is very

general, encompassing both physical location (e.g., a user

located in a specific street in a town or in a specific room

in a building), and “logical” location. The latter refers to the

fact that the activities of a user may be logically located

within a specific distributed group/application (e.g., a user

located in a team of coworkers, or in the administrators’ group

of a specific information system). For simplicity’s sake, we

will refer to “location-dependent services” when related to

physical location in space, and to “group-dependent services”

when related to the logical location of users within a specific

application group. As an additional note, we outline that the

types of M-services we consider are not necessarily accessed

by mobile users only, but by mobile software agents too.

This is because we will all increasingly delegate autonomous

software agents to access and use electronic resources. Thus,

future M-services scenarios will blur the distinction between

human and software agents. Accordingly, we use the term

“mobile agents” to specify both mobile users and mobile

software agents [9], [17], [19], and the term “M-service” to

indicate services being accessed by both mobile users and

mobile software agents. From a software engineering point

of view, in fact, the challenges to adapt M-services to the

agents’ context are the same whether we consider mobile

users or mobile software agents.

Given this background, the contribution of this paper is

twofold. First, we propose a new modeling framework for the

design and development of location-dependent M-services and,

more generally, of distributed agent-based mobile applications

using such services. Second, we show how an appropriate

middleware infrastructure can be exploited to actually imple-

ment the general concepts of the framework and to deploy

applications and services accordingly.
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With regard to the first contribution, we start from the con-

siderations that, to deal with mobility and context awareness, it

is necessary to have a modeling framework that takes these con-

cepts as first-class entities.

Therefore, we propose modeling the agents’ operational envi-

ronment as a set of local service contexts, each representing the

“place” in which agents’ activities are situated. For example, we

could model a building by identifying each building’s room as

a local service context. An agent, moving across the building,

would enter and leave different rooms (i.e., local service con-

text) and its actions would be performed in a specific local ser-

vice context depending on the room in which it is in.

Each local service context defines a locality scope within

which agents can access the locally available M-services. In the

example before, a number of M-services would be deployed on

various rooms and a M-service installed in room would not be

accessible from another room.

Accordingly, an M-service is not generally accessible from

everywhere, but only from where it is meaningfully located

and/or replicated.

This leads to an explicitly modeling of (physical) location-de-

pendencies in service provisioning. For example, consider an

M-service providing a city-wide yellow-pages facility. In our

approach, rather than a single globally accessible yellow-pages

facility, the idea is to have a multiplicity of facilities, each de-

ployed on a different area of the city and providing informa-

tion restricted to that specific area (in our terminology, each

of these areas would constitute a local service context). In this

way, a query for restaurants would be restricted to restaurants in

the neighborhood, that is, to restaurants belonging to the local

service context accessed by the user. Moreover, in our frame-

work, service contexts are not simply passive repositories of

service. Rather, they are active and reconfigurable contexts, in

charge of actively mediating and customizing the execution of

services depending on the specific types of agents that are ac-

cessing them. Therefore, the same M-service on the service con-

texts could exhibit different executions if accessed by agents of

different types (or belonging to different groups/applications).

In other words, active service contexts lead to an explicit en-

forcement of logical location-dependencies (i.e., group depen-

dencies).

With regard to the second contribution of this paper, it is

rather clear that the potentials of our framework can be fully

realized via the availability of a proper middleware infrastruc-

ture. In this paper, we show that the mobile agent reactive spaces

(MARS) coordination infrastructure [8], by implementing the

concept of local and active service contexts in terms of pro-

grammable tuple spaces, well supports the development and de-

ployment of location-dependent M-services and of distributed

applications exploiting them.

To clarify the concepts expressed and the effectiveness of our

approach, we introduce an application example to act as a run-

ning case study through the paper. The example relates to a sce-

nario of agent-mediated accesses to a distributed set of tourist

information and services, with the goal of helping groups of

tourists in planning their journey [5].

The remainder of this paper is organized as follow. Section II

details the key concepts of our framework, discusses their im-

pact on application design, and introduces the case study appli-

cation. Section III presents the MARS coordination infrastruc-

ture and shows how it enables the definition and implementa-

tion of service contexts. Section IV shows how to exploit the

MARS infrastructure to implement a variety of location-depen-

dent services in the case study scenario. Section V discusses

related work in the area. Section VI concludes the paper and

sketches future works.

II. SERVICE CONTEXTS FRAMEWORK

In this section, we introduce the general scenario of our pro-

posal and the basic background concepts and definitions related

to location-dependent M-services. Then, we detail the modeling

framework based on local and active service contexts and dis-

cuss the impact of the framework on application design. Fi-

nally, we introduce the case study application and show how

our framework can be applied to it.

A. Location-Dependent M-Services

The general scenario in which our proposal situates is that of

a variety of mobile agents accessing data and services on a fixed

network infrastructure. On the one hand, such agents could be

nomadic humans exploiting some sorts of mobile devices (e.g.,

a PDA) to connect to the Internet either for work or for plea-

sure. These includes, for instance, employees of a company in

need of accessing on-line information and services, as well as

tourists visiting a town and wishing to access information about

local cultural heritage [5]. On the other hand, such agents could

be software agents, in charge of roaming in the Internet to re-

trieve information and perform actions on behalf of a user. These

include, for instance, agents to collect and organize a set of dis-

tributed information, as well as agents in charge of accessing

e-commerce facilities in agent-enabled e-marketplaces [23].

In the above scenarios, agents (whether human or software)

are not necessarily stand-alone entities. Instead, their activities

may take place in the context of a multiagent system [19], where

an agent does not act alone, but works together and has to co-

ordinate its actions with other agents. For instance, a nomadic

worker could be in need of coordinating his/her actions with

colleagues according to specific workflow rules [13]. A mobile

agent looking for information may be in need of sharing partial

findings with other agents performing a similar search in par-

allel with it [7].

In the above scenario, we consider M-services as the means

to enable the interactions between mobile agents and network

resources, as well as between different agents. To this purpose,

we explicitly distinguish between resource M-services and co-

ordination M-services.

— Resource M-services are all those services that enable

the access to some kind of resource on the fixed net-

work infrastructure. These include all types of tradi-

tional services giving access to data and information

(e.g., data files and Web pages) as well as those ser-

vices wrapping access to some kind of software appli-

cation [e.g., a data base management system (DBMS)]

or hardware devices (e.g., a printer).
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— Coordination M-services are all those services that

are conceived with the goal of supporting some sorts

of inter-agent interactions. Instead of wrapping re-

sources, coordination M-services wrap access to some

communication and coordination media. Of course,

a coordination M-service could be implemented in

various ways, providing different communication and

coordination models. For example, it could be realized

by means of a tuple-space providing agents with a

shared space upon which to exchange information

and communicate [18], or as an event-based engine

enabling interactions according to a publish-subscribe

model [13].

In general, the above two classes cover most of the signifi-

cant types of services that one could wish to exploit in a mobile

setting.

Whatever resource or coordination M-services are involved,

we have already stated in the introduction that the effective

fruition of M-services requires context-awareness to promote

context-dependency. Generally speaking, the context of a ser-

vice identifies the operational environment in which the invo-

cation of a service occurs. This may include, among the others,

the hardware device from which it is invoked, the time of invo-

cation, the physical location of the invoking agent, and the pos-

sible membership of the invoking agent to a specific multiagent

system or group. Contextual information can be exploited so as

to adapt the execution of services depending on the context from

which they are requested (or on some specific characteristics of

the context). Just to give a few examples: a multimedia service

could lead to different renderings when invoked on devices with

different display capabilities; a streaming service could provide

different quality of services depending on the bandwidth avail-

able for transmission; a game server could adapt the difficulty

of a game and the content of the scenery depending on the age

of the player.

Although a variety of specific context-dependencies can be

fruitfully promoted in M-services, we specifically focus on lo-

cation dependencies, which we consider of a paramount im-

portance in mobile scenarios. In particular, as anticipated in

the introduction, we consider location dependencies as they re-

late to both physical location in space and logical location in a

group/application (i.e., group membership).

— Agent location. The location of an agent trivially

defines from where the agent accesses the M-ser-

vice. Of course, physical location may encompass

different granularities depending on the application

needs and the available technologies. With regard to

human agents, one can consider both raw geographical

location [e.g., as provided by a global positioning

system (GPS)] and information bounded to the actual

operational environment (e.g., a specific room in a

building or a specific street in a town). With regard to

software agents, one typically considers location of

an agent in terms of its current position on a specific

node/domain of the network.

— Agent group membership. The fact that an agent may

perform its activities in the context of a specific multi-

agent systems or a logically correlated group of agent

can be regarded as a specific form of logical location.

With regard to human agents, group membership typ-

ically relates to some sort of social or organizational

relations. With regard to software agents, group mem-

bership typically relates to the fact that they are created

and execute in the context of a common distributed ap-

plication.

On the basis of the above two types of contextual information,

the execution of M-services can imply two different forms of

dependency.

— Location-dependencies. The execution of M-services,

and the very availability of an M-service, may de-

pend on the specific location from which they are

invoked. For example, a resource M-service wrapping

a company database can impose different constraints

depending on whether it is accessed from the boss

office or from the coffee-break room. Similarly, a co-

ordination M-service managing document co-editing

can provide different policies to modify a document

depending on whether it is accessed from a company

office or by nomadic user outdoor.

— Group-dependencies. The execution and availability

of M-services may depend on the group/application

to which agents belong. For example, a resource

M-service wrapping a database can allow free access

to agents belonging to the administrator group, while

imposing strict security constraints to other agents.

A coordination M-service wrapping a chat server

can impose different conversation rules for agents

belonging to different interest groups, e.g., enabling

concurrent conversations in recreational groups, while

imposing a reservation-based conversation model in

professional groups.

We are aware that location and group dependencies in M-ser-

vices may not cover all possible types of context-dependen-

cies that one can meaningful enforce in M-services. However,

we consider them so important to require a suitable framework

to model M-services and distributed applications around them.

How such framework could also deal with other types of contex-

tual dependencies will anyway be discussed later in the paper.

B. Service Contexts

The modeling framework we propose aims at promoting the

modular design of location-dependent and group-dependent

M-services. More generally, it is intended to support the

integrated design of M-services and of distributed multiagent

applications accessing them to carry on their activities and to

coordinate with each other.

Our modeling framework takes the concepts of mobility and

context-awareness as first-class entities, and promotes a uniform

modeling of the different types of M-services (resource and co-

ordination ones) and of the different types of contextual depen-

dencies (location and group ones).

The central abstraction of the framework is service context. A

service context is the logical abstraction of the place in which an

agent executes, i.e., the place in which its activities situate and

in which it has the chance of accessing a set of locally available
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Fig. 1. Service context scenario. Agents move across local service contexts.
In each service context, they can access locally available services, whether
resource or coordination ones.

services (see Fig. 1). These services may include both resource

M-services and coordination M-services. Depending on the ac-

tual application scenario, a service context can be used to model

a network node, an administrative network domain, or a wire-

less access point.

A distributed network environment is logically modeled in

terms of a set of localized and independent service contexts.

Service context are defined, within an application scenario, to

meaningfully represent a homogeneous and logically bounded

piece of the environment. For example, in an application de-

ployed in a building, they could coincide with the building’s

rooms, while in a city-wide application, each local service con-

text could represent a district.

Agent mobility is logically modeled in terms of changes in

the service context in which an agent situates. Thus, the general

scenario is that of a number of agents, spending their nomadic

lives from a service context to another, and having the possi-

bility of accessing, at a given moment of their lives, the services

available by their current service context.

The abstraction of local service contexts reflects—at the level

of services and applications modeling—a notion of context in-

trinsic in mobility. In fact, for the very fact of moving across dif-

ferent environments, agents access different data and services,

and interact with other agents, depending on their location. As

stated in the introduction, this means that, in our perspective,

there are not globally accessible M-services. Instead, M-ser-

vices are actually localized within a local service context and ac-

cessible only by locally executing agents. Of course, it is not our

intention to exclude the possibility of promoting the modeling of

globally accessible services. However, in our framework, they

would have to be considered in terms of a number of replicated

(or coordinated) localized M-services. Consequently, the access

to M-services in the framework is intrinsically location-depen-

dent. A service may exists and be available in a location, while

it may not exist (thus, not accessible) in others.

Service context, in our model, are not simply passive reposi-

tories of data and services. Instead, they are considered active

entities, in charge of mediating all locally occurring interac-

tions. These include interactions between local agents and local

resource M-services, as well as interagent interactions occur-

ring via some coordination M-services. Moreover, service con-

texts are considered reconfigurable entities, enabling the dy-

namic adaptation of services’ execution.

With regard to the latter point, we consider that the execu-

tion of each local service context can be independently pro-

grammed to configure the rules according to which specific

Fig. 2. General framework based on local and active service contexts.

services should be accessed. Accordingly to the identified two

types of dependencies (location- and group-dependencies), two

different kinds of rules can be considered.

— Location-specific rules. These rules are local to a ser-

vice context, and are intended to apply to the agents

executing in that context to adapt the execution of ser-

vice to the specific characteristics of the local context.

— Group-specific rules. These rules are intended to be

associated with all the agents belonging to a specific

group/applications. When an agent of a specific group

accesses services on a local service context, the local

service context adapts its execution via the enforce-

ment of rules applying to all the agents of that group,

and only to them.

Putting all together, the introduced concepts lead to the sce-

nario depicted in Fig. 2. This represents a usable and modular

conceptual framework for the analysis and design of distributed

mobile applications accessing M-services. On the one hand,

different service contexts may enact different location-specific

rules. These location-specific rules integrate and extend the con-

cept of location-dependency that is already intrinsic in local ser-

vice context. The services available to an agent intrinsically de-

pend on the local service context in which it is executing. In

addition, the enactment of location-specific rules can lead to dif-

ferentiated executions in similar services available on different

services contexts: the same service in different sites may exhibit

different executions in response to an agent request. On the other

hand, different group-specific rules can be enacted for all the

agents of a group on any visited site. Thus, the same service on

the same service context can lead to differentiated execution de-

pending on who is accessing it. Location-specific rules can act

concurrently with the group-specific ones, so that the resulting

execution of a service derived from adaptation to both types of

rules.

All types of above rules can be preinstalled in a service con-

text (e.g., by the local administrator) or dynamically installed

by agents themselves accordingly to their specific needs.

C. Designing Applications Around Service Contexts

The framework introduced above defines useful abstractions

to guide and simplify the process of developing distributed

multiagent applications accessing M-services. In fact, the

model naturally invites in designing an application by clearly
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separating the intraagent issues—related to the specific in-

ternal computational activities of agents—and the interagent

ones—related to the interaction of the agents with M-services

(both resource and coordination ones). In other words, the

framework promotes a clear separation of concerns, which is

likely to reduce the design complexity of both applications and

services.

The definition of a detailed methodology is outside the scope

of this paper. Still, we can sketch some general guidelines for

applications and services design, based on the identification of

intraagent and interagent issues. It is worth noting that these

guidelines are coherent with the ones already identified in the

area of agent-oriented software engineering and methodologies

[33]–[35].

From the point of view of application developers, the design

of an application can be organized as follows:

— at the intraagent level, one has to analyze the applica-

tion goal and, in the case of a multiagent application,

decompose it into subgoals. This process should lead to

the identification of the agents that will be instantiated

in the application (or of the software components that

a user will exploit to perform its required nomadic ac-

tivities) [33]. Relevant characteristics to be identified

for each agent may include both functional ones (nec-

essary for the achievement of a specific sub-goal) and

nonfunctional ones (e.g., a proper internal agent archi-

tecture);

— at the inter-agent level, one should identify what are

the suitable M-services that have to be accessed by the

agents to let them achieve a global application goal

[35]. In particular, this amounts at identifying both the

services used by agents to interact with each other (co-

ordination M-services) as well as those services used

to access resources (resource M-services). Moreover,

this implies defining the activities that service con-

texts must enforce to properly mediate and support the

execution of the above agents to M-services interac-

tions. These supporting activities will be expressed by

means of the previously introduced location and appli-

cation-specific rules.

Our framework explicitly assigns specified duties also to the

site administrators of local service contexts, i.e., to those per-

sons in charge of managing and configuring the M-services of-

fered in local service contexts. When new kinds of application

agents are known to be deployed on the distributed scenario, the

administrator of one site can identify all the local, location-de-

pendent, rules that (s)he may find necessary to enact for the ex-

ecution of the application agents in the site. These rules can be

used to facilitate the execution of the agents on the site, and/or

to make the structure of the local organization homogeneous to

agents’ expectations, and/or to protect the site from improper

exploitation of the local contexts. In general, the identification

of the location-dependent rules is intended to define what local

policies should be defined to govern the accesses to the local ser-

vices and to locally tune the execution of services. Our frame-

work supports directly site administrator by providing means to

enforce the above specified rules.

Fig. 3. Scenario of the case study.

D. Case Study: Distributed Information Towers

Tourism is one of the fields that most notably will take ad-

vantage of modern information and communication technolo-

gies. Portable devices, wireless access to data and services, per-

sonal agents and mobile agents for information retrieval, can

altogether be fruitfully exploited to enrich tourists’ experiences

[5].

As a specific case study, we focus on the problem of accessing

the information and services related to the tourist resources of a

city, with the goal of properly organizing a visit on-the-fly. We

assume that the city is provided with a suitable distributed com-

munication infrastructure. In particular, let us assume that the

city is furnished with “information towers,” distributed in the

city and providing location-specific information and services re-

lated to the local region of the city in which they are situated (see

Fig. 3). As an example, should such an infrastructure be found

in Rome (Italy), then an information tower by Città del Vati-

cano would provide information about visiting the Vatican mu-

seums and the Cappella Sistina; an information tower by Traste-

vere would provide information about the Santa Maria Church

and services to reserve a table in a typical Trastevere restaurant.

These information towers clearly reify the abstraction of local

service contexts.

We suppose that the access to information and to services on

the information towers is provided via different means. First,

information towers are enabled to provide information and ser-

vices via wireless connections (see case 1, in Fig. 3). So, tourists

that are actually visiting the city by moving around in its streets

can exploit a personal digital assistant running on a palm com-

puter or smart cell-phone to access local information towers and

there discover what is around. For instance, a person walking

in Trastevere can connect to the local information tower to dis-

cover if there is a Chinese restaurant in the neighborhood, and

possibly to reserve a table.

Moreover, information towers are supposed to be connected

to the Internet, so that they can host the execution of mobile soft-

ware agents. Users can thus send their personal assistant mobile

agents to roam across the information towers and there access

information and services. This facility could be used to send

mobile agents to organize an off-line visit of the city, prior to

the actual one (see case 2, in Fig. 3). Also, once the tourist is in

place, this facility could be used to deploy a mobile agent in the
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network to access remote information towers without having the

tourist to actually walk there (see case 3, in Fig. 3).

The above scenario can be considered as representative of

several other application areas, such as intelligent homes, traffic

information systems, or intelligent museums. In fact, all these

application areas are characterized by the presence of a fixed

infrastructure based on a multiplicity of nodes, each associated to

a specific location and providing location-sensitive information

and services. For all these cases, the modeling of applications

in terms of agents moving across local service contexts is

undoubtedly the most suitable one. On the one hand, any type

of “information towers” providing information and services

can be naturally modeled in terms of local service contexts in

which to access M-services. On the other hand, any software

component accessing information and exploiting services can

be modeled in terms of an agent that moves across different

service contexts.

E. Service Contexts in the Case Study

Let us consider the problem of designing an agent-based ap-

plication in charge of properly organizing a city tour for a tourist

or for a group of tourists. The tourists may have specific prefer-

ences, time constraints, and budget limitations. The application

should be able of organizing a tour of the city accordingly to

such requirements.

At the intraagent level, one has to decide whether and ac-

cording to which criterion to subdivide the application goal into

subgoals, to be assigned to different agents. For instance, one

could think at one kind of agent in charge of finding and se-

lecting a set of interesting sites to be visited (“visit agent”). An-

other kind of agent could be in charge of looking for and re-

serving tables in restaurants (“reservation agent”), accordingly

to both users’ preferences and the decision of the visit agents.

On the basis of the goals to be achieved by the identified agents,

one can then decide what internal architecture for agents (e.g.,

object-based or a goal-oriented) is better suited.

At the interagent level, one has to analyze which M-services

the application agents should use and which rules should be en-

acted by local service contexts (i.e., city information towers).

The types of M-services application agents may need to ac-

cess in each local service contexts include the following:

— A resource M-service to retrieve, from an information

tower, the location-dependent information needed to

successfully organize a visit. This may include, e.g.,

the visiting time and admittance prices for local mu-

seums, bus schedules, local restaurant information;

— A coordination M-service to coordinate with other

agents of the same application, e.g., the visit agent will

have to coordinate its decisions with the reservation

agent;

— A coordination M-service to interact with foreign

agents, e.g., visit agents of different groups may need

to coordinate to obtain a collective discount on the

visit price to a site.

With reference to the first point, let us suppose that each in-

formation tower offers a resource M-service providing access

to restaurant information in terms of “type of restaurant” only

(e.g., Italian, Indian, Chinese, etc.). However, it may be the case

that the reservation agent would like to have access to this infor-

mation in terms of “class of restaurant” (e.g., cheap, expensive,

luxury). To solve this mismatch, the trivial and ineffective solu-

tion is to force the reservation agent retrieve information about

all restaurants of all types, and then select all the information

retrieved on the basis of price criterion. The alternative and ef-

fective solution, enabled by the fact that service contexts are

active and reconfigurable, can rely on a group-specific rule to

“adapt” the execution of the accessed service context to its own

need. In particular, this implies integrating in service contexts

a rule devoted to accept requests for the restaurant information

in terms of restaurant classes, and handle them accordingly. The

advantage, in this case, is that one can change the group-specific

rule to change the way restaurants are looked for by changing

neither the agent code nor the service.

With reference to the latter two points, let us abstract from the

specific coordination M-service that the agents colocated on a

local service contexts can exploit to interact, and simply assume

there is one.

Whatever the coordination M-service, identifying that a visit

agent and a reservation agent will have to coordinate together

raises a question about how this coordination process should

be actually ruled. As one possibility, the group of tourists can

decide that the visit per se is more important than what to eat

during the visit. Thus, it may require that a restaurant agent can

book a reservation only after the schedule of the visit has been

decided. This implies defining a group-specific rule preventing

the reservation agent to proactively initiate any activity before

the visit agent has completed its task. Conversely, the group

could give gastronomy more importance, by organizing the

visit on the basis of the selected restaurants. Thus, it has to rule

the interactions between the visit and the reservation agent,

via a proper group-specific rule, so that the former can start its

activity once the latter has completed. Again, the fact that the two

different solutions are enforced in term of a group-specific rule

makes it possible to switch from one choice to the other by having

to change neither the agents’ code nor the coordination service.

Let us describe another example, related to the interaction

among agents of different groups. One can consider a situation

in which different visit agents are willing to interact to organize

a larger group on-the-fly, so as to obtain a significant discount

on the access price to a given historical site. Also in this case,

one can think at a group-specific rule that caches the booking

requests for a given tour issued by single agents, and releases a

larger group tour once the critical mass is reached.

Separated from the above design issues, the perspective of

the local administrators is to enact location-specific rules on the

information towers, to control the accesses and the coordina-

tion activities of application agents. As a simple example, the

administrator can create a location-specific rule that denies a

reservation agent to initiate a protocol for the reservation of a

restaurant if it has already reserved a place in another restaurant

of the same local service context during the same time span. As

another example, the administrator of a local context in a very

attractive location could enact a rule requiring some sort of ad-

vance payment (e.g., via credit card charge) before confirming

a reservation in a restaurant.
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In all the above situations, the strength of our approach is

to promote a clear separation of concerns. Such separation of

concerns promotes adapting the overall execution of applica-

tion agents and services to contingent needs without having to

change agents and M-services. Most adaptation needs can be ac-

commodated by means of groups-specific and location-specific

rules being enacted in local service contexts.

III. MARS INFRASTRUCTURE

MARS, developed at the University of Modena and Reggio

Emilia and described in detail in [8]), is a software infrastruc-

ture that directly maps the concept of local service contexts into

a distributed middleware architecture based on programmable

coordination media.

In general terms, a coordination medium is a software

system that mediates interaction and coordination among a

set of agents executing within a locality [14]. To do that, a

coordination medium relies on a specific and uniform interac-

tion model, according to which all interactions will take place

(both accesses to local services and interagent interactions).

Message-oriented middleware [27], event-based engines [13],

tuples spaces [18], virtual data structures [26], are all examples

of coordination media relying on different interaction models.

Programmability of a coordination medium stems from the

possibility of programming its internal behavior in response to

access events [8], [14], [27]. To grant transparency, the capa-

bility of programming the behavior has to be made available

without changing the set of primitive interaction operations

used to access the coordination medium.

Programmable coordination media, in general, translate the

abstractions of local service contexts into a set of concrete

software entities and into a set of actual APIs. Therefore, an

infrastructure based on distributed programmable coordination

media enables to preserve the separation of concerns between

intraagent issues and inter-agent (as discussed in Section II)

also during the development and the maintenance. In fact, if

the code of the agents can be clearly separated from the code

needed to program the behavior of coordination media (i.e.,

the code implementing location-specific and group-specific

rules), agents and rules can be coded, changed, and re-used,

independently of each other. Thus, by avoiding to hardwire

into agents the code related to the implementation of specific

coordination rules, such an infrastructure can promote the

writing of modular, manageable, and reusable code.

A. MARS Architecture and Interface

MARS implements programmable coordination media in

terms of programmable tuple spaces, with an interface com-

pliant with that of Sun’s JavaSpaces [16]. A tuple space is a

shared repository of information, which can be accessed via

well-defined primitives; a tuple space can be considered as a

blackboard with a mechanism that permits to retrieve partially

known information (see the description of the pattern-matching

in the following). Globally, the MARS architecture is made up

of a multiplicity of independent programmable tuple spaces.

One tuple space is typically associated to a node, and it

represents the local service context for that node (see Fig. 4).

Fig. 4. MARS architecture.

Agents are supposed to access a MARS tuple space via a pri-

vate reference, which is bound to the MARS tuple space rep-

resenting the current local-service context. The binding of the

private reference to an actual tuple space automatically changes

on the basis of the agents’ movement.

Accordingly to the general mean of “agent” introduced in the

Section I, MARS supports the access by different kinds of soft-

ware components, either executing local to the accessed tuple

space or executing on a remote device. In the latter case, a soft-

ware agent running on a mobile computing device is able to

catch “connection events,” i.e., those events generated by the

wireless-enabled nodes of the fixed network infrastructure as

soon as a device enters its connection range. Then, the solu-

tion adopted in MARS is to deliver the reference of the local

MARS tuple space to a connecting device together with the con-

nection event itself. The agent, by its side, should handle this

event at its willing, typically by binding a private reference to the

MARS tuple space it is connecting to. The current implementa-

tion supports IEEE 802.11 and infrared technologies, even if it

can easily be adapted to other connection technologies, such as

Bluetooth. It is worth noting that this process has been made ro-

bust — by means of periodic messages’ exchange—to account

for wireless intermittent links.

In MARS, tuples (usually called “entries”) are Java objects

whose instance variables represent the tuple fields. The entry

objects must be instances of classes implementing the

interface, but usually they derive from the

class. These tuple can also be used to define template tuples,

by leaving the values of some variables undefined , to

be used in the pattern matching mechanism described later.

To access the tuple space, the write, read, and take opera-

tions are provided to store, read, and extract, respectively, a

tuple, based on a template tuple. In addition, the and

operations are provided to read and extract, respec-
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Fig. 5. MARS interface.

tively, all matching tuples from the space. Fig. 5 reports the Java

interface of MARS tuple spaces. As can be seen, all operations

can be part of a transaction, to allow atomic series of opera-

tion and mechanisms of rollback. Moreover, the retrieving op-

erations allow the specification of a timeout: the operations are

blocked until it expires, after that they return even if no tuples

have been found. Instead, the write operation permits to specify

the time to live (lease) of the written tuple, after which the tuple

is deleted from the tuple space. In the following, we disregard

transaction and lease issues; interested readers can find more in-

formation in [16].

The and operations can be used also to

synchronize agents. In fact, an agent performing a blocking

operation of a nonexisting tuple is suspended

until another agent writes such tuple (or a matching one).

This simple synchronization mechanism is at the base of the

coordination mechanisms of tuple spaces [1].

The default behavior of a MARS tuple space in response to

access events is a quite traditional pattern-matching access to

tuples. In such a pattern-matching, as in Javaspaces, a template

tuple TMPL and a tuple match if and only if

— TMPL is an instance of either the class of or of one

of its superclasses; this extends the Linda model [1]

according to object-orientation by permitting a match

also between two tuples of different types, provided

they belong to the same class hierarchy;

— the defined fields of TMPL that represent primitive

types (integer, character, Boolean, etc.) have the same

value of the corresponding fields in ;

— the defined nonprimitive fields (i.e., objects) of TMPL

are equal—in their serialized form—to the corre-

sponding ones of (two Java objects assume the same

serialized form only if each of their instance variables

have equal values, recursively including enclosed

objects).

For instance, the template ( , 10, ) matches with the

tuples (“ ,” 10, ), ( , 10, ) and (“ ,” 10,

), but not with the tuple (“ ,” 11, ). A template

tuple TMPL has to be provided as parameter of , ,

and operations.

Fig. 6. Example of use of MARS.

Fig. 6 reports an example of code related to the case study,

in order to show the use of MARS tuple spaces; this example is

quite simple, and its purpose is to show how the MARS oper-

ations can be exploited. Let us consider a tuple space that con-

tains information about restaurants. To this purpose we define

the class that implements tuples in the form (Type of

, , , ).

The code of the class is reported in the first half

of Fig. 6. The tuple space contains one of these tuples for each

restaurant. In this simple example, consider the case of a very

simple that accesses the tuple space to retrieve

information about local restaurants. Such an agent acts in behalf

of a tourist that is interested in having lunch in one restaurant

in the area served by the tuple space—for instance, a city or a

part of it. The agent is an instance of the class,

which is reported in the second half of Fig. 6. It retrieves infor-

mation about restaurants from the tuple space TS of class

that implements the MARS interface: by the operation

it retrieves information about all Italian restaurants, and then can

elaborate the returned results; by the read, operation, instead it

retrieves information about an Italian restaurant located in “Via

del Corso” (one of the main streets of Rome). In both operations

the timeout parameter is set to NO_WAIT, which means that the

operation is nonblocking, returning if no matching tuple is

found. In fact, in this case a cannot wait until

a restaurant with the needed features will be built.

B. MARS Programmable Model

The programmable model of MARS enables the association

of any needed reactions in response to access events performed

by agents. In this way, a reaction can be exploited both to code a
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Fig. 7. MARS reactive behavior.

service per se (overcoming the limitation of the basic tuple space

model, which is basically data-oriented rather than service-ori-

ented) as well as to code location-specific and group-specific

rules.

The association of reactions to access events occurs via 4-ples

stored in a “meta-level” tuple space. A meta-level 4-ple has the

form of (Rct, I, Op, T): it means that the reaction method (rep-

resenting the reaction itself) of an instance of the class Rct has

to be triggered when an agent with identity invokes the op-

eration Op on a tuple/template . Putting and extracting tu-

ples from one meta-level tuple space corresponds to installing

and uninstalling, respectively, reactions associated to events at

the base-level tuple space. An administrator can do that via

special-purpose agents or via a simple graphical user interface

(GUI). Agents can do that via event-handlers that install the

specified reactions automatically, as soon as they get connected

to a tuple space, and without interfering with the agents’ ac-

tivities. We emphasize that the identity of an agent can refer

both to a unique agent identifier as well as to a group/applica-

tion identifier.

Fig. 7 shows how an access by an agent may trigger a reaction

in the meta-level tuple space, depending on: the identity of the

agent (or of its group); the performed access; and the involved

tuples. The reaction can modify the behavior of the tuple space

in the sense that it can both manipulate the involved tuples as

well as access the tuple space to perform further operations.

A meta-level 4-ple can have some nondefined values, in

which case it associates the specified reaction to all the access

events that match it. For example, the 4-ple ( , ,

, ) in the meta-level tuple space associates the

reaction of an object instantiated by the class to all

, whatever the identity of the performing

agent and the template tuple type and content. When an access

event to the base-level tuple space occurs, MARS issues a

special pattern-matching mechanism in the meta-level tuple

space to look for reactions to be executed in response to the

access event. If several 4-ples satisfy the meta-level matching

mechanism, all the corresponding reactions are executed in a

pipeline, accordingly to their installation order (or to a specific

order determined by the administrator). When a reaction

method executes, it is provided with parameters (detailed later)

useful to characterize the access event that has triggered the

reaction itself.

Fig. 8. Example of MARS reaction.

Since reactions can be associated to access events either when

performed by agents of a specific group or by any agent, they can

be used to implement both location-specific rules and group-

specific rules. On the one hand, depending on its own needs, the

administrators can install reactions that apply to all the agents

executing on their site, to enforce location-specific rules. On the

other hand, agents can install their own group-specific reactions

on the visited nodes, to apply only to agents belonging to the

same group, to enforce group-specific rules. Specific security

mechanisms in MARS guarantee that agents installing group

specific rules, unless explicitly authorized, cannot influence the

activities of agents in other groups.

Let us now exemplify the usage of MARS reaction. Referring

to the previous example of the restaurants, let us consider an

agent/application wishing to retrieve information about restau-

rants in a range of price classes. Such a service is not supported

per se by a tuple space. In fact, a tuple space would require ei-

ther to specify in the template a specific price class (and would

return only those restaurant with that price class), or to specify a

null value in the price class (and would return restaurants of any

price class). To solve the problem, one could think at a reaction

that, although accepting a template with a specific price class, is

capable of returning to the invoking agents the list of restaurants

whose price class differs from the specified one of a delta (plus

or minus). Of course, such a reaction must influence only the

accesses of the customer agents belonging to a specific group,

because other groups may not be interested in (and would pos-

sibly deprecate) such a service. Therefore, it must be installed

as a group-specific reaction.

Fig. 8 shows the code of the class that roughly

implements the above-described reaction. The core of the
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reaction is implemented by the reaction method, which is

executed in response to an access. This reaction can be associ-

ated to and operations by inserting the 4-ples

( , , , ( , ,

, )) and ( , ,

, ( , , , )), respectively, in

the meta-level tuple space. These 4-ples specifies that the

reaction will be triggered when an agent with the

identity (intended as the identity of the

group) performs a read or a with whatever

template (the last sequence of null in the inner parenthesis).

Analyzing the reaction method of the class, we

can recognize the following parameters to the method:

— , a reference to the base-level tuple space to

be used to let the reaction access the (base-level) tuple

space.

— , the identity of the agent that has trig-

gered the reaction.

— , the operation the agent has performed.

— , the tuple provided as parameter in

the operation.

— , the array of the tuples returned

in the reaction previously executed in the pipeline, if

any; otherwise, the tuples deriving from the normal

pattern-matching mechanism.

In particular, in the reaction, the pa-

rameter is used to keep the agent requirements, if any, the pa-

rameter (as obvious) is used to retrieve tuples from the tuple

space, and the parameter reports the tuples re-

trieved so far. The reaction first performs a opera-

tion to retrieve the restaurants in the more expensive price class

(we assume price classes values as members an ordered type);

then, a similar operation is performed to retrieve the

restaurants in the price class. In both cases, the re-

sults are merged with the tuples retrieved by the normal pat-

tern-matching. Eventually, the array of all retrieved tuples is re-

turned. Note that this reaction works well even in case of a single

, in which case only the first tuples of the array will be re-

turned to the agent.

IV. DEVELOPING THE CASE STUDY IN MARS

By assuming the presence of the MARS infrastructure in in-

formation towers, then

1) all information to be accessed by agents will be stored in

the form of tuples in the tuple space;

2) services will be accessed by requesting proper tuples from

the tuple spaces, triggering service executions;

3) all interaction between agents will assume the form of

tuple exchanges and synchronization over tuple occur-

rences.

To develop the case study described in Section II by means

of the MARS infrastructure, agents, M-services and loca-

tion/group-specific rules are to be coded separately. The latter

ones assume the form of MARS reactions to be installed into

the meta-level tuple spaces either by application agents or by

local administrators. In the following we will show how the

Fig. 9. Code of the reservation agent (fragment).

service examples mentioned in Section II can be fruitfully

implemented by means of MARS reactions.

The first example (adapting the way restaurant information

are provided to agents) has already been shown in Section III to

explain the MARS programmable model.

With regard to the reservation service, Fig. 9 shows a (com-

mented) fragment of the code of the reservation agents. An agent

of this accesses a local MARS space to retrieve infor-

mation about (in a way similar to that of the

simple presented in Section III), and selects

a on the basis of its needs. Then, the reservation

agent writes a tuple in the space to express its willing of re-

serving a table in that restaurant. The writing of this tuple is sup-

posed to trigger the execution of a service, possibly involving

other agents, and eventually producing an “answer tuple” to

confirm the reservation or not. The reservation agent, by its side,

having written the tuple, attempts to read a confirma-

tion tuple and waits until it is produced (having specified 0 as

timeout, meaning indefinite waiting time), thus, exploiting the

read-write synchronization mechanism previously explained.

Fig. 10 shows the code of a reaction implementing the group-

specific rule described in Section II, which avoids a reservation

agent to reserve tables at a restaurant before the visit agent has

completed its task. The reaction simply searches in the space for

a tuple expressing the fact that the visit agent has completed its

task. If such a tuple is found, it lets the reservation agent write
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Fig. 10. WaitVisit reaction class.

the reservation tuple in the space. Otherwise, it does not write

the reservation tuple in the space: it immediately puts an answer

tuple communicating to the reservation agent that its reservation

has not been confirmed, and then returns to prevent the

reservation agent to write any reservation tuple in the space.

This reaction can be installed in MARS by means of the 4-ple

( , , , ( , , , )), where

the last sequence of matches a with any values.

A very similar code can be exploited for implementing the

location-dependent rule that avoids a reservation agent to re-

serve a table if it has already made another local reservation.

This reaction is shown in Fig. 11, and it can be pipelined with

the group-specific reaction of Fig. 10. In other words, in MARS,

location- and group-specific rules can be enforced concurrently

and in a harmless way.

As in the previous example, the reaction can be installed in

MARS by writing the 4-ple [( , ,

, ( , , , ))], again matching any

.

We also emphasize that the separation of concerns enforced

in MARS not only allows to change the code for agents and rules

independently of each other, but also enables new services to be

added and old ones to be dismissed influencing neither the be-

havior of agents nor the one of already programmed services. As

an example, let us suppose the administrator of one site decides

to change the local policy related to the management of multiple

reservations: instead of denying a reservation, as in the previous

case, the administrator decides that the new reservation can be

considered and evaluated, while the previous one is to be can-

celled. To enact this new policy, the administrator has simply to

de-install the reaction of Fig. 11, and to install the new version

of the reaction shown in Fig. 12, implementing the new policy.

This change can be performed even at run-time, and influence

neither agents nor the other services.

Fig. 11. SingleReservation reaction class.

Fig. 12. Alternate version of the SingleReservation reaction class.

Figs. 13 and 14 graphically depict what happens in the cases

of the first two previous reactions. Fig. 13 reports the situation

in which the agent whose code is in Fig. 9 triggers the reaction

of Fig. 10: the agent tries to reserve a table, but it is denied by

a group-specific rule that avoids to perform a reservation until

a visit has been scheduled. Fig. 14 is related to the reaction re-

ported in Fig. 11: the agent tries to reserve a table, but it is denied

by a location-specific rule that denies performing a reservation

if the same agent has done another reservation.
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Fig. 13. Reservation agent triggers a WaitVisit reaction.

Fig. 14. Reservation agent triggers a SingleReservation reaction.

As a last example of coordination service, let us consider visit

agents of different groups that wish to book a tour to a specific

historical site. In this case, each visit agent of each group is

in charge of notifying the tuple space about the willingness of

booking the tour. Then, each agent has to wait for the beginning

Fig. 15. Visit agent that deals with a tour (fragment).

of the tour itself. For instance, to notify the interest in attending

the tour to the “Colosseo,” a visit agent can put an appropriate

BookingTuple in the tuple space as shown in Fig. 15, and then

can wait for the confirmation of the beginning of the tour by

performing a read of a tuple of type . In this case,

the may not be present when the agent performs

the , so it must decide how much time it can

wait for. If the visit agent can wait 15 min as waiting time, it

can set this time as timeout parameter of the

(in milliseconds) and suspend itself until either a is

written in the tuple space or the timeout expires. The above is

the general, “normal” case.

However, it can also be the case that a tour can start only when

a minimum number of participants has been reached. In this

case, it would be worthwhile for visit agents to wait not simply

until a normal tour can be accommodated, but until a tour with

a minimum number of partecipants becomes available. Without

changing the code of visit agent, such a need can be easily imple-

mented by means of a group-specific reaction. In fact, an appro-

priate reaction can be triggered whenever a is

written in the tuple space, to keep count of the number of written

. Then, the reaction can confirm a tour only

when the total number of participants has been reached. This re-

action is implemented by the shown in Fig. 16, and

is associated to the write operation by means of the meta-level

4-ple ( , , , [“ ”)], which means that

the will be triggered when whatever agent (the

in the second field) performs a operation with a

specifying a visit to the Colosseo as the tuple

to be written (the last field).



CABRI et al.: LOCATION-DEPENDENT SERVICES FOR MOBILE USERS 679

Fig. 16. Tour reaction class.

As a final remark, we emphasize we are aware that the strict

locality model enforced by the service contexts framework and,

consequently, by MARS, may be somewhat limiting for specific

application problems. For instance, a restaurant reservation ser-

vice (cf. the code examples of Figs. 11 and 12) could be better

implemented as a globally coordinated service across a whole

town. This could avoid a user to book, at the same time, dif-

ferent restaurants in different parts of the town. Currently, our

framework and MARS can provide this via specific supporting

mobile agents in charge of roaming in the network to coordi-

nate services in different contexts. The identification of a more

general solution, e.g., providing explicit modeling of interrela-

tionships between service contexts, is being investigated.

V. RELATED WORK

In the past few years, most of the researches in the area of

M-services have focused on the very basic problem of enabling

mobile access to services via portable devices [2], [11], [28].

Only recently researches in the area have started explicitly

focusing on models and infrastructures for adapting mobile

accesses, i.e., suited for the definition location-dependent and

group-dependent services. With this regard, we can distin-

guish two main classes of approaches: middleware-based and

agent-based ones. In the former class, all the logic of adaptation

is integrated in a middleware layer. In the latter class, the idea

is to delegate to an infrastructure of software agents the duty

of providing adaptive mobile access to services. Our proposal

characterizes mainly as a middleware-based one, although it

shares some key points with agent-based ones.

In the following of this Section, we discuss (without the ambi-

tion of being exhaustive) the approaches in the above two classes

that most closely relate to our work.

A. Middleware-Based Approaches

A variety of middleware approaches, serving different

specific purposes and for different application areas, recognize

the suitability of interaction models based on local shared data

spaces [7], [21], [31]. A representative example is the Gaia

active spaces infrastructure for pervasive collaboration environ-

ments [31]. The common basic idea, shared by our proposal,

is that shared data spaces can enable dynamic location-depen-

dent interactions between software components and adaptive

fruition of services in mobile settings. These environments

recognize, as our proposal does, the need to clearly separate

the intracomponent aspects from the inter-component ones,

the latter being delegated to configuration tools in the shared

data spaces. However, they usually define limited configuration

capabilities, mostly based on simple declarative approaches

or on simple scripting (as in Gaia). Thus they lack the fully

programmable power that we ascribe to local service contexts

and that is implemented in MARS tuple spaces.

Other middleware systems based on shared data spaces and,

more generically, on distributed data structures, have been pro-

posed with the goal of supporting and facilitating contextual

and location-dependent coordination activities in the presence

of mobility. Although explicitly conceived to support coordi-

nation services, these systems can be conveniently exploited

also to support M-services. For instance, the Lime [29] and the

XMIDDLE [26] middleware systems propose relying on shared

data structures (tuple spaces and XML trees, respectively) as the

basis for both supporting coordination and context-awareness.

Each mobile device/agent in the network owns a private data

structure (e.g., a private tuple space or a portion of an XML tree).

Upon connection with other devices/agents (either in an ad-hoc

network or within a host in the fixed network infrastructure), the

privately owned data structures can merge together accordingly

to specific policies. The resulting merged shared data structure

intrinsically provides a location-dependent perspective, and can

be used by agents as a common interaction space to exchange

contextual information, to coordinate with each other, and to ac-

cess services. However, these models offer only a limited form

of user-level and administrator-level programmability, lacking

the full programmability of our service contexts and missing in

promoting a clean separation of concerns in application design

and development.

A variety of systems, without explicitly focusing on coordina-

tion and adaptation in accessing services, aim at defining tools

to facilitate the dynamic, location-dependent, discovery of ser-

vices. The approach proposed in [30] – and also supported by the

TOTA middleware [25] – enable each mobile node in a network

to specify an interest for some location-dependent information,

together with the scope of that interest (e.g., all the gas station

within ten miles). The middleware is then in charge to build

a distributed data structure (i.e., a shortest path tree) spanning

all distributed nodes within the scope of the interest. This data

structure will then be used to route back to the interested node

the contextual information that can be collected from the other

nodes in the network. Such an approach may be very powerful

for locally gathering contextual information without strict lo-

cality constraints and without requiring any centralized service

(all nodes cooperate to provide the information in a distributed

way). However, the proposal lacks flexibility, in that is purely

focused on information gathering, and pays little or no attention

to the problem of coordinating the activities of application com-

ponents within a locality. The approach described in [12] pro-

poses a middleware architecture for dynamically binding a mo-
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bile client to local services. The user specifies, via a high-level

declarative language, the characteristics of the required services.

The middleware, upon movements of the client, looks for the

locally available services those that best match the clients’ pref-

erences. We are aware that our proposal is currently a bit limited

with this regard: an agent on a mobile device can typically ac-

cess only the service on the local service context (i.e., the local

MARS tuple space) to which it is currently locally bounded.

More flexibility, by enabling coordination among service con-

texts and access to a multiplicity of distributed service contexts

may be required.

B. Agent-Based Approaches

Agent-based approaches support adaptive M-services by ex-

ploiting the capabilities of autonomous software agents, moving

across a network [32] and interacting and negotiating with each

other [19]. Of course, any agent-based approach requires the

support of an agent middleware to support agent execution and

communication. The point is that, in agent-based approaches,

the agents and not the middleware are in charge of taking care

and enabling an adaptive, context-aware, access to services.

The LEAP system [4], a FIPA compliant agent system [3],

supports the ubiquitous provisioning of services to mobile de-

vices (i.e., to mobile users) via high-level interactions between

agents. A mobile device should locally run a nomadic LEAP

agent, to act both as personal user assistant (in charge of inter-

facing with the user) and as repository of local contextual infor-

mation (e.g., local bandwidth and device characteristics). Such

agent is also in charge of interfacing, via high-level communi-

cation languages (i.e., FIPA ACL), with service LEAP agents

on the fixed network infrastructure [3], [10]. Service agents are

stationary ones, and typically co-located with those services that

are to be made available to mobile users. They are in charge of

wrapping a service and of acting as mediators between the ser-

vice and the nomadic agents. The service agent and the nomadic

agent negotiate to assess the way a service should be provided,

on the basis of the local contextual information available to the

nomadic agents. For instance, the nomadic agent can detect a

very low available bandwidth and adisplay of limited capabili-

ties, and may negotiate with the service agent a provisioning of

the service suitable to those conditions.

An approach very similar to that of LEAP is the one promoted

by the SOMA platform for mobile services [2]. There, the no-

madic agents executing in the portable devices of LEAP are sub-

stituted by mobile agents associated to each user and executing

on the fixed network infrastructure. A mobile agent is capable

of following a user in its movements, typically by executing on

to (or close to) the access points the user is currently exploiting

to access the fixed network infrastructure. As in LEAP, the mo-

bile agent on the fixed infrastructure is capable of detecting the

local conditions and adapts the fruition of the service to specific

location-dependent conditions.

Both the above approaches effectively provide a solution to

the need of adaptable accessing to M-services. Also, by moving

at the level of programmable software agents the problems re-

lated to such adaptation, they overcome the limitations in flex-

ibility of those middleware-based approaches hardwiring the

adaptation logics. The problem is that the adaptation logics,

being associated to specific software agents, can hardly take into

account location-dependent and group-dependent issues, as in

our proposal. Moreover, our proposal (despite being mostly a

middleware-based one) does not exclude and instead promotes

the use of specialized software agents to mediate the access to

local service contexts. Although we have not explicitly dealt

with such an issue in this paper, it is clear that such agents could

take care of adapting M-services fruition to the specific needs

of a specific agent/user. So, it is definitely possible to couple

the agent-based facilities proposed of systems like LEAP and

SOMA with the possibility of accessing to a world of loca-

tion-dependent and group-dependent local service contexts.

Another interesting approach that somewhat provides a good

compromise between a middleware-based and an agent-based

approach is presented in [24]. There, the fruition of mobile

services is supported by a set of software agents that interact

with each other in the context of a shared virtual space called

“meeting infrastructure.” In the meeting infrastructure, agents

representing both M-service providers and users can meet and

interact directly with each other to negotiate the provisioning of

a service. The meeting infrastructure is in charge of monitoring

the interactions that occur within, of enforcing security in

service provisioning, and of directing user agents toward

the most appropriate service agents. Despite quite close in

spirit, the meeting infrastructure and our proposal exhibit key

differences. First, being accessible only from a locality, local

service context enforce location-awareness and location-de-

pendency, while the meeting infrastructure fully disregard this

issue. Secondly, the activities of the meeting infrastructure are

fixed once and for all and cannot be programmed by users

and/or administrators. Nevertheless, as already stated, the

idea of coupling a coordination infrastructure with the smart

capabilities of software agents is an effective one, and it can be

easily supported in our proposal.

VI. CONCLUSIONS AND FUTURE WORK

The effective fruition of M-services by mobile users and,

more generally, by mobile agents, should enable flexible adap-

tation to the current user location. In this paper, we have intro-

duced a framework that promotes a modular and flexible ap-

proach to the design of distributed applications exploiting lo-

cation-dependent M-services. Centered around the concept of

active and programmable local service contexts, the framework

enables the fruition of M-services (whether related to the ac-

cess of some resources or inter-agent coordination services) to

be dynamically adapted to the current location of a user/agent,

whether such location is physical or simply logical. Moreover,

we have shown how the MARS programmable coordination in-

frastructure, by mapping at the infrastructure level the abstrac-

tions of the framework, can lead to the development of easy to

program and easy to maintain mobile applications.

At the time of writing, we are working along several direc-

tions to improve both our framework and the MARS infrastruc-

ture. First, we are trying to extend the model so as to consider

explicit coordination among local service contexts, in order to

somehow extend the strictly local and sometimes limiting per-

ception of services by agents. Second, we are evaluating how
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and to which extent the presented model could be extended for

applications in the area of mobile ad-hoc networks [6], to pro-

mote the adaptive fruition of services even in the absence of a

fixed network infrastructure. Third, we are developing a MARS

implementation that takes into account the emerging standards

for M-Services. At the moment, MARS is compliant with Sun’s

JavaSpaces and can be accessed as a Jini service. We further plan

letting the tuple space being accessible through Simple Object

Access Protocol (SOAP) calls, to encode tuples in Web Service

Description Language (WSDL), and to implement a matching

process based on the Universal Description, Discovery and In-

tegration protocol (UDDI).
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