
Applied Soft Computing 11 (2011) 1223–1240

Contents lists available at ScienceDirect

Applied Soft Computing

journa l homepage: www.e lsev ier .com/ locate /asoc

Location discovery in Wireless Sensor Networks using metaheuristics

Guillermo Molina ∗, Enrique Alba
Dept. de Lenguajes y Ciencias de la Computación, University of Málaga, ETSI Informática, Campus de Teatinos, Málaga 29071, Spain

a r t i c l e i n f o

Article history:

Received 8 June 2009
Accepted 27 February 2010
Available online 7 March 2010

Keywords:

Wireless Sensor Networks
Location discovery
Metaheuristics

a b s t r a c t

Wireless Sensor Networks (WSN) monitor the physical world using small wireless devices known as
sensor nodes, with high precision and in real time, without the intervention of a human operator. Location
information plays a critical role in many of the applications where WSN are used. Though a simple and
effective solution could be to equip every node with self-locating hardware such as a GPS, the resulting
cost renders such a solution unefficient. A widely used self-locating mechanism consists in equipping a
small subset of the nodes with some GPS-like hardware, while the rest of the nodes employ reference
estimations (received signal strength, time-of-arrival, etc.) in order to determine their locations. The task
of determining the node locations using node-to-node distances combined with a set of known node
locations is referred to as location discovery (LD). The main difficulty found in LD is the presence of
distance estimation errors, which result in node positioning errors. We describe in this work an error
model for the estimations, and propose a two-stage search procedure that combines minimization of
an error norm function with maximization of a maximum likelihood function to solve the problem. We
perform an empirical study of the performance of several variants of the guiding functions, and several
metaheuristics used to solve real LD problem instances. Finally, we test our proposed technique against
the single phase techniques in order to evaluate its performance.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Wireless Sensor Networks (WSN) have become a hot topic
in research [5]. Their capabilities for monitoring large areas,
accessing remote places, real-time reacting, and relative ease of
use have brought scientists a whole new horizon of possibili-
ties. WSN have so far been employed in military activities such
as reconnaissance, surveillance [1], and target acquisition [19],
environmental activities such as forest fire prevention [17], or
civil engineering such as structural health measurement [23].
Their uses increase by the day and their potential applica-
tions seem boundless. The wide variety of applications results
in a wide variety of networks bearing different constraints and
having different features, yet most of these networks share
some common issues that allow them to be treated homoge-
nously.

One of the key features in a WSN is the location awareness in
the information. When a WSN is deployed to monitor a wide area
(for instance fire prevention or surveillance) the value of the data
retrieved requires associated geographical information. If action is
to be taken in response to a detection (send a helicopter, send a
squad), it is necessary to know where the detected event is located.

∗ Corresponding author. Tel.: +34 952 13 33 03.
E-mail addresses: guillermo@lcc.uma.es (G. Molina), eat@lcc.uma.es (E. Alba).

Therefore, we need the sensor nodes to know their location infor-
mation.

A simple way to ensure this is to equip every node in the
WSN with GPS. This solution is very likely to be unfeasible due
to economical issues. The GPS hardware is rather expensive, WSN
typically contain very high amounts of nodes, and are generally
cost constrained. Therefore, only a small subset of the network
can affordably be equipped with GPS; such nodes are called anchor

nodes, or beacons. An automatic localization process is required
for the rest of the nodes in the network, using the anchor nodes
as reference points. This process is commonly known as location
discovery (LD). For this, distance measurements between sensor
nodes are employed, and a multilateration system can be defined.
There exist several techniques to estimate the distance between
two sensor nodes, some of which will be described in higher detail
further on.

However, the distances measured among the nodes in a WSN
usually contain errors. These errors range from slight errors to large
ones, and are difficult to characterise by a standard model such as
Gaussian. These distance measurement errors may result in severe
location errors that degrade the WSN performance, and therefore
should be taken into account during the LD. We will analyze and
apply two of the most popular fitness functions used for LD: the
L1 error norm function and the Likelihood function. We will pro-
pose a new search process based on combining the two fitness
functions, and compare it against the results obtained with either

1568-4946/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.asoc.2010.02.021

dx.doi.org/10.1016/j.asoc.2010.02.021
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
mailto:guillermo@lcc.uma.es
mailto:eat@lcc.uma.es
dx.doi.org/10.1016/j.asoc.2010.02.021


1224 G. Molina, E. Alba / Applied Soft Computing 11 (2011) 1223–1240

Fig. 1. Simple trilateration system: nodes A, B, and C have positioning knowledge,
node X can then calculate its position by measuring the distances to nodes A, B and
C.

single fitness function. We will propose some heuristic additions
to the fitness function and test their impact on the results pro-
duced. We will compare three popular metaheuristic algorithms,
Simulated Annealing, Genetic Algorithm and Particle Swarm Opti-
mization, and compare their results. We will also study the effect
of the number of beacons in the WSN.

The rest of the paper is organized as follows. In Section 2 the
location discovery problem is explained and formulated. The exist-
ing work on the field is commented in Section 3. Section 4 will focus
on the measurement model. The fitness function will be discussed
in Section 5, and the proposed optimization techniques will be pre-
sented in Section 6. Then in Section 7 the experiments performed
and the results obtained are shown. Finally some conclusions are
drawn in Section 8.

2. Location discovery

The LD problem is an optimization problem where a set of ele-
ment locations has to be determined in a manner such that the
location error is minimized. It is widely considered one of the fun-
damental tasks in a WSN [11]. The LD affects many aspects of a
sensor networks, from application (context-aware monitoring) to
communication protocols (geographical routing [8]). The location
discovery problem has been proven to be NP-complete [18].

A simple trilateration system is shown in Fig. 1. Assume nodes
A, B and C know their position coordinates, and node X measures
the distances separating itself from each of them. Then, node X can
determine its own location as is shown in Fig. 1.

We will first give some short definitions. We can assume that
locations are given in 2D or 3D. For the sake of simplicity we will
assume 2D in the following.

Let a and b be two points whose – presumably unknown – coor-
dinates are (xa, ya) and (xb, yb) respectively, and (x′

a, y′
a) and (x′

b
, y′

b
)

their estimated coordinates (a.k.a. estimated locations, obtained
through LD). We define the following:

• Real distance da,b =

√

(xa − xb)2
+ (ya − yb)2

• Measured or estimated distance ıa,b (obtained by some measur-
ing technique)

• Calculated distanceca,b =

√

(x′
a − x′

b
)2

+ (y′
a − y′

b
)2

• Measured distance error �a,b = ıa,b − da,b

Fig. 2. An error in the distance measured to node B causes node X to calculate a
wrong location.

• Calculated distance error �′
a,b

= ca,b − da,b

• Location errors �a =

√

(xa − x′
a)2

+ (ya − y′
a)2, �b =

√

(xb − x′
b
)2

+ (yb − y′
b
)2

Note that the final objective of LD is to minimize the location

errors (�a and �b). Fig. 2 shows a case of LD where errors exist in the
measurements: the distance from node B to node X is measured as
62.5 when its real value is 41.23. This causes node X to calculate
an erroneous location. The location error is the distance from node
X’s real location to its calculated location.

Our formulation of the problem is as follows: given a set S

of N nodes si, 1 ≤ i ≤ N, a subset of nodes sj, 1 ≤ j ≤ K < N with
previously known locations (anchor nodes), and a set of distance
estimations ıi,j, 1 ≤ i, j ≤ N, i /= j, we have to determine the loca-
tions of every node sl, K < l ≤ N such that the location error is
minimized.

When the distance estimations equal the real distances ıi,j =

di,j =

√

(xi − xj)
2

+ (yi − yj)
2 (assuming 2D), the location discovery

problem can be formulated as an ideal trilateration problem. In
this case, as long as the scenario is well-defined, the location dis-
covery can be solved to optimality. Since the estimated distances
are the real distances, finding the locations that produce calculated
distances equal to the measured distances will solve the problem.

However, in a general scenario, estimated distances do not equal
real distances, and the distance errors have significant values. This
causes a number of problems for location discovery. The main one
is that we are trying to minimize a value (the location error) we are
unable to calculate, since we do not know the real locations (oth-
erwise we would know the solution to the problem). Moreover, we
cannot estimate this value, or even ensure that we are improving
it, since the estimated distances are error prone, thus approximat-
ing the estimated distances with the calculated distances does not
necessarily mean that we are approaching the real distances.

There are several possible ways to deal with this issue. We can
classify these methods into two categories regarding the philoso-
phy behind the technique: methods that minimize an estimated
error committed by the candidate solution, and methods that max-
imize the likelihood (probability) that the candidate solution is
correct.

Belonging in the first category are the methods that assume
measured distances are real distances and solve the optimiza-



G. Molina, E. Alba / Applied Soft Computing 11 (2011) 1223–1240 1225

tion problem by minimizing the calculated distances error norm
L(cij − ıij). Typical norms are L1, L2 or L∞ [12]. This method can
produce good results when the measurements are accurate (errors
are small), but will lead to large positioning errors if the mea-
surement errors are large. Although these methods do not require
any specific problem knowledge besides the instance data, there
are several ways in which it could be introduced in order to tune
the method. Among them, we could mention a simple discrimina-
tion norm minimization, in which measured values are weighted
according to their expected reliability, which in turn is obtained
from some problem model.

Methods in the second category require previous knowledge on
the measurement errors, for they use a bidimensional probability
density function (pdf) for the real distance vs. measured distance.
Using calculated distances in the place of the real distances (in order
to use the pdf), we maximize the product of the probability for every
cij given ıij .

3. Related work

Location discovery is a fairly popular research topic, and has
been solved for many scenarios using a variety of techniques.
Therefore, a wide body of knowledge exists. We point out in this
section several representative examples related to location discov-
ery, errors in location and their modeling, and other issues that are
related to LD.

A theoretical study on the Crámer-Rao Lower Bound on position-
ing error was performed in [20]. In that work, the authors consider
the range-free location system based on hops from the landmarks
(anchor nodes), and the Distance Vector-position method, in which
both distance and angle estimates are available by nodes. Finally,
some conditions are given under which DV-position outperforms
range-free location.

Some early works on the subject employ the norm functions
L1, L2 and L∞ as the fitness functions for the optimiza-
tion procedure. In [12], all three functions are alternatively
used in addition to a location error minimization function
∑nB

j=1

√

(xAIj − xAFj)
2

+ (yAIj − yAFj)
2, where AIj represents the orig-

inal GPS-determined position of the beacon j, and AFj represents
the location determined for that beacon. The paper contemplates
the existence of Gaussian error both in the GPS locations of the
beacon nodes, and in the distance measurements (with standard
deviation proportional to the real distance). Surprisingly enough,
L∞ outperforms the other two norm functions in the experiments
performed.

A study on the location errors in several applications for WSN
is done in [21]. The work focuses on exposure, best- and worst-
case coverage, and shortest path routing. The norm functions are
used in this work as the objective functions for location discov-
ery. The process is incremental: at each step, all nodes that can
triangulate their locations using distance measurements from bea-
cons determine their locations, and become beacons themselves
for the rest of the nodes. The sources of errors are identified and
modeled, and the propagation and effect of the errors are stud-
ied.

A different focus is adopted in [18], where the main stress is
put on the robustness of the localization. A robust localization is
defined as one that avoids flip ambiguities. A distributed algorithm
for beaconless network localization is proposed, in which nodes
use noisy distance measurements only. Thus, locations are deter-
mined up to a global rotation and translation. The concept of robust

quadrilaterals is introduced, representing quads of nodes that can
be unambiguously located even in the presence of measurement
noise; when a node cannot be included in such a quad, its loca-
tion is not determined and is considered unknown. The algorithm

is implemented on a physical WSN, and supports localization of
mobile nodes.

Some security issues related to LD are also considered. Possible
security threats related to LD, such as Sybil or wormhole attacks,
are described in [13] and [15]. Some techniques for attack resistant
location discovery are described in [14], which are based on defin-
ing data-driven bounds on the accepted mean square errors (as in
the L1 norm) for every single node positioning, and based on voting.
A similar method combined with the use of difectional antennae is
the method proposed in [13]. The focus adopted in [15] is differ-
ent, where the authors suggest a method for detecting malicious
beacon nodes based on a combination of wormhole detectors with
“detective” beacon nodes.

In [4], the LD problem is formulated as a Multidimensional Scal-
ing problem (MDS). Formally speaking the MDS problem uses a
number of dissimilarities (i.e. distances) in order to determine the
multidimensional values (i.e. coordinates) of a set of objects. The
authors propose a distributed iterative algorithm in which every
node refines its location by using location information and mea-
sured distances from its neighbors. Special stress is put on the
neighbor selection as a two-stage resolution process is used to
eliminate the induced bias.

In this paper we use real measurement errors for the LD
instance. Our starting point is the work in [7], from which we
borrow the problem concept. We also employ a non-parametric
model for these errors instead of assuming Gaussian models.
The discrimination of measurement distances is based upon
error analysis, which gives further insight than robustness cri-
teria. We use a distance-based link selection in a first stage
resolution to obtain an initial solution, then every link is con-
sidered in the second-stage refinement process by applying the
model.

4. Distance measurements

The basis for location discovery is the distance measurement
performed by the nodes. We will introduce some popular tech-
niques employed in WSN to measure node-to-node distance, and
present the measurement model developed in this work, based on
real distance measurement data.

4.1. Distance measuring techniques

Sensor nodes can measure the distances separating themselves
in several ways. This is not a novel feature, since some cellular sys-
tems already had this kind of technology. The most widely used
techniques are [22]: Time of Arrival (ToA), Angle of Arrival (AoA),
Time Difference of Arrival (TDoA), and Received Signal Strength
(RSS). We will now briefly describe them.

In ToA, a signal is sent from a transmitter to a receiver. When
the signal arrives to the receiver, it in return sends a signal to the
transmitter, who can then measure the time lapse between the first
signal was sent, and the second signal was received. Typically an
ultrasound is used as the traveling signal and the distance between
transmitter and receiver can be estimated as (Eq. (1)):

D =
T · V

2
, (1)

where V is the signal velocity and T is the total estimated signal
traveling time. This is the technique that was employed to generate
the data used for this work (Section 4.2).

The TDoA uses two signals traveling at different speeds, such
as radio frequency (RF) and ultrasound. The distance can then be
calculated from the time lapse between the first signal was received



1226 G. Molina, E. Alba / Applied Soft Computing 11 (2011) 1223–1240

Fig. 3. Distance measurements plot.

and the second time was received as follows (Eq. (2)):

D = �T ·
VRF · VUS

VRF − VUS
, (2)

where VRF and VUS are the traveling speeds of RF and ultrasound
signals, respectively. Note that in this case there is no need to divide
it in half since signals were only sent from transmitter to receiver,
and not back.

The AoA approach requires an array of receivers, which can
determine the direction of the incoming signal.

Finally, RSS uses, instead of the signal traveling time, the signal
propagation loss as the indicator to estimate the distance separat-
ing the two nodes. A signal traveling through space will typically
reduce its energy following some law, which can be mathematically
modeled. A widely spread model for the path loss is the following
(Eq. (3)):

PL(d) = PL(d0) + 10n log
(

d

d0

)

, (3)

where PL( ) is the path loss exponent function measured in decibels,
d0 is a reference distance, and n is an exponent that depends on the
environment (generally ranging from 2 to 4).

It is widely assumed that RSS is the method that incurs the most
significant errors, since path loss is subject to quick and large varia-
tions such as shadows or fading [21]. However, RSS is an interesting
method since it can be easily implemented in sensor nodes with-
out requiring any additional hardware, using the communications
subsystem, which results in a virtually zero-cost method.

4.2. Measurement errors

We employ data gathered from several experiments performed
at the Fort Leonard Wood Self Healing Minefield Test Facility [16].
Those experiments deployed WSN containing from 79 to 93 sensor
nodes, which are custom design on an SH4 microprocessor run-
ning at 200 MHz. The nodes are equipped with four independent
speakers and microphones and use ToA on the acoustic signal to
determine the distance between themselves [20]. The WSN was
deployed on an area of 200 m × 50 m.

In total, there are 33 sets of distance measurements collected
over the course of a few days. Each set consists of a single round
of acoustic signal transmission by all the nodes. Fig. 3 shows a
graphical representation containing all the data from the 33 sets.

In general, this kind of knowledge can be acquired in two ways.
The first is to do as explained here: perform some previous experi-
ments from which the measurement error model can be compiled.
This is not always feasible, therefore a second, on-the-fly approach
can alternatively be adopted. In this approach we assume some
beacon nodes are within measurement range. In that scenario, the
combination of GPS-known locations and measured distances can
be used to establish the measurement error model.

As can be seen in Fig. 3, the measurement errors are sometimes
large. The measured distance ranges from 1 m to 50 m approxi-
mately, whereas the real distances can go as high as 200 m. This has
an immediate effect: any measure link with real distance beyond
50 m will produce a very large error. In fact, we can distinguish
three sections in the graph.

• Measured < 5 m: no visible correlation between the measured
and real distances.

• 5 m < Measured < 40 m: real and measured distances are mostly
correlated.

• 40 m < Measured: degraded correlation.

As a side note, we can argue these results come as no surprise. On
the one hand, there is a wide consensus that measurement errors
increase with the value of the distance measured, which explains
measurements over 40 m are not reliable. On the other hand, the
nodes used to establish the model are separated by at least 5 m (this
is purely circumstantial in the benchmark), therefore any measured
distance between 0 and 5 m is forcefully wrong.

5. Fitness function design

In this section we present and discuss two of the most pop-
ular fitness functions used for LD: the error norm function (that
estimates the error committed by the current solution), and the
likelihood function (that determines the probability that the cur-
rent solution is correct). After that, we compare both fitness
functions on a consistency basis for different considered scenar-
ios, and finally propose a new method based on the comparisons
results.

5.1. Error norm function

This section presents the base error norm function (which does
not include problem knowledge). Then a simple link weighting
approach that can be used to incorporate problem knowledge into
the function is described.

5.1.1. Base function

The simplest fitness functions for location discovery are error
norm functions, which assume we have no knowledge about the
error model. The norm functions are a family of Rn → R functions
that serve as indicators of how much error a given candidate solu-
tion incurs. When an error norm function is employed the location
discovery becomes a minimization problem.

Let li, 1 ≤ i ≤ L be the measured link distances (li = ıi1,i2 cor-
responds to the link between nodes i1 and i2). We define the
measured distance error for link li as �i = ci1,i2 − ıi1,i2.

The most popular norm functions are L1, L2, and L∞, [12,21],
which are shown in Eqs. (4)–(6) respectively.

L1 = |�1| + |�2| + |�3| + · · · + |�L| (4)

L2 =

√

�2
1 + �2

2 + �2
3 + · · · + �2

L (5)

L∞ = max{�1, �2, �3, . . . ,�L} (6)



G. Molina, E. Alba / Applied Soft Computing 11 (2011) 1223–1240 1227

The LD problem can be solved optimally using any of these norm
functions as fitness function in the absence of measurement errors.
However, in the presence of significant measurement errors, the
performance of any search algorithm that uses some error norm
function is severely degraded. When the errors are highly varying
(as is usual in WSN) the L1 norm produces the best results, while
L∞ produces the worst ones. In [7], all three norm functions were
tested on a small instance where 1 node was located using 9 anchor
nodes as references, with node to node distances ranging from 7 m
to 45 m. The location errors obtained were 1.272 m, 5.737 m and
8.365 m for L1, L2 and L∞ respectively.

5.1.2. Incorporating problem knowledge

Other techniques use information retrieved from a previous
analysis of the measurement errors. These techniques incorporate
that information in order to obtain more robust and accurate fit-
ness functions. There are a number of such techniques with varying
complexities.

The simplest approach to the use of a measurement error model
is to incorporate a weighting function to the norm operator. This
means we will still use the norm function, but we will multiply
every link distance error �i by a weight wi that indicates how reli-
able is the measured value. The weighting function is developed
based on some previous knowledge on the measurement errors and
can be arbitrarily complex. A distance measurement that is believed
to be correct will have a large weight, whereas one that is suspected
to be incorrect will have a low weight. Thus, the weighting function
should help reduce the impact of measurement errors.

We employ in this work a weighting function, that discriminates
measurements according to their reliability. The associated norm
function is the L1 norm, since it has shown the smallest location
errors in the previous tests. The weighting function is compiled
from the measurement data available (see Section 4.2), but never
using information related to the currently solved problem instance.
The weighting function employed is calculated as follows:

Weight(d) = exp
(

−
average location error (d)

NORM

)

(7)

where d is the measured link distance in m, the average loca-
tion error is calculated for all links in the data base ranging from
(d − margin) to (d + margin) with a margin of 50 cm, and NORM is
a normalization value. In this work the value of NORM was empir-
ically chosen to be 5. Fig. 4 illustrates the weighting function for
the bank of measurements available. We can see how the function
assigns higher weights to links with measured distances between
5 and 35 m, there is a transition zone for distances from 35 to
45 m, and distances below 5 or over 45 m are heavily discriminated
against.

5.2. Likelihood function

The second solving approach considered, which natively incor-
porates the use of measurement error knowledge, is to solve the
LD as a maximum likelihood optimization problem (ML). In this
case, a full measurement error model has to be developed such that
for any pair of real and estimated (measured) distances (d, ı), the
model will provide the likelihood (probability) that for estimated
distance ı, the corresponding real distance is d, noted P(d, ı). We
say that every link has an associated probability, or likelihood. In
this case the LD becomes a maximization problem, where the value
to be maximized is the global likelihood L (Eq. (8)).

L = P(d1, ı1) × P(d2, ı2) × P(d3, ı3) × · · · × P(dL, ıL) (8)

There are many possible manners to create a statistical model
for the measurement error. One can assume the measurement error
follows some probability distribution (Gaussian, beta, gamma, etc.)

Fig. 4. Weighting function.

and adjust the corresponding parameters to best fit the available
data. These are called parametric models.

Rather than the previous, we use a non-parametric kernel error
model similar to the one in [7]. We select 10 data sets that will gen-
erate the problem instances, and the remaining 23 will serve as the
data to establish the model. For each link we know the real distance
and the measured distance, we employ a pyramidal smoothing ker-
nel function with a base diagonal of 1 m. Fig. 5 shows the probability
density functions obtained for five different values of measured link
distance: 10, 20, 30, 40 and 50 m. For simplicity we show all five
pdf functions superimposed.

However, an analysis of this likelihood function showed that
with the data available for this work (Section 4.2), for almost any
given candidate solution there is always some link producing a
probability of zero (even for optimal solutions). This renders the
likelihood function virtually useless, since a single zero turns the
global product into zero. In order to avoid this, we established a
minimum probability floor, that ensures that unprobable links will
not produce a zero likelihood, but rather a very low value. After

Fig. 5. Kernel error model.



1228 G. Molina, E. Alba / Applied Soft Computing 11 (2011) 1223–1240

some experimentation, this ground value vas set to 10−6. Addi-
tionally, in order to cope with the enormous range of values of this
fitness evaluator, we use a logarithmic scale rather than the linear
one.

5.3. Fitness function consistency

It has already been said that the main objective of location dis-
covery is to reduce the location error, that is, the distance between
the real positions and the position estimations. However, we do
not employ this parameter as the guiding criterion to our opti-
mization technique, since it is unrealistic to assume we already
know the real sensor nodes locations. Instead, a fitness function
like the ones described above is employed. It is only natural thus to
ask oneself whether the fitness function selected is correctly guid-
ing the algorithm towards better solutions, that is, whether the
fitness value and the location error of a given solution are corre-
lated.

In order to provide some insight onto this issue, we will use a
simple yet effective criterion: let sa and sb be two possible solu-
tions for a given LD instance, and LE() the location error function;
if LE(sa) < LE(sb) then the fitness function should favor sa over sb.
If this is the case, then we say the fitness evaluator is consistent for
this pair of nodes.

We define three different scenarios in order to apply our cri-
terion. The first scenario consists of a pool of randomly generated
pairs of solutions (low quality solutions). The second scenario con-
sists of pairs of random solutions with low average location error
(high quality solutions); for this scenario the solutions are gener-
ated by adding low power white Gaussian noise to the real locations
of the nodes. The third scenario consists of pairs of consecutive
best-found-so-far solutions during an execution with Simulated
Annealing using a sampling rate of 1.000 iterations.

Algorithm 1 shows the pseudocode of the consistency check
performed; the initialize function (lines 3 and 4) depends on the
considered scenario, the evaluate function (lines 5 and 6) is the
corresponding fitness function (error norm or likelihood), and the
fitness values are considered better (line 8) when they are higher if
the fitness function is the likelihood, or lower if the fitness function
is an error norm. Finally, the returned value is the total number of
consistent solution pairs (line 13) divided by 100 in order to get the
percentage of consistency.

Algorithm 1. Fitness consistency check

For each scenario we generate 1.000 random pairs of solutions,
and compare the maximum likelihood function, the L1 norm func-
tion and the location error for the two solutions. For the second
scenario we have used three different power levels for the noise:
0 db, −10 dB and −20 dB corresponding the average location errors
of 1 m, 10 cm and 1 cm respectively. The percentage of pairs of
solutions where each function is consistent (the solution with the
lowest location error gets the best fitness value) are shown in

Table 1

Consistency of the maximum likelihood, L1 and L∞ norm functions for different
location errors (%).

Scenario ML L1 L∞

Pure random 55.8 62.1 54.7
WGN 100 cm 69.1 66.8 49.4
WGN 10 cm 68.5 55.8 50.4
WGN 1 cm 71.7 51.9 50.1

Table 1; we also include the consistency of the L∞ norm – which is
not used in this work – as a reference.

For the second scenario we produce 1.000 pairs of solutions
by adding white Gaussian noise, with 0 dB power relative to the
location in meters (1 m on average), to the coordinates of the opti-
mal solution. In this scenario the consistency is of 68.9% and 66.3%
for ML and norm fitness functions respectively. If the noise power
is reduced to −10 dB (10 cm on average) the consistency values
become 68.0% and 56.1%, and for −20 dB (1 cm) they become 71.6%
and 51.6% respectively.

From Table 1 it can be appreciated that ML acts only slightly
better than blind search (50% consistency) when the solution is far
from the optimum. The same holds true for the L1 norm function
when the solution approaches the optimum. We can state that the
norm function is preferable when the solution is far away from the
optimum, as in the beginning of the search process, and the ML
function is preferable when the solution is close to the optimum,
as in the end of the search process. Therefore, we propose a new
approach for solving this problem, that is described in the following
section.

5.4. Two-stage resolution

If we use the L1 norm function alone, the obtained accuracy is
expected to be limited, but it provides good guidance when the cur-
rent solution is far away from the optimum, and the local optima are
not extremely sharp. If we use the likelihood function, it provides
a highly improved accuracy in the neighborhood of the optimum,
but its guidance is poor in regions far away from it, and the local
optima can be very strong. Therefore, using the L1 norm seems a
good idea when starting from a randomly generated solution, since
it is likely to guide the search towards the neighborhood of the
optimum; once the search process has entered that neighborhood,
it is convenient to switch to a likelihood estimation, since it will
produce much more accurate results in that narrow region.

Therefore, as in [4], we propose a two-stage solving process that
combines two search processes. Fig. 6 shows the basic configura-
tion. The basic intuition is to use an initial phase to generate a rough
initial guess by using L1 starting from a random initial solution, then
a second phase to refine the initial guess by using ML. The key fea-
ture for the first phase is robustness, we want to obtain a solution
that has an upper bounded location error. The key feature for the
second phase is accuracy, we want to minimize the location error
as much as possible.

5.5. Beacon reinforcement factor

Finally, we noticed that one of the main problems that arise
during LD is the link-clustering of the WSN. This happens when
a set of nearby nodes has many measurements for pairs of nodes
contained in the set, and very few between any node in the set and
a node outside of the set. In this situation, a translation, rotation or
flipping of the complete set may result in a very slight difference in
the fitness function, and is thus very difficult to detect by the search
algorithm, but the location error will suffer a large increase [18]. An
example of rotation error is shown in Fig. 7, where real locations



G. Molina, E. Alba / Applied Soft Computing 11 (2011) 1223–1240 1229

Fig. 6. Two-stage resolution process combining the first stage using error norm
function and the second stage with a likelihood function.

are indicated with dots, estimated locations with asterisks and a
dotted line links every estimated location with its corresponding
real location. We can see that almost every dotted line intersects at
a single point: the rotation center.

When many nodes belonging to one such cluster are displaced,
they produce an attraction effect on the remaining nodes of the
cluster, inducing them away from their real locations towards the
cluster rotated/translated position. Speaking in optimization terms,
a cluster displacement constitutes a local optima, and can in some
cases be a very strong one. Therefore, this calls for some mecha-
nism that helps escape this kind of trap. There are some heuristic
factors that can be incorporated to the fitness function and can help
improve its performance.

Since a beacon cannot be moved away from its location, this
issue is usually solved when one or more nodes in the cluster set is
a beacon. However, due to the reduced number of beacons, this is
generally not the case.

We propose to reinforce the effect of the already existing bea-
cons in the network as a way to avoid translation, rotation of
flipping errors. To do this, we assign a higher weight to those links
in which one the end nodes is a beacon node. This will force those

Fig. 7. Example clustering error: a cluster of nodes has their location estimations
reflected through a point; this error is hard to detect when there are few distance
measurements from nodes in the cluster to nodes outside the cluster.

nodes that have link distances measured with respect to some bea-
con to stay at this distance, specially the beacon’s close neighbors.
For this work we have chosen a weight of 2 for the links contain-
ing a beacon; this weight is used both in the L1 norm and the ML
functions.

6. Optimization algorithms

In this section we present the search algorithms we use to solve
location discovery. These algorithms handle one solution or a pop-
ulation of solutions, and employ a fitness function (described in the
previous section) to guide the search.

For these algorithms to be able to tackle an optimization prob-
lem, a suitable solution coding must be chosen. First, every node
in a WSN is numbered. Then, we use a straightforward encoding:
an array of real numbers with length double the number of sensor
nodes in the WSN. The first two elements are respectively the x and
y coordinates of the first node, from this point the next two values
represent x and y coordinates of the following nodes respectively.

6.1. Simulated annealing

Simulated annealing is a trajectory based optimization tech-
nique [3]. It was first proposed by Kirkpatrick et al. [10]. The
pseudocode for this algorithm is shown in Algorithm 2.

Algorithm 2. Pseudocode of SA



1230 G. Molina, E. Alba / Applied Soft Computing 11 (2011) 1223–1240

Table 2

Test instances features.

Instance 3-19A 3-19B 3-19C 3-19D 3-19E 3-19F 3-20A 3-20B 3-25A 3-25B

Number of nodes 79 93 93 94 94 94 94 93 93 94
Number of links 677 673 394 644 378 622 978 1026 992 1279
Avg. link error (m) 4.55 3.89 2.05 2.99 1.70 2.52 3.51 2.92 2.55 4.58

The algorithm works iteratively keeping a single tentative solu-
tion Sa at any time. In every iteration, a new solution Sn is generated
from the previous one, Sa (line 6), and either replaces it or not
depending on an acceptance criterion (lines 8 and 9). The accep-
tance criterion works as follows: both the old (Sa) and the new
(Sn) solutions have an associated quality value, determined by an
objective function (also called fitness function). If the new solution
is better than the old one, then it will replace it. If it is worse,
it replaces it with probability P. This probability depends on the
difference between their quality values and a control parameter
T named temperature. This acceptance criterion provides a way of
escaping from local optima. The mathematical expression for the
probability P is:

P =
2

1 + e(fitness(Sa)−fitness(Sn))/T
(9)

As iterations go on, the value of the temperature parameter is
reduced following a cooling schedule (line 10), thus biasing SA
towards accepting only better solutions. In this work we employ
the geometric rule T(n + 1) = ˛ · T(n), where 0 < ˛ < 1, and the
cooling if performed every k iterations (k is the Markov chain length).

For the neighbor selection we use a mutation process. In this
mutation, we select each of the coordinates with a given probability
p. Then, each selected coordinate is modified by adding a displace-
ment d, which is a random value between −Rmax and +Rmax . The
value for Rmax is selected as the average error per link measure-
ment (considering L1 norm) multiplied by a scaling factor we refer
to as mutation intensity, regardless of the chosen fitness function.
Furthermore, this value is weighted by a value representing the
algorithm’s execution progress: 1 − evaluations/max evaluations.
The idea behind this is to have an increasing fine grain precision
even when the error norm is lower bounded.

The initial value for the temperature T is automatically gener-
ated in such a way that any movement from the initial (random)
solution will be accepted with probability 80%.

6.2. Genetic algorithm

Genetic Algorithms belong to the wide family of evolutionary
algorithms [2]. They appear for the first time as a widely recognized
optimization method as a result of the work of John Holland in the
early 1970s, and particularly his 1975 book. The pseudocode for this
algorithm is shown in Algorithm 3. A standard genetic algorithm
is a population based technique [3] that uses a selection operator
to pick solutions from the population (line 4), a crossover and a
mutation operators to produce new solutions from them (lines 5
and 6), and a replacement operator to choose the individuals for
the next population (line 8).

Algorithm 3. Pseudocode of GA

Our implementation of the genetic algorithm uses a ranking
method for parent selection and elitist replacement for the next
population, that is, the best individual of the current population is
included in the next one. The crossover method is the sbx crossover
defined for continuous variables (as is the case here) [6]. The muta-
tion method is the same employed for SA and described in Section
6.1.

Fig. 8. Two test instances: 3-19A (left) with 79 nodes and 677 link distances, and 3-19C (right) with 93 nodes and 394 link distances.



G. Molina, E. Alba / Applied Soft Computing 11 (2011) 1223–1240 1231

6.3. Particle Swarm Optimization (PSO)

Particle Swarm Optimization [9] is a population based meta-
heuristic inspired in the social behavior of birds within a flock, and
initially designed for continuous optimization problems. In PSO,
each potential solution to the problem is called particle and the
population of particles is called swarm. In this algorithm, each par-
ticle position xi is updated each generation g by means of the Eq.
(10).

xi
g+1 ← xi

g + v
i
g+1 (10)

where factor v
i
g+1 is the velocity of the particle and is given by

v
i
g+1 ← w · v

i
g + ϕ1 · (pi

g − xi
g) + ϕ2 · (bg − xi

g) (11)

In this formula, pi
g is the best solution that the particle i has

stored so far, bg is the best particle (also known as the leader) that
the entire swarm has ever created, and w is the inertia weight
of the particle (it controls the trade-off between global and local
experience). Finally, ϕ1 and ϕ2 are specific parameters which con-
trol the relative effect of the personal and global best particles
(ϕ1 = ϕ2 = 2 · UN(0, 1)).

Table 3

Parameter values for the basic SA configuration.

Parameter Value

Evaluations 5.000,000
Mutation rate (%) 1.5
Mutation Intensity 15
Initial T auto

Markov chain length 50
˛ 0.9995

Algorithm 4 describes the pseudo-code of PSO. The algorithm
starts by initializing the swarm (line 1), which includes both the
positions and velocities of the particles. The corresponding pi of
each particle is randomly initialized, as well as the leader g (line 2).
Then, during a maximum number of iterations, each particle flies

through the search space updating its velocity and position (lines 5
and 6), it is then evaluated (line 7), and its pi is also calculated (line
8). At the end of each iteration, the leader b is updated. Besides, as
the execution progresses, the inertia weight linearly evolves from
an initial value to a final value (which is generally lower).

Algorithm 4. Pseudocode of PSO

Fig. 9. Boxplot comparisons of the average (left) and minimum (right) location errors of the different experiments: Test case, without problem knowledge and adding beacon
reinforcement (top); different beacon densities (bottom).



1232 G. Molina, E. Alba / Applied Soft Computing 11 (2011) 1223–1240

7. Experiments and results

For our experiments we select 10 measurement sets as test
problem instances (see Section 4.2 and Table 2), and compile an
error model from the 23 remaining sets, so that no information
from an instance is used in the process of resolving it. Fig. 8 shows
two of the solved instances, named “3-19A” and “3-19C”. The for-
mer consists of 79 sensor nodes, with a total of 677 node-to-node
distance measurements available. The latter consists of 93 nodes,
with 394 node-to-node measurements.

In the following, we will take Simulated Annealing using the
plain L1 norm function with link weighting (see Section 5.1.2) –
but no beacon reinforcement factor – as the base configuration for
solving this problem, then establish a comparison-based analysis
of the other techniques described against it.

We describe our experimental methodology in the next section.
We then present the results obtained with our base configuration in
Section 7.2. We then check the effect of the using problem knowl-
edge (through link weights), and adding the beacon reinforcement
heuristic factor (see Section 5.5) in Section 7.3, the analyze the
impact of the number of beacon nodes in the base case from 10% to
20% and 30% in Section 7.4. We then compare the results obtained
with the Genetic Algorithm and the Particle Swarm Optimization

against our basic configuration in Section 7.5. We finally test the
effectiveness of the likelihood fitness function and our proposed
two-stage solving process in Section 7.6.

7.1. Experimental methodology

We want to test our resolution process robustness by starting
from random generated initial solutions. Note that it is possible
to use available knowledge (beacon positions plus measured dis-
tances) to compile an initial solution with bounded error, in that
case the results obtained by the optimization algorithms would be
arguably better. In our experiments we use a predefined bounding
box that defines the feasible locations for the sensors; such a bound-
ing box can be defined on the fly using the combined information
from distance measurements, network topology and beacon loca-
tions.

Every problem instance will be solved using information from a
single round of distance measurements. Once again, the results are
expected to improve if several measurement rounds are performed.
We consider an average location error below 1.5 m to be acceptable,
and above it to be poor.

Since the beacons nodes have a big effect on the obtained results,
we generate ten random beacon configurations for each instance,
therefore producing a total of 100 scenarios. For each scenario 100
independent runs are performed in order to get statistical confi-
dence on the results. This means that for every experiment, a total
of 10,000 independent runs are performed (100 scenarios × 100
independent runs). A single run is stopped after visiting 5,000,000
candidate solutions; this takes between four and ten minutes of
computation in a Pentium IV@3 GHz with 512 M RAM running
Linux Fedora 7. This makes a total of 50 days computation time per
experiment on average. In order to cope with the enormous amount
of computation required, we employ the high-throughput platform
Condor with a grid of up to 400 non-dedicated computers, which
allowed us to perform up to that many independent runs in par-
allel. Thanks to this we managed to reduce the total time required
for a single experiment to 1 day.

Table 4

Minimum and average location errors(m) obtained using the test case: Simulated Annealing with L1 error norm function and weighting function. The highest and lowest
values are highlighted.

Test case: SA with problem knowledge

BEACON 3-19A 3-19B 3-19C 3-19D 3-19E

CONFIG. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Config 1 0.6626 2.8657 0.5983 0.8484 0.7791 2.3655 0.4908 0.6118 0.9728 5.8903
Config 2 0.7321 3.1985 0.5556 0.6556 0.7493 1.8338 0.4757 0.5839 0.9021 1.0842
Config 3 0.4857 0.7199 0.4645 0.5882 0.7793 1.2224 0.5316 0.7317 0.9392 1.3399
Config 4 0.4907 0.5772 0.6285 0.8607 0.7624 1.0814 0.5564 0.6554 0.9432 1.4985
Config 5 0.6178 1.2821 0.6302 0.7242 0.8084 1.1277 0.5352 0.6603 1.2057 4.3144
Config 6 0.5701 1.2616 0.6368 0.8047 0.8512 5.9806 0.5217 0.7617 0.9227 3.9059
Config 7 0.5419 0.5867 0.5474 1.0535 0.7998 1.2721 0.4941 1.2015 1.2296 5.5411
Config 8 0.5895 0.6563 0.6462 0.9372 0.6033 4.1068 0.5185 1.1612 0.9477 2.9734
Config 9 0.5529 0.7319 0.4454 0.5654 0.8123 1.0724 0.5234 0.5987 0.9355 2.0305
Config 10 0.5315 0.6485 0.6191 0.7771 0.8255 1.7596 0.5774 0.7396 1.1309 3.0067

BEACON 3-19F 3-20A 3-20B 3-25A 3-25B

CONFIG. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Config 1 0.7473 1.0891 0.4066 0.4575 0.4545 0.5133 0.3189 0.4455 6.3661 7.2795
Config 2 0.8502 0.9869 0.3765 0.6211 0.4193 0.4721 0.3381 0.4223 0.4239 0.4712
Config 3 0.4256 0.6365 0.4394 0.7867 0.4565 0.5533 0.3388 0.4115 0.4152 0.5293
Config 4 0.8287 1.0234 0.3999 0.6392 0.4749 0.5934 0.3225 0.3999 0.4288 0.6139
Config 5 0.7701 1.0419 0.4876 3.5575 0.5444 8.9061 0.3479 0.6707 17.4838 28.8802

Config 6 0.7752 1.1592 0.3634 1.8911 0.4293 0.4715 0.3557 0.4455 0.4546 5.0313
Config 7 0.7567 3.7864 0.4006 1.0498 0.4996 0.6079 0.3066 0.6341 0.4235 0.8147
Config 8 0.7571 1.0251 0.4351 1.2708 0.4972 0.5584 0.3159 1.8009 16.0939 17.0134
Config 9 0.7252 1.1207 0.4362 2.2256 0.5039 0.5826 0.3708 0.4732 0.4309 0.5629
Config 10 0.8119 1.0811 0.3637 0.5871 0.3987 0.4523 0.3379 0.4148 5.7559 7.9845



G. Molina, E. Alba / Applied Soft Computing 11 (2011) 1223–1240 1233

Table 5

Results using Simulated Annealing: without problem knowledge (top), and adding beacon reinforcement to the test case (bottom).

SA without problem knowledge

BEACON 3-19A 3-19B 3-19C 3-19D 3-19E

CONFIG. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Config 1 11.2303 18.8675 1.0439 1.3103 1.1769 8.0828 3.1171 3.8911 1.1747 1.5641
Config 2 14.4672 21.4007 0.8992 0.9706 0.4372 2.3338 0.9767 1.8711 1.1062 1.4061
Config 3 0.5654 0.6482 0.8528 1.8961 1.1001 1.8956 4.2689 4.5113 1.2194 1.4402
Config 4 0.5456 0.5816 0.7137 0.9063 1.0843 1.5855 3.1752 4.0621 1.1769 1.4494
Config 5 0.6377 1.2153 0.7269 1.0581 1.0886 1.7635 1.1525 2.7075 1.2696 3.7217
Config 6 0.5808 4.9765 1.0173 4.5999 1.2834 8.7244 1.0436 4.0927 1.2251 4.4017
Config 7 0.5839 1.0067 0.6261 1.1708 1.0952 2.4952 0.9387 1.1585 1.9156 6.4623
Config 8 0.6166 0.6953 1.0153 1.9838 1.1539 5.7915 4.3957 8.3389 1.1441 2.1449
Config 9 0.6015 0.8329 0.8064 0.8664 1.1048 1.4334 0.9413 3.9675 1.1206 1.9605
Config 10 0.6452 6.9427 0.9959 2.0196 1.1082 6.5457 1.0917 1.2682 1.4528 3.8971

BEACON 3-19F 3-20A 3-20B 3-25A 3-25B

CONFIG. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Config 1 0.4271 0.8379 1.1316 1.2437 1.1662 1.2362 0.3505 0.4241 4.0435 8.4201
Config 2 0.3771 0.5158 1.1239 1.1546 1.1339 1.1812 0.3606 0.4148 0.4733 0.5197
Config 3 0.4524 0.6662 1.1846 1.2872 1.1743 1.2609 0.3215 0.5576 0.4534 0.5686
Config 4 0.4394 0.6065 1.1378 1.1955 1.1288 1.2768 0.3413 0.3901 0.4807 0.6034
Config 5 0.4188 0.6057 1.2159 8.2288 1.2317 1.6348 0.3762 0.4942 0.6281 32.8157

Config 6 0.4198 5.1663 1.1246 4.4196 1.1341 1.1971 0.3704 0.4188 4.2424 11.5843
Config 7 0.3502 5.4619 0.4404 0.6312 0.5521 2.1002 0.3213 0.3792 0.4235 0.8921
Config 8 0.4565 0.6751 1.1616 6.686 1.1919 1.2652 0.3428 8.6623 0.5324 15.9664
Config 9 0.4269 0.6368 1.1935 4.8177 1.1815 1.2586 0.4012 0.4679 0.4924 0.6405
Config 10 0.4977 0.7903 1.0961 1.1657 1.1197 1.2019 0.3486 0.4039 0.4956 8.251

SA with beacon reinforcement

BEACON 3-19A 3-19B 3-19C 3-19D 3-19E

CONFIG. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Config 1 0.6929 4.8566 0.6404 1.1646 0.8103 1.2171 0.5021 0.5814 1.0152 3.0445
Config 2 0.7393 2.2779 0.5765 0.6883 0.8027 1.4167 0.5346 0.8279 1.5802 1.7094
Config 3 0.4171 0.4485 0.4386 0.5784 0.7728 1.3156 0.4967 0.5718 0.9334 1.7477
Config 4 0.4132 0.4508 0.6314 0.9287 0.8095 1.233 0.4881 0.5986 0.9754 1.4846
Config 5 0.5889 0.6889 0.6504 0.8931 0.9866 1.3564 0.5342 0.6438 1.0869 2.7899
Config 6 0.5291 0.8889 0.6321 0.7812 0.8799 5.0206 0.5114 2.8215 0.8119 4.3977
Config 7 0.5238 0.5686 0.5996 0.7058 0.7894 1.0814 0.4757 0.6651 0.9434 5.9786
Config 8 0.6027 0.6706 0.6472 2.4393 0.6842 5.3925 0.5032 0.6003 0.8452 2.6328
Config 9 0.5647 0.6008 0.4746 0.5874 0.8608 1.1783 0.5332 0.6123 1.0233 2.3169
Config 10 0.5246 0.6287 0.6666 0.8304 1.0237 1.7361 0.5812 0.6656 1.3152 2.0783

BEACON 3-19F 3-20A 3-20B 3-25A 3-25B

CONFIG. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Config 1 0.5614 1.0787 0.4128 0.4765 0.4528 0.5134 0.3615 0.4287 0.4724 4.8811
Config 2 0.7653 1.0098 0.3869 0.4135 0.3992 0.4404 0.3306 0.7257 0.4035 0.4434
Config 3 0.6766 0.8276 0.4503 0.8636 0.4462 0.5121 0.3666 0.4359 1.0372 1.1008
Config 4 0.8313 0.9906 0.3975 0.5238 0.4371 0.5067 0.3284 0.4012 0.4247 0.4893
Config 5 0.7672 1.0033 0.5087 4.3328 0.5139 7.1002 0.3404 1.5179 0.4621 1.9872
Config 6 0.4874 0.8406 4.7028 5.3759 0.4014 0.4432 0.3722 0.4884 4.2752 4.4159
Config 7 0.7562 1.7187 0.3975 0.9768 0.4077 0.5466 0.3325 0.4008 0.5827 0.7866
Config 8 0.6085 0.9094 0.4507 1.331 0.4708 1.6041 0.3264 1.6112 0.5339 16.1109

Config 9 0.7652 1.1716 1.0636 4.1773 0.4747 0.7022 0.4122 0.4808 0.4516 0.4891
Config 10 0.7902 1.1075 0.4085 0.9908 0.3948 0.4362 0.3517 0.4197 0.4302 0.4847

All the results obtained in our experiments are subject to a
statistical analysis for their comparison. The statistical analysis
consists of a one-way ANOVA test is the data sets are normally dis-
tributed and homocedastic (checked with Kolmogorov–Smirnoff
and Levene tests respectively), or a non-parametric Kruskal–Wallis
test otherwise. The results of these tests will be displayed when
necessary in a versus table confronting pairs of algorithms in the
form ‘A vs. B’. In this case a � symbol indicates that the values
in the data from algorithm A are significantly larger than the val-
ues in data from B, a ▽ symbol indicates that values in data from
A are significantly lower than values in data from B, and a blank
space indicates that no statistically significant difference could be
found.

7.2. Test case results

Table 4 shows the location error results obtained with 100 inde-
pendent runs of SA (Table 3 shows the parametric configuration of
the algorithm) with L1 error norm as the fitness function in 100 sce-
narios (10 problem instances with 10 beacon configurations each).

As can be seen from the table, the results obtained can be
considered reasonably good. Despite the beacon configuration
seems to have an important impact on the obtained results (the
average location error varies from 0.40 m in instance 3-25A to
28.9 m in instance 3-25B), unefficient solving behaviour seems to
happen sparsely: only 24 of the 100 solved scenarios produce an
average location error above 1.5 m, which is reduced to just 4 if



1234 G. Molina, E. Alba / Applied Soft Computing 11 (2011) 1223–1240

Table 6

Minimum and average location errors(m) with: 20% of beacon nodes (top), 30% of beacon nodes (bottom).

Results using 20% beacon nodes

BEACON 3-19A 3-19B 3-19C 3-19D 3-19E

CONFIG. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Config 1 0.4396 0.6648 0.3317 0.4775 0.6303 0.8976 0.4168 0.4782 0.7756 0.9182
Config 2 0.4577 0.7128 0.3327 0.4768 0.6286 0.9664 0.4036 0.4727 0.7867 0.9841
Config 3 0.4671 0.5517 0.3289 0.4636 0.6225 0.8613 0.3948 0.4861 0.7789 0.9369
Config 4 0.4535 0.6562 0.3297 0.5063 0.6066 0.8881 0.3973 0.4711 0.7924 0.9483
Config 5 0.4569 0.6044 0.3266 0.4527 0.6475 0.8715 0.4178 0.4676 0.7822 0.9462
Config 6 0.4616 0.6568 0.3525 0.5143 0.6285 0.9345 0.3901 0.4639 0.8004 0.9286
Config 7 0.4677 0.6614 0.3396 0.4446 0.6376 0.9031 0.4153 0.4717 0.7761 0.9178
Config 8 0.4534 0.6032 0.3324 0.5127 0.6313 0.9487 0.4121 0.4753 0.7908 0.9434
Config 9 0.4535 0.6558 0.3184 0.4462 0.6308 1.0351 0.4045 0.4894 0.7922 0.9364
Config 10 0.4651 0.6025 0.3466 0.4506 0.6369 0.8789 0.4073 0.4676 0.7758 0.9724

BEACON 3-19F 3-20A 3-20B 3-25A 3-25B

CONFIG. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Config 1 0.6552 0.9354 0.3587 0.6116 0.3934 0.4598 0.2536 0.2881 0.2944 0.3718
Config 2 0.6332 0.9299 0.3746 0.6671 0.4176 0.4656 0.2536 0.2925 0.2999 0.4111
Config 3 0.7054 0.9096 0.3602 0.6187 0.4103 0.4642 0.2333 0.2868 0.2982 0.4024
Config 4 0.6748 0.9148 0.3595 0.6492 0.4008 0.4604 0.2501 0.2902 0.3022 0.3686
Config 5 0.6937 0.9076 0.3595 0.6626 0.4002 0.4633 0.2404 0.2895 0.3094 0.3729
Config 6 0.7734 0.9178 0.3629 0.6307 0.3866 0.4601 0.2577 0.2911 0.3104 0.3896
Config 7 0.6336 0.9108 0.3706 0.6113 0.4065 0.4602 0.2525 0.2861 0.3035 0.3873
Config 8 0.6562 0.9181 0.3797 0.6158 0.4131 0.4625 0.2491 0.2911 0.3083 0.3954
Config 9 0.6497 0.9197 0.3583 0.6389 0.4191 0.4636 0.2488 0.2888 0.3059 0.4007
Config 10 0.6341 0.9123 0.3634 0.6578 0.3952 0.4612 0.2406 0.2866 0.2975 0.3987

Results using 30% beacon nodes

BEACON 3-19A 3-19B 3-19C 3-19D 3-19E

CONFIG. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Config 1 0.3486 0.3878 0.5375 0.6221 0.3376 0.5121 0.4147 0.4583 0.8599 0.9414
Config 2 0.3586 0.3885 0.5196 0.6188 0.3435 0.5121 0.4107 0.4571 0.8555 0.9803
Config 3 0.3566 0.3895 0.5248 0.6245 0.3511 0.4985 0.4086 0.4579 0.8713 0.9736
Config 4 0.3567 0.4106 0.5342 0.6187 0.3511 0.5075 0.4011 0.4585 0.8587 0.9628
Config 5 0.3517 0.4098 0.5329 0.6259 0.3556 0.4933 0.4028 0.4599 0.8435 0.9577
Config 6 0.3505 0.3868 0.5256 0.6199 0.3489 0.5178 0.4046 0.4603 0.8698 0.9562
Config 7 0.3611 0.3918 0.5267 0.6195 0.3527 0.4766 0.3979 0.4582 0.8677 0.9622
Config 8 0.3548 0.4127 0.5242 0.6165 0.3499 0.4989 0.4004 0.4584 0.8591 0.9946

Config 9 0.3596 0.3916 0.5375 0.6252 0.3547 0.5007 0.4101 0.4579 0.8658 0.9545
Config 10 0.3623 0.3902 0.5187 0.6004 0.3457 0.5111 0.4035 0.4599 0.8688 0.9611

BEACON 3-19F 3-20A 3-20B 3-25A 3-25B

CONFIG. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Config 1 0.6594 0.9009 0.1714 0.3498 0.1781 0.2149 0.2647 0.3165 0.3344 0.3633
Config 2 0.6482 0.9116 0.1774 0.4258 0.1841 0.2129 0.2776 0.3113 0.3367 0.3625
Config 3 0.6361 0.8962 0.1731 0.3798 0.1868 0.2134 0.2696 0.3127 0.3146 0.3599
Config 4 0.6787 0.9025 0.1574 0.3994 0.1828 0.2135 0.2753 0.3168 0.3324 0.3651
Config 5 0.7918 0.9031 0.1725 0.3658 0.1845 0.2157 0.2744 0.3114 0.3296 0.3652
Config 6 0.7924 0.9143 0.1771 0.3889 0.1854 0.2143 0.2719 0.3143 0.3262 0.3634
Config 7 0.6605 0.8934 0.1725 0.3752 0.1886 0.2128 0.2673 0.3186 0.3221 0.3592
Config 8 0.6878 0.9064 0.1789 0.3405 0.1949 0.2142 0.2655 0.3218 0.3263 0.3631
Config 9 0.8054 0.9256 0.1756 0.3579 0.1841 0.2137 0.2641 0.3156 0.3261 0.3664
Config 10 0.6791 0.8974 0.1758 0.4261 0.1858 0.2132 0.2676 0.3104 0.3211 0.3609

Table 7

Parameter values for the GA.

Parameter Value

Evaluations 5, 000, 000
Population size 100
Parent selection Roulette

Offspring selection 8-Tournament

Crossover prob. 0.80
Mutation rate (%) 1.5
Mutation Intensity 15

Table 8

Parameter values for PSO.

Parameter Value

Evaluations 5,000,000
Swarm size 50
C1 2
C2 2
Starting inertia 0.5
Final inertia 0.1



G. Molina, E. Alba / Applied Soft Computing 11 (2011) 1223–1240 1235

Table 9

Minimum and average location errors(m) obtained with: Genetic Algorithm (top), Particle Swarm Optimization (bottom).

Results with Genetic Algorithm

BEACON 3-19A 3-19B 3-19C 3-19D 3-19E

CONFIG. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Config 1 5.9827 19.8387 0.8769 6.4971 5.2331 13.0268 1.6172 8.1077 4.5286 14.2532
Config 2 5.972 22.0188 0.6211 2.4887 2.4646 7.9038 0.6978 3.9925 2.1969 8.1091
Config 3 0.4946 4.9096 0.5357 7.2418 2.7589 9.8686 1.1992 4.5081 2.8818 6.1159
Config 4 0.4369 2.7703 0.6893 4.1008 2.7423 8.4936 1.4368 5.6387 3.9571 10.0566
Config 5 0.4911 7.4032 0.7954 7.4053 2.4309 9.0038 0.8132 9.0807 5.0479 16.4963
Config 6 2.0359 10.3731 0.7984 7.8259 7.3377 14.8285 1.5122 8.2448 2.1912 8.8964
Config 7 0.6109 6.0715 0.9071 6.6465 3.7897 10.4497 1.3852 11.7378 7.1284 14.9416
Config 8 0.7825 11.1164 2.2923 10.3181 7.6569 18.3324 3.5139 14.4739 4.9276 11.8834
Config 9 0.6168 10.6745 0.4584 2.9978 2.4207 7.4979 0.5503 3.2374 3.2897 7.0472
Config 10 3.3282 13.5453 0.9035 5.3971 2.4584 10.3287 0.8029 6.5319 7.0939 16.2653

BEACON 3-19F 3-20A 3-20B 3-25A 3-25B

CONFIG. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Config 1 2.0229 8.5702 0.4552 7.2288 0.3891 5.9592 0.6682 7.937 4.9965 12.2315
Config 2 0.7013 3.5413 0.3813 3.3024 0.4067 2.8424 0.3677 4.5394 0.3923 3.7415
Config 3 0.9254 6.5843 0.7165 6.3739 0.7383 5.5826 0.6327 5.3921 1.2109 6.0116
Config 4 0.9169 4.8898 0.3979 3.8246 0.4307 3.2809 0.3311 2.4229 0.4019 2.9565
Config 5 1.4528 6.0034 8.2931 22.8591 4.9428 21.3669 1.6576 11.1839 1.0977 15.9262
Config 6 1.7646 13.0029 0.9634 6.7157 0.4237 3.9867 0.7181 11.6841 3.768 11.0229
Config 7 1.3786 10.5486 0.3654 9.1219 0.5889 9.5807 0.3713 5.9569 0.5881 5.4853
Config 8 0.9757 6.3597 1.1468 14.1739 1.9327 13.6648 1.3014 11.0747 1.3058 12.3737
Config 9 1.7313 5.5973 1.0512 10.0986 0.5798 10.3686 0.4995 5.4779 0.3961 4.7363
Config 10 2.2456 7.0669 0.4077 1.9349 0.3972 1.8575 0.3867 5.0026 0.4487 7.5859

Results with Particle Swarm Optimization

BEACON 3-19A 3-19B 3-19C 3-19D 3-19E

CONFIG. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Config 1 2.7891 15.1347 0.6484 4.1813 3.9535 11.3705 1.0008 5.7746 4.218 13.5141
Config 2 2.4903 22.4516 0.5705 2.2911 0.9841 6.1834 0.6308 2.7004 3.5381 7.2288
Config 3 0.4485 5.0691 0.4674 5.8661 3.2797 16.0281 0.5282 3.9503 2.8673 8.2748
Config 4 0.4305 2.4821 0.6723 3.9198 2.3771 9.3084 0.8096 5.0753 3.4372 9.6144
Config 5 0.5601 5.8519 0.6539 5.0535 2.5038 9.3653 0.9269 7.6245 4.6487 15.7682
Config 6 0.8961 8.6816 0.7495 5.5361 3.4227 14.5862 0.8797 6.1662 2.3396 7.4059
Config 7 0.5592 4.3164 0.6644 5.1652 3.9273 10.8965 1.193 10.1843 4.4465 15.6244
Config 8 0.5214 10.7128 1.3383 7.4438 5.4583 16.107 1.7146 10.1535 3.0407 9.2273
Config 9 0.5595 10.132 0.4512 2.4253 1.6372 7.8785 0.5584 2.5775 1.5261 6.5987
Config 10 1.1351 9.3587 0.6062 4.1654 2.8958 8.6782 0.6593 4.4995 4.5452 15.1681

BEACON 3-19F 3-20A 3-20B 3-25A 3-25B

CONFIG. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Config 1 0.9704 5.5585 0.4101 5.1747 0.4745 4.7208 0.3772 6.0773 0.9821 9.0104
Config 2 0.7075 2.8349 0.3835 1.7378 0.4119 1.1634 0.3218 2.6789 0.3915 1.7002
Config 3 1.0503 6.1974 0.4335 4.8842 0.4278 4.0497 0.3781 3.7915 0.6913 3.7381
Config 4 0.5942 3.5296 0.3883 4.1689 0.4072 3.3667 0.3302 1.7536 0.4224 2.5592
Config 5 1.1611 5.7341 5.7021 18.1622 2.0864 20.7531 0.4017 10.2647 1.0281 15.0996
Config 6 1.1277 10.6272 0.7579 6.1896 0.4095 2.4955 0.4179 7.3162 1.9704 8.2133
Config 7 2.5071 9.5511 0.7446 11.4921 0.4174 11.0013 0.3353 2.5632 0.4659 2.7317
Config 8 0.9085 4.7098 1.2242 12.0076 1.0678 12.4008 0.7181 9.1922 1.3287 11.5202
Config 9 1.4714 4.5927 0.5858 8.9011 0.5158 9.9894 0.3767 3.4694 0.4052 2.9283
Config 10 1.2195 4.8817 0.4622 2.1388 0.3994 1.8116 0.3279 3.0534 0.4497 4.4949

we pick the minimum location error instead (96% effectiveness).
This seems quite reasonable considering that the average distance
measurement error ranges from 1.70 to 4.58 m, which means the
average location error is significantly lower. Given that this test
case can be seen as a technique for obtaining only rough initial
approximations to the real locations (according to our two-stage
proposed technique in Section 5.4), these results suggest that it
indeed constitutes a robust approach.

7.3. Impact of the link weighting and the beacon reinforcement

In this section we analyze the relative performance of the
different flavors of L1 error norm fitness function (Section 5.1).

For this, we compare the test case against SA using the L1

error norm fitness function without any knowledge from the
problem (i.e. without link weight – see Section 5.1.2), and the
SA with L1 error norm with beacon reinforcement (see Section
5.5). All solutions are obtained from 100 independent executions
performing 5,000, 000 evaluations. The parametric configura-
tion for the two new approaches is the same as the test case
(Table 3).

The detailed results obtained with SA without problem knowl-
edge are shown in the top part of Table 5, and those obtained using
beacon reinforcement are shown in the bottom part of Table 5.
Fig. 9 (top) shows the boxplot representation of the global aver-
age location errors (left) and the minimum location errors (right).



1236 G. Molina, E. Alba / Applied Soft Computing 11 (2011) 1223–1240

Fig. 10. Boxplot comparisons of the average (left) and minimum (right) location errors of the different experiments: SA, GA and PSO (top); two-stage, error norm and
maximum likelihood (bottom).

Finally, the statistically assessed comparison between the test case
and these two techniques is shown in Table 11.

SA without problem knowledge gets an average location error
that ranges from 0.38 m (instance 3-25A) to 32.82 m (instance 3-
25B). There are 46 scenarios with average location error over 1.5 m
(24 in the test case), and 9 scenarios with minimum location error
over 1.5 m (4 in the test case). SA with beacon reinforcement pro-
duces an average location error ranging from 0.40 m (instance
3-25A) to 16.11 m (instance 3-25B). There are 27 scenarios with
average location error over 1.5 m, and 3 scenarios with minimum
location error 1.5 m.

The results obtained with SA not incorporating problem knowl-
edge have noticeably higher location errors than the two other
cases considered (see Tables 4 and 5, and Fig. 9 up): while the former
typically ranges from 0.5 to 3.5 m, with its median above 1 m, the
two latter range from 0.5 to 1 m, with their medians around 0.65 m.
In fact, although the results obtained using beacon reinforcement
are slightly better than those without it – the test case – (at least
for the minimum location boxplot, Fig. 9 upper-right), surprisingly
the differences do not seem significant.

These impressions are confirmed be the statistical analysis
results shown in Table 11. The location error obtained in the test

case is significantly better (i.e., lower) than with SA without knowl-
edge in 68 scenarios, and significantly worse in 14, out of 100.
Looking at the problem instances, the test case gets the best results
in 7, and is outperformed in only 1 (3-19F). Comparing the test case
with the beacon reinforcement SA, the former is significantly bet-
ter in 25 scenarios, whereas the latter is better in 36. Therefore,
we can state that there is a noticeable improvement by incor-
porating problem knowledge (in our case under the shape of a
link weight function that acts as a quality measure), and only a
slight improvement by adding then a beacon reinforcement fac-
tor.

7.4. Influence of the number of beacons

In this section we study how the number of beacons affects
the overall location error. Our intuition says that when the beacon
density augments, the expected resulting location error should be
reduced. Table 6 (top) shows the results obtained in instances con-
taining 20% of beacon nodes, and Table 6 (bottom) shows the results
in instances containing 30% of beacon nodes. Fig. 9 (bottom) shows
the boxplot representation of the average location errors (left) and
the minimum location errors (right).



G. Molina, E. Alba / Applied Soft Computing 11 (2011) 1223–1240 1237

Table 10

Results obtained with the maximum likelihood (top), and the two-stage search process (bottom).

Maximum likelihood

BEACON 3-19A 3-19B 3-19C 3-19D 3-19E

CONFIG. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Config 1 0.0542 2.7735 0.4056 0.6125 0.5154 3.5184 0.2932 0.8991 0.6182 3.7347
Config 2 0.0563 3.5106 0.3926 0.9822 0.3371 2.6653 0.3747 0.9917 0.6166 2.3817
Config 3 0.0514 0.3912 0.2616 0.5953 0.4424 3.1997 0.3626 1.2055 0.7387 2.9963
Config 4 0.0461 0.2682 0.3921 0.4867 0.3557 2.8712 0.4409 1.4563 0.7893 3.5234
Config 5 0.0538 0.8051 0.3767 0.6286 0.4744 3.3616 0.4059 1.3839 1.8321 12.2105

Config 6 0.0428 0.3518 0.3871 0.7175 0.3375 7.0983 0.4815 1.3998 0.6061 4.8121
Config 7 0.0513 0.2777 0.3674 0.7274 0.3774 6.1396 0.4194 3.5493 1.3992 9.2969
Config 8 0.0531 2.9155 0.4211 0.6523 0.5667 5.7738 0.5138 1.3402 0.7076 4.0268
Config 9 0.0433 0.9664 0.2228 0.3339 0.2883 2.3395 0.3903 1.3425 0.4607 5.0763
Config 10 0.0497 0.3599 0.4173 0.7637 0.4227 2.4264 0.3402 1.0215 0.6258 9.3448

BEACON 3-19F 3-20A 3-20B 3-25A 3-25B

CONFIG. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Config 1 0.2021 0.5131 0.1668 0.3622 0.1726 0.4214 0.1398 0.2652 0.1455 0.1791
Config 2 0.1827 0.5686 0.1716 0.3222 0.1713 0.3033 0.1143 0.1782 0.1496 0.2962
Config 3 0.1913 1.2389 0.1943 0.2753 0.1745 0.2045 0.1235 0.1733 0.1433 0.1668
Config 4 0.1931 0.5567 0.1742 0.2669 0.1747 0.4429 0.1126 0.1654 0.1506 0.1748
Config 5 0.2636 1.0706 0.1963 1.6077 0.1744 2.0171 0.0985 0.3838 0.1504 0.1773
Config 6 0.1984 0.5948 0.1672 0.6014 0.1739 0.2716 0.1326 0.3712 0.1508 0.1783
Config 7 0.2882 5.0131 0.1958 0.6225 0.1685 0.3376 0.0774 2.0649 0.0838 0.5825
Config 8 0.1963 0.5082 0.2012 0.5186 0.1791 0.7284 0.0753 0.2874 0.1019 0.2334
Config 9 0.2033 0.6652 0.1975 0.3157 0.1677 0.7796 0.1334 0.5867 0.1458 0.3745
Config 10 0.2057 0.5163 0.1754 0.5297 0.1699 0.1954 0.1304 0.1805 0.1446 0.1628

Two Stage Process

BEACON 3-19A 3-19B 3-19C 3-19D 3-19E

CONFIG. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Config 1 0.0552 0.3285 0.3949 0.4638 0.5668 0.9224 0.2533 0.3369 0.8612 0.9997
Config 2 0.0558 0.4582 0.3412 0.4132 0.6179 0.8584 0.4164 0.5319 1.4346 1.5608
Config 3 0.0507 0.0621 0.2011 0.2769 0.7136 0.9202 0.2407 0.3442 0.7329 0.8965
Config 4 0.0506 0.0566 0.3862 0.4218 0.5778 0.6484 0.2617 0.3989 0.9072 1.0715
Config 5 0.0514 0.0582 0.3544 0.3984 0.7096 0.8248 0.3624 0.4858 2.1906 2.7578
Config 6 0.0525 0.0657 0.3743 0.4395 0.5434 0.8262 0.3327 0.4201 0.7485 0.8331
Config 7 0.0499 0.0565 0.3705 0.4465 0.5094 0.6587 0.2691 0.4283 2.8296 3.0227
Config 8 0.0507 0.0642 0.4088 0.4571 0.6699 0.9425 0.2713 0.3567 0.7242 0.8849
Config 9 0.0423 0.0593 0.2092 0.2398 0.5635 0.6558 0.2969 0.3774 0.8641 1.0013
Config 10 0.0527 0.0658 0.3797 0.4746 0.8048 1.0159 0.2984 0.4194 1.0194 1.1805

BEACON 3-19F 3-20A 3-20B 3-25A 3-25B

CONFIG. Min. Avg. Min. Avg. Min. Avg. Min. Avg. Min. Avg.

Config 1 0.3428 0.4471 0.1678 0.1731 0.1692 0.1848 0.1218 0.1516 4.5309 4.6424
Config 2 0.5376 0.6387 0.1726 0.1969 0.1678 0.1936 0.1015 0.1351 0.1344 0.1508
Config 3 0.4165 0.4617 0.1697 0.2056 0.1694 0.1904 0.1019 0.1231 0.7432 0.7528
Config 4 0.5652 0.6254 0.1578 0.2026 0.1697 0.1866 0.0871 0.1321 0.1423 0.1577
Config 5 0.5288 0.6378 2.8404 2.9082 0.1686 0.1945 0.0853 0.1264 0.1355 0.1516
Config 6 0.4801 0.5537 4.5587 4.7168 0.1691 0.1819 0.1267 0.1592 4.0015 4.0909
Config 7 0.6078 0.8853 0.7302 0.7649 0.1598 0.1752 0.0653 0.0853 0.2818 0.3504
Config 8 0.2883 0.3809 0.1715 0.2157 0.1767 0.2466 0.0599 0.1004 0.0933 0.1482
Config 9 0.4978 0.5622 3.2149 3.3434 0.162 0.2443 0.1021 0.1739 0.1349 0.1878
Config 10 0.4964 0.5729 0.1759 0.2012 0.1672 0.1756 0.1183 0.1461 0.1384 0.1448

In Table 12 we show the results of the statistical analysis of
the comparisons between the location errors obtained with 10% of
beacons against 20 and 30% of beacons. Note that the beacon config-
urations in these two scenarios cannot match the ones used in out
test case (since different numbers of beacons are used), therefore
the comparisons are not made on a scenario basis, but rather on
whole problems (by aggregating all the solutions for all the beacon
configurations for each problem).

The average location error obtained ranges from 0.29 to 1.04 m
for instances containing 20% beacon nodes, and from 0.21 to 0.99 m
for instances with 30% beacon nodes. The minimum location error
ranges from 0.23 to 0.80 m and from 0.16 to 0.87 m for instances
containing 20% and 30% beacon nodes respectively. Neither beacon

density contains any scenario in which the average or the minimum
location error surpasses 1.5 m.

The boxplot representation of the average and minimum loca-
tion errors (Fig. 9 bottom) shows that the error values for 20%
beacon nodes are lower than for 10%, and even lower for 30%;
it is hard to tell whether the differences are statistically signif-
icant though, since there exist an important overlap among the
boxes. The results of the statistical analysis (Table 12) state that
the location errors in instances containing either 20% or 30% bea-
con nodes are significantly lower than with 10% for any problem
instance. However, moving from 20% to 30% beacon nodes only
brings significantly lower errors in 6 problem instances, whereas in
the remaining 4 instances the error is significantly higher. There-



1238 G. Molina, E. Alba / Applied Soft Computing 11 (2011) 1223–1240

Table 11

Statistical comparisons of the effect of problem knowledge and beacon reinforcement.

Problem Test case SA vs. SA - without knowledge Test case SA vs. SA - Beacon reinforcement

Beacon configuration Beacon configuration

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

3-19A ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ � � � � ▽ � �

3-19B ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

3-19C ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

3-19D ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ � ▽ � � ▽ � � �

3-19E � ▽ � ▽ � ▽ ▽ � � ▽

3-19F � � � � � � � � � � ▽ � � �

3-20A ▽ ▽ ▽ ▽ ▽ ▽ � ▽ ▽ ▽ ▽ � ▽ ▽ ▽ ▽

3-20B ▽ ▽ ▽ ▽ � ▽ ▽ ▽ ▽ ▽ � � � � � � � �

3-25A ▽ � ▽ ▽ � ▽ ▽

3-25B ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ � � ▽ � � � ▽ � �

Table 12

Statistical analysis of the influence of the number of beacons (using SA).

Problem 10% beacons vs. 20% beacons 10% beacons vs. 30% beacons 20% beacons vs. 30% beacons

3-19A � � �

3-19B � � ▽

3-19C � � �

3-19D � � �

3-19E � � ▽

3-19F � � �

3-20A � � �

3-20B � � �

3-25A � � ▽

3-25B � � ▽

Table 13

Statistical comparison of SA against GA and PSO.

Problem SA vs. GA SA vs. PSO

Beacon configuration Beacon configuration

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

3-19A ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

3-19B ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

3-19C ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

3-19D ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

3-19E ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

3-19F ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

3-20A ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

3-20B ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ � ▽ ▽ ▽ ▽ ▽ ▽ ▽

3-25A ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

3-25B ▽ ▽ ▽ ▽ � ▽ ▽ � ▽ ▽ ▽ ▽ ▽ � ▽ ▽ � ▽ �

Table 14

Statistical significance of the improvement obtained using the two-stage process over single stages with L1 error norm and maximum likelihood.

Problem SA - Two Stage vs. SA - Test Case SA - Two Stage vs. SA - Maxlikelihood

Beacon configuration Beacon configuration

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

3-19A ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

3-19B ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

3-19C ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

3-19D ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

3-19E ▽ � ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

3-19F ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

3-20A ▽ ▽ ▽ ▽ ▽ � � ▽ � ▽ ▽ ▽ ▽ ▽ � � ▽ ▽ � ▽

3-20B ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

3-25A ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽ ▽

3-25B ▽ ▽ � ▽ ▽ ▽ ▽ ▽ ▽ ▽ � ▽ ▽ ▽ � ▽ ▽ ▽ ▽



G. Molina, E. Alba / Applied Soft Computing 11 (2011) 1223–1240 1239

fore, we recommend 20% beacon nodes as a good tradeoff value
between price and accuracy.

7.5. Results of the different search techniques

In this section we compare the three algorithms described in
Section 6: SA, GA and PSO. All three algorithms use with the L1

error norm function with problem knowledge as their fitness func-
tion, and are tested on the same test scenarios (10 instances with
ten beacon configurations). The values of the parameters used for
SA were shown in Table 3, those of GA and PSO are shown in
Tables 7 and 8 respectively. We display the detailed results obtained
by GA in Table 9 (top) and by PSO in Table 9 (bottom). Fig. 10
(top) shows the boxplot representation of the global average loca-
tion error (left) and minimum location error (right) for the three
compared techniques. Finally, the statistically assessed compari-
son between the test case and the two other techniques is shown
in Table 13.

The average location errors range from 1.93 to 22.02 m and
from 1.16 to 22.45 m for the Genetic Algorithm and Particle Swarm
Optimization respectively. For the minimum location errors the
values range from 0.33 to 8.29 m and from 0.32 to 5.70 m respec-
tively. GA produces average and minimum location errors above
1.5 m in 100 and 38 scenarios respectively; PSO in 99 and 26 (with
SA it is 24 and 4).

The representations in Fig. 10 (top) highlight that SA produces
solutions with significantly lower location errors (both average and
minimum) than either GA or PSO. In effect, the statistical analysis of
the results (Table 13) points out that the solutions obtained with SA
have significantly lower location errors than those produced by GA
in 95 scenarios (versus 2 scenarios in which their error is higher),
and significantly lower location errors than PSO in 94 scenarios
(versus 4). Therefore, we can state that SA clearly outperformed
both GA and PSO.

7.6. Improvements of the two-stage search process

We finally want to check how much improvement can be
attained by using our proposed two-stage search process. For this,
we compare the results obtained using a two-stage SA (Table 10,
bottom) against the test case results (Table 4) and the maximum
likelihood results (Table 10, top). Once again the testbed will be the
100 scenarios described in Section 7.1. For the sake of fairness, we
set the total number of solution evaluations in the two-stage pro-
cess to be 5,000, 000; after an empirical study, the configuration
is set as follows: initial stage (using L1 norm function) 4,000, 000
evaluations, final stage (using likelihood) 1,000, 000 evaluations.

Fig. 10 (bottom) displays the boxplot representation of the aver-
age (left) and minimum(right) location errors produced by the
two-stage solving process compared to the error norm and the
maximum likelihood. Table 14 shows the results of the statistical
analysis of the results obtained by our proposed technique com-
pared to the two others.

With the maximum likelihood criterion the average location
error obtained ranges from 0.16 to 12.21 m, and the minimum loca-
tion error ranges from 0.04 to 1.83 m. With the two-stage search
process, the average location error obtained ranges from 0.06 to
4.71 m, and the minimum location error ranges from 0.04 to 4.55 m.
A special trait that can be noticed is that the location errors can
be separated into two distinct groups: the low error group (values
below 1 m) and the high error group (values above 2 m); with hardly
any element in between. In fact, when the final solution from the
initial phase has a high location error (especially when its location
error is above 1.5 m), the second phase does not perform well and
the final location error is very close to the one at the end of the ini-
tial phase; only when the solution from the initial phase has a low

error (below 1 m) does the second phase noticeably improve the
accuracy. This can be explained by the fact that the guiding func-
tion in the second phase, the likelihood function, is consistent only
in the neighborhood of the optimum (see Section 5.3).

From Fig. 10, both the average and minimum location errors
obtained by the two-stage search process seem clearly lower than
those from the other search processes. The maximum likelihood is
clearly behind in terms of average location errors. The results from
the statistical analysis state that the two-stage search process is
significantly better than the test case in 95% of the test scenarios,
and worse in only 5%, and better than the likelihood in 94%, being
worse in just 5%. Therefore, we conclude that the two-stage search
process produces a real improvement over single phase solving pro-
cesses; obtaining significantly lower location errors in over 94% of
the tested cases.

8. Conclusions

In this paper we have presented and described the location dis-
covery problem (LD). This problem amounts to finding the real
locations of a set of sensor nodes, given a set of node-to-node mea-
surements and a set of node coordinates (a subset of the nodes carry
GPS-like positioning equipment). Two of the most popular guiding
functions, the L1 error norm and the likelihood functions, are pre-
sented and their consistencies are checked for several sets of real
data. It turned out that the error norm function outperforms the
likelihood function when the current solution has a high location
error, but the tide turns when the solution has a low location error;
therefore, we propose a solving approach consisting of an initial
phase using the error norm followed by a second phase using the
likelihood function. Ten instances are selected from the available
dataset with ten beacon configurations for each as the test scenar-
ios for our experimental study. We have first studied the effect of
the use of problem knowledge in the error norm function, find-
ing that the link weighting produced a significant improvement in
the solutions produced. We then tried different search techniques,
and found that Simulated Annealing produced significantly better
results than Genetic Algorithm and Particle Swarm Optimization. A
study on the influence of the number of beacons showed that 20%
of beacon nodes configuration provided a good balance between
location accuracy and equipment cost. Finally, our proposed two-
stage solving process proved to significantly outperform the error
norm approach in 95% of the test scenarios, and the maximum
likelihood in 94%, therefore proving itself as the most robust and
accurate solving procedure. Future work will lead towards an auto-
matic switching procedure from the first to the second stages of the
two-stage search process, the use of new search techniques, and
improvements in the likelihood estimation.

Acknowledgements

Authors acknowledge funds from the Spanish Ministry
of Sciences and Innovation European FEDER under contract
TIN2008.0641-C04-01 (M* project http://mstar.lcc.uma.es) and
CICE, Junta de Andalucía under contract P07-TIC-0.044 (DIRICOM
project http://diricom.lcc.uma.es). Guillermo Molina receives grant
AP2005.0914 from the Spanish government.

The authors would also like to acknowledge Dr. Miodrag Potkon-
jak from the UCLA for all the help and data provided.

References

[1] A. Ákos Lédeczi, P. Nádas, G. Völgyesi, B. Balogh, J. Kusy, G. Sallai, S. Pap, K. Dóra,
M. ároly Molnár, G. Maróti, Simon, Countersniper system for urban warfare,
ACM Trans. Sen. Netw. 1 (2) (2005) 153–177.

[2] T. Bäck, Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms, Oxford University Press, New
York, 1996.

http://mstar.lcc.uma.es
http://diricom.lcc.uma.es


1240 G. Molina, E. Alba / Applied Soft Computing 11 (2011) 1223–1240

[3] C. Blum, A. Roli, Metaheuristics in combinatorial optimization: Overview and
conceptual comparison, ACM Comput. Surv. 35 (3) (2003) 268–308.

[4] J.A. Costa, N. Patwari, O. Alfred, I. Hero, Distributed weighted-multidimensional
scaling for node localization in sensor networks, ACM Trans. Sen. Netw. 2 (1)
(2006) 39–64.

[5] D. Culler, D. Estrin, M. Srivastava, Overview of sensor networks, IEEE Comput.
37 (8) (2004) 41–49.

[6] K. Deb, R. Agrawal, Simulated binary crossover for continuous search space,
Complex Syst. 9 (1995) 115–148.

[7] J. Feng, L. Girod, M. Potkonjak, Location discovery using data-driven statisti-
cal error modeling, in: INFOCOM 2006, 25th IEEE International Conference on
Computer Communications, Proceedings, April, 2006, pp. 1–14.

[8] B. Karp, H.T. Kung, GPSR: greedy perimeter stateless routing for wireless
networks, in: MobiCom’00: Proceedings of the 6th Annual International Con-
ference on Mobile Computing and Networking, ACM Press, New York, NY, USA,
pp. 243–254, http://dx.doi.org/10.1145/345910.345953.

[9] J. Kennedy, R. Eberhart, Particle swarm optimization, vol. 4, 1995, pp.
1942–1948, http://dx.doi.org/10.1109/ICNN.1995.488968.

[10] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing,
Science 4598 (220) (1983) 671–680, May.

[11] F. Koushanfar, S. Slijepcevic, M. Potkonjak, A. Sangiovanni-Vincentelli, Location
discovery in ad-hoc wireless sensor networks, in: X. Cheng, X. Huang, D.-Z. Du
(Eds.), Ad Hoc Wireless Networking, Kluwer Academic Publishers, 2003, pp.
137–173.

[12] F. Koushanfar, S. Slijepcevic, J. Wong, M. Potkonjak, Global error-tolerant
algorithms for location discovery in ad-hoc wireless networks, in: Acoustics,
Speech, and Signal Processing, 2002, Proceedings (ICASSP’02). IEEE Interna-
tional Conference on 4, IV-4186, 2002.

[13] L. Lazos, R. Poovendran, Serloc: robust localization for wireless sensor net-
works, ACM Trans. Sen. Netw. 1 (1) (2005) 73–100.

[14] D. Liu, P. Ning, W. Du, Attack-resistant location estimation in sensor networks,
in: Fourth International Symposium on Information Processing in Sensor Net-
works, 2005, IPSN 2005, April 2005, pp. 99–106.

[15] D. Liu, P. Ning, W. Du, Detecting malicious beacon nodes for secure location
discovery in wireless sensor networks, in: Proceedings. 25th IEEE International
Conference on Distributed Computing Systems, 2005, ICDCS 2005, June 2005,
pp. 609–619.

[16] W. Merrill, F. Newberg, L. Girod, K. Sohrabi, Battlefield ad-hoc lans: a distributed
processing perspective, GOMACTech, 2004.

[17] N. Mladineo, S. Knezic, Optimisation of forest fire sensor network using
GIS technology, in: Proceedings of the 22nd International Conference
on Information Technology Interfaces, 2000, ITI 2000, June 13–16, 2000,
pp. 391–396.

[18] D. Moore, J. Leonard, D. Rus, S. Teller, Robust distributed network localization
with noisy range measurements, in: SenSys’04: Proceedings of the 2nd Interna-
tional Conference on Embedded Networked Sensor Systems, ACM, New York,
NY, USA, 2004, pp. 50–61.

[19] J. Nemeroff, L. Garcia, D. Hampel, S. DiPierro, Application of sensor network
communications, in: Military Communications Conference, 2001, MILCOM
2001. Communications for Network-Centric Operations: Creating the Informa-
tion Force, vol. 1, IEEE 1, 2001, pp. 336–341.

[20] D. Niculescu, B. Nath, Error characteristics of ad hoc positioning systems (aps),
in: MobiHoc’04: Proceedings of the 5th ACM International Symposium on
Mobile Ad Hoc Networking and Computing, ACM, New York, NY, USA, 2004,
pp. 20–30.

[21] S. Slijepcevic, S. Megerian, M. Potkonjak, Location errors in wireless embedded
sensor networks: sources, models, and effects on applications, SIGMOBILE Mob.
Comput. Commun. Rev. 6 (3) (2002) 67–78.

[22] Y.-C. Tseng, C.-F. Huang, S.-P. Kuo, Positioning and Location Tracking in Wireless
Sensor Networks, in: M. Ilyas, I. Mahgoub (Eds.), Handbook of Sensor Networks:
Compact Wireless and Wired Sensing Systems, Kluwer Academic Publishers,
2005.

[23] N. Xu, S. Rangwala, K.K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, D.
Estrin, A wireless sensor network for structural monitoring., in: SenSys’04: Pro-
ceedings of the 2nd international conference on Embedded networked sensor
systems, ACM, New York, NY, USA, 2004, pp. 13–24.

http://dx.doi.org/10.1145/345910.345953
http://dx.doi.org/10.1109/ICNN.1995.488968

	Location discovery in Wireless Sensor Networks using metaheuristics
	Introduction
	Location discovery
	Related work
	Distance measurements
	Distance measuring techniques
	Measurement errors

	Fitness function design
	Error norm function
	Base function
	Incorporating problem knowledge

	Likelihood function
	Fitness function consistency
	Two-stage resolution
	Beacon reinforcement factor

	Optimization algorithms
	Simulated annealing
	Genetic algorithm
	Particle Swarm Optimization (PSO)

	Experiments and results
	Experimental methodology
	Test case results
	Impact of the link weighting and the beacon reinforcement
	Influence of the number of beacons
	Results of the different search techniques
	Improvements of the two-stage search process

	Conclusions
	Acknowledgements
	References


