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Location Fingerprinting With Bluetooth

Low Energy Beacons
Ramsey Faragher and Robert Harle

Abstract—The complexity of indoor radio propagation has
resulted in location-awareness being derived from empirical
fingerprinting techniques, where positioning is performed via a
previously-constructed radio map, usually of WiFi signals. The
recent introduction of the Bluetooth Low Energy (BLE) radio pro-
tocol provides new opportunities for indoor location. It supports
portable battery-powered beacons that can be easily distributed
at low cost, giving it distinct advantages over WiFi. However, its
differing use of the radio band brings new challenges too. In this
work, we provide a detailed study of BLE fingerprinting using

19 beacons distributed around a ∼600 m2 testbed to position a
consumer device. We demonstrate the high susceptibility of BLE to
fast fading, show how to mitigate this, and quantify the true power
cost of continuous BLE scanning. We further investigate the choice
of key parameters in a BLE positioning system, including beacon
density, transmit power, and transmit frequency. We also provide
quantitative comparison with WiFi fingerprinting. Our results
show advantages to the use of BLE beacons for positioning. For
one-shot (push-to-fix) positioning we achieve < 2.6 m error 95% of

the time for a dense BLE network (1 beacon per 30 m2), compared

to < 4.8 m for a reduced density (1 beacon per 100 m2) and < 8.5 m
for an established WiFi network in the same area.

Index Terms—Indoor positioning, location fingerprinting, blue-
tooth positioning, bluetooth low energy positioning, iBeacons.

I. INTRODUCTION

G LOBAL Navigation Satellite Systems (GNSS) have en-

abled accurate, ubiquitous positioning outdoors but the

inability of these signals to penetrate buildings means other

techniques must be found for indoor positioning. Today the

most common consumer technology used in the absence of

GNSS is WiFi. Coarse WiFi positioning is tightly integrated

into many mobile platforms, providing urban localization on

the scale of tens of meters. The algorithms are essentially

proximity-based, relying on the relatively short spatial range of

WiFi transmitters and a signal survey. WiFi pattern matching, or

fingerprinting, is the de-facto localization technique for indoor

positioning on consumer devices today.

Other candidates for radio fingerprinting on consumer de-

vices are cellular and Bluetooth signals. Cellular sources are

typically too sparsely distributed to provide good indoor finger-

prints, while practical issues have limited the value of Bluetooth
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tracking, most notably the very lengthy scan times. However,

the recent introduction of the Bluetooth 4.0 specification has

potentially addressed these problems via the Bluetooth Low

Energy (BLE, also known as Bluetooth Smart) subsystem [4],

[14]. Already supported on a major proportion of deployed de-

vices, BLE is designed for machine-to-machine communication

with the “Internet of Things” in mind. BLE devices are small,

inexpensive and designed to run on batteries for many months

or years and it is expected that many buildings will contain a

high density of BLE devices in the near future.

As a result BLE poses a challenge to the dominance of

WiFi for indoor positioning: it already has comparable market

penetration since it is supported by all recent smartphones,

and deployed devices are fundamentally cheaper, smaller, more

portable and less power hungry. However, they are also more

susceptible to fast fading interference, as we show.

In this paper we examine the unique properties of BLE

signals and study the application of fingerprinting to locate

BLE devices in an environment with BLE beacons. Many BLE

beacons will be deployed for communication and advertising

purposes by third parties, and so their use in fingerprinting will

be opportunistic. There are many beacon parameters that can

and will be variable in this case, and we assess the impact on

positioning performance of each of these factors. We therefore

also provide a guide for ensuring good positioning performance

from a set of dedicated BLE positioning beacons.

A. Motivating BLE for Fingerprinting

BLE uses 40 channels, each 2 MHz wide, spanning the

unlicensed 2.4 GHz radio band that is also used by WiFi—see

Fig. 1. The protocol uses very short duration messages to re-

duce battery consumption [14]. These messages are either data

messages or advertisement messages. The latter are broadcast

messages that are used like WiFi beacon frames for device dis-

covery, although they carry a payload that can be used to broad-

cast changing information such as sensor state. Regardless of

the application, advertisements are needed to enable any form

of communication and they are therefore the natural choice for

both dedicated and opportunistic positioning. They are the basis

for the proximity profile defined in the specification and the

proprietary proximity profiles such as Apple’s iBeacon. For fin-

gerprinting, the received signal strength of each advertisement

can be used to form a signature for each location.

Given that WiFi and BLE occupy the same radio frequency

bands, one might expect little to choose between them when

fingerprinting and thus little motivation to change from the

0733-8716 © 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



FARAGHER AND HARLE: LOCATION FINGERPRINTING WITH BLUETOOTH LOW ENERGY BEACONS 2419

Fig. 1. The 40 BLE channels and the three most commonly populated WiFi channels. BLE advertising only occurs on channels 37, 38 and 39.

incumbent, ubiquitous system (WiFi). Although we will

demonstrate there are subtle but important differences at a

technical level, it is useful to highlight that WiFi fingerprinting

faces a growing number of challenges regardless of BLE:

• The increasing duration of passive WiFi scans—where

the device waits for a Service Set IDentifier (SSID)

broadcast from each access point—limits the update rate.

With over 50 WiFi bands now available in the 2.4 GHz

and 5 GHz bands and a typical SSID broadcast interval of

100 ms, a single scan can take multiple seconds, giving

a very low positioning update rate. As an example, a

Samsung Galaxy S4 smartphone produced a scan rate of

just 0.25 Hz; a Nexus 4 smartphone marginally faster at

0.32 Hz (note that a rate of 1.3 Hz was achievable on this

handset when limiting the channels to 2.4 GHz only. We

exploit this capability in a later section).

• WiFi access point sightings are buffered and reported via

a single aggregate report. So long scan durations not only

limit the update rate but also smear the radio fingerprints

across space if the user is moving. Note that the majority

of fine-grained WiFi positioning systems to date have

been based on short (∼1 s) 2.4 GHz-only WiFi scans,

so this issue has received little attention.

• The use of frequent active WiFi scans, where the device

to be positioned broadcasts a query, increases network

traffic and hence reduces WiFi throughput, as well as

reducing privacy.

• Not all mobile platforms allow access to the WiFi scan

data. Apple’s iOS, for example, allows only RSS read-

ings from the connected access point, which prevents

third-party WiFi fingerprinting.

• The WiFi specification does not require the signal

strength value (on which fingerprinting depends) to be

reported in any specific unit. Consequently cross-device

positioning can be challenging if the devices do not share

a frame of reference for the fingerprint values.

By contrast, BLE suffers none of these problems: advertise-

ment packets are reported immediately and the specification

demands that all are reported by the platform in standard units

of dBm. BLE offers further potential benefits:

• We have found that the power draw at the mobile device

(primarily associated with regularly radio scanning) is

lower for BLE than WiFi. For a Samsung Galaxy S4

running Android 4.4.2 with a baseline power draw of

816 mW with the screen on at constant brightness and

a CPU wake lock held, continuous WiFi scans increased

the draw to 1224 mW, while continuous BLE scanning

was associated with a draw of 1028 mW. The difference

can be attributed to the simpler protocols of BLE and

its optimization for the scan operation (WiFi was not

designed with continuous scans in mind).

• BLE beacons are more easily deployed (especially if bat-

tery powered) and not constrained by the need to provide

uniform communications coverage. WiFi access points

are deployed first for communication, and this means

minimal range overlap. No consideration is typically

given to WiFi access point geometry for positioning.

B. Approach and Contributions

We evaluate a BLE-only fingerprinting system that assumes

static BLE beacons distributed throughout the environment and

contrast it with a comparable WiFi system. We used BLE

beacons advertising at very high advertising rates (50 Hz) and

high transmission powers. By post-processing with dropped

packets and manually attenuated raw data, we investigate the

rate and transmission power needed for good positioning.

The fusion of other location-related sensors (e.g., inertial)

would be expected to improve both systems, albeit at the cost of

extra battery drain. Nonetheless the characteristics of the pure

BLE system we detail here are sufficient to enable the use of

BLE signals as a fusion input. Our contributions to the state of

the art are:

1) the first experimental test of fine-grained BLE positioning

using fingerprinting;

2) a detailed study into the key parameters for accurate

indoor positioning using the BLE radio signals;

3) the discovery that the use of three widely spaced but

narrow band advertising channels leads to severe RSS

variations if the BLE channel number is not reported to

the system (this can be seen as a weakness in the current

BLE specification);

4) the testing of mitigation schemes to protect against this

problem;

5) detailed experimental validation; and

6) a series of recommendations for the developers of BLE-

based positioning systems.

II. RELATED WORK

Indoor positioning is a mature research field, with many pro-

posed technologies and techniques—comprehensive overviews

can be found in [2], [18], [19]. Here the focus is on radio

positioning, specifically using the empirical fingerprinting tech-

niques [3], [15], [17], [22] that avoid the need to model the

complex radio propagation environment indoors by pattern-

matching to a previously surveyed map of radio signal strengths.

Although applied to different radio technologies, these tech-

niques have been developed primarily with WiFi in mind.



2420 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 33, NO. 11, NOVEMBER 2015

Positioning with Bluetooth Classic (pre specification 4.0) has

used various techniques from proximity [5], [12] to trilateration

[7], [21] to fingerprinting [6], [21]. However, the limiting factor

was usually the time taken for a mobile handset to scan the

nearby Bluetooth beacons. The specification allows for a scan

to take in excess of 10.24 s, during which time the user could

travel 15 m or more. It is possible to retrieve RSSI values more

promptly from devices connected in a Bluetooth piconet but this

is not a scalable solution [12]. Consequently, positioning using

Bluetooth Classic has not proved popular.

The latencies that plague Bluetooth Classic for positioning

are not present in BLE. The standard itself incorporates the

notion of “micro-location” [4], which is a re-badged proximity

technique. To our knowledge this is the first study of finger-

printing using BLE RSS values.

The most recent literature in fingerprinting has fused WiFi

fingerprints with other sources to form hybrid systems, many of

which are based on the idea of Simultaneous Localization and

Mapping (SLAM) [10], [16] being applied to pedestrian dead

reckoning [13]. SLAM provides an auto-surveying capability

by exploiting machine learning to periodically correct the user’s

path through an environment during navigation. Of particular

interest is the work of Ferris et al. [11], who used Gaussian Pro-

cess regression (a form of non-parametric data fitting) to esti-

mate continuous signal maps from discrete WiFi RSS data. This

approach is superior to traditional surveying methods and we

apply it to pure RSS data in this work.

III. FROM WIFI TO BLE

For WiFi, each access point uses a particular radio channel

(of width at least 20 MHz) on which it broadcasts its identifier

(SSID). In contrast BLE advertisements are broadcast on three

much narrower (2 MHz) advertising channels in quick succes-

sion. These channels are nominally labelled 37, 38, and 39 and

are widely spaced at 2402 MHz, 2426 MHz and 2480 MHz, re-

spectively (see Fig. 1). These frequencies are chosen to mini-

mize interference with common WiFi deployments.

The receive device adopts a scan cycle that cycles over the

three advertising channels, pausing to listen for advertisements

on each. The precise cycle and pause time are unspecified, but

we have found recent smartphone implementations switch lis-

tening channel after a few milliseconds. Therefore listening for

a significant fraction of a second could produce advertisements

on any or all of the three channels.

A BLE scan continues indefinitely and each advertisement

is reported as it is received. Consequently, we must form each

fingerprint from the observations within a time window. If the

window is greater than the beacon interval, multiple sightings

of that beacon will be reported (some current mobile operating

system report each connectable beacon only once per scan. In

this work we use non-connectable beacons to avoid this issue).

We show in this work that this redundancy is important to

robust fine-grained BLE positioning and that there are therefore

constraints on the windowing length.

Note that the BLE specification for an advertisement report

does not include the channel on which it was received. This

information is available when using iOS 7 or above, but a gen-

Fig. 2. RSS variation with time (static devices).

eral solution must not assume the channel information is avail-

able. Indeed, an advertisement report on a strictly standards-

compliant device cannot be mapped back to a channel. In this

work we use an iPhone to investigate the value of the channel

information, using it to develop schemes that do not require

it and can thus be deployed on a strictly standards-compliant

device.

Fig. 2 shows the RSSI values recorded for a 50 Hz BLE

beacon, collected using a static iPhone approximately three

meters away. The measurements are separated by channel num-

ber (as reported by iOS 7) and also presented as an aggregate

signal, representative of what would be seen on a generic BLE

standards-compliant device. We make two key observations.

Firstly, the mean levels of the three separated signals are

different (37 : −63.7 ± 1.9 dBm, 38 : −61.9 ± 2.3 dBm, 39 :

−67.7 ± 5.0 dBm). Two factors cause this: uneven channel

gain and multipath interference. The former occurs because

embedded antennas rarely have a flat response across the entire

2.4 GHz band. WiFi’s use of a single 20 MHz channel renders

this a non-issue, but BLE’s use of frequencies at either band

limit results in different responses even without multipath in-

terference. The addition of multipath interference causes fur-

ther differences and changes over time with signal fading in

cluttered environments.

Fig. 3 further demonstrates BLE fading. Here, the iPhone

was moved 3 m towards the BLE beacon using a custom me-

chanical system. The test was performed out of working hours

to give a more stable radio environment. Deep multipath fades

are evident in all three channels, with 30 dB drops in power

across just 10 cm. Importantly, the different channels exhibit

fades at different spatial positions due to their different centre

frequencies—we make use of this observation in constructing

our positioning system.
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Fig. 3. RSS variation with distance (receiver moving).

In the context of BLE fingerprinting, radio channel gains and

fast fading are both serious concerns, especially if a receiver

does not segregate the measurements it provides into three

separately-reported channels. In this case, the BLE signal will

appear to suffer an artificially-high, non-white signal noise

(shown by the “Aggregate” plots in Figs. 2 and 3) that reduces

the performance of positioning systems. Fading is still an issue

for devices that report the channel information—the deep fades

just become unambiguously clear. Crucially, these effects are

far less evident in WiFi positioning because a given access

point typically uses one fixed 20 MHz channel. Increasing the

signal bandwidth can reduce the RSS fluctuations caused by

fast fading, and this is evident when comparing WiFi and BLE

fading characteristics [9].

So, for BLE fingerprinting we seek to exclude faded data.

Sharp (fast) fades will be naturally removed at the map creation

stage through the application of regression. This leaves maps

that predominantly represent the free space loss and the shad-

owing loss from objects. However, the problem remains during

the online (map matching) phase where a single reading may

find itself in a sharp fade.

IV. POSITIONING ALGORITHMS

A. Fingerprint Construction

Since BLE advertisements are reported immediately, we

must form an RSS fingerprint by taking a time window of

BLE measurements. The choice of the width depends on many

factors, including:

• The movement rate. If the receiver is moving during

the fingerprint collection, the fingerprint will be formed

from measurements at different spatial positions. The

movement rate puts an upper bound on the maximum

acceptable window length—if the window is too long,

the large spatial extent (smearing) of the fingerprint will

limit successful matching.

• The presence of fast fades. A very short window limits

the spatial extent of the fingerprint but increases the risk

that the fingerprint measurement is taken within a fast

fade null on at least one channel.

• The beaconing rate. We define the receive rate to be the

rate at which BLE advertisements are reported within the

application. This value is a lower bound on the beacon-

ing rate since specific advertisement messages may be

dropped or missed. Clearly, a lower receive rate requires

a longer fingerprint window to build the same fingerprint

dimensionality.

The average human walking pace is approximately 1.5 ms−1.

On this assumption, and the desire for meter-level positioning,

the time window should not exceed 1 s during movement and

should ideally be less than this. By a similar argument, the

window should not fall below 0.1 s since fast fades occur at a

spatial separation of around half the signal wavelength (around

12 cm) or longer. This lower bound on the window size ignores

the advertisement transmission rate of the beacons—we return

to this shortly.

To address the different RSS values that result from the

different channels we take a window of advertisements from

each beacon to form each fingerprint. We filter this window to

provide an RSS value to insert into the fingerprint. The filters

we consider here are the mean, median and maximum. To gain

maximal benefit from the filtering, each fingerprint window

should contain at least one reading on each of the three advertis-

ing channels. This has two important consequences:

• when using a standards-compliant device (which does

not require the reporting of advertisement channel infor-

mation) we cannot know whether the window has cap-

tured samples from multiple channels. We must choose

a window that guarantees that the handset has listened

on all three channels and hope that the collected samples

span the channels. Longer windows clearly increase the

likelihood of this occurrence.

• we must collect at least three samples per window per

beacon. For a window of length w, this implies a mini-

mum beaconing rate of 3
w

. At the limit of w = 1 s dis-

cussed above, this requires 3 Hz beaconing. This is easy

to ensure with a dedicated deployment, but is unlikely for

an opportunistic system (other BLE applications are not

so dependent on high receive rates and application de-

signers will prefer to optimize for battery lifetime). In

such contexts the best positioning result is likely to be

achieved by forcing the user to remain still and position

using longer time windows.

B. Map Construction

Previous work has constructed RSS maps by visiting a series

of survey sites and manually taking readings at each. However,

because our testbed offered high-accuracy ground truth posi-

tion, we chose to construct the maps using data collected during
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the experiments. Each fingerprint was linked to a true position

and we used Gaussian Process regression to generate a signal

strength map per source. We constructed a separate database

for each set of fingerprint construction parameters (i.e., window

length and filter algorithm).

C. Position Computation

To position a device on a subsequent walk we used a

Bayesian estimator. The entire area of interest was divided

into grid cells of side 1 m and the probability of a given

fingerprint corresponding to each cell was determined for each

epoch. To do this we require a way of evaluating the “distance”

between the set of signal strength values in a map cell and the

current fingerprint measured by the device being tracked. The

most commonly used metric in the literature is the Euclidean

distance:

distance(B, m, M) =

√

√

√

√

N
∑

i=1

(m(bi) − M(bi))
2

N
, (1)

for current fingerprint m containing RSS measures for beacons

B = {b1, . . . , bN} and the set of beacon survey maps, M. We

used this metric throughout this work.

This metric was used to generate a score for each cell. That

score was then weighted using a Gaussian kernel to generate a

probability for that cell which accounted for the uncertainty in

both the map estimate and the current fingerprint measurement.

The variance data within the Gaussian Process survey maps

were thresholded such that map cells with moderate or high

variance were ignored completely (not trusted) during these

calculations. The resulting function across all cells was the

Bayesian Likelihood function. Each cell was assigned a proba-

bility according to

p = exp

(

−
distance2

2σ 2

)

, (2)

where σ is the standard deviation associated with the fingerprint

measurement noise.

In terms of usage scenarios, we consider both one-shot,

where the user wishes to have a single position fix given no

prior information, and tracking, where the user wishes to be

tracked around an environment continuously and the position

history can be used to constrain the prior. For one-shot position-

ing the prior was taken to be uniform across the test area at each

epoch. For tracking, the posterior function from the previous

position estimate was used as the prior for the new calculation,

i.e., we assumed the user had only moved within a single map

cell (one meter square) or to an adjoining cell between measure-

ment updates. For high beacon rates of many Hertz this is an ap-

propriate assumption. For example at 10 Hz update rates a user

is expected to move 15 centimeters between beacon measure-

ment epochs.

Once a posterior distribution was calculated, we estimated

the position (and hence the error) using the distribution max-

imum (i.e., maximum a-posteriori (MAP) probability, Pmax).

We also compared this to a weighted mean of all positions

(i.e., Minimum Mean Square Error (MMSE) or Pmean) to assess

which metric provided better positioning against the ground

truth reference. However, for clarity and brevity we present only

the Pmax results since there was rarely any significant difference

and Pmax is cheaper to compute.

V. EXPERIMENTAL METHOD

When deploying a BLE positioning system, there are

many parameters to consider, including: fingerprint construc-

tion algorithm; beacon rate; transmit power; antenna orien-

tation; beacon mobility; beacon geometry; beacon density;

etc. Many of these parameters are inter-dependent—e.g., re-

ducing the transmit power may require altering the beacon

density to maintain coverage. Performing an exhaustive search

of the parameter space is infeasible, involving constant bea-

con redeployment. Furthermore, the results would be highly

environment-specific.

Instead, our approach was to deploy an over-specified set

of beacons with parameters set to give good results without

consideration of real-world issues such as power consumption.

This allowed us to bound the possible performance and to

look at the effects of the parameters by post-processing the

data many times. To explore the parameter space we focus

on one-shot positioning since any improvements should be

reflected in the tracking performance (tracking can be viewed

as a filter on top of one-shot positioning, so improving one-

shot performance typically improves tracking). Having ex-

plored the parameter space we propose a realistic beacon setup

and deployment and evaluate both its one-shot and tracking

performance.

Since our positioning algorithms are based on mapping RSS

values, it is important to consider the temporal stability of these

values. We use data collected over a few weeks, during which

time we observed little, if any, significant change in the signal

RSS values. We attribute this to the nature of the testbed—

an office space that was rarely crowded or changed. As such

our results provide a valuable upper bound to positioning per-

formance. Further work will be needed to evaluate the ex-

tent to which environmental changes affect the positioning

performance in highly variable environments such as retail

spaces. Prior work by the authors has suggested that finger-

print complexity decreases in such open retail spaces, further

impacting fingerprinting performance for indoor positioning

applications and suggesting that these environments will be the

most challenging [8].

VI. EXPERIMENTAL TESTBED

Our testbed covered approximately 600 m2 and was an office

environment in normal daily use at the William Gates Building,

Cambridge, UK. The area had an existing WiFi network, with

three access points within the testbed, plus more that could be

heard from adjacent areas and floors.

Deployed Beacons: Nineteen BLE beacons were deployed

as shown in Fig. 4. They were were installed on top of window

ledges or desks in offices or attached to the wall or convenient

devices (printer, water cooler) in the corridor. Most of the
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Fig. 4. The locations of the BLE beacons (circles) and WiFi access points
(squares) in the test area. The test area is approximately 50 meters by 15 meters.
Signals from 6 other WiFi sources located in other regions of the building were
also received in this area and included in the fingerprints.

beacons were installed a height of approximately 1 m from the

floor and oriented such as to provide maximum response in the

horizontal plane (to coincide with users holding smartphones

approximately parallel to the ground during interactions with

them). Each was set to beacon at 50 Hz with an output power

of 0 dBm.

Handset Logging: The iPhone logged the BLE advertise-

ment events to local storage using an application supplied by

CSR Ltd. We also used a Nexus 4 Android 4.4.2 device to

simultaneously capture WiFi beacons. In the experiments the

tester carried one phone in each hand, held in front as if

navigating.

Ground Truth Location: The Active Bat system [1] was

available throughout the testbed and was used to provide ground

truth position. This system is a low error (less than 3 cm

in 3D 95% of the time), high-infrastructure location system

capable of estimating positions at around 15 Hz. The data

from it were post processed and smoothed to remove spurious

positions.

Synchronization: The Active Bat system, the iPhone and the

Nexus 4 each ran on independent clocks. Before each experi-

ment, each clock was manually synchronized using a Network

Time Protocol (NTP) server [20].

VII. RESULTS

The parameter exploration presented here is based on data

gathered in a series of four walking experiments, referred to as

E1, . . . , E4. The walks lasted between 5 and 18 minutes and

covered the entire test bed where the Active Bat ground truth

was active. The routes were not predetermined and areas were

visited multiple times. The collection included periods with and

without walking movement.

A. Baselines

To contextualize the fingerprinting results we provide three

baseline positioning accuracies; two based on using the BLE

signals without prior survey; and one applying the same finger-

printing algorithms to WiFi. We refer to the two baseline BLE

algorithms as “proximity” and “kNN,” and note that they both

require knowledge of the beacon positions. The proximity al-

gorithm selects the beacon with the strongest received signal at

a given time and co-locates the user with it. The kNN algorithm

used k=3 and took the three strongest signals and produced

a weighted mean of the corresponding beacon positions. The

Fig. 5. Sample BLE signal strength map for iPhone E1 data. The area shown
is approximately 50 metres by 15 metres.

weight applied was 1
|ri|

, where ri was the RSS for beacon

i in dBm.

The WiFi baseline was derived from 2.4 GHz WiFi finger-

prints collected at approximately 1.3 Hz during the E1 walk

and applied during the E2 walk (a walk conducted a week later)

using the tracking mode. As previously mentioned, we used

the WiFi access points already installed in the building, the

geometry of which was arguably sub-optimal for positioning

(access points were located along the corridors, not in the cor-

ners of the building). Note that the decision to use only 2.4 GHz

WiFi signals enabled faster scan rates on the test handset we

used. Combined with the use of the tracking mode, this presents

WiFi in its best light for our testbed.

B. Sample BLE Signal map

Fig. 5 gives a sample RSSI signal strength map for a beacon,

generated using the iPhone data in E1 and applying Gaussian

Process regression.

C. Fading Mitigation: Maximum vs Median vs Mean vs Raw

We constructed a set of signal strength maps from the data in

E1, using three fading mitigation schemes (maximum, median

and mean). These maps and the same schemes were then used

to position the iPhone in datasets E2 and E4.

For comparison we included a Raw scheme that represented

no fading mitigation at all. This used no windowing during the

map generation (each advertisement was assigned a position

and fed to the regression directly). However, the online position

computation still required a window of measurements to form a

useful fingerprint (a single advertisement alone would provide

a highly-ambiguous position estimate). Since our maximum

observed receive rate was around 25 Hz, we used a window of

0.05 s to provide the Raw dataset. In the rare case where mul-

tiple sightings of a beacon were observed within one window,

the latest reading was used.

The effect of the multipath mitigation on positioning perfor-

mance can be viewed directly in Fig. 6. The left hand image

shows a position fix without multipath mitigation, the right

shows the same position fix with a 0.5 s median filter applied

to the BLE input data. The left hand image shows three distinct

regions of highly-probable user location (green regions). We

observe that the multipath mitigation step (which has been

applied to both the survey data and the tracking data on the right

hand image) has significantly reduced the complexity of the

posterior distribution.
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Fig. 6. BLE fingerprinting with a 0.5 s median filter (right) enabled, compared
to the baseline (left). In these images the true receiver location is marked by the
circle, Pmax is shown by the cross, and Pmean is shown by the square. The area
shown is 25 meters by 15 meters. (a) Without multipath mitigation. (b) With
multipath mitigation.

Fig. 7. Positioning error for E2 iPhone data using E1 iPhone map positioning.

The overall cumulative error is shown in Fig. 7 for windows

of 0.5 s and 1.0 s—a more detailed look at window size is given

in the next section. The results clearly show that any of the

mitigation schemes vastly outperform the raw scheme, with er-

rors less than 3 m 95% of the time versus less than ∼6 m 95%

of the time, respectively. The choice between mean, median and

maximum is not so clear, however, with all three producing

very similar results. The maximum appears to give the best

results and is the cheapest to compute. However, we have exper-

imented with other handsets and observed occasional spurious

high RSS values that skew the performance of the maximum

[9]. The median and mean both filtered these out. Given a

moderate sampling rate, we expect the median score to be the

most robust to large outliers (i.e. both spurious high values and

very deep fast fades which may distort the mean) for a device-

agnostic positioning scheme, and so we favour this in this work.

Nonetheless, we note that the other schemes are viable choices.

Fig. 8. Positioning error dependency on window size for E2 iPhone data using
E1 iPhone map positioning.

D. Window Selection

The window duration is a balance between ensuring suf-

ficient samples are taken for multipath mitigation; obtaining

sufficient dimensionality in the fingerprint; and minimising

spatial smearing from handset movement. In any specific im-

plementation, this will depend on the expected receive rate and

the degree of user motion. Fig. 8 shows the positioning errors

associated with applying a median scheme with varying win-

dow sizes to the data used in the previous section. We observe

that window sizes of around 0.5 to 2 s seem to provide the best

performance, corresponding to a pedestrian covering approxi-

mately 0.7–3.0 m while walking. The performance in this range

is very similar, with an error of less than 3 m 95% of the time.

This suggests that core features of radio fingerprinting, such as

measurement noise and typical slow-fading correlation scales,

intrinsically limit the accuracy to this level, and hence smearing

at the same scale has little effect. For shorter windows, mul-

tipath mitigation is not as effective; for longer windows the

smearing error dominates.

E. Effect of Beacon Advertising Period

The beacons used in this work transmitted at a very high

rate of approximately 50 Hz. This is far higher than would be

expected in any opportunistic system, and would significantly

reduce the lifetime of battery-powered nodes in any dedicated

system (as a guideline, our beacons were each powered by

two AA batteries and exhibited a lifetime of approximately six

months at 50 Hz advertising). We therefore studied the effect of

downsampling the BLE signals.

Fig. 9 shows the positioning result using different synthe-

sized frequencies, including those more typical in an oppor-

tunistic system. Where the rate allowed multiple samples of

the same beacon per (1 s) window, we applied median-based

fading mitigation. We observed decreasing error with increas-

ing rate, albeit with diminishing returns. The error achieved at

20 Hz (approximately 2.6 m at the 95% confidence level) was

negligibly different from that at 10 Hz. Note that at 0.5 Hz, the
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Fig. 9. Positioning error with synthesized data rate.

Fig. 10. Mean error variation with fingerprint dimensionality.

beaconing interval was double the fingerprint window duration.

Consequently we observed a long tail in the cumulative proba-

bility plot associated with fingerprints of lower-than-expected

dimensionality. This confirms the need for longer windows

when using slow-rate opportunistic beacons.

F. Fingerprint Dimensionality

The number of beacons detected by a receiver (and so the

number of elements in the fingerprint for that position fix) is

expected to have an effect on positioning accuracy. In this ex-

periment we artificially reduced the number of beacons detected

per epoch and measured the effect on the positioning accuracy.

The results are shown in Fig. 10 as a mean position error per

number of beacons within a fingerprint. They showed a steady

improvement in mean accuracy up to around 8–10 beacon

measurements per fingerprint, at which point the positioning

accuracy levelled off and a higher density of beacons produced

diminished returns.

G. Reduced Beacon Density

Following the finding of the previous experiment, we studied

the effect of moving from a test bed of 19 beacons, with all

Fig. 11. The reduced BLE beacon set. The test area is approximately 50
meters by 15 meters.

Fig. 12. 7 beacons for E2 iPhone data using E1 iPhone map positioning.

fingerprints exceeding the dimensionality boundary of 8–10,

to just seven beacons in the environment. The seven were

manually selected to be distributed approximately uniformly

as shown in Fig. 11—a representative layout for tracking de-

vices within an enclosed region with BLE beacons attached

to perimeter walls. This layout was expected to result in most

fingerprints containing measurements from only 3–5 beacons.

The positioning results are shown in Fig. 12. We observe very

similar performance to the 19-beacon set up to the 66% confi-

dence interval, but increased errors for the seven beacon distri-

bution for the remaining data (moving from less than ∼2.5 m to

less than ∼5 m 95% of the time). On examining the data for

signal availability we confirmed that this layout and beacon

power setting resulted in a relatively even spread of fingerprint

dimensionality of 2–6.

H. Transmit Power

The previous results were collected with the BLE bea-

cons transmitting near the top of the BLE specification range

(0 dBm). This inevitably resulted in fingerprints of greater

dimensionality since a given beacon has a much greater range.

Very low power results in short range, isolated beacons and re-

gions of no positioning coverage, but as the power is increased

and beacon coverage patterns start to overlap, we expect to

see diminishing returns in terms of positioning accuracy as

power increases further still. To investigate this, we artificially

attenuated the BLE readings for our datasets, discarding any

that fell below the empirically-determined noise floor for the

smartphone of −115 dBm.
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Fig. 13. Effect of artificially attenuating 19 beacon signals on E2 iPhone data
with E1 iPhone maps. The legend gives the applied attenuation.

Fig. 13 shows the positioning result for the full set of 19 bea-

cons. As expected, reducing the power initially makes little

difference. This indicates that the beacon power setting was

unnecessarily high for the deployment—in fact an attenuation

of 25 dB would have had little effect on the positioning.

For attenuations of 30 dB and above, we see the positioning

performance decline. By 40 dB the error has grown approxi-

mately 50% at the 95% confidence level. However, we note that

even with a 40 dB attenuation applied, there was 100% avail-

ability of positioning (i.e., there was always a signal to position

with, regardless of the error it resulted in). Further attenuation

would be expected to lead to availability less than 100% as

the beacons became small proximity “islands.” However, such

attenuations are unlikely in a real deployment.

Instead we consider reducing the density to the seven bea-

cons of Section VII-G. As Fig. 14 shows, the availability was

less than 100% for attenuations greater than 20 dB, falling to

just 50% for 40 dB. This density of beacons provides a good

compromise between minimizing the deployed infrastructure

and still ensuring fingerprints of sufficient dimensionality from

beacons with good positioning geometry.

I. Evaluating a Realistic Dedicated Deployment

Having explored the parameter space we analyzed a balanced

consumer system that traded off good positioning performance

for realistic deployment numbers. From the previous section,

a seven beacon deployment can provide 100% coverage of

our testbed. Using a transmit power in the range −10 to

−20 dBm has little impact on accuracy. Table I shows the

published capabilities of a series of commercially available

BLE beacons, from which we select a transmit power of

−12 dBm to match the default of the popular Estimote beacons.

We processed the data from six different walks and trialled

both the one-shot positioning and tracking modes for a range of

beacon rates. The results are shown in Fig. 15. They illustrate

that the system is rarely worse than the deployed WiFi system

with its error of < 8.5 m (3.1 m) 95% (66%) of the time,

even when using 1 Hz beaconing (as might be expected when

Fig. 14. Effect of artificially attenuating the seven beacon subset on E2 iPhone
data with E1 iPhone maps. The legend gives the applied attenuation.

TABLE I
CONSUMER BLE BEACON PROVIDER SETTINGS

using opportunistic rather than dedicated beacons). Beacon-

ing rates of 10 Hz provide a significant boost, with tracking

accuracies < 4.8 m (1.3 m) at the 95% (66%) confidence

level (equivalent one-shot accuracies of < 6.5 m and < 1.6 m,

respectively).

VIII. CONCLUSION AND FURTHER WORK

This paper has explored the use of Bluetooth Low Energy

(BLE) beacons for fingerprint positioning. We have shown

that significant positioning improvement over WiFi is possible

even using a relatively sparse deployment of beacons once

the characteristics of BLE signals are accounted for. We have

achieved tracking accuracies of < 2.6 m 95% of the time using

a dense beacon distribution (1 beacon per 30 m2) and < 4.8 m

using a lower density distribution (1 beacon per 100 m2) in an

environment where WiFi achieved only < 8.5 m 95% of the

time. Our key conclusions are:

1) The three BLE advertisement channels are associated

with different gains and multipath effects due to their

narrow width and wide spacing. Thus a BLE RSS mea-

surement without channel information may be tri-modal

at any given point, making a single measurement of the

RSS—as per WiFi fingerprinting—insufficient.

2) Batch filtering multiple beacon measurements per finger-

print is necessary for BLE fingerprinting. This requires

longer fingerprint listening periods or faster beaconing

rates. Rates of multiple Hertz are required when the

subject is moving to eliminate fingerprint smearing, and

as such slow-rate opportunistic beacons are unlikely to

support accurate tracking of moving users.
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Fig. 15. One-shot and tracking performance for a balanced system. (a) One
shot, Pmax. (b) Tracking, Pmax.

3) Diminishing returns were observed for beaconing rates

above 10 Hz using a 1.0 s filtering window.

4) Positioning error decreased as the number of beacons

per fingerprint increased, up to a threshold of around

8–10 beacons. Beyond this there was no further im-

provement in positioning accuracy. Combining this in-

formation with the desired beacon power level will steer

the beacon density required for maximum positioning

performance.

5) Beacon transition powers around −15 dBm provided

good coverage for a reasonably low density of beacons

in our office environment.

Our deployment of one beacon per 30 m2 gave accuracies of

< 2.5 m 95% of the time. Lowering the density to one beacon

per 100 m2 degraded this result to < 5.5 m. However, this is

still a significant improvement compared to positioning via the

established WiFi network in the same area, which achieved only

< 8.5 m error 95% of the time.

We intend to extend this work by deploying a larger BLE-

based positioning system over a large building. This will allow

us to investigate the ease of estimating the current floor a device

is on and the possibilities that ubiquitous tracking within a

building offer.
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