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Abstract

The discovery of T cells resident in diverse tissues has altered our understanding of adaptive 

immunity to encompass site-specific responses mediated by tissue-adapted memory T cells 

throughout the body. Here, we discuss the key phenotypic, transcriptional, and functional features 

of these tissue-resident memory T cells (TRM) as established in mouse models of infection and 

translated to humans by novel tissue sampling approaches. Integration of findings from mouse and 

human studies may hold the key to unlocking the potential of TRM for promoting tissue immunity 

and preventing infection.

Introduction

The ability of the immune system to maintain memory of previous antigen encounters is the 

basis for vaccines, long-term immunity, and health. Immunological memory was originally 

found to be maintained within the blood, through long-lived antibody responses in serum 

and within a specialized population of circulating memory T cells. The identification of 

heterogeneous subsets of memory T cells based on expression of the lymph node (LN) 

homing receptor CCR7 delineating CCR7hi central-memory (TCM) and CCR7lo effector-

memory (TEM) cells (1) suggested that T cell migration beyond blood could be a major 

determinant for memory maintenance and/or protective immunity. Investigations in mouse 

models showed diverse distribution of memory T cells in multiple anatomical sites—

including secondary lymphoid organs, mucosal, and barrier tissues (2, 3)—suggesting 

continuous surveillance. Subsequent to these earlier findings, a series of studies in mice 

demonstrated that subpopulations of CD4+ or CD8+TEM remain resident in tissues such as 

lung, skin, and gut long after infection resolution (4–7). These key studies laid the 

foundation for the designation of tissue-resident memory T cells (TRM) as a new subset of 

memory T cells that provides localized protective immunity and immunosurveillance in 

tissues.

Most of our current understanding regarding the differentiation, maintenance, and function 

of TRM stems from in vivo studies in mouse models of infection. Initial studies 
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characterizing TRM in the mouse lungs, skin, and female reproductive tract (FRT) 

established tissue residence by using in vivo assays for tissue retention and further 

confirmed TRM as mediators of in situ protective responses (7–12). Molecular 

characterization of the phenotypic, functional, and transcriptional features of these tissue-

retained mouse memory T cells have together defined the TRM subset. Broadly speaking, 

CD4+ and CD8+TRM can be distinguished from circulating counterparts based on 

expression of the T cell activation and retention marker CD69 and the αE integrin CD103 

for subsets of CD8+TRM in mucosal and barrier sites. TRM were further found to exhibit a 

transcriptional profile distinct from circulating memory T cells, with differential expression 

of key transcription factors (TFs) (13–15). Together, these seminal studies in mice defined a 

new paradigm for T cell–mediated immunity and a novel memory T cell subset that 

mediates localized, tissue-intrinsic surveillance and protective immunity, extending 

previously held views of memory T cells as a circulating and broadly surveilling population.

Given the emerging importance of TRM in mouse models, it is essential to assess human T 

cell immunity through the lens of tissue localization and long-term tissue residence. 

However, blood is the major sample site for human immune cell studies; obtaining tissue 

samples from living individuals is limited to biopsies or surgical resections along the healthy 

margins of diseased organs. We have extensively characterized tissues obtained from 

previously healthy organ donors for the study of immune cells (16–24), demonstrating that 

this type of tissue resource effectively reveals snapshots of tissue immunity throughout all 

stages of life. In both organ donor tissue and surgical resections, TRM-phenotype cells 

expressing CD69 +/−CD103 have been identified in virtually every tissue examined, 

including lungs, liver, pancreas, lymphoid tissues, genital mucosa, the gastrointestinal tract 

(stomach, jejunum, ileum, and colon), bone marrow (BM), and in brain obtained from 

autopsies (25–31). Transcriptional profiling of CD69+memory T cells from human lungs, 

spleen, liver, and other sites has demonstrated a conserved transcriptional profile distinct 

from blood memory T cells that exhibits key features with mouse TRM (18, 32, 33). The 

study of TRM in human tissues has also revealed an association with protective immunity 

and specific disease states, such as inflammatory disorders and autoimmunity (34, 35).

There has been considerable debate in the field on the translational potential of genetically 

inbred mouse models for studying immune responses and immunological memory within 

tissue sites. Although mouse models cannot recapitulate the length and diversity of 

exposures to pathogens that takes place over many decades in humans, the extent to which 

this difference affects the generalizability of findings on tissue immunity in mice is not 

known. A recently proposed solution to this issue has been the use of outbred mice obtained 

from pet stores, also referred to as “dirty” mice (36). Several immune parameters in dirty 

mice align more closely with adult humans, including having abundant TRM populations in 

lymphoid and nonlymphoid tissues (36–38). However, it is not yet clear how effectively 

dirty mice recapitulate human immune responses, in general, and whether use of dirty mice 

needs to supplant studies that use inbred strains.

In this Review, we will discuss how tissue residency is defined for mouse and human T cells 

and the identification of TRM in both species. We will highlight studies that characterize 

TRM phenotype and tissue-specific adaptations of TRM across different sites, many of 
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which are conserved in mice and humans (Table 1). Furthermore, we will discuss key 

similarities and differences between the transcriptional regulation and formation of TRM in 

mice and humans. Last, we will review studies that investigate TRM function in disease 

contexts involving novel sampling and both current and future strategies for targeting TRM 

in vaccines.

Defining tissue residency for T cells

In contrast with circulating memory T cell populations that survey peripheral tissues through 

the blood and lymph, the term “tissue resident” refers to the retention of memory T cells 

localized in tissues that are maintained independent of circulating counterparts. There are 

various experimental methods used to determine the recirculation potential of T cells (Fig. 1 

and Table 1), including parabiotic surgery, in vivo antibody labeling, T cell depletional 

strategies, tissue transplantation, and phenotypic or transcriptional profiling. Parabiotic 

surgery, in which the blood circulation of two individual mice are conjoined, allows for the 

assessment of T cell migration from one parabiont to the other (Fig. 1A). Whereas blood T 

cells typically reach homeostasis between partner mice within a week, resident T cells do 

not equilibrate and remain in specific tissues of one mouse (7, 12, 39–41). Parabiosis 

experiments have been instrumental in defining TRM as an independent population of 

memory T cells in tissues, although there are caveats to this approach. Not all circulating 

blood cells equilibrate between parabionts equally, such as short-lived neutrophils, dendritic 

cell (DC) precursors, and inflammatory monocytes (42). Furthermore, inflammation from 

the procedure may effectively recruit and retain circulating memory T cells in tissues, 

blurring distinctions between circulatory and resident subsets in certain sites (43–45).

A less laborious approach to identifying TRM in mice is through in vivo labeling of 

circulating cells with fluorochrome-conjugated antibodies by means of intravascular 

injection, which rapidly marks all cells in or accessible to the vasculature (Fig. 1B). T cells 

that are tissue resident at the time of injection are “protected” from circulating antibody and 

have been shown to localize in different tissue niches (7, 8, 11, 46). This method can 

therefore serve as a rapid assessment of localization and residence of T cells, particularly in 

mucosal sites, although is less useful for TRM in BM and liver sinusoids (8). Another 

related technique to distinguish circulating T cells from TRM based on accessibility to 

antibody infusion is administering T cell depletional antibodies or agents that promote 

lymphopenia and prevent T cell egress. Treatment of mice with anti-Thy-1 depletional 

antibodies effectively eliminates circulating T cells while sparing TRM, as assessed in the 

FRT and lung (10, 47, 48). In addition, treatment of mice with FTY720, an S1PR1 agonist, 

causes peripheral lymphopenia and prevents tissue egress, resulting in depletion of 

circulating T cells from tissues while maintaining CD4+ and CD8+TRM at similar numbers 

to control-treated mice, as in the lung and FRT (11, 49–52). Last, transplantation of 

peripheral tissues, such as sections of the skin or intestine into congenic or naive mice (Fig. 

1C), also permits the assessment of residency potential and persistence of putative donor 

TRM in the graft (4–6, 53). The findings from these and other studies in mice have 

demonstrated that TRM are a distinct, noncirculating population of long-lived memory T 

cells.
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Similar criteria by using parabiosis and in vivo labeling to establish tissue residency cannot 

be applied to human T cells, and cell surface phenotyping combined with transcriptional 

profiling is often relied on to designate TRM populations (Fig. 1D). However, certain 

clinical situations involving T cell depletional therapies and sampling from organ and 

composite tissue transplantation has provided evidence for the persistence of tissue memory 

T cells maintained distinct from circulating counterparts (Table 1). Treatment of cutaneous T 

cell lymphoma patients with anti-CD52 depleting antibodies (alemtuzumab) eliminated 

circulating T cells from the blood but spared a persisting resident population of CD4+ and 

CD8+ memory T cells in the skin (54). Transplantation of human lymphocyte antigen 

(HLA)–disparate organs that contain endogenous TRM has created a natural experiment for 

assessing potential persistence of donor-derived TRM and development of tissue T cell 

populations from circulating recipient T cells (Fig. 1C). In intestinal transplants, donor-

derived T cells were detected both in circulation and within the intestinal graft up to a year 

after transplant with TRM phenotype cells in the intestinal graft (55). Similarly, epidermal 

CD8+T cells of donor origin in face transplant recipients were observed up to 2 years after 

transplantation (56). A recent study in lung transplantation identified the exclusive 

persistence of donor-derived TRM phenotype cells >1 year after transplantation in the 

transplanted lung but not in the recipient blood (57), providing definitive evidence for tissue-

specific retention of human TRM. Together, these results indicate that human TRM persist 

in the tissue niche long term, similar to mouse TRM.

Distinguishing features of TRM

Defining cell surface markers that distinguish TRM from circulating memory T cell subsets 

in both mouse and human tissues remains an ongoing endeavor. CD69, originally defined as 

an early T cell activation marker, is expressed by a large proportion of tissue memory CD4+ 

and CD8+ T cells in mice and humans and is generally considered a canonical TRM marker 

on the basis of both functional and transcriptional evidence. Functionally, CD69 serves as a 

signal for tissue retention by binding to and sequestering the sphingosine-1-phosphate 

receptor (S1PR1), which is required for tissue egress (58–60); down-regulation of the TF 

KLF2, which controls S1PR1 expression, is essential for TRM formation in mice (61). 

Whereas transient expression of CD69 on recently activated effector T cells similarly serves 

to retain them in the LNs (58), CD69 expression by TRM is constitutive and not associated 

with expression of activation markers like CD25, CD38, and HLA-DR (18, 22). In addition, 

the majority of mouse CD8+TRM retained in tissues during parabiosis studies express CD69 

(40). Importantly, sorting for CD69 expression on human tissue memory T cells defines a 

TRM transcriptional profile on the basis of homology to mouse TRM that is distinct from 

that of CD69– memory T cells in tissues and blood (18). Interestingly, genetic deletion of 

CD69 in mice results in a reduction (but not ablation) of CD8+TRM in the skin and lung 

(14, 41) and does not affect CD4+TRM formation (62). Taken together, these findings 

establish that although CD69 expression can identify TRM in tissues, CD69 expression per 

se is not necessarily sufficient for TRM formation.

CD103, the αE- subunit of the αEβ7-integrin that binds E-cadherin expressed on epithelial 

cells (63), is expressed by a subset of mouse and human CD8+memory T cells in mucosal 

and barrier tissue sites (5, 16, 64, 65). CD103 expression by TRM is more limited in lineage 
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and tissue location compared with CD69. In humans and mice, CD8+ TRM within mucosal 

tissues—including the skin, lungs, salivary glands, and small intestines—are enriched for 

CD103 expression (14, 17, 32, 41, 65–68) likely because E-cadherin:αEβ7-integrin 

interactions anchor CD103+TRM in specific locations within the mucosal epithelium. 

Accordingly, the formation of CD8+TRM in the skin of CD103-deficient mice are reduced 

in number and exhibit increased motility compared with wild-type controls (14, 69). 

However, CD8+ TRM in lymphoid organs such as BM, spleen, and LN do not express 

CD103 at steady-state (18, 70, 71), possibly because of limited interactions with epithelial 

cells in these sites. The role of CD103 on CD4+TRM is less clear; many CD4+TRM in mice 

and humans do not express CD103 (18, 43, 66, 72, 73), although substantial populations of 

CD103+CD4+TRM can be detected in lungs, intestines, and skin (18, 45, 65, 66). 

Transcriptional up-regulation of ITGAE (CD103) was identified as a core signature marker 

for both CD8+ and CD4+ TRM in humans, based on up-regulated expression in CD69+ 

compared with CD69– memory T cells (18). Therefore, CD69 expression along with CD103 

in certain sites reliably distinguishes mouse and human TRM from their circulating 

counterparts.

A growing catalog of molecules that control homing, migration, and function have been 

found to be differentially expressed on TRM compared with circulating TEM cells based on 

additional profiling on the cellular and transcriptional level (Table 1). In terms of homing 

and chemokine receptors, mouse and human CD4+ and CD8+TRM express the integrin 

CD49a, most often in the lung and skin (5, 14, 18, 74, 75). CD49a (integrin α1) binds to 

CD29 (integrin β1) to from VLA-1, an integrin specific to collagen (76), suggesting that 

CD49a may play an important role in adhesion of TRM near collagen-rich basement 

membrane of the epithelium. Accordingly, antibody blockade or genetic deletion of VLA-1 

in mice results in impaired retention of CD8+ TRM in peripheral tissues (77). CD49a 

expression can also delineate subsets of human skin TRM with distinct cytokine profiles 

(74). CXCR6, a chemokine receptor which binds CXCL16, is another core signature marker 

of TRM in both human tissues (18) and in the mouse skin and liver, where it promotes 

CD8+TRM establishment (69, 78). TRM also exhibit down-regulated expression of 

CX3CR1 compared with circulating memory T cells in mice and humans (18, 79), indicating 

that precise regulation of homing and migration are required for TRM persistence.

Functionally, TRM differ in several respects from circulating memory T cells. Mouse and 

human CD4+ and CD8+TRM exhibit elevated levels of transcripts encoding inflammatory 

cytokines and cytotoxicity-associated genes compared with circulating memory T cells (13, 

14, 18, 23, 32, 74), suggesting a poised state for rapid effector function upon activation. 

Interestingly, CD4+ and CD8+ TRM also express multiple surface molecules associated with 

inhibition of T cell function, including PD-1 (18, 27, 32), a key marker of T cell exhaustion 

associated with functional hyporesponsiveness in chronic infection and tumors (80). Human 

TRM also express CD101 (18), shown to inhibit proliferation and interleukin-2 (IL-2) 

production (81). Similarly, mouse skin TRM generated from herpes simplex virus (HSV) 

infection express inhibitory receptors PD-1, Tim-3, LAG3, CTLA4, and CD101 (82). It is 

tempting to speculate that the constitutive expression inhibitory receptors on TRM may be a 

critical adaptation to prevent excessive activation or inflammation in the tissue niche. 
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Coexpression of proinflammatory markers in the context of increased expression inhibitory 

molecules by TRM may enable TRM to be self-regulating in the tissue site.

Mechanisms for TRM generation and maintenance

The designation of TRM as a distinct subset with its own transcriptional profile raises an 

important question concerning the identity of the TFs that drive TRM formation (Table 1). 

Several TFs—including Hobit, Blimp, Runx3, and Notch—were found in mouse infection 

models to promote CD8+ TRM formation and were identified on the basis of up-regulated 

expression of the TF or its transcriptional targets in TRM relative to circulating memory T 

cells (13, 32, 83). The TFs that drive human TRM formation remain as yet undefined. 

NOTCH1/RBPJ is up-regulated in human TRM as part of the core gene signature (18, 32, 

33), whereas ZNF683(Hobit) transcripts are expressed at low levels in human TRM, albeit 

with up-regulated expression in lung CD8+TRM compared with circulating memory T cells 

(18, 32, 33). However, high-resolution single-cell transcriptomic profiling of human donor 

and recipient-derived T cells in airway samples of lung transplant recipients revealed up-

regulated expression of ZNF683 and RUNX3 in long-lived donor TRM relative to recipient 

T cells that enter the lung from circulation (57). Importantly, RBPJ was up-regulated in 

recipient-derived TRM rather than those from the lung donor, suggesting that Notch 

signaling may be involved in newly formed rather than “mature” TRM. This finding also 

raises the important issue that sampling human TRM persisting in tissues may identify up-

regulated factors required for TRM maintenance rather than development. Investigating gene 

expression of newly established human TRM, in the context of organ transplantation or 

within skin lesions for example, may be an effective strategy to capture TF activity that 

drives TRM formation in humans.

The specific signals required for the long-term maintenance of TRM with diverse tissues 

remains an active area of investigation in mouse models. TRM up-regulate receptors for the 

homeostatic cytokines IL-7 and IL-15 (17, 84), similar to circulating memory T cells, 

suggesting that these cytokines may also contribute to TRM maintenance. IL-15 is essential 

for long-term maintenance and/or survival for some CD8+ TRM populations in tissues such 

as in the skin, lungs, and salivary glands but not for other sites, including the intestines and 

FRT (72, 84–86). In the skin, both IL-7 and IL-15 together maintain CD8+TRM, whereas 

IL-7 alone is required for CD4+ TRM persistence (87). Furthermore, CD103+CD8+ TRM in 

the intestines and skin require tumor growth factor–β (TGF-β) for long-term retention, 

likely for promoting CD103 expression that anchors the cells to the epithelium (14, 88). 

Although the specific requirements for TRM maintenance throughout diverse tissues are 

incompletely understood, these studies suggest that TRM in different tissues may require 

distinct signals for their maintenance and survival.

After their formation, TRM can stably persist in many tissue sites, including the skin, gut, 

brain, liver, and lung (6, 11, 12, 64, 89). Their longevity, however, may depend on the tissue 

of residence and host factors. Strikingly, in the lungs of mice infected with influenza A virus 

(IAV), CD8+ TRM were found to diminish over time owing to apoptosis and a lack of 

replenishment from circulating TEM cells (90, 91). Lung CD4+ TRM also generated by IAV 

persisted for several months after infection and did not require replenishment from 

Szabo et al. Page 6

Sci Immunol. Author manuscript; available in PMC 2019 October 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



circulation over the short term (11, 48). Moreover, lung CD4+ TRM generated from allergen 

exposure maintained constant numbers and the ability to mediate immunopathology over 

months in vivo, whereas numbers of CD8+TRM underwent rapid attrition (47, 48). These 

findings suggest different requirements for maintenance of mouse CD8+ and CD4+ TRM.

In human tissues, there is evidence that TRM in certain sites are long-lived. The overall 

proportion of TRM is set early in life and is maintained at a constant frequency for a 

particular site (lung, intestines, and secondary lymphoid organs) for decades of life into old 

age (17, 19, 24). Although this analysis does not assess antigen-specific populations, these 

results reveal homeostatic maintenance of stable TRM populations. Lung TRM of donor 

origin in transplanted lungs were found to persist for up to 15 months after transplantation in 

a number of recipients (57), providing direct evidence that human lung TRM can persist in 

vivo. TRM in the lung and other human tissues exhibit lower frequencies of Ki67+ cells 

indicative of proliferating cells as compared with circulating T cells in blood and other sites 

(17), suggesting lower rates of turnover of tissue as compared with circulating T cells. In 

human skin, there is evidence for long-term maintenance of antigen-specific TRM, based on 

studies of skin lesions in psoriasis, an inflammatory skin condition. Lesions and flare-ups 

are known to occur at the same location over years, and this is associated with the presence 

of clonal populations of skin TRM that produce IL-17 (92). It is possible that the continuous 

exposure of human tissues to multiple microbial and nonmicrobial antigens over time may 

create environments that promote prolonged TRM maintenance that may not be 

recapitulated in conventional inbred mouse models.

Tissue localization and adaptations of TRM

TRM are broadly distributed throughout the body and have been identified in almost as 

many human tissues as in mice, including the skin, lungs, intestines, salivary glands, brain, 

liver, and lymphoid organs (16–18, 25, 27–29, 31, 32, 54, 71, 75). Importantly, the extent of 

CD69 and CD103 expression by CD4+ and CD8+ TRM is a feature of the specific tissue that 

is highly conserved between individuals (17, 18, 22). This conservation of tissue-specific 

TRM phenotypes across individuals suggests distinct influences of the microenvironment on 

TRM, although tissue influences on TRM function, longevity, and homeostasis are only 

beginning to be defined for mice and humans. In particular, T cells in skin, lung, and 

lymphoid organs exhibit distinct properties as described below and diagrammed in Fig. 2.

In healthy human skin, the majority of TRM are dermal CD4+CD69+CD103– cells, with the 

epidermis containing mixed populations of CD4+ and CD8+ TRM expressing CD103 (66). 

These TRM express high levels of the cutaneous lymphocyte antigen (CLA) and specific 

chemokine receptors such as CCR4, and a proportion up-regulates the chemokine receptor 

CCR8 upon entry into the human skin niche (93, 94). In naïve mice, skin CD103+/−CD4+ 

TRM are also most prevalent (45), although large numbers of CD103+CD8+ TRM 

accumulate in the epidermis after infection (65). Notably, a large proportion of dermal 

CD4+memory T cells retain their ability to circulate (45). The chemokine receptors CXCR3, 

CXCR6, and CCR10 mediate formation and/or maintenance of skin TRM in mice (14, 69). 

A recent study in mice also found that skin TRM may alter their metabolism within specific 

sites; CD8+ TRM acquire a program of exogenous lipid uptake and increased oxidative 
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metabolism to persist in the skin niche and mediate immunity (95). Whether this metabolic 

reprogramming of TRM is a general mechanism for tissue adaptation or specific to lipid-rich 

epithelial tissues remains to be determined.

The lung tissue niche contains abundant populations of CD4+ and CD8+ TRM in humans 

and mice (7, 11, 16, 33, 40, 75, 96). Similar to the skin, optimal formation of CD8+ TRM in 

the mouse lungs needs cross-priming DCs within the local LN (97). Once in the lung niche, 

CD103+ DCs facilitate CD103 up-regulation and maintenance of CD8+ TRM through the 

production of TGF-β (98). Notably, CD4+ and CD8+ TRM display distinct clustering 

patterns within the tissue. CD8+ TRM localize within specific niches of tissue regeneration 

after lung injury (termed repair-associated memory depots) that aid their formation and 

maintenance, whereas CD4+ TRM localize to the airways or around B cell follicles (11, 41). 

Together, these studies in mice suggest that the lung tissue niche is a distinct and highly 

dynamic site for TRM generation, although whether this aspect of the lung environment in 

humans is conserved remains to be determined.

Studies in secondary lymphoid tissues of mice and humans demonstrate that CD4+ and 

CD8+ TRM are present in LNs and spleen (17, 70, 71). In conventional inbred mouse 

models, the majority of virus-specific T cells within lymphoid tissue are circulating with 

<10% resident by parabiosis (40). In humans, a much higher proportion (30 to 50%) of 

CD4+ and CD8+ T cells express phenotypes and transcriptional profiles of TRM cells in the 

spleen and LNs (17, 18, 22). Interestingly, dirty mice possess a similarly increased number 

of TRM in their LNs relative to conventional mice (36), suggesting that TRM accumulation 

in lymphoid tissue may be a function of antigen exposure. Human LN CD8+ TRM exhibit 

phenotypic, functional, and epigenetic signatures associated with tissue residency (22, 71). 

However, human LN TRM also exhibit an organ-specific signature compared with other 

sites with increased expression of TFs TCF-1 and LEF-1, T-follicular helper cell markers 

CXCR5 and CXCR4, and reduced expression of effector molecules (22). This human LN-

specific profile for memory CD8+ T cells is transcriptionally similar to a population of 

memory CD8+ T cells identified in a chronic infection model in mice, defined by expression 

of CXCR5 and TCF-1 and high proliferative capacity (99). Accordingly, human LN memory 

CD8+ T cells also exhibit higher proliferative capacity than their counterparts in other tissues 

(22). These results suggest that LNs may represent a niche for long-term TRM maintenance 

and quiescence.

The BM is another lymphoid niche that supports the long-term maintenance of memory T 

cells. Human and mouse memory T cells expressing CD69 in the absence of other markers 

of activation can be found in large numbers in the BM; 10 to 30% of memory T cells in mice 

and up to 60% of TEM cells in human BM express CD69 but not CD103 (26, 100). Whether 

memory CD8+ T cells take up residence in the mouse BM is unclear because parabiosis 

experiments demonstrate that these cells equilibrate between host and partner (39), although 

memory CD4+T cells appear to be retained in the BM niche over the long term (101). 

Interestingly, genetic knockout studies in mice have shown that CD69-deficiency reduces the 

accumulation of CD4+ T cells in the BM, suggesting that CD69 plays a role in T cell 

retention in the BM (100). In humans, BM memory T cells exhibit biased specificities for 

pathogens usually encountered during childhood (26), and in some individuals, BM is 
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enriched for cytomegalovirus (CMV)–specific T cells (102), suggesting compartmentalized 

maintenance. Further studies are needed to determine the localization of human BM TRM 

and their maintenance in niches.

Together, these studies in specific sites highlight that both local microenvironmental signals 

and availability of tissue-specific niches play critical roles in the generation and maintenance 

of TRM in tissues.

Role in immunity to infections

TRM act as immune sentinels and rapidly respond to infection by orchestrating local 

protective immune responses to eliminate pathogens. Because of their localization directly in 

tissues, they are able to immediately recognize infected cells or their cognate antigens 

presented by antigen-presenting cells, triggering a cascade of pro-inflammatory effector 

functions directly in situ (10). Mouse models have been highly informative in dissecting the 

contributions of CD4+ and CD8+ TRM in protective immunity to a growing number of 

infectious pathogens—including viruses, bacteria, fungi, and parasites (Table 1)—in diverse 

sites such as mucosal and barrier sites (lung, FRT, skin, and intestines), liver, salivary glands, 

and brain. In the lung, CD4+ and/or CD8+ TRM mediate optimal protection against 

respiratory viruses such as influenza and respiratory syncytial virus (RSV), whereas 

circulating memory T cells appear to be dispensable (7, 90, 103). Lung CD4+TRM also 

provide essential protection to bacterial pathogens such as Mycobacterium tuberculosis and 

Bordetella pertussis (49, 104). In the FRT, CD4+ TRM in the genital mucosa were critical in 

protection against infection by the clinically relevant pathogen HSV-1 (43) and also mediate 

local viral clearance in the mouse model of systemic lymphocytic choriomeningitis virus 

(LCMV) infection (9, 10). CD8+TRM in the skin confer enhanced protection against local 

infection by HSV-1 or vaccinia virus compared with circulating memory T cells (5, 12, 105) 

and also protection to fungal infection such as Candida albicans, a common skin pathogen 

(106). Both intestinal CD4+ and CD8+ TRM contribute to protection against oral infection 

with the intestinal pathogen Listeria monocytogenes (67, 73), whereas CD4+ TRM elicit 

optimal protection against Salmonella infection (107). In other sites, liver TRM protect 

against liver infection with malaria parasites (89), salivary gland CD8+ TRM control CMV 

infection (108), and brain CD8+ TRM can clear LCMV during secondary challenge, 

independent of circulating memory T cells (109). Together, these findings demonstrate the 

importance of both CD4+ and CD8+ TRM in tissue-localized immunity to pathogens, with 

CD8+TRM more prevalent in viral and parasitic infections whereas CD4+ TRM mediate 

protection to bacterial and fungal invaders.

Determining mechanisms by which TRM mediate protective immunity is an active area of 

investigation and may differ depending on the tissue site and the cellular components 

interacting with TRM; these specific factors have not yet been identified. TRM in the skin 

and FRT were shown to proliferate in situ after local viral or antigenic challenge (52, 82, 

110), but whether proliferation was required for protection is not clear. Production of 

interferon-γ (IFN-γ) by TRM has been demonstrated in a number of viral infection models 

to be required for protection in the FRT (9, 43), skin (111), and lung (112), whereas IL-17 is 

required for antifungal responses in the skin (106). Direct cytotoxicity can also be important 
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for protection because brain CD8+ TRM require both perforin and IFN-γ for optimal 

clearance of LCMV infection (109). Further studies are needed to further identify the targets 

of TRM-mediated effector function.

There is substantial evidence that TRM play key roles in orchestrating protective immune 

responses in humans as well. A variety of virus-specific CD4+ or CD8+ TRM have been 

identified in human tissues, including those specific to CMV (102), RSV (113), Epstein-Barr 

virus (29, 114), HSV (115), hepatitis B virus (HBV) (27), human immunodeficiency virus 

(HIV) (71, 116), and IAV (96, 117), demonstrating that both acute and chronic viral 

infections generate and shape the pool of CD8+ TRM in tissues. Tissue biopsies of human 

skin during HSV reactivation also show that cytotoxic CD8+ TRM are in direct contact with 

virally infected cells, suggesting their involvement in antiviral control (118). Importantly, 

several studies have correlated enhanced control of viral infection with increased 

populations of virus-specific TRM in human tissues. During experimental RSV infection in 

human volunteers, RSV-specific CD8+ TRM in airway samples correlated with reduced viral 

load (113). Similarly, in liver biopsies from HBV-infected patients, the frequency of hepatic 

CD8+ TRM that produce IL-2 was highest in patients with well-controlled infections (27). 

Last, HIV-positive individuals who spontaneously controlled viral replication showed higher 

frequencies of HIV-specific CD8+ TRM in their LNs compared with HIV-positive 

individuals with progressive infection (71).

TRM as a target of vaccination

The ultimate goal in translating the fundamental knowledge of TRM revealed in mouse 

models to humans is to develop novel vaccines for promoting protective immunity. 

Accordingly, preclinical mouse models of vaccination and infection have shown promising 

outcomes when targeting TRM responses (Table 1). Intranasal administration of a live-

attenuated IAV (LAIV) vaccine generated long-term virus-specific CD4+ and CD8+ TRM in 

the lungs of mice, which mediated heterosubtypic protection independent of circulating 

memory T cells or neutralizing antibodies (50). Importantly, parenteral administration of 

inactivated virus or LAIV failed to generate TRM responses and provide cross-strain 

protection (50), demonstrating that both route and vaccine formulation (live-attenuated 

virus) are key determinants for TRM formation. Vaccination with Bacille Calmette-Guérin 

(BCG) in mice similarly demonstrated that mucosal but not subcutaneous administration of 

BCG generated protective TRM in the airway (119). Delivery of vaccine vectors to specific 

tissues has also proved successful in inducing protective TRM immune responses, including 

those that use IAV vectors expressing HIV antigens (120) and HPV pseudovirus that encode 

antigens from HSV (121) and RSV (52). These results emphasize that the current 

immunization approaches that administer vaccines parenterally may be less effective in 

generating TRM-mediated protection compared with tissue-targeted approaches.

Another immunization approach to generate TRM, designated “prime and pull,” combines 

vaccination (prime) with local administration of chemokines or adjuvants to recruit TRM 

precursors to target tissues (pull). Subcutaneous immunization with an attenuated strain of 

HSV-2 coupled with topically applied chemokines to the vaginal mucosa generated virus-

specific CD8+ TRM cells that protected mice from lethal HSV-2 challenge in the FRT (122, 
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123). Variations of this approach combine prime and pull into a single inoculum, such as by 

using antigen complexed to antibodies targeting tissue-specific DC populations (98). A 

particularly successful strategy in mice used a hepatocyte-specific adenovirus expressing 

malaria antigens to target TRM formation in the liver and prevent liver-stage malaria and has 

now progressed to phase I clinical trials in humans (124).

Together, these studies provide promising proof-of-principle results that protective TRM can 

be generated through vaccination. Whether TRM-based vaccines can be applied to humans 

to prevent acute and/or chronic infections will likely be determined in the coming years. 

Therapeutically generated TRM must also conform to the homeostatic balance of tolerance 

and effector responses within tissues to prevent immunopathology. The capacity of 

individual human tissues to generate and maintain TRM and the minimum threshold of 

TRM to provide protection are essential questions that will inform optimization of protective 

immunity in the next generation of vaccines.

Concluding remarks

The discovery of T cells as residents in tissues has initiated a paradigm shift in the way we 

study and understand T cell–mediated immunity: from a circulating and surveilling 

population transiting through tissues to sentinels maintained in diverse anatomic 

compartments. Focusing the study of T cells to tissues not only changed the way we analyze 

mouse models of infection and immunity but posed particular challenges in studying TRM 

in humans, necessitating new types of sampling and tissue acquisition. Studying TRM in 

single-infection models in mice has served to define the key phenotypic, functional, and 

transcriptional features of TRM that translate to TRM in human tissue sites. Continuing to 

integrate human and mouse studies will be paramount in the development of strategies that 

harness the full potential of TRM to promote tissue immunity.
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Fig. 1. Approaches for the study of TRM in mice and humans.
(A) Parabiosis. Parabiotic surgery, shown here as the conjoining of the skin between two 

congenic mice, results in anastomosis of the vasculature assess in vivo circulatory potential. 

TRM (generated by previous infection in one of the mice) fail to equilibrate between 

parabionts, providing evidence for tissue residency. (B) In vivo antibody labeling. 

Intravascular injection of fluorescently labeled or depleting antibodies targets cells in 

vascular compartments, leaving those outside of the circulation (within the tissue 

parenchyma) protected from antibody labeling. (C) Tissue transplantation. Analysis of donor 

and recipient T cells within transplanted organs and tissues allow assessment of retention of 

donor T cells within (and outside) the graft and influx of recipient cells from circulation. (D) 

Cell phenotype and transcriptional profile. Expression of CD69, CD103, and other TRM 

accessory markers (Table 1) by means of flow cytometry is frequently used to define TRM 

in human tissues or mouse models of infection. Transcriptional profiling (such as microarray 
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or RNA-sequencing) has been used to define gene signatures and TFs associated with tissue 

residency. Credit: A Kitterman/Science Immunology
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Fig. 2. TRM compartmentalization and tissue niches in mice and humans.
Noncirculating TRM take up residence in distinct mucosal, lymphoid, and barrier sites 

throughout mice and human tissues. Percentages in each tissue denote the frequency of T 

cells that exhibit surface markers indicating residency (CD69 +/−CD103) in both humans 

and mouse models of infection with references indicated. (Top) In mice, CD103+CD8+ 

TRM accumulate in within the lung epithelium or areas of tissue injury and are maintained 

by DCs producing TGF-β. CD4+TRM localize around B cell follicles. In humans, 

CD103+CD8+ TRM accumulate in the epithelium, and CD103–CD4+TRM are common in 

the lamina propria. (Middle) LN TRM are infrequent in conventional specific pathogen–free 

mice, lack CD103 and reside primarily near the subcapsular sinus. LN CD4+ and CD8+ 

TRM in humans are more abundant as compared with mice. (Bottom) CD103+CD8+ TRM 

in previously infected mice are the most prevalent skin TRM population, reside in the 

epidermis, and are maintained by IL-7, IL-5, and TGF-β signals. A proportion of CD4+ T 

cells expressing CD69 in the dermis retain their ability to recirculate. In humans, dermal 

CD103–CD4+ TRM are the most prevalent population, whereas CD103+CD8+ TRM 

predominate in the epidermis. Credit: A Kitterman/Science Immunology
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Table 1.
A comparison between mouse and human tissue-resident memory T cells.

Ab, antibody; BM, bone marrow; LN, lymph nodes; SG, salivary gland; TRM, tissue-resident memory T cells.

Mice Humans

Techniques to define 
tissue residency

Parabiosis (7, 12, 39–41); in vivo labeling (7, 8, 11, 46); Ab 
depletion (10, 47, 48); FTY720 (11, 49–52); transplantation (4–6, 

53); transcriptional profiling (13–15, 32, 83).

Transcriptional profiling (18, 22, 23, 32, 33, 71, 
93); Ab depletion (54); Transplantation (55–57).

Canonical phenotype CD69 +/−CD103 CD69 +/− CD103

Accessory markers CD101, CD49a, PD-1, CXCR6, CLA, LFA1, CD11a, CXCR3, 
CCR10 (7, 14, 53, 69, 78, 89).

CD101, CD49a, PD-1, CXCR6, CLA, CCR8 (18, 
27, 32, 33, 74, 93, 94).

TFs Hobit and Blimp1 (13); Runx3, CD8+TRM (83); Notch, CD103+ 

CD8+TRM maintenance (32).
Hobit, Blimp1, Runx3 (18, 33); Notch/RBPj 

enriched on lung TRM (32, 33, 57)

Tissue maintenance
Maintained over months: skin (12, 91), gut (6), brain (64), lung 
(CD4+TRM) (11, 48), liver (89), SG (108). Wane over months: 

lung CD8+TRM (91).

Maintained over years: skin (56), intestine (55), 
lung (57). TRM frequency maintained over life 

(17, 24).

Features in 
nonlymphoid tissues

Skin CD103+/−CD4+TRM most frequent in naïve mice (45); 
epidermal CD103+CD8+TRM and dermal CD103+/−CD4+TRM 
accrue in infected mice (65). Liver CD8+TRM lack CD103 (89).

Epidermal CD103+CD4+ TRM and dermal 
CD103–CD4+ TRM most frequent in healthy skin 

(66). Liver CD8+TRM express CD103 (27).

Features in lymphoid 
tissues

LN CD8+TRM infrequent (40), more abundant in dirty mice (38). 
BM CD8+T cells recirculate (39).

Large TRM pool (18, 22, 71), LN-specific 
transcriptional profile (22). BM CD69+CD4+T 

cells quiescent, broad specificities (26).

Role in immunity Protective in viral (5, 7, 43, 90), bacterial (49, 67, 73, 104, 107), 
parasitic (89) and fungal (106) infections.

Correlation of antigen-specific TRM abundance 
to viral control (27, 71, 113).

Potential target for 
vaccination Demonstrable (50, 52, 89, 98, 119–124) Promising
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