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The location of quantum information in various subsets of the qudit carriers of an additive graph code is

discussed using a collection of operators on the coding space which form what we call the information group.

It represents the input information through an encoding operation constructed as an explicit quantum circuit.

Partial traces of these operators down to a particular subset of carriers provide an isomorphism of a subgroup of

the information group, and this gives a precise characterization of what kinds of information they contain. All

carriers are assumed to have the same dimension D, an arbitrary integer greater than 1.

DOI: 10.1103/PhysRevA.81.032326 PACS number(s): 03.67.Pp, 03.67.Mn

I. INTRODUCTION

Quantum codes in which quantum information is redun-

dantly encoded in a collection of code carriers play an

important role in quantum information, in particular in systems

for error correction and in schemes for quantum communica-

tion [1–4]. They are a generalization of the classical codes

well known and widely used in everyday communication

systems [5]. While for the latter it is fairly obvious where the

information is located, the quantum case is more complicated

for two reasons. First, a quantum Hilbert space with its

noncommuting operators is a more complex mathematical

structure than the strings of bits or other integers used in

classical codes. Second, the very concept of “information”

is not easy to define in the quantum case. However, in certain

cases one is able to make quite precise statements. Thus in the

five qubit code [6] that encodes one qubit of information, none

of the encoded information is present in any two qubits taken

by themselves, whereas all the information can be recovered

from any set of three qubits [7].

Similar precise statements can be made, as we shall see, in

the case of an additive graph code on a collection of n qudits

which constitute the carriers of the code, provided each qudit

has the same dimension D, with D some integer greater than

one (not necessarily prime). It was shown in [8] that all additive

graph codes are stabilizer codes, and in [9,10] that all stabilizer

codes are equivalent to graph codes for prime D. A detailed

discussion of nonbinary quantum error correcting codes can

be found in [8,11–14]. The five qubit code just mentioned

is an example of a quantum code that is locally equivalent to

an additive graph code [13], and the information location has

an “all or nothing” character. In general the situation is more

interesting in that some subset of carriers may contain some but

not all of the encoded information, and what is present can be

either “classical” or “quantum,” or a mixture of the two. Since

many of the best codes currently known are additive graph

codes, identifying the location of information could prove

useful when utilizing codes for error correction, or designing

new or better codes, or codes that correct some types of errors

more efficiently than others [15]. Our formalism can also be
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applied to study quantum secret sharing schemes employing

graph states and can even handle a more general setting where

there might be subsets that contain partial information and

hence are neither authorized (contain the whole quantum

secret) nor unauthorized (contain no information whatsoever

about the secret).

Our approach to the problem of information location is

algebraic, based upon the fact that generalized Pauli operators

on the Hilbert space of the carriers form a group. Subgroups

of this group can be associated with different types of

information, and the information available in some subset

of the carriers can also be identified with, or is isomorphic

to, an appropriate subgroup, as indicated in the isomorphism

theorem of Sec. V. In the process of deriving this theorem

we go through a series of steps which amount to an encoding

procedure that takes the initial quantum information and places

it in the coding subspace of the carrier Hilbert space. These

steps can in turn be transformed into a set of quantum gates

to produce an explicit circuit that carries out the encoding.

This result, although somewhat subsidiary to our main aims,

is itself not without interest, and is an alternative to a previous

scheme [13] limited to prime D.

There have been some previous studies of quantum chan-

nels using an algebraic approach similar to that employed

here. Those most closely related to our work are by Bény

et al. [16,17] (and see Bény [18]) and Blume-Kohout et al. [19].

These authors have provided a set of very general conditions

under which an algebraic structure is preserved by a channel. In

Appendix D we show that our results fit within the framework

of a “correctable algebra” as defined in [16–18]. See also the

remarks in Sec. VII.

The remainder of this paper is organized as follows. Some

general comments about types of quantum information and

their connection with certain ideal quantum channels are found

in Sec. II. Section III contains definitions of the Pauli group and

of some quantum gates used later in the paper. The formalism

associated with additive graph codes as well as our encoding

strategy is in Sec. IV; this along with some results on partial

traces leads to the fundamental isomorphism result in Sec. V,

which also indicates some of its consequences for the types of

information discussed in Sec. II. Section VI contains various

applications to specific codes, for both qubit and qudit carriers.

Finally, Sec. VII contains a summary, conclusions, and some

open questions. Appendices A and B contain longer proofs
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of theorems, Appendix C presents an efficient linear algebra

based algorithm for working out the results for any additive

graph code, and Appendix D illustrates the connection with

related work in [16] and [17].

II. TYPES OF INFORMATION

Both classical and quantum information theory have to

do with statistical correlations between properties of two or

more systems, or properties of a single system at two or

more times. In the classical case information is always related

to a possible set of physical properties that are distinct and

mutually exclusive—e.g., the voltage has one of a certain

number of values—with one and only one of these properties

realized in a particular system at a particular time. For quantum

systems it is useful to distinguish different types or species

of information [20], each corresponding to a collection of

mutually distinct properties represented by a (projective)

decomposition J = {Jj } of the identity I on the relevant

Hilbert space H:

I =
∑

j

Jj , Jj = J
†
j = J 2

j , JjJk = δjkJj . (1)

Any normal operator M has a spectral representation of the

form

M =
∑

j

µjJj , (2)

where the µj are its eigenvalues, and the decomposition

{Jj } is uniquely specified by requiring µj �= µk when j �=
k. This means one can sensibly speak about the type of

information J (M) associated with a normal operator M .

When M is Hermitian this is the kind of information obtained

by measuring M .

This terminology allows one to discuss the transmission

of information through a quantum channel in the following

way. Let E be the completely positive, trace preserving

superoperator that maps the space of operators L(H) of the

channel input onto the corresponding operator space L(H′) of

the channel output H′ (which may have a different dimension

from H). Provided

E(Jj )E(Jk) = 0 for j �= k, (3)

for all the operators {Jj } associated with a decomposition J
of the H identity, we shall say the channel is ideal or noiseless

for the J species of information, or, equivalently, the J type

of information is perfectly present in the channel output H′.
Formally, each physical property Jj at the input corresponds in

a one-to-one fashion to a unique property, the support of E(Jj )

(or the corresponding projector) at the output. Thus we have

a quantum version of a noiseless classical channel, a device

for transmitting symbols, in this case the label j on Jj , from

the input to the output by associating distinct symbols with

distinct physical properties—possibly a different collection of

properties at the output than at the input.

The opposite extreme from a noiseless channel is one in

which E(Jj ) is independent of j up to a multiplicative constant.

In this case no information of type J is available at the

channel output: the channel is blocked, or completely noisy;

equivalently, the J species of information is absent from the

channel output. Hereafter we shall always use “absent” in the

strong sense of “completely absent” and the term present,

or partially present for situations in which some type of

information is not (completely) absent but is also not perfectly

present: i.e., the channel is noisy but not completely blocked

for this type of information.

In some cases all the projectors in {Jj } will be of rank 1,

onto pure states, but in other cases some or all of them may

be of higher rank, in which case one may have a refinement

L = {Ll} of {Jj } such that each projector Jj is a sum of one

or more projectors from the L decomposition. It is then clear

that if the L information is absent from (perfectly present in)

the channel output the same is true of the J information, but

the converse need not hold. Thus it may be that the coarse

grained J information is perfectly present, but no additional

information is available about the refinement. A particularly

simple situation, which we will encounter later, is one in which

the output H′ is itself a tensor product, say H′
1 ⊗ H′

2, J a

decomposition ofH′
1,J = {Jj ⊗ I } andK a decomposition of

H′
2, K = {I ⊗ Kk}. It can then be the case that the information

associated with the J decomposition is perfectly present and

that associated with the K decomposition is (perfectly) absent

from the channel output.

Suppose J = {Jj } andK = {Kk} are two types of quantum

information defined on the same Hilbert space. The species

J and K are compatible if all the projectors in J commute

with all the projectors in K, in which case the distinct

nonzero projectors in the collection {JjKk} provide a common

refinement of the type discussed above. Otherwise, if some

projectors in one collection do not commute with certain

projectors in the other, J and K are incompatible and cannot

be combined with each other. This is an example of the single

framework rule of consistent quantum reasoning (see [21]

or Chap. 16 of [22]). The same channel may be ideal for

some J and blocked for some K, or noisy for both but

with different amounts of noise. From a quantum perspective,

classical information theory is only concerned with a single

type of (quantum) information, or several compatible types

which possess a common refinement, whereas the task of

quantum, in contrast to classical, information theory is to

analyze situations where multiple incompatible types need to

be considered.

The term “classical information” when used in a quantum

context can be ambiguous or misleading. Generally it is used

when only a single type of information, corresponding to a

single decomposition of the identity, suffices to describe what

emerges from a channel, and other incompatible types can

therefore be ignored. Even in such cases it is helpful to indicate

explicitly which decomposition of the identity is involved if

that is not obvious from the context. The contrasting term

“quantum information” can then refer to situations where two

or more types of information corresponding to incompatible

decompositions are involved, and again it is helpful to be

explicit about what one has in mind if there is any danger of

ambiguity.

An ideal quantum channel is one in which there is an

isometry V from H to H′ such that

E(A) = VAV† (4)
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for every operator A on H. In this case the superoperator E
preserves not only sums but also operator products:

E(AB) = E(A)E(B). (5)

Conversely, if (5) holds for any pair of operators, one can

show that the quantum channel is ideal [16,17], i.e., E has

the form (4). As the isometry maps orthogonal projectors to

orthogonal projectors, (3) will be satisfied for every species of

information, and we shall say that all information is perfectly

present at the channel output. The converse, that a channel

which is ideal for all species, or even for an appropriately

chosen pair of incompatible species is an ideal quantum

channel, is also correct; see [7,20].

The preservation of operator products, (4), can be a very

useful tool in checking for the presence or absence of various

types of information in the channel output, as we shall see in

Sec. V. When (5) holds for arbitrary A and B belonging to a

particular decomposition of the identity, this suffices to show

that the channel is ideal for this species. However, note that

this sufficient condition is not necessary, since (3) could hold

without the E(Aj ) being projectors, in which case E(A2
j ) is not

mapped to E(Aj )2.

We use the term ideal classical channel for a type of

information J = {Jj } to refer to a situation where (3) is

satisfied and, in addition,

E(JjAJk) = 0 for j �= k, (6)

where A is any operator on the input Hilbert space H. That is,

not only is type J perfectly transmitted, but all other types are

“truncated” relative to this type, in the notation of [21].

III. PRELIMINARY REMARKS AND DEFINITIONS

A. Generalized Pauli operators on n qudits

We generalize Pauli operators to higher dimensional sys-

tems of arbitrary dimension D in the following way. The X

and Z operators acting on a single qudit are defined as

Z =
D−1
∑

j=0

ωj |j 〉〈j |, X =
D−1
∑

j=0

|j 〉〈j + 1| (7)

and satisfy

XD = ZD = I, XZ = ωZX, ω = e2π i/D, (8)

where the addition of integers is modulo D, as will be assumed

from now on. For a collection of n qudits we use subscripts

to identify the corresponding Pauli operators: thus Zi and Xi

operate on the space of qudit i. The Hilbert space of a single

qudit is denoted by H, and the Hilbert space of n qudits by

Hn, respectively. Operators of the form

ωλXxZz := ωλX
x1

1 Z
z1

1 ⊗ X
x2

2 Z
z2

2 ⊗ · · · ⊗ Xxn

n Zzn

n (9)

will be referred to as Pauli products, where λ is an integer in ZD

and x and z are n-tuples in Z
n
D , the additive group of n-tuple

integers mod D. For a fixed n the collection of all possible

Pauli products (9) form a group under operator multiplication,

the Pauli group Pn. If p is a Pauli product, then pD = I is the

identity operator on Hn, and hence the order of any element

of Pn is either D or else an integer that divides D. While Pn is

not Abelian, it has the property that two elements commute up

to a phase: p1p2 = ωλ12p2p1, with λ12 an integer in ZD that

depends on p1 and p2.

The collection of Pauli products with λ = 0, i.e., a prefactor

of 1, is denoted by Qn and forms an orthonormal basis of

L(Hn), the Hilbert space of linear operators on Hn, with

respect to the inner product

1

Dn
Tr[q

†
1q2] = δq1,q2

, ∀q1, q2 ∈ Qn. (10)

Note that Qn is a projective group or group up to phases.

There is a bijective map between Qn and the quotient group

Pn/{ωλI } for λ ∈ ZD where {ωλI }, the center of Pn, consists

of phases multiplying the identity operator on n qudits.

B. Generalization of qubit quantum gates to higher dimensions

In this subsection we define some one and two qudit gates

generalizing various qubit gates. The qudit generalization of

the Hadamard gate is the Fourier gate

F :=
1

√
D

D−1
∑

j=0

ωjk|j 〉〈k|. (11)

For an invertible integer q ∈ ZD (i.e., an integer for which

there exists q̄ ∈ ZD such that qq̄ ≡ 1 mod D), we define a

multiplicative gate

Sq :=
D−1
∑

j=0

|j 〉〈jq|, (12)

where qj means multiplication mod D. The requirement that

q be invertible ensures that Sq is unitary; for a qubit Sq is just

the identity.

For two distinct qudits a and b we define the controlled-NOT

(CNOT) gate as

CNOTab :=
D−1
∑

j=0

|j 〉〈j |a ⊗ X
j

b =
D−1
∑

j,k=0

|j 〉〈j |a ⊗ |k〉〈k + j |b,

(13)

the obvious generalization of the qubit controlled-NOT, where

a labels the control qudit and b labels the target qudit. Next

the SWAP gate is defined as

SWAPab :=
D−1
∑

j,k=0

|k〉〈j |a ⊗ |j 〉〈k|b. (14)

It is easy to check that the SWAP gate is Hermitian and does

indeed swap qudits a and b. Unlike the qubit case, the qudit

SWAP gate is not a product of three CNOT gates but can be

expressed in terms of CNOT gates and Fourier gates as

SWAPab = CNOTab(CNOTba)†CNOTab

(

F2
a ⊗ Ib

)

, (15)

with

(CNOTba)† = (CNOTba)D−1 =
(

Ia ⊗ F2
b

)

CNOTba

(

Ia ⊗ F2
b

)

.

(16)
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TABLE I. The conjugation of Pauli operators

by one-qudit gates F and Sq (where q̄ is the

multiplicative inverse of q mod D).

Pauli operator Sq F

Z Zq X

X Xq̄ ZD−1

Finally we define the generalized controlled-phase or CP gate

as

CPab =
D−1
∑

j=0

|j 〉〈j |a ⊗ Z
j

b =
D−1
∑

j,k=0

ωjk|j 〉〈j |a ⊗ |k〉〈k|b.

(17)

The CP and CNOT gates are related by a local Fourier gate,

similar to the qubit case:

CNOTab = (Ia ⊗ Fb)CPab(Ia ⊗ Fb)†, (18)

since F maps Z into X under conjugation (see Table I).

The gates F, Sq , SWAP, CNOT, and CP are unitary operators

that map Pauli operators to Pauli operators under conjugation,

as can be seen from Tables I and II. They are elements of

the so called Clifford group on n qudits [11,23], the group

of n-qudit unitary operators that leaves Pn invariant under

conjugation, i.e. if O is a Clifford operator, then ∀p ∈ Pn,

OpO† ∈ Pn. From Tables I and II one can easily deduce the

result of conjugation by F, Sq , SWAP, CNOT, and CP on any

Pauli product.

IV. GRAPH STATES, GRAPH CODES, AND RELATED

OPERATOR GROUPS

A. Graph states and graph codes

Let G = (V,E) be a graph with n vertices V , each

corresponding to a qudit, and a collection E of undirected

edges connecting pairs of distinct vertices (no self-loops).

Two qudits can be joined by multiple edges, as long as the

multiplicity does not exceed D − 1. The graph G is completely

specified by the adjacency matrix Ŵ, where the matrix element

Ŵab represents the number of edges that connect vertex a with

vertex b. The graph state

|G〉 = U |G0〉 = U (|+〉⊗n) (19)

is obtained by applying the unitary (Clifford) operator

U =
∏

(a,b)∈E

(CPab)Ŵab , (20)

TABLE II. The conjugation of Pauli products on qudits a and b

by two-qudit gates CNOT, SWAP, and CP. For the CNOT gate, the first

qudit a is the control and the second qudit b is the target.

Pauli product CNOTab SWAPab CPab

Ia ⊗ Zb Za ⊗ Zb Za ⊗ Ib Ia ⊗ Zb

Za ⊗ Ib Za ⊗ Ib Ia ⊗ Zb Za ⊗ Ib

Ia ⊗ Xb Ia ⊗ Xb Xa ⊗ Ib ZD−1
a ⊗ Xb

Xa ⊗ Ib Xa ⊗ XD−1
b Ia ⊗ Xb Xa ⊗ ZD−1

b

where each pair (a, b) of vertices occurs only once in the

product, to the trivial graph state

|G0〉 := |+〉⊗n, (21)

with

|+〉 :=
1

√
D

D−1
∑

j=0

|j 〉. (22)

Define SG to be the stabilizer of |G〉, the subgroup of

operators fromPn that leave |G〉 unchanged. The stabilizer SG
0

of the trivial graph state |G0〉 is simply the set of all X-type

Pauli products with no additional phases,

SG
0 = {Xx : x = (x1, x2, . . . , xn)}, (23)

where xj are arbitrary integers between 0 and D − 1. Since

|G〉 is related to |G0〉 through a Clifford operator [see (19)

and (20)], it follows at once that the stabilizer SG of |G〉 is

related to the stabilizer SG
0 of the trivial graph through the

Clifford conjugation

SG = USG
0 U †, (24)

with U defined in (20).

A graph code C can be defined as the K-dimensional

subspace HC of Hn spanned by a collection of K mutually

orthogonal codewords

|cj 〉 = Zcj |G〉, j = 1, 2, . . . , K, (25)

where

cj = (cj1, cj2, . . . , cjn) (26)

is for each j an n-tuple in Z
n
D . The cjk notation suggests a

matrix c with K rows and n columns, of integers between 0

and D − 1, and this is a very helpful perspective. In this paper

we are concerned with additive graph codes, meaning that

the rows of this matrix form a group under component-wise

addition mod D, isomorphic to the Abelian coding group C,

of order |C| = K , of the operators Zcj under multiplication.

We use (C, |G〉) to denote the corresponding graph code. For

more details about graph states and graph codes for arbitrary

D, see [8].

Note that the codeword (0, 0, . . . , 0) is just the graph state

|G〉, and in the case of the trivial graph |G0〉 this is the

tensor product of |+〉 states (21), not the tensor product of |0〉
states which the n-tuple notation (0, 0, . . . , 0) might suggest.

Overlooking this difference can lead to confusion through

interchanging the role of X and Z operators, which is the

reason for pointing it out here.

B. The encoding problem

A coding group C can be used to create an additive code

starting with any n-qudit graph state, including the trivial graph

|G0〉, because the entangling unitary U commutes with Zz for

any z; thus

|cj 〉 = Zcj U |G0〉 = UZcj |G0〉 = U
∣

∣c0
j

〉

, (27)

where the |c0
j 〉 span the code (C, |G0〉). But in addition the

coding group C is isomorphic, as explained below, to a trivial

032326-4
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code C0,

C0 =
〈

Z
m1

1 , Z
m2

2 , . . . , Z
mk

k

〉

, (28)

which is generated by, i.e., includes all products of the

operators inside the angular brackets 〈 〉. Here k is an integer

less than or equal to n, and each mj is 1 or a larger integer that

divides D. The simplest situation is the one in which each of

the mj is equal to 1, in which case C0 is nothing but the group,

of order Dk , of products of Z operators to any power less

than D on the first k qudits. One can think of these qudits as

comprising the input system through which information enters

the code, while the remaining n − k qudits, each initially in a

|+〉 state, form the ancillary system for the encoding operation.

If, however, one of the mj is greater than 1, the correspond-

ing generator Z
mj

j is of order

dj = D/mj (29)

and represents a qudit of dimensionality dj rather than D. Thus,

for example, if D = 6 and m1 = 2, applying Z2
1 and its powers

to |+〉 will produce three orthogonal states corresponding to a

qutrit, d1 = 3. (Identifying operators Z and X on these three

states which satisfy (8) with D = 3 is not altogether trivial and

is worked out in Sec. IV C below.) In general one can think of

the group C0 in (28) as associated with a collection of k qudits,

the j th qudit having dimension dj , and therefore the collection

as a whole a dimension of K = d1d2 · · · dk , equal to that of the

graph code. If one thinks of the information to be encoded as

initially present in these k qudits, the encoding problem is how

to map them in an appropriate way into the coding subspace

H of the n (D-dimensional) carriers.

We address this by first considering the connection between

C and C0 in a simple example with n = 3, D = 6, and

C =
〈

Z4
1Z

3
2Z

3
3, Z

3
2Z

3
3

〉

, (30)

a coding group of order 6. The two generators in (30)

correspond, in the notation introduced in (26), to the rows

of the 2 × 3 matrix

f =
(

4 3 3

0 3 3

)

. (31)

By adding rows or multiplying them by constants mod D

one can create four additional rows which together with those

in (31) constitute the 6 × 3 c matrix.

Through a sequence of elementary operations mod D—(a)

interchanging of rows or columns, (b) multiplication of a row

or column by an invertible integer, (c) addition of any multiple

of a row or column to a different row or column—a matrix

such as f can be converted to the Smith normal form [24,25]

s = v · f · w, (32)

where v and w are invertible (in the mod D sense) square

matrices, and s is a diagonal rectangular matrix, as in (33). It

is proved in [25] that a K × n matrix can be reduced to the

Smith form in only O(Kθ−1n) operations from ZD , where θ

is the exponent for matrix multiplication over the ring ZD ,

i.e. two m × m matrices over ZD can be multiplied in O(mθ )

operations from ZD . Using standard matrix multiplication θ =
3, but better algorithms [26] allow for θ = 2.38.

FIG. 1. (a) The graph state used in the example. (b) The encoding

circuit: the input states Z
ζ1m1

1 Z
ζ2m2

2 |++〉 that correspond to the trivial

code C0 are mapped by W to C, then U entangles the qudits. Here

m1 = 2, m2 = 3, and ζj are integers such that 0 � ζj � dj − 1, with

d1 = 3, d2 = 2.

For the example above, the sequence
(

4 3 3

0 3 3

)

→
(

4 0 0

0 3 3

)

→
(

4 0 0

0 3 0

)

→
(

2 0 0

0 3 0

)

= s (33)

proceeds by adding the second row of f to the first (mod 6), then

the second column to the third column, and finally multiplying

the first row by 5 (which is invertible mod 6). The final step

is needed so that the diagonal elements divide D: m1 = 2,

m2 = 3, so that d1 = 3 and d2 = 2. Thus we arrive at the

trivial coding group

C0 =
〈

Z2
1, Z

3
2

〉

, (34)

isomorphic to C in (30).

Since the procedure for reducing a matrix to Smith normal

form is quite general, the procedure illustrated in this example

can be applied to any coding groupC, as defined following (26),

to find a corresponding trivial coding group C0. The row

operations change the collection of generators but not the

coding group that they generate; i.e., the final collection of K

rows is the same. The column operations, on the other hand,

produce a different, but isomorphic, coding group, and one can

think of these as realized by a unitary operator W which is a

product of various SWAP, CNOT, and Sq gates, so that

C = WC0W
†, (35)

that is, conjugation by W maps each operator in C0 to its

counterpart in C. In our example, W = CNOT32 is the only

column operation, the second arrow in (33), and represents the

first step in the encoding circuit for this example [Fig. 1(b)].

It is left as an exercise to check that this relates the generators

in (30) and (34) through (35). Table III indicates how different

matrix column operations are related to the corresponding

gates in the encoding circuit.

The overall encoding operation

|cj 〉 = UW
∣

∣c0
j

〉

(36)

starting with the trivial code on the trivial graph (C0, |G0〉)
and ending with the desired code (C, |G〉) is shown for our

example in Fig. 1(b) for the case of a graph indicated in (a) in

this figure. It is important to notice that both W and U , and

therefore their product, are Clifford operators, unitaries that

under conjugacy map Pauli products to Pauli products. This

follows from the fact that the gates in Table III are Clifford

gates and will allow us in what follows to extend arguments
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TABLE III. The correspondence between matrix column opera-

tions in ZD and conjugation by Clifford gates. For the CNOT gate, the

first qudit a is the control and the second qudit b is the target.

Matrix operation in ZD Clifford conjugation

Interchange of columns a and b SWAPab

Multiplication of column a Sq on qudit a

by invertible integer q

Addition of m times column b to (CNOTab)m

column a

that are relatively straightforward for trivial codes on trivial

graphs to more general additive graph codes.

C. The information group

In this section we define the information group that plays

a central role in the isomorphism theorem in Sec. V below.

The basic strategy is most easily understood in terms of

C0 = (C0, |G0〉), the trivial code on the trivial graph. However,

because the overall encoding map UW in (36) is a Clifford

operation mapping Pauli products to Pauli products, various

results that apply to C0 can be immediately translated to the

general graph code C = (C, |G〉) we are interested in, and for

this reason most of the formulas valid for both are written in

the form valid for C even if the derivations are based on C0.

The pointwise stabilizer1 of C0, the subgroup of operators

from Pn that leave every codeword |c0
j 〉 unchanged, is given

by

S0 = {Xx : x = (η1d1, η2d2, . . . , ηkdk, xk+1, . . . , xn)}, (37)

where the dj are defined in (29), ηj is any integer between 0

and mj − 1, and the xj for j > k are arbitrary integers between

0 and D − 1. That this is correct can be seen as follows. First,

Pauli products belonging toS0 cannot contain Zj operators, for

such operators map each codeword onto an orthogonal state.

On the other hand, every X
xj

j leaves |G0〉, (21), unchanged, so

it belongs to S0 if and only if it commutes with Z
mj

j , which

means xjmj must be a multiple of D, or xj a multiple of

dj , see (29). Thus elements of S0 commute with elements

of C0 (28). Since its operators cannot alter the phases of the

codewords, no additional factors of ωλ are allowed, and thus

S0 is given by (37). The stabilizer of the (nontrivial) code C is

then the isomorphic group S obtained using the unitary UW

of (36):

S = (UW )S0(UW )† ≡ {(UW )s(UW )† : s ∈ S0}, (38)

a collection of Pauli products because the unitary UW , as

remarked earlier, is a Clifford unitary. The order of S0, and

1Also called the fixer or fixator. It is important to distinguish this

subgroup from the group theoretical notion of the stabilizer of the

coding space in the sense of the subgroup of Pn that maps the coding

space onto itself without necessarily leaving the individual vectors

fixed. As we shall not employ the latter, it should cause no confusion

if we hereafter follow the usual convention in quantum codes and omit

“pointwise,” even though retaining it would add some precision.

thus of S, is given by

|S| = Dn−k

k
∏

j=1

mj =
Dn

∏k
j=1 dj

=
Dn

|C|
=

Dn

K
. (39)

Next define the subgroup W of Pn as

W = 〈SG, C〉 (40)

generated by operators belonging to the stabilizer SG of the

graph state or to the coding group C, and we denote it by

W0 = 〈SG
0 , C0〉 in the case of the trivial code. The elements of

S0 commute with those ofSG
0 (both are Abelian and the former

is a subgroup of the latter), and also with those of C0, as noted

above. As group properties are preserved under the UW map,

as in (38), we conclude that all elements in S commute with

those in W , even though W is not (in general) Abelian, and

hence S is a normal subgroup of W . Now define the abstract

information group as the quotient group

G = W/S = 〈SG, C〉/S (41)

consisting of cosets of S, written as gS or Sg for g in W . Note

that because any element g of W is a Pauli product, gD = I

is the identity, and the order of g is either D or an integer that

divides D. Consequently the order of any element of G is also

D or an integer that divides D.

To understand the significance of G consider a trivial code

on a single qudit, with

C0 =
〈

Z
m1

1

〉

, SG
0 = 〈X1〉, S0 =

〈

X
d1

1

〉

. (42)

The elements of G0 can be worked out using its identity Ī and

the generators X̄ and Z̄:

Ī = S0 =
{

I1, X
d1

1 , X
2d1

1 , . . .
}

,

X̄ = X1S0 =
{

X1, X
d1+1
1 , X

2d1+1
1 , . . .

}

, (43)

Z̄ = Z
m1

1 S0 =
{

Z
m1

1 , Z
m1

1 X
d1

1 , . . .
}

.

It is evident that the cosets X̄, X̄2 = X2
1S0 and so forth up to

X̄d1−1 are distinct, whereas X̄d1 = Ī = S0. The same is true

for powers of Z̄. Furthermore,

X̄Z̄ = X1Z
m1

1 S0 = ωm1Z
m1

1 X1S0 = ω̄Z̄X̄, (44)

with ω̄ = ωm1 = e2πi/d1 . Thus G0 is generated by operators X̄

and Z̄ that satisfy (8) with D replaced by d1, which is to say the

corresponding group is what one would expect for a qudit of

dimension d1. The same argument extends easily to the trivial

code on k carriers produced by C0 [see (28)]: G0 is isomorphic

to the group of Pauli products on a set of qudits of dimension

d1, d2, . . . , dk . The same structure is inherited by the abstract

information group G for the code C = (C, |G〉) obtained by

applying the UW map as in (38).

The abstract information group G is isomorphic to the

information group G of information operators acting on the

coding space HC and defined in the following way. Its identity

is the operator

P = |S|−1	(S) = |S|−1
∑

s∈S

s, (45)

where 	(A) denotes the sum of the operators that make up

a collection A. In fact, P is just the projector onto HC , as
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can be seen as follows. Since S is a group, P 2 = P ; and

since a group contains the inverse of every element, and s ∈ S
is unitary (a Pauli product), P † = P . These two conditions

mean that P is a projector onto some subspace of Hn. Since

S is the (pointwise) stabilizer of the coding space each s in S
maps a codeword onto itself, and thus P maps each codeword

to itself. Consequently, all the codewords lie in the space onto

which P projects. Finally, the rank of P is

Tr[P ] = Dn/|S| = |C| = K (46)

[see (39)], since the trace of every s in S is zero except for

the identity with trace Dn. (Note that while Pn contains the

identity multiplied by various phases, only the identity operator

occurs in S.) Therefore P projects onto HC, and is given by

the formula

P =
K

∑

j=1

|cj 〉〈cj |. (47)

The other information operators making up the information

group G = {ĝ} are formed in a similar way from the different

cosets making up W/S:

ĝ = |S|−1	(gS) = gP = PgP = P ĝP . (48)

That is, for each coset form the corresponding sum of operators

and divide by the order of the stabilizerS. The second and third

equalities in (48) reflect the fact that the product of the cosets

S and gS in either order is gS, which is to say P forms the

group identity of G. They also tell us that the operators that

make up G act only on the coding space, mapping HC onto

itself, and give zero when applied to any element of Hn in

the orthogonal complement of HC . Because S is a normal

subgroup of W , products of operators of the form (48) mirror

the products of the corresponding cosets, so the map from

the abstract G to the group G is a homomorphism. That it is

actually an isomorphism is a consequence of the following,

proved in Appendix A:

Lemma 1. Let R be a linearly independent collection of

Pauli product operators that form a subgroup of Pn, and for

a Pauli product p let pR = {pr : r ∈ R}. Then we have the

following.

(i) The operators in pR are linearly independent and

(ii) If p and q are two Pauli products, one or the other of

the following two mutually exclusive possibilities obtains:

(α)

pR = eiφqR (49)

in the sense that each operator in pR is equal to eiφ times an

operator in qR.

(β) the union pR ∪ qR is a collection of 2|R| linearly

independent operators.

Since the collection of Pauli products Qn with fixed phase

forms a basis of L(Hn), a collection of Pauli products can

be linearly dependent if and only if it contains both an

operator and that operator multiplied by some phase. As the

(pointwise) stabilizer S leaves each codeword unchanged,

the corresponding operators are linearly independent, and

the lemma tells us that distinct cosets gS �= hS give rise to

distinct operators ĝ �= ĥ. Either gS = eiφhS, in which case

ĝ = eiφ ĥ �= ĥ (since if eiφ = 1 the cosets are identical) or else

the gS operators are linearly independent of the hS operators,

and therefore ĝ and ĥ are linearly independent. Consequently,

the homomorphic map from G to G is a bijection, and the two

groups are isomorphic.

The single-qudit example considered in (42) provides an

example of how G and G are related. In this case the projector

P0 = (1/m1)
(

I1 + X
d1

1 + · · ·
)

(50)

projects onto the subspace spanned by |+〉, Zm1

1 |+〉,
Z

2m1

1 |+〉, . . . . While each of the operators that make up a

coset such as X̄ in (43) is unitary, their sum, an operator times

P0, is no longer unitary, though when properly normalized it

acts as a unitary on the subspace onto which P0 projects. That

the different sums of operators making up the different cosets

are distinct is in this case evident from inspection without the

need to invoke Lemma 1.

Let us summarize the main results of this subsection. For an

additive graph code C we have defined the information groupG
of operators acting on the coding subspace HC , whose group

identity is the projector P onto HC . It is isomorphic to the

group of Pauli products acting on a tensor product of qudits of

dimensions d1, d2, . . ., dk , which can be thought of as the input

to the code, see Sec. IV B. Each element ĝ of G is of the form

P ĝP , so as an operator on Hn it commutes with P and yields

zero when applied to any vector in the orthogonal complement

of HC . The dimension of HC is K = d1d2 · · · dk , the size of

the code, and hence the elements of G span the space of linear

operators L(HC) on HC .

V. SUBSETS OF CARRIERS AND THE

ISOMORPHISM THEOREM

A. Subsets of carriers

Before stating the isomorphism theorem, which is the

principal technical result of this paper, let us review some facts

established in Sec. IV. The additive graph code (C, |G〉) we

are interested in can be thought of as arising from an encoding

isometry that carries the channel input onto a subspace HC of

the n-qudit carrier space Hn, as in Fig. 1. This isometry, as

explained in Sec. II in connection with (4), constitutes a perfect

quantum channel, and thus all the information of interest can be

said to be located in theHC subspace, where it is represented by

the information group G, a multiplicative group of operators

for which the projector P on HC is the group identity, and

which as a group is isomorphic to the abstract information

group G defined in (41).

We are interested in what kinds of information are available

in some subset B of the carriers, where B̄ denotes the

complementary set. For this purpose it is natural to consider

the partial traces over B̄, i.e., the traces down to the Hilbert

space HB , of the form

gB = N−1TrB̄[ĝ], (51)

where ĝ is an element of the information group G, and the

positive constant N is defined in (58) below. In those cases

in which gB = 0 the J (ĝ) information has disappeared and is

not available in the subset B, so we shall be interested in those

ĝ for which the partial trace does not vanish, that is to say in
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the elements of the subset information group

GB = {ĝ ∈ G : TrB̄[ĝ] �= 0} . (52)

We show below that GB is a subgroup of G, thus justifying

its name, and that it is isomorphic to the group GB of nonzero

operators of the form gB defined in (51). To actually determine

which elements of G belong to GB one needs to take partial

traces of the ĝ ∈ G to see which of them do not trace down

to zero. In Appendix C we present an efficient linear algebra

algorithm based on solving systems of linear equations mod

D that can find GB in O(K2nθ ) operations from ZD where θ

is defined in Sec. IV B.

If an operator A on the full Hilbert spaceHn of the n carriers

can be written as a tensor product of an operator on HB times

the identity operator IB̄ on HB̄ we shall say that A is based

in B. Let B be the collection of all operators on Hn that are

based in B. Obviously, B is closed under sums, products, and

scalar multiplication. In addition the partial trace TrB̄[A] of an

operator A in B is “essentially the same” operator, apart from

normalization in the sense that

A = D−|B̄| · TrB̄[A] ⊗ IB̄ . (53)

If A /∈ B is a Pauli product, then its partial trace over B̄

vanishes, since Tr[X] and Tr[Z] and their powers (when not

equal to I ) are zero. Consequently, the partial trace over B̄ of

	(gS) in (48) is the same as the partial trace of 	[(gS) ∩ B],

which suggests that it is useful to consider the properties of

collections of Pauli operators of the form (gS) ∩ B with g an

element of W . The following result, proved in Appendix A,

turns out to be useful.

Lemma 2. Let g, h be two arbitrary elements of W , and let

B be the collection of operators with base in B.

(i) The set (gS) ∩ B is empty if and only if (g−1S) ∩ B is

empty.

(ii) Every nonempty set of the form (gS) ∩ B contains

precisely

M = |S ∩ B| � 1 (54)

elements.

(iii) Two nonempty sets (gS) ∩ B and (hS) ∩ B are ei-

ther identical, which means gS = hS and 	[(gS) ∩ B] =
	[(hS) ∩ B], or else they have no elements in common and

the operators 	[(gS) ∩ B] and 	[(hS) ∩ B] are distinct.

(iv) If both (gS) ∩ B and (hS) ∩ B are nonempty, their

product as sets, including multiplicity, is given by

[(gS) ∩ B] · [(hS) ∩ B] = M[(ghS) ∩ B]. (55)

By (55) we mean the following. The product (on the left)

of any operator from the collection (gS) ∩ B with another

operator from the collection (hS) ∩ B belongs to the collection

(ghS) ∩ B (on the right), and every operator in (ghS) ∩ B can

be written as such a product in precisely M different ways.

We are now in a position to state and prove our central

result.

B. Isomorphism theorem

Theorem 3 (Isomorphism). Let C be an additive graph code

with information group G, let P be the projector onto the

coding spaceHC , and let B be some subset of the carrier qudits.

Then the collection GB of members of G with nonzero partial

trace down to B (52) is a subgroup of the information group G,

and the mapping ĝ → gB in (51) carries GB to an isomorphic

group GB of nonzero operators on HB . Furthermore we have

the following.

(i) If ĝ and ĥ are any two elements of GB , then

TrB̄[ĝĥ] = TrB̄[ĝ]TrB̄[ĥ]/N or (gh)B = gBhB .

(56)

(ii) If ĝ �= ĥ are distinct elements of GB , gB �= hB are

distinct elements of GB .

(iii) The identity element

PB := TrB̄[P ]/N, (57)

of GB is a projector onto a subspace of HB (possibly the whole

space) with rank equal to Tr[P ]/N = K/N .

The normalization constant N is given as

N := |S ∩ B| · D|B̄|/|S|, (58)

where B are the operators based in B.

Proof. The proof is a consequence of Lemma 2 and the

following observations. The trace TrB̄[ĝ] in (51) is, apart from

a constant, the trace of 	[(gS) ∩ B], and is zero if (gS) ∩ B
is empty. If the collection (gS) ∩ B is not empty, then by

Lemma 1 it consists of a collection of linearly independent

operators, and the trace of its sum cannot vanish. Thus there is a

one-to-one [see part (iii) of Lemma 2] correspondence between

nonempty sets of the form (gS) ∩ B and the elements ĝ in GB .

Then (i) and (iv) of Lemma 2 imply both that GB is a group and

also that the map from GB to GB is a homomorphism, whereas

(ii) shows that this is actually an isomorphism: gB = hB is

only possible when gS = hS. That N in (58) is the correct

normalization follows from (54), (55), and (48). �

A significant consequence of Theorem 3 is the following

result on the presence and absence of information in the subset

B, using the terminology of Sec. II:

Theorem 4. Let C be an additive graph code on n carrier

qudits, with information group G. Let B be a subset of the

carrier qudits, GB the corresponding subset information group,

and J (ĝ) the type of information corresponding to ĝ (as

defined in Sec. II). Then we have the following.

(i) The J (ĝ) type of information is perfectly present in B

if and only if ĝ ∈ GB .

(ii) The J (ĝ) type of information is absent from B if and

only if ĝk /∈ GB for all integers k between 1 and D − 1.

(iii) All information is perfectly present in B if and only if

GB = G.

(iv) All information is absent from B if and only if GB

consists entirely of scalar multiples of the identity element P

of G.

The proof of the theorem can be found in Appendix B.

Statement (iii) is useful because the check of whether there is

a perfect quantum channel from the input to B involves a finite

group G; one does not have to consider all normal operators

of the form (2). Statement (ii) deserves further comment. If

D is prime then the order of any element of the Pauli group

(apart from the identity) is D see the remark following (9).

The same is true of elements of the quotient group G (41) and

thus of members ĝ of the isomorphic group G. Consequently,
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for any k in the interval 1 < k < D, there is some m such

that 1 = km mod D, which means ĝ = (ĝk)m. And since GB

is a group, ĝk ∈ GB implies ĝ ∈ GB . Thus when D is prime,

ĝ /∈ GB is equivalent to ĝk /∈ GB for all integers k between

1 and D − 1, and the latter can be replaced by the former

in statement (ii). However, when D is composite it is quite

possible to have TrB̄[ĝ] = 0 but TrB̄[ĝk′
] �= 0 for some k′ larger

than 1 and less than D; see the example below. In this situation

we can still say that J (ĝk′
) is perfectly present, but it is not

true that J (ĝ) is absent. One can regard the type J (ĝ) as a

refinement of J (ĝk′
), and as explained in Sec. II, although the

coarse-grainedJ (ĝk′
) information is perfectly present in B, the

additional information associated with the refinement is not.

As an example, suppose ĝ has a spectral decomposition

ĝ = J0 + iJ1 − J2 − iJ3, (59)

with the Jj orthogonal projectors such that

TrB̄[J0] = TrB̄[J2] �= TrB̄[J1] = TrB̄[J3]. (60)

Then TrB̄[ĝ] = 0, whereas

ĝ2 = (J0 + J2) − (J1 + J3), (61)

and thus TrB̄[ĝ2] �= 0. Thus ĝ2 is an element of GB , whereas

ĝ is not, and so the coarse grained J (ĝ2) information

corresponding to the decomposition on the right side of (61) is

present in B, while the further refinement corresponding to the

right side of (59) is not. Precisely this structure is produced by

a graph code on two carriers of dimension D = 4, with graph

state |G〉 = |++〉, coding group C = 〈Z1Z2〉, information

group G = 〈X1P,Z1Z2P 〉, coding space projector

P =
(

I + X1X
3
2 + X2

1X
2
2 + X3

1X2

)/

4, (62)

and

ĝ = X1P = |0̄0̄〉〈0̄0̄| + i|1̄2̄〉〈1̄2̄| − |2̄0̄〉〈2̄0̄| − i|3̄2̄〉〈3̄2̄|,
(63)

where |j̄〉 = Zj |+〉 are the eigenvectors of the X operator.

C. Information flow

At this point let us summarize how we think about informa-

tion “flowing” from the input via the encoding operation into

a subset B of the code carriers. At the input the information

is represented by the quotient group G0 = W0/S0 [see (41)]

or more concretely by the isomorphic group G0 of operators

generated by the cosets, as in (48). The encoding operation

UW [see (36) and (38)] maps G0 to the analogous G = W/S
associated with the code C, and likewise G0 to the group of

operators G acting on the coding space HC . Tracing away

the complement B̄ of B maps some of the ĝ operators of G
to zero, and the remainder form the subset information group

GB . Applying the inverse UW map to GB gives GB
0 , a subgroup

of G0 that tells us what types of information at the input (i.e.

before the encoding) are available in the subset of carriers B.

This is illustrated by various examples in the next section.

VI. EXAMPLES

A. General principles

In this section we apply the principles developed earlier

in the paper to some simple [[n, k, δ]]D additive graph codes,

where n is the number of qudit carriers, each of dimension D,

the dimension of the coding space HC is K = Dk , and δ is the

distance of the code; see Chap. 10 of [27] for a definition of δ.

We shall be interested in the subset information groupGB , (52),

that represents the information about the input that is present

in the subset B of carriers. Rather than discussing GB or its

traced down counterpart GB , it will often be simpler to use GB
0 ,

the subset information group referred back to the channel input

(see Sec. V C), and in this case we add an initial subscript 0 to

operators: X01 means the X operator on the first qudit of the

input. Since all three groups are isomorphic to one another,

the choice of which to use in any discussion is a matter of

convenience. (In the examples below for the sake of brevity we

sometimes omit a term eiφI from the list of generators of GB
0 .)

Before going further it is helpful to list some general

principles of quantum information that apply to all codes,

and which can simplify the analysis of particular examples, or

give an intuitive explanation of why they work. In the following

statements “information” always means information about the

input which has been encoded in the coding space through

some isometry.

1. If all information is perfectly present in B, then all

information is absent from B̄.

2. If all information is absent from B̄ then all information

is perfectly present in B.

3. If the information about some orthonormal basis (i.e.,

the type corresponding to this decomposition of the identity)

is perfectly present in B, then the information about a mutually

unbiased basis is absent from B̄.

4. If two types of information that are “sufficiently incom-

patible” are both perfectly present in B, then all information

is perfectly present in B. In particular this is so when the two

types are associated with mutually unbiased bases.

5. For a code of distance δ all information is absent from

any B if |B| < δ, and all information is perfectly present in B

if |B| > n − δ.

Items 1, 2, 3, and 4 correspond to the No Splitting,

Somewhere, Exclusion, and Presence theorems of [20], which

also gives weaker conditions for “sufficiently incompatible.”

The essential idea behind 5 is found in Sec. III A of [28].2

B. One encoded qudit

It was shown in [12] that a [[5, 1, 3]]D code exists for all

D. Here we consider the graph version [13] where the coding

group is

C = 〈Z1Z2Z3Z4Z5〉 (64)

and the graph state is shown in Fig. 2(a). Our formalism shows

that, whatever the value of D, there are only two possibilities.

2It is shown in [28] that if noise only affects a certain subset B̄ of

the carriers with |B̄| < δ, then the errors can be corrected using the

complementary set B. In our notation this is equivalent to saying that

all the information is in B.
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FIG. 2. (a) The graph state for the [[5, 1, 3]]D code. (b) The graph

state for the Steane [[7, 1, 3]]2 code.

When |B| is 1 or 2, GB is the just the group identity, the

projector P on the coding space, so all information is absent,

whereas if |B| is 3, 4, or (obviously) 5, GB = G, so the

subsystem B is the output of a perfect quantum channel. To

be sure, these results also follow from principle 5 in the above

list, given that δ = 3 for this code.

The Steane [[7, 1, 3]]2 code, a graphical version of which

[29] has a coding group

C = 〈Z3Z5Z7〉 (65)

for the graph state shown in Fig. 2(b), is more interesting in that

while principles 5 ensures that all |B| � 2 = δ − 1 subsets of

carriers contain zero information and all |B| � 5 = n − δ + 1

subsets contain all the information, one qubit, it leaves open

the question of what happens when |B| = 3 or 4. We find

that all information is perfectly present when B is {1, 2, 5},
{1, 3, 6}, {1, 4, 7}, {2, 3, 4}, {2, 6, 7}, {4, 5, 6}, or {3, 5, 7}—
representing three different symmetries in terms of the graph in

the figure—and absent for all other cases of |B| = 3. Therefore

all information is absent from the |B| = 4 subsets which are

complements of the seven just listed and perfectly present in

all others of size |B| = 4. So far as we know, generalizations

of this code to D > 2 have not been studied.

A simple code in which a specific type of information is

singled out is [[n, 1, 1]]D generated by

C = 〈Z1Z2 · · · Zn〉 (66)

on the complete graph, illustrated in Fig. 3(b) for n = 6.

Whereas all information is (of course) present when |B| = n, it

turns out that for any subset B with 1 � |B| < n one has GB
0 =

〈X01Z01〉, i.e., the Abelian group consisting of all powers of

the operator X1Z1 on the input qudit. Thus the information is

FIG. 3. (a) Complete graph (on six qudits). (b) Bar graph with

n = 2p carriers and p bars.

“classical,” corresponding to that decomposition of the input

identity that diagonalizes X1Z1. The intuitive explanation for

this situation is that this X1Z1 type of information is separately

copied as an ideal classical channel [see (6)] to each of the

carrier qudits, and as a consequence other mutually unbiased

types of information are ruled out by principle 3. This, of

course, is typical of “classical” information, which can always

be copied.

A more interesting example in which distinct types of

information come into play is the bar graph [Fig. 3(a)], in

which n qudits are divided up into p = n/2 pairs or “bars,”

and the code is generated by

C = 〈Z1Z2 · · ·Zn〉. (67)

Let us say that a subset of carriers B has property I if the

corresponding subgraph contains at least one of bars and

property II if it contains at least one qudit from each of the

bars. Then the following holds:

(i) If B has property I but not II, GB
0 = 〈X01〉, an Abelian

group.

(ii) If B has property II but not I, GB
0 = 〈Xp

01Z01〉, another

Abelian group.

(iii) If B has both property I and property II, all information

(one qudit) is perfectly present.

(iv) When B has neither property I nor II, all information

is absent.

While both (i) and (ii) are “classical” in an appropriate

sense and indeed represent an ideal classical channel, the two

Abelian groups do not commute with each other, so the two

types of information are incompatible, and it is helpful to

distinguish them. Case (iii) illustrates principle 4, since X01

and X
p

01Z01 (whatever the value of p) correspond to mutually

unbiased bases. In case (iv) the complement B̄ of B possesses

both properties I and II, and therefore contains all the infor-

mation, so its absence from B is an illustration of principle 1.

C. Two encoded qudits

Consider a [[4, 2, 2]]D code based on the graph state shown

in Fig. 4 whose coding group

C = 〈Z1Z2, Z3Z4〉, (68)

employs two generators of order D and thus encodes two

qudits. Note that while the graph state has the symmetry of a

square the coding group has a lower symmetry corresponding

to the different types of nodes employed in the figure.

Let us begin with the qubit case D = 2. Our analysis shows

that when |B| = 1 all information is absent, and thus for |B| �

3 all information is present, consistent with the fact that this

FIG. 4. The graph state of the [[4, 2, 2]]D code.
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code has δ = 2 [8] (see principle 5). Thus the interesting cases

are those in which |B| = |B̄| = 2, for which one finds

B ={1, 3}, B̄ = {2, 4} : GB
0 =GB̄

0 = 〈X01Z01Z02, X01X02〉;
(69)

B = {1, 4}, B̄ = {2, 3} : GB
0 =GB̄

0 = 〈X01Z01, X02Z02〉;
(70)

B = {1, 2}, B̄ = {3, 4} : GB
0 =GB̄

0 = 〈X01Z01, X02Z02〉.
(71)

In each case the generators commute and thus the subgroup

GB
0 is Abelian. Hence the information is “classical,” and

the same type is present both in B and B̄, not unlike the

situation for the complete graph considered earlier. However,

the three subgroups do not commute with each other, so the

corresponding types of information are mutually incompatible,

a situation similar to what we found for the bar graph.

For D > 2 it is again the case that all information is absent

when |B| = 1 and completely present for |B| � 3. And (69)

and (70) remain correct (with each generator of order D), and

these subgroups are again Abelian. However, when B = {1, 2}
and B̄ = {3, 4}, (71) must be replaced with

GB
0 =

〈

Z01X
2
02, Z02

〉

, GB̄
0 =

〈

Z01, X
2
01Z02

〉

. (72)

In each case the two generators do not commute with each

other, so neither subgroup is Abelian. However, all elements of

GB
0 commute with all elements of GB̄

0 . Also, the two subgroups

are isomorphic (interchange subscripts 1 and 2).

For odd D � 3 one can use for GB
0 an alternative pair of

generators

GB
0 =

〈

Zm
01X02, Z02

〉

, m := (D + 1)/2, (73)

whose order is D and whose commutator is
(

Zm
01X02

)

Z02 = ωZ02

(

Zm
01X02

)

. (74)

This means—see (8)—that GB
0 , and thus also the (isomorphic)

GB̄
0 , is isomorphic to the Pauli group of a single qudit. Since GB

0

and GB̄
0 commute with each other, it is natural to think of the

pair as associated with the tensor product of two qudits with

the same D. That this is correct can be confirmed by explicitly

constructing a “pre-encoding” circuit embodying the unitary

(F1 ⊗ F2)†CP
−m
12 (F1 ⊗ F2), (75)

expressed in terms of the Fourier and CP gates defined in

Sec. III B, that carries the Pauli groups on “pre-input” qudits

1 and 2 onto GB
0 and GB̄

0 , respectively.

Things become more complicated for even D � 4, where

GB
0 (and also GB̄

0 ) are no longer isomorphic to the Pauli group

of a single qudit.

VII. CONCLUSION

We have shown that for additive graph codes with a set

of n carrier qudits, each of the same dimension D, where D

is any integer greater than 1, it is possible to give a precise

characterization of the information from the coding space

that is present in an arbitrary subset B of the carriers. This

information corresponds to a subgroup GB of a group G, the

information group of operators on the coding space, that spans

the coding space and provides a useful representation of the

information that it contains. We discuss how what we call a

trivial code, essentially a tensor product of qudits of (possibly)

different dimensions, can be encoded into the coding space

in a manner which gives one a clear intuitive interpretation

of G. The subgroup GB is then simply the subset of operators

in G whose trace down to B is nonzero, and the traced-down

operators when suitably normalized form a group GB that is

isomorphic to GB . The information present in those operators

in G that are not in GB disappears so far as the subsystem

B is concerned, as their partial traces are zero. This is the

central result of our paper and is illustrated by a number of

simple examples in Sec. VI. We also provide in Appendix C a

relatively simple algorithm for finding the elements of GB .

These results can be extended to arbitrary qudit stabilizer

codes even if they are not graph codes, by employing

appropriate stabilizer and information groups, as in Sec. IV.

Here, however, the concept of a trivial code, and thus our

perspective on the encoding step, may not apply. The extension

of these ideas, assuming it is even possible, to more general

codes, such as nonadditive graph codes, remains an open

question.

As shown in Appendix D our formalism can be fitted

within the general framework of invariant algebras as discussed

in [16–19]. The overall conceptual framework we use is

somewhat different from that found in these references in that

we directly address the question of what information is present

in the subsystem of interest, rather than asking whether there

exists some recovery operation (theR in Appendix D) that will

map an algebra of operators back onto its original space. Thus

in our work the operator groups GB on the coding space and

GB on the subsystem are isomorphic but not identical. Hence,

even though there is, obviously, a close connection between our

“group approach” and the “algebraic approach,” the algebra

of interest being generated from the group of operators,

further relationships remain to be explored. The fact that the

arguments in Appendix D are not altogether straightforward

suggests that the use of groups in cases where this is possible

may provide a useful supplement, both mathematically and

intuitively, to other algebraic ideas. In particular the additional

structure present in an additive graph code allows one to

determine GB in O(nθ + K2n2) (Appendix C) as against

O(K6) for the algorithm presented in [19] for a preserved

matrix algebra, where K is the dimension of the input and

output Hilbert space.
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APPENDIX A: PROOF OF LEMMAS 1 AND 2

Proof of Lemma 1. The operators in pR are linearly

independent when those in R are linearly independent, since

p is unitary and thus invertible. This establishes (i). For (ii),

consider the case where q is the identity I . As the collection
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R is linearly independent, there is at most one r ∈ R such that

pr is a multiple of the identity. If such an r exists, p is of the

form eiφr−1, and since R is a group, pR = eiφr−1R = eiφR,

we have situation (α), with the collection pR ∪ R linearly

dependent. Next assume the collection pR ∪ R is linearly

dependent, which means there are complex numbers {ar} and

{br}, not all zero, such that

∑

r∈R

[arr + brpr] = 0. (A1)

This is not possible if all the ar are zero, since this would

mean p
∑

r brr = 0, and thus
∑

r brr = 0, implying br = 0

for every r , since the R collection is by assumption linearly

independent. Thus at least one ar , say as is not zero. Multiply

both sides of (A1) by s−1 on the right and take the trace:

asTr[I ] +
∑

r∈R

brTr[prs−1] = 0, (A2)

implying there is at least one r for which Tr[prs−1] �= 0. But

then p is of the form eiφsr−1 = eiφ r̄−1 for r̄ = rs−1 ∈ R, so

we are back to situation (α). Hence the alternative to (α) is (β):

the operators in pR ∪ R are linearly independent. Finally, if

q is not the identity I , simply apply the preceding argument

with p̄ = q−1p in place of p.

Proof of Lemma 2. Statement (i) is a consequence of the

fact that if an invertible operator is in B, so is its inverse, and

since S is a group, gS consists of the inverses of the elements

in g−1S.

Statements (ii) and (iv) follow from a close examination

of (55). Assume both sets on the left side are nonempty. If gs1

and hs2 are both in B, so is their product gs1hs2 = ghs1s2,

where we use the fact that g and h commute with every

element of S. If, on the other hand, (ghS) ∩ B and (gS) ∩ B
are nonempty, any element, say ghs1, in the former can be

written using a specific element, say gs̄, in the latter, as

ghs1 = (gs̄)(hs2), (A3)

where s2 = s1s̄
−1 is uniquely determined by this equation, and

the fact that both ghs1 and gs̄ are (by assumption) in B means

the same is true of hs2. Thus not only can every element of

(ghS) ∩ B be written as a product of elements of (gS) ∩ B,

but there is a one-to-one correspondence between (ghS) ∩ B
and (gS) ∩ B, which must therefore be of equal size. A similar

argument shows that (ghS) ∩ B and (hS) ∩ B are of the same

size. This establishes both (ii) and (iv).

As for (iii), use the fact that the cosets gS and hS are either

identical or have no elements in common, so the same is true

of their intersections with B. If gS and hS have no elements

in common, Lemma 1 with R = S tells us that either gS =
eiφ(hS) for some nonzero φ, in which case 	[(gS) ∩ B] =
eiφ	[(hS) ∩ B] is distinct from 	[(hS) ∩ B], or else the col-

lection (gS) ∪ (hS) is linearly independent, which means that

its intersection with B shares this property and the operators

	[(gS) ∩ B] and 	[(hS) ∩ B] are linearly independent.

APPENDIX B: PROOF OF THEOREM 4

The proof of Theorem 4 makes use of the following:

Lemma 5. Let ĝ = P ĝP be an information operator in G
with spectral decomposition

ĝ =
m−1
∑

j=0

λjJj , (B1)

where the mutually orthogonal projectors Jj sum to P . Then

each projector Jj can be written as a polynomial in ĝ with

ĝ0 = P :

Jj =
m−1
∑

k=0

αjk ĝ
k. (B2)

Proof. The proof consists in noting that

ĝk =
m−1
∑

j=0

λk
jJj =

m−1
∑

j=0

βkjJj (B3)

is a linear equation in the Jj with βkj = λk
j an m × m

Vandermonde matrix whose determinant is
∏

j>k(µj − µk)

(see p. 29 of [30]). As the µj are distinct the matrix βkj has an

inverse αjk . �

To prove (i) of Theorem 4, first assume that ĝ is inGB . Since

GB is a group with identity P , this means that all powers of ĝ,

including ĝ0 = P , are also in GB . Consequently, the projectors

entering the spectral decomposition (B1) of ĝ satisfy

N−1TrB̄[Jj ]TrB̄[Jk] = TrB̄[JjJk] = δjkTrB̄[Jj ], (B4)

with the first equality obtained by expanding Jj and Jk in

powers of ĝ, (B2), and using (56) along with the linearity

of the partial trace. This orthogonality of the partial traces

of different projectors [see (3)] implies that the J (ĝ) type of

information is perfectly present in B. Conversely, if the J (ĝ)

type of information is perfectly present in B then the partial

traces down to B of the different Jj , which cannot be zero, are

mutually orthogonal and thus linearly independent. Therefore

by (B1), TrB̄[ĝ] cannot be zero, and ĝ is in GB .

The prove (ii) note that ĝk absent from GB for 1 � k < D

means that TrB̄[ĝk] = 0 for these values of k, and thus by

taking the partial trace of both sides of (B2) and using (57),

TrB̄[Jj ] = Nαj0PB . (B5)

Since these partial traces are identical up to a multiplicative

constant there is no information of the J (ĝ) type in B. For the

converse, if there is noJ (ĝ) information in B then there is also

no J (ĝ2), J (ĝ3), etc. information in B, since the projectors

which arise in the spectral decomposition of ĝk are already in

the spectral decomposition of ĝ [see (B3)]. Consequently, by

(i), these ĝk must be absent from GB .

To prove (iii), note that if all information is perfectly present

in B this means that for every ĝ ∈ G the J (ĝ) information is

present in B, and therefore, by (i), ĝ ∈ GB , so G = GB . For

the converse, let Q1 and Q2 be two orthogonal but otherwise

arbitrary projection operators on subspaces of the coding space

HC . Because the elements of the information group G form a

basis for the set of linear operators on HC (see comments at

the end of Sec. IV C), Q1 and Q2 can both be written as sums

of elements ĝ in G, and the same argument that was employed

in (B4) shows that the orthogonality of Q1 and Q2 implies the

orthogonality of TrB̄[Q1] and TrB̄[Q2].
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To prove (iv), note that if GB consists entirely of scalar

multiples of P , the partial trace down to B of any projector

Q on a subspace of HC , since it can be written as a linear

combination of the partial traces of the ĝ in G, most of which

vanish, will be some multiple of PB , and thus all information

is absent from B. Conversely, if GB contains a ĝ which is not

proportional to P the corresponding J (ĝ) type of information

will be present in B by (i), so it is not true that all information

is absent from B, which is a contradiction.

APPENDIX C: ALGORITHM FOR FINDING GB

Here we present an algorithm for determining the subset

information group GB by finding the elements ĝ of G whose

partial trace down to B is nonzero. If two or more elements

differ only by a phase it is obviously only necessary to check

one of them. For what follows it is helpful to adopt the

abbreviation

E(x|z) := XxZz, (C1)

with (x|z) an n-tuple row vector pair, and thus a 2n-tuple of

integers between 0 and D − 1. Arithmetic operations in the

following analysis are assumed to be mod D.

First consider the trivial code on the trivial graph

(Sec. IV B), with information group GB
0 consisting of elements

of the form ĝ0 = g0P0 [see (48)], with g0 = E(x0|z0) some

element of W0 = 〈SG
0 , C0〉, and

P0 = |S0|−1
∑

x∈X0

Xx, (C2)

where X0 denotes the collection of n-tuples that enter the

stabilizer S0, (37). By choosing x0 and z0 to be of the form

x0 = (ξ1, ξ2, . . . ξk, 0, 0, . . . 0),
(C3)

z0 = (ζ1m1, ζ2m2, . . . ζkmk, 0, 0, . . . 0),

using integers in the range

0 � ξj � (dj − 1), 0 � ζj � (dj − 1), (C4)

we obtain a single representative g0 = E(x0|z0) for each coset

g0S0 inW/S0. The corresponding information operator, which

depends only on the coset, is

ĝ0 = E(x0|z0)P0 = |S0|−1
∑

x∈X0

ω−z0xE(x+x0|z0), (C5)

where the addition of x and x0 is component-wise mod D, and

z0x denotes the scalar product of z0 and x mod D (multiply

corresponding components and taking the sum mod D).

Elements of the information groupGB of the nontrivial code

of interest to us are then of the form

ĝ = (UW )ĝ0(UW )†

= |S0|−1
∑

x∈X0

ων(x,x0,z)−z0xE(x+x0|z0)Q, (C6)

where we use the fact that because the conjugating operator

UW , (36), is a Clifford operator there is a 2n × 2n matrix Q

over Z
2n
D , representing a symplectic automorphism [23], such

that

(UW )E(x|z)(UW )† = ων(x,z)E(x|z)Q, (C7)

with (x|z)Q the 2n-tuple, interpreted as an n-tuple pair,

obtained by multiplying (x|z) on the right by Q, and ν(x, z)

an integer whose value does not concern us. The explicit form

of Q can be worked out by means of the encoding procedure

presented in Sec. IV B, using Tables I and II.

The operators appearing in the sum on the right side of (C6)

are linearly independent Pauli products, since Q is nonsingular.

The trace down to B of such a product is nonzero if and only

if its base is in B, and when nonzero the result after the trace

is essentially the same operator: see (53) and the associated

discussion. Consequently gB = N−1TrB̄[ĝ] is nonzero if and

only if the trace down to B of at least one operator on the right

side of (C6) is nonzero. A useful test takes the form

TrB̄[E(x|z)] �= 0 ⇐⇒ (x|z)J = 0, (C8)

where 0 is the zero row vector, and J is a diagonal 2n × 2n

matrix with 1 at the diagonal positions j and j + n whenever

qudit j belongs to B̄, and 0 elsewhere. Therefore the ĝ

associated with x0 and z0 through (C5) and (C6) is a member

of GB if and only if there is at least one x ∈ X0 such that

(x + x0|z0)QJ = 0 or (x|0)QJ = −(x0|z0)QJ. (C9)

The x that belong to X0 are characterized by the equation

xM = 0, (C10)

where M is an n × k matrix that is everywhere 0 except for

Mjj = mj for 1 � j � k, using the mj that appear in (28).

Consequently, instead of asking whether (C9) has a solution x

belonging to X0 one can just as well ask if there is any solution

to the pair (C9) and (C10), or equivalently to the equation

xT = u0, (C11)

where T is an n × (2n + k) matrix whose first 2n columns

consist of the top half of the matrix QJ (upper n elements

of each column), and whose last k columns are the matrix M

in (C10), while u0 is a row vector whose first 2n elements are

−(x0|z0)QJ and last k elements are 0. Deciding if (C11) has a

solution x becomes straightforward once one has transformed

T to Smith normal form, including determining the associated

invertible matrices [see (32)]. As this needs to be done just once

for a given additive code and a given subset B, the complexity

of the algorithm for finding GB is O(nθ ) for finding the Smith

form plus O(n2K2) for testing the K2 elements of G once the

Smith form is available. By using the group property of GB

one can construct a faster algorithm, but that is beyond the

scope of this paper.

APPENDIX D: CORRECTABLE ∗-ALGEBRA

The counterpart in [17] of our notion of information

perfectly present at the output of a quantum channel (see

Sec. II) is that of a correctable ∗-algebra A of operators

acting on a Hilbert space. The ∗ (sometimes denoted C∗)

means that A, as well as being an algebra of operators in the

usual sense, contains a† whenever it contains a. Let the channel

superoperator E be represented by Kraus operators,

E(ρ) =
∑

j

EjρE
†
j , (D1)
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satisfying the usual closure condition
∑

j E
†
jEj = I , and let

P be a projector onto some subspace PH of the Hilbert space

H. Then a ∗-algebra A is defined in [17] to be correctable

for E on states in PH provided a = PaP for every a in A,

and there exists a superoperator R (the recovery operation in

an error correction scheme) whose domain is the range of E ,

whose range is L(H), and such that

P [(R ◦ E)†(a)]P = a = PaP (D2)

for all a ∈ A. Here the dagger denotes the adjoint of the

superoperator in the sense that

Tr{b[(R ◦ E)(c)]} = Tr{[(R ◦ E)†(b)]c} (D3)

for any b and c in L(H). In [17] (see Theorem 9 and

Corollary 10), it is shown that any correctable algebra in this

sense is a subalgebra of (what we call) a maximal correctable

algebra

AM = {a ∈ L(PH) : [a, PE
†
i EjP ] = 0 ∀ i, j}. (D4)

We can apply this to our setting described in Secs. IV and V

where P is the projector on the coding space HC and EB is

the superoperator for the partial trace down to the subset B of

carriers,

EB(ρ) = TrB̄[ρ] =
∑

j

EjρE
†
j for ρ ∈ L(H) (D5)

with Kraus operators

Ej := IB ⊗ 〈j |B̄ , (D6)

where |j 〉B̄ is any orthonormal basis of HB̄ , so

E
†
i Ej = IB ⊗ |i〉 〈j |B̄ . (D7)

We shall now show that the collection of operators in GB

(defined in Theorem 3) spans a ∗-algebra which is correctable

for EB on states in PH = HC and is the maximal algebra

of this kind, i.e. span(GB) = AM . First note that span(GB)

is indeed a ∗-algebra: every ĝ ∈ G is a unitary operator and

G contains the adjoint of each of its elements; replacing g

with g† in (48) yields ĝ†. Of course TrB̄[ĝ] = 0 if and only

if TrB̄[ĝ†] = 0 and, in addition, a = PaP for a ∈ span(GB)

because ĝ = P ĝP , (48).

By definition TrB̄[ĝ] �= 0 for ĝ ∈ GB , and this means that

the partial trace down to B of at least one element in the

corresponding coset gS [see (48)] must be nonzero. Let h be

such an element; since it is a Pauli product it must be of the

form h = hB ⊗ IB̄ . As a consequence,

[ĝ, PE
†
i EjP ] = [ĥ, PE

†
i EjP ] = P [h,E

†
i Ej ]P

= P [hB ⊗ IB̄ , IB ⊗ |i〉 〈j |B̄]P = 0, (D8)

where the successive steps are justified as follows. Since ĝ

depends only on the coset gS and h belongs to this coset,

hS = gS and ĥ = Ph = hP = ĝ. This means we can move

the projector P outside the commutator bracket, and once

outside it is obvious that the latter vanishes for every i and j .

Thus any ĝ in GB belongs to the maximal AM defined in (D4),

as do all linear combinations of the elements in GB .

To show that AM is actually spanned by GB we note that

any a belonging to AM can be written as

a = b + c, (D9)

where b is a linear combination of elements of GB and c of

elements of G that do not belong to GB , so TrB̄[c] = TrB̄[c†] =
0. Thus it is the case that

P (R ◦ EB)†(b)P = b, P (R ◦ EB)†(c)P = c, (D10)

where the first follows [see (D2)] from the previous argument

showing that the span of GB is a subalgebra of AM , and the

second from linearity and the assumption that a belongs to

AM . Multiply the second equation by c† and take the trace:

Tr[c†c] = Tr{c†P [(R ◦ EB)†(c)]P }
= Tr{[R ◦ EB(c†)]c} = 0, (D11)

where we used the fact that Pc†P = c†, and EB(c†) =
TrB̄[c†] = 0. Thus c = 0 and any element of AM is a linear

combination of the operators in GB .

In conclusion, we have shown for any additive graph code

C and any subset of carrier qudits B, the ∗-algebra spanned

by operators in GB is exactly the maximal correctable algebra

AM defined in (D4). In Appendix C we outline an algorithm

that enumerates the elements in GB for any HC and EB , which

in light of the result above is an operator basis of AM .
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