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Location Parameter Estimation of Moving Aerial

Target in Space-Air-Ground Integrated

Networks-Based IoV
Mingqian Liu, Member, IEEE, Bo Li, Member, IEEE, Yunfei Chen, Senior Member, IEEE, Zhutian Yang, Senior

Member, IEEE, Nan Zhao, Senior Member, IEEE, Peng Liu, and Fengkui Gong, Member, IEEE

Abstract—Estimating the location parameters of moving target
is an important part of intelligent surveillance for Internet of
Vehicles (IoV). Satellite has the potential to play a key role
in many applications of space-air-ground integrated networks
(SAGIN). In this paper, a novel passive location parameter
estimator using multiple satellites for moving aerial target is
proposed. In this estimator, the direct wave signals in reference
channels are first filtered by a band-pass filter, followed by a
sequence cancellation algorithm to suppress the direct-path inter-
ference and multi-path interference. Then, the fourth-order cyclic
cumulant cross ambiguity function (FOCCCAF) of the signals in
the reference channels and the four-weighted fractional Fourier
transform fourth-order cyclic cumulant cross-ambiguity function
(FWFRFT-FOCCCAF) of signals in the surveillance channels are
derived. Using them, the time difference of arrival (TDOA) and
the frequency difference of arrival (FDOA) are estimated and the
distance between the target and the receiver and the velocity of
the moving aerial target are estimated by using multiple satellites.
Finally, the Cramer-Rao Lower Bounds of the proposed location
parameter estimators are derived to benchmark the estimator.
Simulation results show that the proposed method can effectively
and precisely estimate the location parameters of the moving
aerial target.

Index Terms—Frequency difference of arrival, Internet of vehi-
cles, location parameter estimation, space-air-ground integrated
networks, time difference of arrival.

I. INTRODUCTION

THE development of internet of Vehicles (IoV) and mobile

edge computing networks leads to urgent demand for

broadband access capability [1]-[2]. At the same time, the
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use of satellites is found to be of paramount importance

in IoV, such as intelligent surveillance. Thus, satellite-based

IoV is viewed as a vital part of space-air-ground integrated

networks (SAGIN) to provide broadband access [3]-[5]. Data

transmission and radar sensing are useful tools to extract

valuable information from the environment [6]-[7]. Among

them, passive location systems utilize the reflected echo sig-

nals from a moving target generated by a non-cooperative

radiation source for parameter estimation. As a result, moving

target passive location using an external radiation source has

been extensively studied [8]-[9].

To realize effective moving target passive localization, the

time difference of arrival (TDOA) and the frequency difference

of arrival (FDOA) are often accurately estimated first to

acquire useful information, including the distance and velocity

of the moving target for further tracking and positioning. In

recent years, much research effort has spent on TDOA and

FDOA estimation using satellite illuminator. The authors in

[10] proposed a TDOA estimator of GNSS signal using the

tensor-based filtering approach, in which the highly correlated

signal and noise components are separated using singular value

decomposition and spatial smoothing. After filtering weak

echo signals, cross correlation with the direct wave signal was

used to obtain the TDOA. This method had a high computa-

tional complexity due to the matrix processing. In [11], FDOA

estimation combining zero forcing and double fast Fourier

transform was proposed to tackle the poor accuracy of the

FDOA estimation for GNSS signals. However, the estimation

performance still poor for low input signal to interference

plus noise ratio. In [12], an FDOA estimation method with

optical phase-locked loop and broadcast ephemeris of GPS

was proposed. This method had poor adaptability and univer-

sality since it was sensitive to the change of satellite orbit and

elevation angle. An FDOA estimation method for GNSS echo

signal based on fast Fourier transform (FFT) was proposed

in [13], and this method can reduce the computational com-

plexity. However, it did not consider the influence of noise

on the estimation. As for the TDOA and FDOA estimation

using multiple satellites, the authors in [14] proposed a method

of passive location with multi-GNSS, but the method only

works for geometric modeling. Notably, the works mentioned

above only studied the TDOA or FDOA estimation methods

using the radiation source of a single satellite, which often has

small coverage, low reliability, as well as limited applications

and geographical environments. In practice, a receiver may
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receive radiation signals from multiple satellites of different

types at the same time. As a result, previous works using a

single satellite on target detection and parameter estimation

may not work well due to the detrimental interference from

other satellites. Therefore, in this paper, we study the location

parameter estimation in the presence of multiple satellites to

improve the estimation accuracy.

Specifically, considering multiple satellites, location param-

eter estimation methods based on fourth-order cyclic cumu-

lant cross ambiguity function (FOCCCAF) and four-weighted

fractional Fourier transform fourth-order cyclic cumulant cross

ambiguity function (FWFRFT-FOCCCAF) are proposed in

this paper. The main contributions of this paper are summa-

rized as follows:

• The statistics for parameter estimation with multiple weak

echo signals are obtained using the signal cyclostationar-

ity. The weighted fractional Fourier transform (WFRFT)

will be used to reduce the degree of coupling between

the signal and interference for interference suppression.

• TDOA and FDOA estimation method are proposed to

extract the spectral peak-values from the the statistics for

parameter estimation.

• The proposed method requires multi-satellite collabora-

tion through data fusion to estimate the distance from a

moving aerial target to a receiver as well as its velocity.

The reminder of the paper is organized as follows. Section

II shows the system model. In Section III, the joint passive

location parameter estimation method is proposed. Section IV

presents the Cramer-Rao lower bounds for location parameter

estimators. In Section V, simulation results are provided.

Finally, Section VI concludes the paper.

II. SYSTEM MODEL

The moving aerial target localization system for SAGIN-

based IoV is shown in Fig. 1. Signal form the satellite

illuminators signals are received in both surveillance channel

and reference channel. The reference channel is composed

of omnidirectional antennas at the vehicle, which receives

the satellite illuminator signal for positioning as baseline

measurements. On the other hand, the surveillance channel

is composed of directional antennas at the vehicle, which

receives the weak echo signal of a moving aerial target in

the presence of direct-path interference (DPI) and multi-path

interference (MPI). The signal processing module is used

to process the received signals and analyze the correlation

between the reference channel and surveillance channel. The

surveillance channel reflected echo signal contains a receiving

antenna, an amplifier, a filter, a down conversion circuit, and a

digital storage oscilloscope. In addition to the reflected echoes

received by the plurality of satellite signals from the target,

DPI and MPI occur in the surveillance channel.

The signal in the reference channel is given by [15]

x(t) =
∑M ′

i=1
risi(t) + n (t) , (1)

where M ′ is the number of satellites, si(t) and ri represent the

ith satellite illuminator direct wave signal and its amplitude,
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Fig. 1. Location system model in space-air-ground integrated networks-based
IoV.

respectively, and n (t) stands for the complex zero-mean white

Gaussian noise in the reference channel.

The signal in the surveillance channel is

z(t)=
∑M ′

η=1
r′ηsη(t−Dη)e

−j2πfdη t+
∑M ′

η=1
Ωηsη(t)

+
∑M ′

η=1

∑H

j=1
ωηjsη(t− τηj) + n′(t) ,

(2)

where r′η is the amplitude of the ηth weak echo signal, Dη

and fdη
stand for its TDOA and FDOA, respectively, Ωη is

the amplitude of ηth direct wave signal in the surveillance

channel, H represents the number of multipath components in

the surveillance channel, ωηj and τηj are the amplitude and

time delay of the ηth direct wave signal through the jth multi-

path, respectively. In addition, n′(t) is the complex zero-mean

white Gaussian noise in the surveillance channel.

III. JOINT LOCATION PARAMETER ESTIMATION FOR

MOVING AERIAL TARGET

In this section, the sequence cancellation algorithm will

be employed to suppress DPI and MPI. Afterwards, DOA

and FDOA will be estimated by FOCCCAF and FWFRFT-

FOCCCAF, and data fusion method will be utilized to estimate

the velocity and distance of the moving target.

A. DPI and MPI Suppression in the Surveillance Channel

The receiver in the reference channel receives multiple

different direct wave signals at the same time. Thus, it is

necessary to separate them first to provide reference signals,

in order to suppress DPI and MPI in the surveillance channel.

As the frequencies of different satellite signals are different,

a band-pass filter can be used to separate the multiple direct

wave signals in the reference channel. The transfer function

of the band-pass filter H(ejω) is [16]:

H(ejω) =

∑E
r=0 br

(

ejω
)

−r

1 +
∑S

k=1 ak(e
jω)

−k
, (3)



IEEE INTERNET OF THINGS JOURNAL 3

where ak and br are the coefficients for the band-pass filter.

The separation of different direct wave signals in the reference

channel can be achieved by using several parallel filters,

whose parameters should be chosen according to the operating

frequency spectrum ranges, and the values of E, S, ak and br
of the bandpass filters should be carefully selected. After band-

pass filtering, the reference channel signals are converted into

M direct wave signals uncoupled with each other. The ith
satellite radiation direct wave signal after separation can be

expressed as

xi (t) = risi(t) + ni(t). (4)

We propose a multi-sequence cancellation algorithm (M-

SCA), which is able to simultaneously suppress the interfer-

ence caused by multiple direct wave signals and multi-path

signals in the surveillance channel [17], [18]. First of all, the

direct wave signals in the reference channel and the weak echo

in the surveillance channel are sampled, giving

xi = [xi[−R+ 1], xi[−R+ 2], . . . , xi[N − 1]] T , (5)

where i = 1, 2, 3, . . . ,M and M is the number of direct wave

signals, xi denotes the ith direct wave signal, N is the number

of sampling points, R stands for the sampling point where the

reference signal is more than the surveillance channel signal,

xi[·] represents the different sampling points of the ith direct

wave. Similarly, the signal vector in the surveillance channel

after sampling can be expresses as

z = [z[0], z[1], . . . , z[N − 1]] T . (6)

To reduce the problem with large the computational complex-

ity, the original direct wave signals and surveillance channel

signals are segmented. Let NB = N/b be the length of

each segment, where N and b are the total length of the

original signal and the number of segments, respectively. The

segmented signals are

x′

i =
[

xT
i0
, xT

i1
, . . . , xT

ib−1

]T

, (7)

z′ =
[

zT
0
, zT

1
, . . . , zT

b−1

]T

, (8)

where

xik
= [xi [kNB −R+ 1], . . . , xik [(k + 1)NB − 1]]

T
, (9)

z
k
= [zk[kNB ], . . . , zk[(k + 1)NB − 1]]

T
, (10)

and k = 0, 1, . . . , b−1. The signal in the surveillance channel

after DPI and MPI suppression can be expressed as

zMSCA−B =
[

zTSCA−B0
, zTSCA−B1

, . . . , zTSCA−Bb−1

]T

,

(11)

where zSCA−Bi
(i = 0, 1, . . . , b− 1) is

zSCA−Bi
= Q1Q2 . . . QMz′, (12)

Qj = IN −
x̃j−1 · x̃H

j−1

x̃H
j−1 · x̃j−1

, (13)

x̃j−1 = Pjxj−1, (14)

PM = IN , (15)

Pj = Qj+1Qj+2 . . . QM , (16)

and xj−1 is the jth column of matrix Xk. Also,

Xk = [Bx′′

1k
, Bx′′

2k
, Bx′′

3k
, . . . , Bx′′

Mk
], (17)

B = { bmn } , bmn =

{

1 , m = n−R+ 1,
0 , else,

(18)

and m = 1, 2, . . . , NB ,

x′′

i k
=

[

xik
, Dxik

, D2xik
, . . . , DTmax−1xik

]

, (19)

i = 1, 2, . . . ,M , k = 0, 1, . . . , b− 1,

D={ dmn}m,n=1,2,...,NB+R−1, dij=

{

1 , m=n+1,
0 , else,

(20)

where Tmax = Lmax/c is the maximum of TDOA, Lmax is

the maximum detection distance, and c is the speed of light

in free space.

We use y(t) to represent the signal in the surveillance

channel after the suppression of DPI and MPI as

y(t) =
∑M ′

η=1
r′ηsη(t−Dη)e

−j2πfdη t + n′(t). (21)

B. TDOA and FDOA Estimation

1) Fourth-Order Cyclic Cumulant Cross Ambiguity Func-

tion: The signals possess the characteristics of cyclic station-

ary and the cross ambiguity function can reflect the time-

frequency characteristics of the signal. The cross ambiguity

function using the fourth-order cyclic cumulant of the direct

wave signal and the weak echo signal are [19]

χαi−f,αi
y,xi

(u, f)=

∫ +∞

−∞

Cαi−f
xixixiy

(τ)Cαi

4xi
(τ − u)

∗

ejπfτdτ,

(22)

where Cαi

4xi
(τ) is the fourth-order self-cyclic cumulant of xi(t)

when the cycle frequency is αi, and Cαi−f
xixixiy

(τ) is the fourth-

order cross-cyclic cumulant of xi(t) and y(t) when the cycle

frequency is αi − f , Cαi

4xi
(τ) is given by

Cαi

4xi
(τ) = r4iM

αi

4si
(τ)− 3Ar2iM

αi

2si
(τ), (23)

where A = E[s2i (t)], Mαi

4si
(τ) and Mαi

2si
(τ) are the fourth-

order self-cyclic moment and second-order self-cyclic moment

of si(t), which can be obtained as

Mαi

4si
(τ)= lim

T→∞

1

T

T−1
∑

t=0

(si(t)si(t)si(t)si(t+ τ))e−j8παit,

(24)

Mαi

2si
(τ) = lim

T→∞

1

T

T−1
∑

t=0

(si(t)si(t+ τ))e−j4παit, (25)

and T is the finite time. Also, Cαi−f
xixixiy

(τ) can be expressed

as

Cαi−f
xixixiy

(τ) = r3i r
′

ie
−jπfdiτe−jπ(αi−f+fdi )Di

· e−jπ(αi−f+fdi )DiM
αi−f+fdi
sisinsi (τ −Di)

− 3Brir
′

ie
−jπfdiτe−jπ(αi−f+fdi )Di

·Rαi−f+fdi
si (τ−Di)+r3iM

αi−f+fdi
sisin′si

(τ−Di),

(26)
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where B = E[xi(t)y(t)], R
αi−f+fdi
si (τ − Di) is the cyclic

self-correlation of si(t), given by

R
αi−f+fdi
si (τ) = lim

T→∞

1

T

T−1
∑

t=0

(si(t)si(t+ τ))e−j2παit.

(27)

In addition, M
αi−f+fdi
sisinsi (τ − Di) is the fourth-order cross-

cyclic cumulant between si(t) and the noise in the reference

channel, Mαi−f
sisin′si

(τ) is the fourth-order cross-cyclic cumulant

between si(t) and the noise in the surveillance channel, given

by

M
αi−f+fdi
sisinsi (τ −Di) = lim

T→∞

1

T

T−1
∑

t=0

(si(t)si(t)n(t))

· si(t+τ−Di)e
−j2π(αi−f+fdi )t,

(28)

and

M
αi−f+fdi
sisin′si

(τ −Di) = lim
T→∞

1

T

T−1
∑

t=0

(si(t)si(t)n
′(t))

· si(t+ τ −Di)e
−j2π(αi−f+fdi )t.

(29)

2) Four-Weighted Fractional Fourier Transform Fourth-

Order Cyclic Cumulant Cross Ambiguity Function: Fractional

Fourier transform (FRFT) can show signals in the fractional

domain between the time domain and the frequency domain,

which can be defined as [20]

Fβ(u) = Fβ [f(t)] (u) =

∫

∞

−∞

f(t)κβ(u, t)dt, (30)

where Fβ denotes the FRFT operators, the relationship be-

tween the order p and the angle β of FRFT is β = π
2 p, κ(u, t)

is the integral kernel and it is the continuous function of p,

which can be expressed as [21]-[22]

κ(u, t) =
∑+∞

n=0
e−jnβH∗

n(t)Hn(u),

=







Aβe
j
2
(t2+u2) cot β−jtu csc β β ̸= kπ,

δ(t− u) β = 2kπ,
δ(t+u) β = (2k−1)π,

(31)

where k is an integer and Aβ =
√

(1− j cotβ)/2π. The

transformation relationships of coordinates can be given by
[

t
ω

]

=

[

cosβ sinβ
− sinβ cosβ

][

u
f

]

=

[

u cosβ + f sinβ
−u sinβ + f cosβ

]

,

(32)

and
[

u
f

]

=

[

t cosβ − ω sinβ
t sinβ + ω cosβ

]

. (33)

There are no cross terms because FRFT is a linear trans-

formation, which is beneficial to effectively separate signal

form interference or noise. From the properties of Fourier

transform (FT), we can obtain the four-weighted fractional

Fourier transform (FWFRFT) as [23]

F β
4w[g(x)] = ω0(β)g0(x) + ω1(β)g1(x)

+ ω2(β)g2(x) + ω3(β)g3(x),
(34)

where p is the order of FWFRFT, g0(x)−g3(x) denote the 0-3

times FT of g(x), the weighting factor ω0(β)−ω3(β) can be

expressed as

ωl(β)=cos

[

(p−l)π

4

]

cos

[

2(p−l)π

4

]

exp

[

3(p−l)π

4

]

, (35)

where l = 0, 1, 2, 3. From (31), the FRFT of the ambiguity

function is equivalent to its rotation by β degrees into frac-

tional domain, that is

AFβ(t, w) = AF(t cosβ − ω sinβ, t sinβ + ω cosβ). (36)

When AF (u, f) = χαi−f,αi
y,xi

(u, f) and β = 0, π
2 , π,

3π
2 , we

can get the 0th to 3rd order FT of the ambiguity function

AF
(0)
β (t, ω), AF

(1)
β (t, ω), AF

(2)
β (t, ω) and AF

(3)
β (t, ω). The

weighting factors will be determined as long as β is deter-

mined. The four-weighted fractional Fourier transform fourth-

order cyclic cumulant cross ambiguity function (FWFRFT-

FOCCCAF) can be obtained by

F β
4w(t, ω) = ω0(β)AF

(0)
β (t, ω) + ω1(β)AF

(1)
β (t, ω)

+ ω2(β)AF
(2)
β (t, ω) + ω3(β)AF

(3)
β (t, ω).

(37)

3) Feature extraction: We can obtain the abscissas Dmax

and fdmax by using appropriate peak extraction to search from

the two two-dimensional sections on the time axis and the

frequency axis, and the combination of the two abscissas is

the coordinate for the peak of the three-dimensional graph

of FWFRFT-FOCCCAF, and it contains the information of

TDOA and FDOA. This is formulated as

(Dmax, fdmax) = argmax
[

F β
4w(t, ω)

]

. (38)

We can calculate the TDOA and FDOA accordingly as










D = N ′

2fs
− 2Dmax,

fd = N ′

2fs
− 4fc + fdmax,

(39)

where N ′ is the length, fs is the sampling frequency, and fc
denotes the carrier frequency of the signal.

The direct wave signal and echo signal show a strong corre-

lation when the time and frequency parameters equal TDOA

and FDOA, and the amplitude of the FWFRFT-FOCCCAF

peaks in the two two-dimensional sections. The following

spectral peak extraction method can extract the coordinates

τmax and fdmax from the peaks accurately and effectively:

i) Put the data of two-dimensional section into the array W ,

and mark an ith element as wi;

ii) Obtain a new array W ′ through the backward differential

processing of W . The jth element of W ′, w′

j can be obtained

by

w′

j = wj − wj−1. (40)

Let w′

j = 0 when w′

j < 0. The mutation at the spectral

peak is stored in the array as a maximum after the backward

differential operation;

iii) The array element of W ′, which is greater than zero, is

ave =
1

n

∑n

i=1
w′

j , (41)
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Fig. 2. Geometrical structure of the velocity and distance.

w′

j =

{

w′

j − (ave)2

w′
j

w′

j > 0,

0 w′

j ≤ 0,
(42)

where n is the number of elements that are greater than zero

in the array. (41) finds the mean of all array elements greater

than zero and all the elements of the array are reduced by

the subtraction operation in (42). Because the array elements

that contain spectral peaks are the maximum values, they are

almost unchanged after the subtraction in (42).

iv) Calculate the sum and average of the array obtained in

iii) and set the array element less than the average to zero.

v) Do the loop operation on iv) until the sum of the array

equals to one of the elements w′′

k exactly, the subscript of

which is the abscissa of spectral peak of two-dimensional

sections.

C. Velocity and Distance Estimation

The moving aerial target has the same velocity and the same

distance between the target and the receiver from different

satellites. Therefore, the TF-LV transform of different TDOA-

FDOA spectrum is used to unify the distance and velocity

of the target form different satellite signals. The geometrical

structure of the velocity and distance is shown in Fig. 2, where

L denotes the distance from the target to the receiver, α stands

for the bi-static angle and δ represents the angle between bi-

static angle bisector and the velocity v of the target. Therefore,

the TF-LV transform of different TDOA-FDOA spectrum is

used. The relationship between the TDOA and the distance is






L+Rt = Rr + cD,

R2
t = R2

r + L2 − 2RrL cos θ,
(43)

where L is the distance from the target to the receiver, α stands

for the bistatic angle and δ is the angle between bistatic angle

bisector and the velocity v of the target. We can obtain

L =
c2D2 + 2RrcD

2(Rr + cD −Rr cos θ)
= f(D), (44)

Rt =
Rr(Rr −Rr cos θ + cD − cD cos θ) + 1

2c
2D2

Rr + cD −Rr cos θ
. (45)

The relationship between fd and v is

fd =
2v

λ
cos δ cos

α

2
≈ 2v

λ
cos

α

2
= g(v), (46)

v =
fdλ

2 cos α
2

, (47)

where λ = 1/fc, fc is the frequency of the signal, and α can

be obtained as

cosα =
Rt

2 + L2 −Rr
2

2RtL
. (48)

The data weighted fusion method based on the minimum

overall variance is used to fuse multiple pairs of L and v after

the TF-LV transformation. A weighting factor is assigned to

each data so that the overall variance reaches the minimum.

Finally, global estimation is obtained by the local estimation

and weighting factor. The process of the fusion is described

as follows.

Assuming that the weighting factor of Li is wi(i =
1, 2, . . . ,M ′), the overall estimate L̂ after fusing is [22]

{

L̂ =
∑M ′

i=1 wiLi,
∑M ′

i=1 wi = 1.
(49)

We can get the overall variance for the TDOA estimation from

(49) as

σ2
L = E

[

(

L− L̂
)2

]

= E











M ′

∑

i=1

wiL−
M ′

∑

i=1

wiLi





2






= E











M ′

∑

i=1

wi (L− Li)





2






=E







M ′

∑

i=1

w2
i (L−Li)

2
+

M ′

∑

i,j=1

i ̸=j

wiwj (L−Li) (L−Lj)






.

(50)

Because Li and Lj are independent of each other when i ̸= j,

one has
∑M ′

i,j=1

i ̸=j

wiwj (L− Li) (L− Lj) = 0, (51)

and (50) can be further written as:

σ2
L = E

[

∑M ′

i=1
w2

i (L− Li)
2

]

=
∑M ′

i=1
w2

i Pi, (52)

where Pi = E
[

(L− Li)
2
]

is the variance of each estimate.

It can be seen from (52) that σ2
L is a multivariable quadratic

function of random weighting factors wi(i = 1, 2, ...,M ′). Ac-

cording to the multivariate extreme value theory, the minimum

of σ2
L exists and is given as

σ2
Lmin

= min

(

∑M ′

i=1
w2

i Pi

)

. (53)

By solving (53), the optimal random weighting factor when
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the overall variance is minimum is

w∗

i =
1

Pi

∑M ′

i=1
1
Pi

. (54)

Therefore, the minimum of the overall variance is

σ2
Lmin

=
1

∑M ′

i=1
1
Pi

. (55)

We can get the final distance L̂ through (49) after the fusion

of Li(i = 1, 2, ...,M ′) with the weighting factor getting by

(54). The process for the fusion of v̂ is the same as L̂.

IV. CRLBS OF LOCATION PARAMETERS ESTIMATORS

Cramer-Rao Lower Bound (CRLB) is one of the criteria

for analyzing the effectiveness of estimation [24]. The CRLBs

of the estimated location parameters will be deduced in this

section. Let y(t) represent the signal in the surveillance

channel after the DPI and MPI suppression. y(t) only contains

the weak echo signal and complex zero-mean white Gaussian

noise as

y(t) =
∑M ′

η=1
r′ηsη(t−Dη)e

−j2πfdη t + n′(t), (56)

and the energy of the ηth weak echo signal without noise is

Eη = (r′η)
2

∫

∞

−∞

|sη(t)|2dt, (57)

and the power spectral density of the noise satisfies

E {n(t)n(t′)} = 0, (58)

E {n(t)n∗(t′)} = N0δ(t− t′), (59)

where N0 is the power spectral density of the noise, E {·} is

the expectation operator, superscript stands for the complex

conjugate of a signal, and δ {·} denotes the Dirac delta

function.

The estimated vector consisting of TDOA and FDOA is

given by

θ = [D1 D2 . . . DM ′ fd1
fd2

. . . fdM′ ]
T . (60)

The probability density function (P.D.F.) of the echo signal

can be expressed as

p(y; θ) = K exp

{

− 1

N0

∫

∞

−∞

· |y(t) −
M ′

∑

η=1

r′ηsη(t−Dη) e−j2πfdη t
∣

∣

2
dt
}

,

(61)

where K = 1/
√
2π. The log-likelihood function is

ln p(y; θ) = − 1

N0

∫

∞

−∞

|y (t)

−
M ′

∑

η=1

r′ηsη(t−Dη)e
−j2πfdη t |2dt+ lnK.

(62)

Thus,

∂ ln p(y, θ)

∂Dη

=−2r′η
N0

Re

∫

∞

−∞

n′(t)ṡ∗η(t−Dη)e
j2πfdη tdt,

(63)
∂ ln p(y, θ)

∂fdη

=−4πr′η
N0

Im

∫

∞

−∞

t n′(t)s∗η(t−Dη)e
j2πfdη tdt,

(64)

where η, η′ = 1, 2, . . . ,M ′, ṡ (t) = ds(t)
dt

, Re {·} and Im {·}
denote the real part and imaginary part of a function, respec-

tively.

It is well known that the CRLB of any unbiased estimator

θ̂i must satisfy

var(θ̂i) ≥
[

I−1(θ)
]

i,i
, (65)

where
[

I−1(θ)
]

i,i
denotes the [i, i]th element of the inverse

of the Fisher Information Matrix (FIM) is defined by

[I(θ)]i,i = Ii,j = E

{

∂ ln p(y; θ)

∂θi

∂ ln p(y; θ)

∂θj

}

. (66)

For convenience, define

SNRη =
Eη

N0
(67)

Pη =
(r′η)

2

Eη

∫

∞

−∞

t|sη(t)|2dt (68)

Gη =
(r′η)

2

Eη

∫

∞

−∞

t2|sη(t)|2dt (69)

Hη =
(r′η)

2

Eη

Im

∫

∞

−∞

s∗η(t)ṡη(t)dt (70)

Lη =
(r′η)

2

Eη

∫

∞

−∞

|ṡη(t)|2dt (71)

Qη =
(r′η)

2

Eη

Im

∫

∞

−∞

ts∗η(t)ṡη(t)dt (72)

These symbols have physical meanings and can also be

expressed in the frequency domain, where (68) stands for

SNR, (68)-(72) are the waveform parameters of the weak echo

signal described in [25]-[26]. Thus,

Iηη =
∂2 ln p(y, θ)

∂D2
η

=
2(r′η)

2

N0
Re

∫

∞

−∞

|ṡη(t−Dη)|2dt

= 2SNRηLη = 2SNRηAη,

(73)

Iη,η+M ′ = Iη+M ′,η =
∂2 ln p(y, θ)

∂Dη∂fdη

=
4π(r′η)

2

N0
Im

∫

∞

−∞

tṡη(t−Dη)s
∗

η(t−Dη)dt

= 4πSNRη(Qη +HηDη) = 2SNRη2πBη,

(74)
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Iη+M ′,η+M ′ =
∂2 ln p(y, θ)

∂f2
dη

=
8π2(r′η)

2

N0
Re

∫

∞

−∞

t2s∗η(t−Dη)sη(t−Dη)dt

= 8π2SNRη[Gη + 2PηDη −D2
ηEη]

= 2SNRη4π
2Cη,

(75)

Iother=
∂2 ln p(y, θ)

∂Dη∂Dη′

=
∂2 ln p(y, θ)

∂Dη∂fdη′

=
∂2 ln p(y, θ)

∂fdη
∂fdη′

=0, (76)

where η, η′ = 1, 2, . . . ,M ′, η ̸= η′. And Aη , Bη and Cη are

defined as

Aη = Lη, (77)

Bη = Qη +HηDη, (78)

Cη = Gη + 2PηDη −D2
ηEη. (79)

Therefore, the FIM can be expressed as

I(θ) =

2SNR





















A1 2πB1

. . .
. . .

AM ′ 2πBM ′

2πB1 4π2C1

. . .
. . .

2πBM ′ 4π2CM ′ .





















(80)

Taking the inverse of FIM, we can obtain the CRLBs of joint

TDOA and FDOA estimation of the ηth weak echo signal as

V ar(D̂η)CRLB =
1

2SNRη

· Cη

AηCη −B2
η

, (81)

V ar(f̂dη
)CRLB =

1

8π2SNRη

· Aη

AηCη −B2
η

. (82)

From (81) and (82), we can see that the CRLBs of the joint

estimation of TDOA and FDOA for the ηth weak echo signal

are related to SNR and waveform parameters Aη , Bη and Cη ,

which are determined when the satellite type is determined.

The relationship between the TDOA of the weak echo

signal and the distance from the target to the receiver is

Lη = Rr − Rt + cDη , η = 1, 2, ...,M ′, and Rr and Rt

are constants. However, Dη may affect the accuracy of the

estimation because Dη is also a variable needs to be estimated.

According to the definition of the CRLB for the non-random

parameter function, we can obtain the CRLB of the ηth
distance estimate as

V ar(L̂η)CRLB = c2V ar(D̂η)CRLB , (83)

where η = 1, 2, . . . ,M ′. From the weighted data fusion

algorithm, we obtain the CRLB of L̂ as

V ar(L̂)CRLB=
1

M ′
∑

η=1

1
V ar(L̂η)CRLB

=
c2

M ′
∑

η=1

1
V ar(D̂η)CRLB

,

(84)

The relationship between the FDOA of the weak echo

signal and the velocity of the target is vη =
fdηλ

2 cos
βη
2

,

η = 1, 2, . . . ,M ′, where βη is the bistatic angle. Therefore,

vη is a function of the FDOA and can be further written

as vη = Uηfdη
when Uη = λ

2 cos
βη
2

, where fdη
is also a

variable and will affect the accuracy of the estimation of

velocity. According to the definition of the CRLB for the

non-random parameter function, we can obtain the CRLB of

velocity estimate for the ηth weak echo signal as

V ar(v̂η)CRLB = U2
η V ar(f̂dη

)CRLB , (85)

where η = 1, 2, . . . ,M ′. From the weighted data fusion

algorithm, we can obtain the CRLB of v̂ as

V ar(v̂)CRLB=
1

M ′
∑

η=1

1
V ar(v̂η)CRLB

=
1

M ′
∑

η=1

1

U2
η V ar(f̂dη )CRLB

.

(86)

V. NUMERICAL RESULTS AND DISCUSSION

Simulation results are presented in this section. The sim-

ulation setups are described as follows. The satellite models

are GPS, DVB-S and INMARSAT. Their carrier frequencies

are 1575.42MHz, 12.38GHz and 1640MHz, respectively. Their

symbol rates are 1.023MHz, and 22.425MHz, 2.2MHz [27].

The TDOA are 25µs, 16µs and 10µs, and the FDOA are

17640Hz, 14480Hz and 11080Hz, respectively. The velocity of

the target is set to 350 m/s. the distance between the target and

the receiver is 20 km and the angle of FWFRFT is π/4. The

number of sampling points is 107 and additive complex white

Gaussian noise (AWGN) is adopted. The SNRs of echo signals

are set to -112 dBm. In addition, we use 2000 Monte Carlo

experiments for every scene. The normalized mean square

error (NMSE) is adopted as the performance measure with

[25]

NMSE =
|ρ̂− ρ|2

ρ2
, (87)

where ρ is the theoretical value and ρ̂ is the estimated value

of the parameter. The normalized CRLB is defined as:

V ar(ρ̂)NCRLB ==
V ar(ρ̂)CRLB

ρ2
, (88)

where V ar(ρ̂)CRLB is the CRLB of the estimated parameter.

A. Location Parameter Estimation Performance with Different

SNRs

To reveal the effect of the echo SNR on the location

parameter estimation performance, the performances of the

two proposed parameter estimation methods are simulated for

different SNRs ranging from -80dB to -10dB. Fig. 3 and Fig.

4 show the estimation performance of TDOA and the distance

between the target and receiver, respectively. It can be seen

from Fig. 3 that the three satellite signals can be used to

estimate the TDOA of weak echo signals. Besides, the TDOA

estimation performance is improved and close to the NCRLB

when the SNR increases. The NMSEs of TDOA estimation for

GPS, DVB-S and INMARSAT echo signals reach 10−3 when

the SNR is -45dB, -40dB and -30dB, respectively, indicating

that the TDOA estimation performance based on the GPS is
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Fig. 3. TDOA estimation performance with different SNRs.
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Fig. 4. Distance estimation performance with different SNRs.

the best, while that based on the INMARSAT is the worst.

Fig. 4 illustrates that the three satellite signals can be used to

estimate the distance between the target and the receiver when

the SNR is large. Fig. 5 shows that the three satellite signals

can be used to estimate the FDOA of the weak echo signal,

and the FDOA estimation performance of the three satellites

weak echo signals are improved and close to the NCRLB with

the increase of SNR. From Fig. 6, we can observe that the

NMSE of velocity estimation for the target reaches to 10−3

when the SNR is -35dB. Moreover, the CAF and FOCCCAF

yield higher NMSE than the FWFRFT-FOCCCAF TDOA and

FDOA estimation method, implying that the CAF and FOC-

CCAF have worse location parameter estimation performance

and the FWFRFT has better suppression of interference and

noise.

B. Location Parameter Estimation Performance with Different

Numbers of Coherent Cumulative Points of Signals

To investigate the impact of the number of coherent cumu-

lative points of the signal on the location parameter estimation

performance, simulations are conducted under the signal sam-

pling points number of 106, 107 and 108. The GPS signal

is adopted to estimate the TODA and FDOA, and the GPS,

DVB-S and INMARSAT are used to estimate the distance and

velocity. Fig. 7 and Fig. 8 show the estimation performance

of the TDOA and the distance between a target and a receiver.

Fig. 9 and Fig. 10 depict the estimation performance of FDOA
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Fig. 5. FDOA estimation performance with different SNRs.
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Fig. 6. Velocity estimation performance with different SNRs.

and the velocity of the target. From Fig. 7, it is easy to see

that the TDOA estimation performance improves when the

number of coherent points increases. Furthermore, the NMSE

of TDOA for GPS reaches 10−3 when the SNR is -35dB and

the number of signal point is 106. Moreover, the performance

is improved by 10 dB when the number increases by an

order of magnitude. This is because the spectral peak becomes

more prominent with the increase of the number of cumulative

points, equivalent to improve the gain of SNR. As a result, it

can improve the TDOA estimation performance. Fig. 8 shows

that the distance estimation performance improves with the

increase of the number of coherent points. The NMSEs of

distance estimate become 10−3 under the SNR of -15dB, -

30dB, -40dB and the number of point of 106, 107 and 108,

respectively. As the accuracy of the distance estimate depends

on the performance of TDOA estimations, an accurate TDOA

estimation with the increasing number of points results in an

accurate estimation of the distance between a target and a

receiver. It can be seen from Fig. 9 that with the increase

of the number of points, the FDOA estimation performance

is improved, and the NMSE of FDOA estimation reaches

to 10−3 when the SNR is -35dB and the number of point

is 106. Moreover, the performance is improved by 10 dB

when the number of signal cumulative points increases by

an order of magnitude. The reason behind this phenomenon

is that the spectral peak becomes more prominent with the

increase of the number of cumulative points. It is also equiv-
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Fig. 7. TDOA estimation performance with different coherent cumulative
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points of the signals.

alent to improving the gain of SNR, so that it can improve

the FDOA estimation performance. Fig. 10 shows that the

velocity estimation performance improves with the increase

of the number of coherent points, and the NMSE of FDOA

estimation becomes 10−3 when the SNR is -25 dB and the

number of point is 106. Beside, the performance is improved

by 10 dB when the number increases by an order of magnitude.

This is because the accuracy of velocity estimation depends

on the performance of FDOA estimation and the increase of

points leads to more accurate FDOA estimation and velocity

estimation.

C. Location Parameter Estimation Performance with Different

SDRs

Fig. 11-Fig. 14 present the location parameter estimation

performance versus different signal-to-direct signal-ratio (S-

DR). From Fig. 11, it can be observed that the TDOA

estimation performance improves with the increase of SDR

under the same SNR. Besides, the estimation performance

increases by 5dB when SDR increases by 20dB, as it is

equivalent to enhance the power of echo signal and make

the spectrum peak more prominent when the direct wave

power is fixed. Therefore, it can improve the performance of

TDOA estimation through increasing the SDR. Fig. 12 shows

that the distance estimation performance is improved with
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Fig. 9. FDOA estimation performance with different coherent cumulative
points of the signals.
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Fig. 10. Velocity estimation performance with different coherent cumulative
points of the signals.

the increase of SDR, and the NMSE of distance estimation

reach to 10−3 when the SNR is -20dB and the SDR is -

40dB, and the distance estimation performance increases by

5dB when SDR adds by 20dB similarly. Because the accuracy

of the distance estimation depends on the performance of the

TDOA estimation. The TDOA estimation is more accurate

when SDR increases, so the distance estimation becomes more

accurate. It can be seen from Fig. 13 that the FDOA estimation

performance of the weak echo signal becomes better with the

increase of SDR, and the NMSE of FDOA estimation reach

10−3 when the SNR is -35dB and the SDR is -40dB. The

estimation performance increases by 5dB when SDR increases

by 20dB. Therefore, there is a better FDOA estimation perfor-

mance. Fig. 14 shows that the velocity estimation performance

is improved with the increase of SDR, and the NMSE of

FDOA estimation reach 10−3 when the SNR is -25dB and the

SDR is -40dB. Besides, the estimation performance increases

by 5dB when SDR adds by 20dB. Because the accuracy of the

velocity estimation depends on the performance of the FDOA

estimation. The FDOA estimation is more accurate with the

increase of SDR, so the velocity estimation becomes more

accurate. Moreover, the FOCCCAF has a higher NMSE than

that of the FWFRFT-FOCCCAF method, indicating that the

FWFRFT has a better effect on the suppression of interference

and noise.
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Fig. 11. TDOA estimation performance with different SDRs.
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D. Location Parameters Estimation Performance with Differ-

ent Number of Satellites

Fig. 15 and Fig. 16 show the the distance and velocity

estimation performance under the different number of satel-

lites, respectively. From Fig. 15, we can see that the NMSEs

of distance estimation reach to 10−3 when the SNR are -

32dB, -30dB and -28dB and the number of satellite is 2, 3

and 4, respectively. This indicates that the distance estimation

becomes worse when the number of satellite increases, since

the increase of satellites leads to the increase of DPI and MPI

in the surveillance channel. However, the increasing number of

satellites will improve the reliability of parameter estimation.

From Fig. 16, the NMSEs of distance estimation reach 10−3

when the SNR are -36dB, -34dB and -32dB and the number of

satellite is 2, 3 and 4. The performance of velocity estimations

gradually decreases with the increasing number of satellites,

while the reliability gradually improves, which is consistent

with distance estimation.

VI. CONCLUSION

In order to enhance the accuracy and reliability of moving

aerial target location parameter estimation, a novel framework

of the passive location system in space-air-ground integrated

networks-based internet of vehicles has been designed and

corresponding location parameter estimation method based

on FOCCCAF and FWFRFT-FOCCCAF has been proposed

in this paper. Simulation results shown that the proposed
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Fig. 13. FDOA estimation performance with different SDRs.
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Fig. 14. Velocity estimation performance with different SDRs.

method has estimated effectively the location parameters of

moving aerial target and FWFRFT-FOCCCAF outperforms

FOCCCAF on location parameter estimations. Moreover, the

performance of proposed method improves by increasing the

SNR of the echo signal, the coherent cumulative points of

the signals and the SDR between the direct wave and the

echo signal, while increasing the number of satellites does

not improve the estimation performance but can improve the

estimation reliability.
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