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Mobile devices bring bene�ts as well as the risk of exposing users’ location information, as some embedded sensors can be accessed
without users’ permission and awareness. In this paper, we show that, only by using the data collected from the embedded sensors
in mobile devices instead of GPS data, we can infer a user’s location information with high accuracy. �ree issues are addressed
which are route identi�cation, user localization in a speci�c route, and user localization in a bounded area. �e Dynamic Time
Warping based technique is designed and we develop a HiddenMarkov Model to solve the localization problem. Real experiments
are performed to evaluate our proposed methods.

1. Introduction

While people are enjoying the many bene�ts brought by
mobile devices, people have to take the risk of losing privacy
by leaking private information [1–8], especially location
information [9–13]. People now heavily rely on services
provided by third-party Apps which usually collect users’
location information. Such Apps provide users with con-
venience, while they also threaten users’ privacy. Location
information is sensitive and malicious adversaries can make
use of location information to attack users or threat the
public. �erefore, location privacy has attracted tremendous
attention from researchers who are struggling to protect
location privacy without degrading service qualities of third-
party Apps.

�emost common way for Apps to obtain location infor-
mation is to get access to the GPS [14, 15] module in a mobile
device. �us, some methods aim at controlling the access
to the GPS module to protect location privacy. In reality,
third-party Apps need users to authorize the access to the
GPS module so that users may control the tradeo� between
service quality and privacy preservation. Such a strategy
seems to provide satis�able location privacy. However, many
works have pointed out that, without accessing GPS data,
Apps can still infer private information, such as input on
touch-screen [16] and motion status [17], through the data

collected by general embedded sensors inmobile devices [18–
27]. Unfortunately, few works try to utilize built-in sensors
like accelerometer, magnetometer, gyroscope, and so on to
do localization. �ese sensors are very sensitive and their
readings may have lots of noises due to stochastic events
such as tiny vibrations of mobile devices. �us it is extremely
challenging for inferring location information merely based
on noisy sensory data. However, combined with reasonable
background knowledge, readings from these sensors can be
utilized to infer a user’s location information. Such sensor
readings are considered nonsensitive and can be obtained
without user permission, which causes a big threat to location
privacy [28].

In this paper, we propose a novel method to infer a
user’s location which only utilizes the data collected from the
accelerometer and gyroscope in a mobile device. Such data
can even be collected easily without users’ awareness [29].
Our work is inspired by the fact that sensor readings are
highly related to the route a user is taking, which can reveal
the user’s location. Most people generally have relatively
stable life patterns in their daily lives. We then take driving
pattern as a case study in this work. Driving pattern is
unique for each person. We take advantage of this feature to
infer users’ location information through unique �ngerprints
collected from people’s daily lives. Regarding driving pattern,
we have the following observations. It is very common that a
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Figure 1: Sensors in a smart phone.

person takes the same route to go to work/school or go home
at speci�c time every weekday. A person may be jammed
on the same road segments every day. �ere are only several
reasonable routes that people would like to choose to drive to
a speci�c destination. �e time it takes every day to drive to
a particular location along the same route is almost the same.
If adversaries can obtain the sensory data pro�les for a set
of known routes in advance, they can track a mobile device
on those routes by secretly gathering sensory data from that
device and matching it with the prerecorded pro�les. Based
on these observations, we address the following three issues
in this paper based on the sensory data collected frommobile
devices.

(1) Given a set of possible routes that a user would like to
drive along every day, how to decide which route the
user is driving along?

(2) Given the selected route of a user, how to infer the
user’s location in real time?

(3) In a bounded area, how to trace a user?

�ese three issues address three di�erent aspects of loca-
tion privacy, with increasing di�culty level. To the best of
knowledge, this is the �rst work to make use of sensory
data collected from embedded sensors in mobile devices to
infer location information without considering GPS data.
�e reminder of the paper is organized as follows. Section 2
discusses how to collect sensory data, followed by the attack
model in Section 3. Sections 4, 5, and 6 explain how to
solve the three issues, respectively. Section 7 presents the
experiment results. Section 8 reviews the related works and
the paper is concluded in Section 9.

2. Sensory Data Collected by Mobile Devices

We collected some real data to validate our observations. We
adopt smart phones with accelerometer and gyroscope as our

mobile devices. Almost every smart phone has at least such
two kinds of sensors which have three axes �, �, and �. Each
axis represents a dimension of a smart phone as shown in
Figure 1.

We collected the sensory data of several routes for about
10 days and all the sensory data of the same route show
similarity. Figure 2 shows an example data set for one route,
which was collected for 2 di�erent days. Figures 2(a), 2(b),
and 2(c) are for one day. Figures 2(d), 2(e), and 2(f) are
for the other day. As we can see, the data patterns for these
two di�erent days demonstrate high similarity. �e �-axis of
each sub�gure in Figure 2 represents the total time to collect
the data. �e two days had di�erent total data collection
durations because the driving speeds in these two days are
di�erent. �en we can tell that even with di�erent driving
speeds in di�erent days, as long as it is for the same route,
similar data patterns always present. �at is to say, each
route has its unique data pattern. Such a fact ensures that
we can de�nitely infer location information through sensory
data collected from the sensors embedded in mobile devices
without accessingGPS data.Our extensive experiment results
in Section 7 also validate it.

To �gure out which kind of sensory data can characterize
data pattern for a speci�c route is a fundamental issue. We
take accelerometer and gyroscope, which are two common
sensing units in a mobile device, as two representative kinds
of sensors in this work. Accelerometer can measure linear
acceleration and gyroscope can track angular velocity of
three axes of a smart phone as shown in Figure 1. Actions
such as speeding up, breaking, and turning le�/right are
the most common driving actions. All such actions can be
precisely captured by linear acceleration and angular velocity
which can be conveniently measured by accelerometer and
gyroscope, respectively.We conducted extensive experiments
to prove our hypothesis. In our experiments, each smart
phone was placed on the dashboard of a car with screen
face up and the positive �-axis of accelerometer towards the
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Figure 2: Sensory data showing similarity for the same route.

driving direction. Note that it is not necessary to place a smart
phone in this way in real applications. Our purpose is to
simplify the experiments. As depicted in Figure 2, the crests
in Figures 2(a) and 2(d) represent breaks, while the troughs
represent acceleration. �e crests in Figures 2(c) and 2(f)
represent le� turns, and the troughs represent right turns.We
can see that breaks and acceleration can be captured by the
�-axis readings of the accelerometer, steering can be captured
by the�-axis readings of the accelerometer and the �-axis and

�-axis readings of the gyroscope, and road conditions (bump,
downhill, slope, etc.) can be captured by the �-axis readings
of the accelerometer.

Figure 3 shows the �-axis readings of the gyroscope
for some sharp/slow turns made at the same intersec-
tion. We can see that the only di�erence between sharp
turns and slow turns is the shape of the corresponding
peaks which are greatly di�erent from that of the line
representing no turning. �is example indicates that even
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Figure 3: In�uence of driving habit.

if people have di�erent driving habits, the resultant data
for the same action present the same pattern and the
only di�erence lies in the actual values, which means that
driving behaviors may a�ect sensory readings but have
no impact on data patterns. �erefore, we can infer one’s
location information given precollected data for targeted
routes.

Di�erent sensory readings have di�erent usefulness. Ini-
tially, we used �-axis readings of accelerometer to infer one’s
accurate location because �-axis readings of accelerometer
can capture the break actions. Unfortunately, we �nd that
this method is not quite e�ective for localization in practice,
as one may break arbitrarily anywhere in a road segment,
making it hard to precisely locate a user. �is is because
even if the road conditions are the same every day, the real
time tra�c conditions a�ecting one’s driving speed may be
quite di�erent. Sometimes, �-axis readings of accelerometer
may even hinder us from locating users. However, we �nd
that a user may have the same break frequency or speedup
frequency on some particular road segment which can help
with route identi�cation. For example, one may break very
frequently on a particular road segment resulting in many
crests in the collected data, and such a pattern is useful for
identifying this road segment. �erefore, we make use of �-
axis readings of accelerometer for route identi�cation, not
for location inference. We also �nd that road conditions are
generally stable, as the locations of downhill, uphill, and
intersections in which one needs to make turns are the same
for each route.

�anks to the aforementioned observations, we are able
to locate mobile devices based on the sensory data which
can be easily collected. From the sensory data, we can also
extract unique �ngerprints to identify road segments with
high accuracy.

3. Attack Model

We have no special requirements regarding the attack model
and our attack model is very reasonable compared with the
ones in the previous works. Basically, there are just two roles
in our attack model, attackers and users. Attackers are the
adversarial App providers, and users are the ones who have
installed these adversarial Apps. An attacker tries to obtain a
user’s location information secretly, assuming the attacker has
successfully attracted the user to installmaliciousApps on the
mobile device. �en, the attacker can easily collect the user’s
sensory data because many sensors like accelerometer and
gyroscope can be accessed by malicious Apps without user
permissions.�e only requirement is that themalicious Apps
can upload the sensory data to the attacker’s backend server
through Internet so that the attacker can analyze the sensory
data for location inference. All of these actions can be carried
out without user’s awareness. As mentioned before, sensory
data collected by mobile devices may threaten privacy. Even
worse, most users and many manufacturers have not even
realized such a threat.

4. Route Identification

In this section, we explain how to identify a route, which
is the �rst step towards location inference. Suppose users
drive to work every weekday morning and the number of
possible destinations for each user is limited. Moreover, for
each destination, there are only a few reasonable routes that
a user would like to take. All in all, the set of all the possible
routes for each user is limited. From personal perspective and
experience, we think this assumption is reasonable. If we can
infer which route a user is taking, then to infer all the possible
destinations for each user becomes possible which threatens
user privacy.

Each route has relatively unique road conditions involv-
ing intersections, stop signs, tra�c lights, and so on. �en
the resultant sensory data from a user can characterize each
route. For example, a user, who goes to work every weekday,
may be jammed on the same road segments and stop at the
same places for tra�c lights and stop signs. �en the corre-
sponding sensory data are unique and stable. Without loss of
generality and for simplicity, we assume a known �nite set of
routes for each user. Each route in the set has a corresponding
sensory data pattern as shown in Section 2. We can collect
the sensory data pro�le for each route beforehand; then we
can compare a user’s sensory data with the available pro�les
to identify routes. However, the following challenges present.
For a speci�c route, the data collected on multiple days may
be di�erent because of real time driving speed and tra�c
conditions.Many unpredictable eventsmay occur, which also
results in data di�erence. Furthermore, the collected datamay
have noises caused by shaking of cars, slight movement of
smart phones, and so on. All these factors degrade the quality
of the collected sensory data and make route identi�cation
even more challenging. Actually, route identi�cation is to
match sensory data patterns. If two sets of sensory data
present the same pattern, we strongly believe they represent
the same route. For the same route, since there are so many
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Figure 4: Two examples for DTW-based sequence alignment.

factors causing data di�erence, we cannot expect two sets of
sensory data representing the same route to present exactly
the same pattern. In order to address these challenges, we
�rst need to de�ne similarity between two sets of sensory
data. �e data collection durations for di�erent routes vary
greatly.�en simplemeasurement Euclidean distance is obvi-
ously ine�ective in measuring similarity because Euclidean
distance can only be used for phase aligned sequence. In order
to accommodate noises and various data collection durations,
it is better to consider the shape of a sequence of sensor
readings for distinguishment.

4.1. Dynamic Time Warping. Dynamic Time Warping
(DTW) is a powerful tool to measure a distance-like quanti-
ty between two time series which may vary in speed and
duration [30].�e obtained distance-like quantity re�ects the
similarity between these two nonlinearly aligned time series.
�is is exactly what we need for sensory data matching, since
real time tra�c is unpredictable resulting in various data
collection durations. �erefore, we employ DTW to �nd out
along which route a user is driving given a set of possible
routes that the user would like to drive along.

Let ��, ��, �� and ��, ��, �� be the �, �, �-axis values of
accelerometer and gyroscope, respectively. Assume ��1 =
(��11, ��12, ��13, . . . , ��1�) and ��2 = (��21, ��22, ��23, . . . , ��2�)
are an accelerometer’s �-axis readings for two di�erent days,
where � and � are their collection durations, respectively. If
� and � are di�erent, the Euclidian distance is not proper
for measuring the similarity between these two sequences.
Our primary task is to compare two sensor reading sequences
collected on di�erent days for the same route even if they
have di�erent collection durations. �en we de�ne similarity
based on a time warping path. First, we use an � × �
matrix 	 to represent the point-to-point distance between
two sensor reading sequences ��1 and ��2. Figure 4(a) shows
two sensor reading sequences with similar data collection
durations. Figure 4(b) shows two sensor reading sequences
withmore di�erent data collection durations. Entry	�� in	
indicates the way we align ��1� and ��2� . �en we can derive

a time warping path 
 = (�1, �2, �3, . . . , �	) to represent the
alignment and matching relationship between ��1 and ��2,
where �
 = (�, ) (1 ≤ � ≤ �) indicates the alignment

and matching between ��1� and ��2� with min(�, �) ≤ � ≤
� + � − 1. �e di�erent data collection durations of di�erent
sensor reading sequences resulted from the di�erent driving
speeds in di�erent days. SinceDTWcan alignmultiple sensor

readings in one sequence to a particular sensor reading
of another sequence, we are able to successfully align two
sequences with di�erent data collection durations. Based on
the obtained time warping path 
 = (�1, �2, �3, . . . , �	), we
de�ne the distance between two sensor reading sequences

��1 and ��2 as follows:

���� (��1, ��2) =
	
∑

=1

�
, (1)

where �
 denotes the distance between ��1� and ��2� .
We collected the sensory data along the 6 dimensions

for each route in a set of routes for several days. �ese
data are used as our training data. �en we computed the
distance between the test data and our training data. For each
dimension, we derive a similarity score between the test data
and training data. �e �nal similarity score for each route
is the sum of these 6 similarity scores. �e route with the
smallest similarity score is the identi�ed one that matches
a route in the training data set. As sensory data have a lot
of noises, we need to smooth the data before computing
similarity scores. Furthermore, we use two classic methods
to optimize the DTW algorithm whose time complexity is
�(��), where � and � are the data collection durations for
two sensor reading sequences. �e �rst method is based on
the fact that although the durations vary, their di�erence
is limited. Suppose the maximum time duration di�erence
for the same route is MD = max(|� − �|). �en we can
reduce the searching space in our algorithm. Assuming that
the sampling rate is �, each alignment and matching in 
 =
(�1, �2, �3, . . . , �	) does not exceed � ∗MD ∗ 60. �at is, for
every �
 = (�, ) (1 ≤ � ≤ �)

max
����� − ���� ≤ � ∗MD ∗ 60. (2)

For all of our testing routes, the maximum di�erence for
the same route is 4 minutes. We limit the searching space
within a bounded area to increase the searching speed. �e
secondmethod is called themultiscale DTW. Because we just
identify the route with the smallest similarity distance as the
result, exact similarity distance is not necessary. �en we can
resample the sensory data sequences to reduce the dimension
of matrix 	. �is method also substantially speeds up the
searching speed.

5. Location Inference on a Particular Route

�is section discusses how to locate a user on a particular
route given real time sensory data. We assume an attacker



6 Security and Communication Networks

knows along which route a user is driving. In this case, the
attacker can collect the data for a small road segment from
malicious Apps installed in the user’s mobile device. To locate
a user, subsequencematching needs to be performed between
real time sensory data and the data for the entire route. Here,
real time sensory data is the test data, and the data for the
entire route is the training data.

DTW can also be used for subsequence matching with
minor modi�cations. For instance, for the �� dimension, a
route’s sensory data is ��1 = (��11, ��12, ��13, . . . , ��1�) and the

query segment’s sensory data is ��2 = (��21, ��22, ��23, . . . ,
��2�), where � ≫ �. It is di�erent from route identi�cation in

which the start and endpoints of ��1 are alignedwith the start
and end points of ��2 as shown in Figure 4(a). In subsequence
matching, the start and end points of ��1 can be aligned to

any points in ��2. �at is, in route identi�cation, �1 = (1, 1)
and �	 = (�,�). While for subsequence matching, this
requirement is not necessary.

Our goal is to �nd subsequence ��1(�∗ : �∗) =
(��1�∗ , ��1�∗+1, ��1�∗+2, . . . , ��1∗) with 1 ≤ �∗ ≤ �∗ ≤ �
minimizing the timewarping distance to ��2 over all possible
subsequences of ��1. In other words,

(�∗, �∗) = argmin
(1≤�≤≤�)

(���� (��1 (� : �) , ��2)) . (3)

�e algorithm is pretty simple which can be found in [30]. Let

∗ = (�∗1 , �∗2 , �∗3 , . . . , �∗	) be the identi�ed warping path; we
have �∗1 = (�∗, 1) and �∗	 = (�∗, �) as shown in Figure 4(b).
�en we can infer �∗ is the current location of the user.

Roughly speaking, to infer a user’s location, we employ
the modi�ed DTW algorithm to �nd the most likely sub-
sequence along a route and consider the end point of
the subsequence as the inferred location of the user. �e
most challenging issue is that there may exist many similar
subsequences along a very long route; for example, a user
is driving along a highway with constant velocity. In this
case, we need to take account of other information such
as time and tra�c conditions. �e simplest method to deal
with this issue is to consider the time di�erence. We assume
the start time of a training sequence for the given route
and the start time of the test subsequence are both known.
According to all the training sequences for a given route, we
can reduce the searching space to a speci�c range to reduce
inference error. Even though we cannot completely eliminate
such errors, in practice, the dynamically changing road and
tra�c conditions, sudden events, and climate reasons can
all help with characterizing sequences. �en the number of
the similar subsequences along a route is not large. In our
experiments, such an issue does not present.

6. Location Inference in a Bounded Area

�ere are some works for tracing a user in a bounded area
based on private location information of users without user
awareness [18, 19]. However, some assumptions in these
works may not be practical. For example, users may choose
to detour due to tra�c jam or emergencies. In this case,
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Figure 5: Road map.

since there are no training data for the new route, it may
be impossible to identify the route. Another challenge is
that there are so many possible routes and it is impossible
to collect the training data for all the possible routes. Fur-
thermore, it is infeasible to compute the similarity distance
between the query sensory data and the entire database
data.

In order to develop a more general method for location
inference, we employ a Hidden Markov Model (HMM). As
shown in Figure 5, we split all the routes into small segments
based on intersections. Each rounded rectangle represents
an intersection and each arrow represents a road segment.
Bidirectional arrows represent two-way roads, while direc-
tional arrows represent one-way roads. Let  denote the set
of intersections and ! denote the set of road segments. A
road segment is denoted by � = (�, ), indicating � is between
intersection � and intersection . We consider a road segment
� as a state, and the transition probability of � is determined by
�’s outgoing degree. For example, from segment �1, a user can
go to segments �2 and �3.�en the transition probability from
�1 to �2 or �3 is 0.5. We may also de�ne transition probability
based on real time tra�c. For example, 30% of cars go from
�1 to �2; then the transition probability from �1 to �2 is 0.3.
�is method requires real time tra�c information at each
intersection and usually it is impractical. �us, we make use
of outgoing degree to de�ne transition probability.

To calculate a user’s probability of arriving at a particular
location, we have the following strategy. As shown in Figure 5,
when a user is driving along road segment (2, 5), if the user
passes intersection 5, the state changes from 2 to 5. Otherwise,
suppose the user stops at a particular location " on segment
(2, 5), and " is the location to be inferred.�en the probabil-
ity of arriving at " is determined by the similarity distance
between the observed segment sensory data for (2, ") and
the training sensory data for (2, 5). �e similarity distance
can be computed using the DTW algorithm presented in the
previous section.With this probability, we are able to identify
the �nal location of the user on segment (2, 5).



Security and Communication Networks 7

Require: #, $Prob, �%, &�� for each road segment ��
Ensure: �e most likely trajectory	
! for �%
(1) for all stage � do
(2) if (� == 1) then
(3) [Dist, '�� �*���1] = FRS(1)
(4) 	
!�� = max(#� ∗ ����)
(5) Let the end point be the start point at the next stage
(6) else
(7) for all segment �� do
(8) 	
!�� = max(	
!�−1� ) ∗ $Prob

(9) end for

(10) [����, '�� �*����] = FRS('�� �*����−1)
(11) 	
!�� = 	
!�� ∗ Dist
(12) end if

(13) end for

Algorithm 1: Modi�ed Viterbi algorithm.

In summary, to trace a user in a bounded area, we �rst
need to collect the sensory data for all the road segments
within the area, which is possible since the number of the road
segments in the bounded area is limited. Obviously, the route
traversed by a user is a concatenation of a subset of all the
road segments. Once we collect the sensory data from a user’s
mobile device, we can infer the most possible route traversed
by the user. �en the user can be located in a bounded area.
�e following are the details of this location inferencemethod
in a bounded area.

6.1. 	e Modi
ed Viterbi Algorithm. �e Viterbi algorithm
[31] is a dynamic programming algorithm to �nd the most
likely sequence of hidden states which generates the input
sequence of observed events. In our work, each road segment
is regarded as a hidden state, and the sensory data from
a mobile device are regarded as the input sequence of
observed events. �en given the sensory data of some road
segments from a user’s mobile device in terms of a sequence,
the Viterbi algorithm can help us identify the most likely
route traversed by this user. However, the Viterbi algorithm
deals with discrete events, while our collected sensory data
are continuous. Besides, the data collection duration for a
road segment may not be �xed, and it is hard to �nd the
intersections that divide the sensory data into road segments.
�us, we modify the Viterbi algorithm so that it can be used
to locate a user in a given area.

For each road segment, we have the corresponding

training data. Let &�� be the training data for road segment

��. Let $�
min

and $�
max

be the shortest and longest time to

traverse ��, respectively. $�min
and $�

max
can be obtained from

the training data of ��. Let -� be the data collection duration
of query route �%. �e collected sensory data for �%, which
is a sensor reading sequence, correspond to the entire route
traversed by the user and this route consists of road segments.
�e purpose is to identify the route traversed by the user
through matching the sequence of�% with the training data.
Our basic idea is to break�% into di�erent road segments so

that we can employ the modi�ed Viterbi algorithm to locate
a user.

To break �% into road segments, at each stage, we need
to cut �% utilizing the DTW algorithm. For example, at the
�rst stage, we start from the �rst point of �%. �en for all
the possible next road segments �� where � ∈ 1, 2, . . . , �, we
compute the similarity distance between �� and a subsequence
of �%. Let this subsequence be �̂�. As we know, �̂� starts from
the �rst point of �%. Since we do not know the user’s exact
travel time of ��, the end point of �̂� could be reached in

time $�
min

to $�
max

as mentioned above. We need to compute
the similarity distance between all such possible �̂� and ��
and choose the smallest similarity distance as the similarity
distance for ��. �e end point of �̂� is the point that derives
the smallest similarity distance for ��. �e end point of �̂� is
regarded as the start point at the next stage. �en the above
process is repeated. In this way, we can break �% into road
segments. Algorithm 1 is the pseudocode for the modi�ed
Viterbi algorithm which breaks �% into road segments. �e
input of Algorithm 1 includes the initial probabilities #� (1 ≤
� ≤ �) for a user to start from road segment ��, transition
probability matrix $Prob among road segments with size � ∗
�, observed sensory data �%, and the training data &�� for
road segments �� (1 ≤ � ≤ �). Let 	
!�� be the probability of
road segment �� being determined for stage �. A�er running
Algorithm 1, we derive vector	
!� for road segment �� for all
the stages. By tracing back from the �nal stage, we can obtain
the most possible trajectory for �%.

Algorithm 2 is to determine the exact end point of a
particular road segment �̂� given the start point of �̂�. Let
����� be the similarity distance between �̂� and the training
data and '�� �*���� be the end point of �̂�. ����−1 is the end
point of the previous stage and the step size 7 is 1 second.
Actually, we consider vector���� as the emission probability
that generates the observation at each stage.

A user may �nally stop at an intermediate point on a
road segment. �at is, the collected sensory data �% is a
concatenation of several complete segments and a partial
segment. However, Algorithm 1 can only derive a rounded
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Require: End point����−1,
Ensure: Similarity distances for all possible road segments

and corresponding end points����
(1) for all &�� do
(2) if $�

min
+ 7 of &�� is smaller than -� − ����−1 then

(3) ����� = min
�∈[0,��max−��min

]
���� (*� (����−1 : $�min

+ 7) , &��)

(4) else
(5) ����� =  �8�����
(6) end if

(7) return���� and����−1 + 7 + 1
(8) end for

Algorithm 2: Finding road segment (FRS) for stage �.

sequence representing a set of complete road segments. Let us
call the last complete road segment derived fromAlgorithm 1
as the �nal complete road segment, a�er which the next
possible segment that the user would like to go to must be an
adjacent road segment of it. �en we can employ the method
of location inference on a particular route introduced in the
previous section to �nd the most likely subsequences for
�%(����nal : -�) on all the adjacent road segments. Among
all these subsequences, we consider the one with the smallest
similarity distance as the road segment that the user �nally
selects.�e end point of this subsequence is the �nal location
of the user.

7. Experiment Results

7.1. Data Collection. All the data employed in our experi-
ments are real data. For route identi�cation, we drove around
Atlanta, USA, and Wuhan, China, to collect data. �e sensor
data for 48 unique routes were collected, with 32 routes in
Atlanta and 16 routes in Wuhan. �e lengths of the routes
vary from about 1 kilometer to 3 kilometers. All the data
were collected by iPhone 5, iPhone 5s, iPhone 6 plus, and
iPhone 6s. For a speci�c route, we collected its data in at
least consecutive 5 days. �us, we have at least 5 sensor data
pro�les for each route. For localization in a particular route,
we collected the data for a very long route. For localization in
a bounded area, we collected the data of all the road segments
in a limited area located at the Decatur county in Atlanta,
USA.

7.2. Assumptions. It is obvious that the way a smart phone
is placed in a car greatly a�ects the collected sensor data.
In our work, we assume that the query data follow the
same dimensions of the collected training data. Even though
di�erent usersmay place their smart phones in di�erentways,
the similarity between the sensor data for di�erent days of
the same route does not change. In our experiments, the only
requirement is that a volunteer places the smart phone the
same way every day. Since it is easy to detect the position of
a smart phone, we believe it is possible to project the sensor
data into a uniform position coordinate system and this is out
of the scope of this paper.

7.3. Route Identi
cation. For route identi�cation, 16 volun-
teers participated in collecting sensor data along their daily
routes. We do not have any strict requirements about the
start time. We �nd that it does not have much impact on the
experiment results. Totally, we have 48 routes, some of which
overlap with each other. For any pair of routes, the overlap
rate is from 0 to 70%. However, we can still distinguish them
e�ciently. We also �nd that the longer the route is, the easier
the route is distinguished from other routes, because the
longer the route, the more unique the features it has. For each
route, the volunteers are required to collect sensor data for at
least a week so that we can evaluate the impact of the size of
the training data.

For the 48 routes, we have a testing set and a training set.
�e sizes of the testing set and the training set are both 48.
Each route has only one pro�le. We run our algorithm for
each route in the testing set. If our algorithm can identify
the route in the training set, we consider it as successful. Our
success rate is 100% for identifying a route. It indicates our
method is e�ective in identifying a route even if the routes
may overlap with each other, as our method makes use of
the data collected from 6 dimensions which vividly depict the
unique features of a route. Ourmethod outperforms the work
in [18] that employs power footprint collected from the base
station. As the number of the reference pro�les increases, we
obtain better results even if we try to identify more unique
routes.

7.4. Localization in a Speci
c Route. For localization in a
speci�c route, we randomly select a long route which is about
20 kilometers and collect 10 sensor data pro�les for it. We
choose one of the pro�les as the training data. We randomly
select another pro�le as the testing data. �at means we only
have one pro�le in each experiment. We split the testing data
into several road segments as if they are collected fromauser’s
smart phone in real time. First, we want to know whether
our method could distinguish road segments. We are also
interested in the impact of the number of pro�les.�e results
are shown in Table 1. When there are 10 road segments, the
success rate is 84.2%. When there are 5 road segments, the
success rate increases to 90.3%. �e main reason is that if
there are only 5 road segments, each road segment is longer
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Table 1: Road segment identi�cation.

# of road segments # of pro�les Ave. success rate

10 1 84.2%

5 1 90.3%

10 5 100%

Empirical CDF
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Figure 6: Estimation error cumulative distribution.

and more unique so that it is easier to distinguish them. If
we increase the number of the pro�les to 5, the success rate
increases to 100% even if there are 10 road segments.

By using our algorithm, it is easy to know which road
segment a user is traveling through. However, we still want
to locate a user more accurately. In our experiments, the
minimum length of a subsequence is 1 minute, and the step
size is 5 seconds. One of the 15 days’ sensor data pieces is
chosen as the testing data, and we randomly select another
one as the training data. �e total length of the route is 19
kilometers. �e �-axis of Figure 6 shows the estimation error
ratiowith respect to the total length. It can be seen that almost
40% of the estimations are error free, and almost 80% of the
estimations have an error less than 2 kilometers. Even though
sometimes there are big errors, they can be avoided if we take
time into consideration. Since we already know which route
a user is traversing, based on the time information, we can
narrow down the search space to avoid a big error.

For the impact of the size of training set, we �x the length
of a subsequence as 4 minutes. We compute the location
for each training route in the training set for the query
subsequence; then the averaged location is regarded as the
�nal estimation. As we increase the size of the training set,
we can obtain a more accurate result. As shown in Figure 7,
whenwe usemore route pro�les to localize a user, the average
estimation error is reduced.

7.5. Localization in a Bounded Area. For localization in a
bounded area, we collected data from an area shown in
Figure 8. �is area locates at the center of Atlanta, USA.
We select 9 intersections and 12 segments determined by
these intersections. �at means, in the HMM model, we
have 12 states. �e average length of the road segments is
about 3 kilometers. We assume the probability of a road
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segment to be the starting segment of a user is 1/12. �ere
are many methods to determine transition probability. In
our experiments, we adopt the simplest one. �e transition
probability for road segments is evenly distributed over all the
possible transitions. For each road segment, we collected at
least one pro�le.One of them is chosen as the testing data, and
the rest are considered as the training data. �e probability
of some sensor data to be related to a speci�c road segment
can be calculated by the DTW algorithm. Actually, this is the
observation probability. Now, we have the initial probability,
transition probability, and observation probability; then by
using our method we can infer the route and location of a
user.

First, we want to make sure that our method can suc-
cessfully infer the route traversed by a user. For simplicity,
we only consider one direction in the map which is from top
le� to bottom right. All the possible routes have been tested
as listed in Table 2. We tested all the possible routes from
intersection 1 to intersection 9. For a full route which means
a car stops immediately a�er passing intersection 9, we want
to know whether we can infer the route correctly. �e results
are shown in Table 2.
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Table 2: Route inference.

Routes # of pro�les Ave. success rate

1-2-3-5-9 3 95%

1-2-4-5-9 3 98%

1-2-4-8-9 3 100%

1-3-4-5-9 3 100%

1-3-6-8-9 3 100%

Empirical CDF
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Figure 9: Estimation error for localization in a bounded area.

Basically, we can infer all the routes successfully; then
we can know the �nal location of a user is at intersection
9. However, it is quite possible that a user may stop at any
point in the area. �e ultimate goal of our work is to infer a
user’s location. �us, we also test some routes ending at any
point in the area. Totally, we tested 200 subroutes of the full
routes in the previous group of experiments.�ese subroutes
are randomly taken from the full routes. �e total length of
each route is up to 11 kilometers. �e idea is to infer the part
of the route consisting of several complete road segments.
We can get most possible intersection of a user. As we know,
there are many possible associated road segments for each
intersection. By using the method introduced in Section 5,
we can compute the similarity distance between the testing
partial road segment and all the possible roads. �e one with
the minimum similarity distance is the inferred location of
a user. �e results are shown in Figure 9. It can be seen that
almost 65% of the estimations are error free, and almost 86%
of the estimations have an error less than 0.5 kilometers.

8. Related Works

�ere are many previous works trying to acquire user’s
privacy information by analyzing sensor data collected from
mobile devices. We roughly classify them into four categories
based on the type of privacy information.

�e �rst category focuses on deanonymizing mobile
devices. Dey et al. [23] conducted extensive experiments
to show that the accelerometer readings are identical for
each user so that they can be used to infer user identity,
while in [32], in order to identify an individual device, the

speaker of a smart phone is used to construct the �ngerprint
of a user. Di�erent from [32], the work in [33] proposed
and implemented two approaches, one based on analyzing
the frequency response of the speakerphone-microphone
system and the other is based on studying device-speci�c
accelerometer calibration errors to construct a �ngerprint to
deanonymize mobile devices. No matter what the embedded
sensors they make use of to extract unique �ngerprints
of users, the works fully prove that user privacy is being
threatened by smart phones.

�e second category aims at getting users’ location in-
formation. Without making use of GPS information, Han
et al. [19] proposed an approach to locate users only based
on accelerometer readings. �eir method �rstly tries to
reconstruct motion trajectory given the acceleration mea-
surements collected from a user’s phone. �en it matches
the constructed trajectory with the map information to infer
the user’s location. �eir work is similar to ours. However,
their method is mainly based on probability and statistic
models which need tremendous background information.
�us, it may have limited ability to infer location. Similar
to [19], Constandache et al. [34] try to make use of a smart
phone’s accelerometer and electronic compass to get the
moving speed and the direction so that they can construct
a directional trail which can be matched with the local area
map. In this way, they can infer a user’s location based
on the best matched path segment. But they need to use
GPS information to get the initial location which cannot
be satis�ed in many situations. Two works related to open
permission sensors have been proposed by Michalevsky et
al. In [18], they argue that a smart phone’s location greatly
a�ects the power consumed by the phone’s cellular radio
which is the most power-intensive part. �us, they can use
a mobile device’s aggregated power consumption pro�le to
learn the location information based on the cellular radio
map. But the power consumption in smart phones can be
a�ected greatly and many factors such as playing game
a�ect localization accuracy heavily. Alzantot and Youssef [20]
designed a step countingmethod based on a lightweight �nite
state machine to estimate the walking distance so that they
can track pedestrians. �eir method is too simple to deal
with complicated scenarios.�emost popularmethods to get
user’s location indoors without using GPS component is to
utilize the WiFi signal. Krumm and Horvitz [22] designed
and implemented a system called LOCADIO to infer the
motion and location of a user. �is kind of works cannot
work without WiFi device (outdoor). �e work in [35] tries
to explore the possibility of developing an electronic escort
service by inferring the walking trail of a user. �is work
is not trying to get user’s privacy information secretly. It
requires users to share their location information with others
which is not preferred by most users. Azizyan et al. [36]
argue that logical location, which means location �ngerprint
characterized by surrounding sound, color, light, and so on
can be captured by the embedded sensors in smart phones.
�ey try to utilize location logical �ngerprint matching to
localize users indoors. It is obvious that this is infeasible
outdoors. Di�erent from all these works, our work is the
�rst one that combines two kinds of sensor readings to infer
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a user’s location information outdoors without using GPS
information.

All other privacy issueswere considered in category three.
�ese works open an interesting way to make use of in-
built sensors to poach privacy information. As in [37], the
authors proposed a method to steal the acoustic signals by
using gyroscope in a smart phone. �e work in [16] studies
the feasibility of getting a user’s tap inputs through motion
sensors embedded in cell phones. Accelerometer is used at
[17] to infer if the user is taking a metro. In this paper, they
�rst extract the feature of the accelerometer sensor data and
then utilize supervised learning based classi�er to infer the
interval of riding a metro, while [38] focuses on inferring a
user’s private information in Android system leveraging the
system bugs.

Some other miscellany works were grouped into category
four. Attackers not onlywant to infer privacy information, but
also try to do it e�ciently [39]. In order to save energy, Yadav
et al. [21] proposed their low cost GSM-based localization
method based on Cell Broadcast Messages and war-driving.
To tackle the problem that the Maximum Likelihood esti-
mator for received signal strength (RSS) based localization is
nonconvex, Ouyang et al. [40] proposed an Semide�nite Pro-
gramming (SDP) relaxation technique to solve this problem.
Further, even some works have been proposed to improve
the service quality instead of getting privacy information
from user. Actually, using the integrated sensor in phone
to monitor the road condition and tra�c problem has been
proposed by Mohan et al. [41]; however, their work focuses
on detecting rough road condition and tra�c jam. In [42],
the author argued that the slight localization error may cause
inconvenient result, so they proposed using accelerometer
signatures to mark user’s location to place mobile phone
in a right context. However, the accelerometer signatures
were just used as side channel to give a more meaningful
localization information for user when using GPS.

As we can see, most of the aforementioned related
works either have strong assumptions about their application
scenarios or have limited inference ability.

9. Conclusion

User privacy is being threatened by the sensors embedded
in mobile devices, as these sensors may release data without
users’ awareness. In this paper, we show that a user’s location
information can be inferred by utilizing the sensory data
collected from embedded sensors in users’ mobile devices.
We make use of the sensory data to construct �ngerprints of
routes and Dynamic Time Warping is employed to perform
route inference. We address three issues including route
identi�cation, localization in a speci�c route, and localization
in a bounded area. Real experiments were performed to
evaluate our work. �e extensive experiment results show
that we can e�ectively identify routes and localize a user in
a real time manner unconsciously.
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