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ABSTRACT Because location-based cyber services are increasingly found in mobile applications (e.g.,

social networking and maps), user location privacy preservation is essential and remains one of the several

ongoing research challenges. In this paper, we propose a region-of-interest division-based algorithm to

Preserve the location Privacy of mobile device users in location-based Cyber Services (PPCS). Unlike

existing methods, our proposed PPCS approach generates dummy locations while considering the semantic

information of those locations. The PPCS algorithm enables the generated locations to exclude or reduce the

exposure of a user’s real location. In our analysis, we demonstrate that PPCS is resilient to both colluding

attacks and inference attacks. We also evaluate the efficiency and demonstrate the utility of our proposed

approach through extensive simulations.

INDEX TERMS Location privacy preservation, location-based service, semantic information, mobile users.

I. INTRODUCTION

Use of location-based service (LBS) applications from

mobile devices and applications (apps) is rapidly increas-

ing [1]. However, LBSs have privacy and security issues that

need to be solved. For example, it has been demonstrated that

user location information can be abused to facilitate nefari-

ous activities such as cyberstalking [2], [3]. Unsurprisingly,

the research community has expressed interest in designing

location-based privacy techniques, including the following:

• Cloaking: sending a group of locations instead of a

single real location [4];

• Dummy generation: creating fake queries and locations

to hide users’ true locations [5]; and

• Private information retrieval: searching data from a

database without leaking query content or users’

identities [6].
Because most mobile devices (e.g., smart phones, tablets,

and smart entertainment systems in vehicles) include GPS

The associate editor coordinating the review of this manuscript and
approving it for publication was Honglong Chen.

modules, users can easily obtain accurate location informa-

tion [7]. An LBS query can include the identity, point of

interest (POI), real location, and region of interest (ROI) of

the user. For example, when responding to a user’s query, a

service provider will deliver a POI in the user’s ROI, such as

a gas station, hospital, or supermarket, to the user.

A. RELATED WORK

Various approaches [8]–[11] have been proposed to solve

the problem of location privacy preservation. For example,

k-anonymity cloaking [8] is used to protect a client’s location

privacy in LBS and aims to make a client’s location informa-

tion indiscernible from other k − 1 clients. In [12], a spatial-

temporal cloaking algorithm was proposed that collects the

LBS requests of k different users, forms a CR for a specific

time period and then submits the k LBS requests to an LBS

provider. In this scheme, a personalized k-anonymity model

is used to allow a user to have different privacy demands in

various contexts because different users can require different

degrees of privacy in the same context. However, when the

number of requests in a specified cloaking area is less than
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k , a user’s request is rejected. If the user density in a region

is large, the k clients’ locations may be close to each other;

therefore, the client’s location privacy may be divulged. The

authors of [13] proposed a cloaking algorithm to safeguard

a client’s location privacy in vehicular networks in which

the cloaking must include k or more different vehicles and

l different road segments. However, an insufficient number

of vehicles in the specified cloaking area can cause an unex-

pected response delay. When the number of road segments in

the specified cloaking area is insufficient, the cloaking area

must be enlarged, which can affect the quality of service.

To better protect a client’s location privacy, users interchange

their pseudonyms within a mixed zone [14]. Thus, the rela-

tionship between clients’ pseudonyms and their locations

may be broken.

Consequently, security policies and cryptography-based

approaches have become more popular. In contrast to the

k-anonymity cloaking technique, the dummy locationmethod

aims to protect a client’s location privacy by inserting many

dummy locations in his or her LBS query without any third-

party involvement [15], [16]. The authors of [17] proposed

a dynamic pseudo-ID scheme in which diverse pseudo-IDs

are used in different queries with the goal of unlinking the

correlation between a client’s real identity and the trajec-

tory. The authors of [18] designed a framework for fine-

grained privacy preservation in LBS for mobile users. The

authors of [19] designed a private block retrieval protocol

and proposed an efficient and secure location-based service

system. In their proposal, users can retrieve information of

interest associated with a current location without revealing

their locations. The authors of [20] proposed a method that

mixes the actual location of a user with that of other dummies

and then submits a query to an LBS provider. The LBS

provider searches for all the related POI locations and returns

them to the user. The authors of [21] designed grid- and

circle-based algorithms for generating dummy locations that

consider regional privacy requirements. The authors of [22]

proposed a distributed dummy client generation method to

give clients control over their privacy protections. When

generating dummy clients, that method selects clients with

movement patterns that are close to the primary user’s move-

ment pattern based on his or her privacy requirements. The

dummy location selection (DLS) algorithm [23] considers

ancillary information that might be exploited by malicious

users. The DLS algorithm adopts an enumeration method to

select dummy locations according to an entropy metric [24]

and attempts to choose the locations whose historic proba-

bility is similar to the user’s true location, which enhances

the entropy. The authors of [25] proposed two dummy-based

solutions for privacy-aware users that preconsider the ancil-

lary information [26] in LBS. In contrast to [23], the selected

dummy locations are placed in a virtual circle or virtual grid,

thus ensuring that the chosen dummy locations are not close

to each other.

Obfuscation-based mechanisms send a user’s real location

by altering it in nonreversible ways. For example, the authors

of [27] employed a time obfuscation-based scheme by send-

ing dummy queries at leisure times to confuse adversaries by

introducing extra background information. Authors in [28]

introduced the N-Rand, N-Mix, and N-Dispersion techniques

to add Gaussian noise when changing locations. In [29], two

different obfuscation operators (R-family deobfuscation and

E-family deobfuscation) were proposed to protect location

privacy by manipulating the radius of the obfuscated area.

B. RESEARCH MOTIVATION

Despite the convenience and entertainment provided by LBS,

a user’s privacy may be compromised when LBS providers

retain the user’s accurate location. For example, if a dating

app user near a Center for Infectious Disease requests LBS,

attackers can infer both the sexual orientation of the user

and that the user may have some sexually transmitted dis-

ease [30]. In addition, if an LBS provider is compromised, its

attackers can take advantage of users’ location information to

track clients or leak users’ private information to a third party

for commercial gain or to facilitate hate crimes against certain

populations. Thus, it is necessary to preserve the privacy of

LBS users’ locations. LBSs generate large amounts of data;

thus, collectively, such data can be used to profile individuals

for cyber threat intelligence.

However, the existing approaches have not yet considered

semantic location information, i.e., the correlation between

location and time. Therefore, these existing methods may

have serious deficiencies; for example, the chosen dummy

locationsmay not be similar to real locations or may represent

locations with low probabilities of LBS queries. The existing

dummy-location-based approaches can preserve the location

privacy of a user only when the dummies cover the actual

location of the client. To address this issue, Li et al. presented

a geometric approach—n-CD—to preserve a client’s loca-

tion privacy [31]. The n-CD algorithm partitions a client’s

ROI into n sectors of equal size and then creates n cryptic

disks (CDs) to cover the client’s ROI. The n-CD algorithm

sends the centers and radii of the n CDs rather than the real

user location to an LBS provider. Although the query sent

by this method does not contain any information about a

user’s real location, attackers can deduce that the user must

be within a specific area.

C. RESEARCH CONTRIBUTIONS

In this research, we design a novel approach to Preserve the

location Privacy of users in location-based Cyber Services

(PPCS). The main contributions of this paper are as follows:
• We study location privacy preservation for mobile users

in location-based cyber services and design an efficient

algorithm to solve this problem.

• We propose an approach to generate dummy locations

based on entropy while considering semantic location

information that might be used by attackers.

• We divide the range of the user’s interests into equal n

sectors and then select one location in each sector with

the maximum entropy for hiding the user’s real location.
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• We theoretically analyze the security performance of

the proposed approach and conduct extensive simulation

experiments under various scenarios to verify and eval-

uate the PPCS.

D. STRUCTURE OF THE PAPER

The remainder of this paper is organized as follows. We dis-

cuss the preliminaries and problem statement in Section II.

We describe our PPCS approach, analyze and evaluate its

security performance in Sections III through VI. Finally,

Section VII concludes this study.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. PRELIMINARIES

In this subsection, we provide the definitions of some terms

used in our research.

1) LBS QUERY

Assume that there is a probability distribution of a user being

in each possible location in an LBS system. Each user can

send queries to the LBS provider. Here, an LBS query Lq is

defined in Equation (1).

Lq = (uid , {(x, y),R,C}), (1)

where uid denotes a user’s identity; (x, y) represents the user’s

location information such that x and y represent latitude and

longitude values, respectively; R represents the radius of the

user’s query scope (that is, the region of interest, ROI), which

is at (x, y) with respect to the center; and C denotes the user’s

query content (that is, a POI).

However, the LBS provider may be malicious. Thus,

the user’s location may be disclosed if the user directly sends

the query Lq to the LBS provider. In this paper, to preserve

location privacy, we employ k-anonymity to preprocess the

user’s query, Lq. Thus, query Lq will be transformed to Lq∗,

as follows:

Lq∗ = (uid , {(x1, y1), . . . , (xk , yk ),R,C}), (2)

where (x1, y1), . . . , (xk , yk ) are k dummy locations that

obfuscate the user’s real location (x, y). Thus, as the LBS

query Lq is transformed to Lq∗, attackers will be unable to

determine the user’s real location from the k dummy loca-

tions, and the client’s location privacy will remain protected.

2) LOCATION TYPE

The location information (x, y) is the real geographic location

on the map (e.g., a Baidu or Google map). Typically, popula-

tion density is low on roads but can be high at shopping mall,

hospitals or restaurants. In this research, we assume that each

location has its own location attributes and can be categorized

according to their location attributes. Thus, an LBS provider

can classify all the locations within its service area into

different types based on location attributes. An example of

various location types is shown in Figure 1. Here, we list only

5 location types. In this study, the LBS provider is responsible

for disseminating the location types to the LBS users.

FIGURE 1. Examples of location types.

3) SEMANTIC LOCATION INFORMATION

In each location, users may request entertainment, medical

treatment, transportation or other services. Thus, a correla-

tion exists between the location type and the content of an

LBS query. For example, when near a hospital a user has a

higher probability of requesting medical treatment. However,

the user may also request other services (e.g., transportation)

from that same location (near the hospital). This correlation is

called semantic location information. Through the semantic

location information, we can analyze the user’s request and

obtain the location information to a certain degree.

To quantize the correlation between location type and con-

tent of an LBS query, a semantic parameter bi is used to

measure the semantic location information. A location type

with a semantic parameter bi that has a large value represents

a high probability of users submitting LBS queries for that

type of location. In this study, the users are responsible for

specifying the semantic parameter to measure the semantic

location information when sending requests in LBS.

4) ENTROPY

We employ entropy [24] to assess a user’s privacy level.

Entropy represents the uncertainty of identifying a client’s

true location among k dummy locations. For each location,

we can calculate the corresponding historical query probabil-

ity qi [23]. We provide the definition of qi in Equation (3).

qi =
number of queries in location i

number of queries in all locations
. (3)

Thus, based on the historical query probability qi and the

semantic parameter, we can amend the query probabilityqi to

qi for location i:

qi = qi × bi. (4)

Based on the definition of entropy, we can compute the

entropy H of k locations according to Equation (5):

H = −

k
∑

i=1

{

(log2 qi)× qi
}

. (5)

Then, from Equation (5), we can achieve the maximum

entropy Hmax = log2k when the k locations have the same

query probability 1/k . In addition, the sum of the k query

probabilities must be 1. Thus, we need to normalize the k
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FIGURE 2. The system model.

query probability by rewriting the entropy H as

H = −

k
∑

i=1

{

(log2 pi)× pi
}

, pi =
qi

∑k
i=1 qi

. (6)

B. SYSTEM MODEL

In this paper, we employ the distributed system model shown

in Fig. 2, which is comprised mainly of the users and the

LBS provider and no third party. Each user owns a mobile

device used to request the LBS service. Furthermore, these

mobile devices are capable of computing and storage. They

can complete the process of transformation from Lq to Lq∗ for

the LBS query. However, the LBS provider is responsible for

receiving and servicing the requests sent by the users. Then,

the LBS provider offers query results to users.

In the distributed system model, the LBS provider can

also calculate the historical query probability associated with

all locations based on historical user logs and is responsible

for disseminating and updating the historical query proba-

bility [23]. In addition, the LBS provider is responsible for

classifying all the locations into different types based on

their location properties and disseminating the location types.

Therefore, attackers can compromise the LBS provider and

obtain all its information. Moreover, the provider may also be

an assailant due its interest in determining clients’ locations

for commercial gain. Thus, in the distributed system model,

the LBS provider cannot be fully trusted and may be an

attacker.

C. BASIC IDEA

We consider the scenario in which a location genera-

tion scheme selects dummy locations without considering

the semantic location information. The location generation

scheme can generate k − 1 other dummy locations to safe-

guard a user’s location privacy; then, the probability for

leaking the actual location of a user is 1/k . Attackers can

exploit the semantic location information to filter kf locations

from the k locations, after which the probability of revealing

a client’s location information is enhanced to 1/(k − kf ).

Figure 3 shows an example of selecting dummy locations

using the location generation scheme. In Figure 3, the dif-

ferent cell shades represent different location types, and dif-

ferent location types have different semantic parameters. The

dummy locations in the areas whose semantic parameter is

less than 0.2 can be easily filtered by attackers. Thus, when

using location generation schemes that do not consider the

FIGURE 3. Example of dummy location generation.

FIGURE 4. Example of replacing the user’s real location.

semantic location information, filtered locations can be elim-

inated to enhance the probability of deducing users’ locations.

To address this problem, our solution is to carefully select

dummy locations based on the entropy value while consid-

ering the semantics of the location information, which can

be used by hackers. We attempt to select dummies with

similar/identical query probabilities. If we select only dummy

locations that maintain a client’s location privacy, the client’s

true location should be included among the dummies. To bet-

ter protect a client’s location privacy, we adopt a strategy to

ensure that a client’s actual location is not contained in these

selected dummies. As shown in Fig. 4, we select dummy

locations to replace the client’s true location in a user’s ROI

and ensure that the client obtains the required information.

This process is introduced in the PPCS algorithm described

in next section.

III. ALGORITHM DESIGN

A. n-CIRCULAR AREAS

In our PPCS approach, if the actual location of a user is

not contained in the dummy locations, then the ROI is par-

titioned into n sectors with equal sizes. Then, PPCS selects

one location from each sector. The PPCS algorithm carefully

generates n circular areas based on n locations that cover the

client’s ROI. Because a user’s ROI is completely covered by

the generated n circular areas, the query results for the user’s

ROI must be included in the query results of the generated

n circular areas. Although an LBS query does not contain

the client’s location information, users can obtain information

related to their interests. We provide a detailed description
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FIGURE 5. Example of dividing a user’s ROI into four sectors.

FIGURE 6. Generating circular areas to covering a user’s ROI.

regarding how to cover a user’s ROI by generating n circular

areas using our PPCS approach. In our example, n = 4.

As shown in Fig. 5, our PPCS approach partitions the

original ROI into four equal-sized parts, denoted by S1, S2, S3
and S4. The client’s true location is the centerO. In the client’s

ROI, the PPCS algorithm assumes that the four dummy loca-

tions have been carefully chosen based on the entropy of the

four sectors, which are designated C1, C2, C3 and C4. The

PPCS algorithm designates the ith(1 ≤ i ≤ 4) circular area

as CAi, and the radius and the center of CAi are designated

as ri and Ci, respectively. To guarantee that CAi completely

covers Si (1 ≤ i ≤ 4), we set ri = max {d1i , d
2
i , d

3
i }, where

d1i , d
2
i , and d

3
i denote the line segments CiO, CiQi, CiQi+1

(i ≤ 3) and CiQ1(i = 4), respectively.

Although Si can be completely covered by CAi, a user’s

real location may still be exposed to adversaries. When

ri = d1i = CiO, the intersections of the four circles (i.e., point

O) is the user’s real location, as shown in Fig. 6(a). To ensure

that none of the intersection points of the four circles includes

the client’s true location, the PPCS algorithm amends ri =

d1i × (1 + D) when ri = d1i = CiO, where D ∈ (0.1, 0.5).

Because the value of ri (1 ≤ i ≤ k) is greater than the value

of the distance between O and Ci, the user’s real location

(i.e., the point O) must be located in the ith circular area

rather than on the ith circle. Thus, after amending the radius

of each circular area, none of the intersection points of the

four circles is the user’s real location, as shown in Fig. 6(b).

Instead, the client’s true location is in the intersection area

(i.e., the shadowed area) of the four amended circles.

In this study, to prevent attackers from learning that the

client’s true location is included in the specific intersection

area (i.e., the shadowed area in Fig. 6(b)) the value of n

should be less than the anonymity degree k . Thus, to achieve

k-anonymity, our PPCS approach must select an additional

(k-n) dummies based on their entropies. The result is that

hackers and attackers cannot determine which intersection

area contains the client’s true location when more than one

intersection area exists.

B. PPCS ALGORITHM

The basic idea of our PPCS approach is to employ the

semantic position information that hackers and attackers can

leverage to generate multiple dummy locations such that

the query probabilities of all dummy locations are nearly

equivalent. Our PPCS approach uses a greedy strategy to

select dummies based on their entropies. From the definition

of entropy H , the maximum entropy value of k locations is

log2k . An attacker is increasingly less able to identify the real

location as the entropy increases. Thus, the greedy strategy

selects each location to maximize the entropy. Without loss

of generality, we introduce the entropy of the i + 1 iteration

with the greedy strategy. First, we assume that i locations

have been selected using the PPCS approach, where k > i.

When choosing the (i+ 1)th location, the PPCS algorithm

must ensure that the query probability of the current selected

location causes the functionHi+1(p) to achieve the maximum

value, in other words, the value closest to log2(i+1). Assume

that the query probability of the (i+ 1)th location is pi+1
and that the query probabilities of i locations are the set

{p1,. . . , pi}. Then, based on Equation (6), we can compute

the entropy Hi+1(p) of the i+ 1 locations using Equation (7):

Hi+1(p)=−

i
∑

j=1

pj
i

∑

l=1

pl + p

log2
pj

i
∑

l=1

pl + p

−
p

i
∑

l=1

pl + p

× log2
p

i
∑

l=1

pl + p

, (7)

where pj (j ∈ [1, i]) is a variable that represents the current

query probability of a user at position j.

To achieve k-anonymity and l/2 diversity, we select l loca-

tion types according to the semantic parameter of a client’s

true location. Then, we choose an additional k − 1 dum-

mies based on entropy to protect the client’s location pri-

vacy among the chosen location types, where a minimum of

l/2 location types must be ensured. As shown in Algorithm-1,

our PPCS algorithm is composed of Procedure-1 and

Procedure-2.

Procedure-1 describes that the selected k locations exclude

the true user location. When the k positions/locations that

we choose do not include the client’s true location, then the

client’s ROI is divided into n equal sectors. The PPCS algo-

rithm then chooses n dummies based on the entropy from the

ROI with n centers and generates n circular regions that com-

pletely cover the user’s ROI. Note that n is less than k . Thus,

to achieve k-anonymity, our PPCS approach must select

an additional k-n dummies based on their entropy values.
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Procedure-2, however, describes the situation in which the

selected k locations do contain the true location of the user.

The PPCS algorithm then directly chooses an additional

k−1 dummies based on entropy. After choosing k dummies,

the PPCS algorithm generates other appropriate dummy POIs

to further obscure the client’s true POI, if necessary. Detailed

descriptions of the PPCS approaches are as follows:

(1) First, the anonymity degree (i.e., k) is determined by

a user according to his or her location privacy requirement.

A larger k value represents a higher user privacy requirement.

Generally, the degree of anonymity k is greater than 1 because

k = 1 indicates that the user does not care whether his or her

location privacy is exposed. In this situation, users send their

LBS queries directly to the LBS server.

(2) After obtaining the historical query probability that is

associated with all the locations and location types in an LBS

provider’s service area, the user should prespecify a semantic

parameter for each location type in the LBS provider’s service

according to the current time and his or her POI.

(3) According to the historical query probability associated

with all locations and the semantic parameter of every loca-

tion type, the PPCS algorithm calculates the current query

probability according to the rule given in Section II. The

PPCS algorithm then classifies the probabilities based on

location type and sorts the current query probabilities of each

type in ascending order.

(4) When the true location of a user is not included in

the selected dummies according to the user’s location type,

the PPCS algorithm selects l different location types whose

semantic parameters are similar to the user’s location type.

For every selected l location type, the PPCS approach chooses

k − 1 other locations whose current query probabilities are

similar to those of the user’s actual location. Thus, there are

(k−1)× l candidate locations. To easily select dummies, our

PPCS approach sorts all the candidate locations in ascending

order according to their probabilities.

(5) In the sorted candidate locations, the PPCS algorithm

selects k − 1 locations whose existing query probabilities are

similar to or the same as the true location of the user until it

has selected a minimum of l/2 location types.

(6) If the dummy locations exclude the client’s true loca-

tion, the user must determine the value of n according to

his or her privacy requirement, which determines the number

of sectors into which his or her ROI should be divided.

After obtaining the value of n, the PPCS approach divides

the client’s ROI into n parts of equal size. Then, the PPCS

algorithm randomly generates one location in the client’s

ROI, which is part of the first sector, and applies a greedy

strategy to select additional n − 1 locations from the ROI

based on their entropy values.

(7) Our PPCS approach generates n circular regions to

completely cover the ROI of a user and uses the longest

radius to update the radius of the ROI according to the rules

introduced in Section III.A.

(8) If the chosen n locations have l∗ different location

types (where l∗ is not less than l), the PPCS algorithm selects

k-n other locations based on the entropy from the remaining

locations in a greedy manner. If l∗ is less than l, the PPCS

algorithm has to select (l− l∗) different location types, whose

semantic parameters are similar to the l∗ location types. For

every l selected location types, PPCS selects (k−n) locations

whose current existing probabilities are similar to the first n

chosen locations. Thus, (k − 1)× l candidate locations exist.

Then, the PPCS algorithm sorts all the candidate locations

according to their probabilities in ascending order.

(9) From the sorted candidate locations, the PPCS selects

(k–n) additional locations based on the entropy in a greedy

manner while ensuring that at least l/2 location types exist.

(10) After selecting the k dummy locations, for users

who want to preserve their POI, PPCS chooses (⌊l/2⌋ − 1)

dummy POIs in which the users are more likely to

have an interest. Then, the LBS query q∗ is trans-

ported to the LBS provider. At this point, q∗ =

(uid , {(x1, y1) , . . . , (xk , yk)},R, {P1, . . . ,P⌊l/2⌋}, where uid
denotes the user’s identity, {(x1, y1) , . . . , (xk , yk)} represents

the coordinates of all the dummy locations, R denotes the

radius of the client’s ROI and the set {P1, . . . ,P⌊l/2⌋} rep-

resents all the dummy POIs.

Algorithm 1 PPCS Algorithm

Input: (1) Historical query probability P;

(2) Parameters: option, k , l;

(3) LBS query q = (uid , {(x, y),R,P}).

Output: LBS query q∗.

1: Compute the present query probability Q according to

P and the semantic information;

2: Sort elements in Q according to location type;

3: if (option == 1) then

4: Call Procedure-1;

5: else

6: Call Procedure-2;

7: ifa user has a privacy preservation requirement,

8: Select (⌊l/2⌋− 1) dummy POIs based on k dummies;

9: return q∗ = (uid , {(x1, y1), . . . , (xk , yk )},R, {P1, . . . ,

P⌊l/2⌋})

10: else

11: return q∗ = (uid , {(x1, y1), . . . , (xk , yk )},R,P)

IV. ALGORITHM ANALYSIS

A. DEFENSE AGAINST A COLLUSION ATTACK

For nefarious purposes, passive hackers or attackers may

cooperate with an LBS provider or other users to compromise

some users’ location privacy. Here, we demonstrate that the

proposed PPCS algorithm can efficiently protect against such

attacks.

Remark 1: If increasing the size of the colluding group

cannot improve the possibility of identifying the true location

of a user from the dummies, we consider this algorithm

capable of protecting against a collusion attack.
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Procedure 2 Generating Dummies That Include the True

Location of a User
Input: (1) Location (x, y) of a user;

(2) Existing query probabilities;

(3) Parameters: k , l.

Output: k dummies {(x1, y1), . . . , (xk , yk )}.

1: Select an additional l−1 types of locations considering

the semantic location information;

2: for (1 : l − 1)

3: Select k − 1 candidate locations in each type of

location;

4: Choose k − 1 locations from the candidate locations

based on their entropy values;

5: return

Procedure 3 Generating Dummies That Exclude the True

Location of a User
Input: (1) Location (x, y) of a user;

(2) Parameters: k , l, n, R;

(3) Current query probabilities.

Output: k dummies and new radius {(x1, y1), . . . ,

(xk , yk )},R)}.

1: Divide the ROI into n sectors;

2: Generate n circular regions to cover the ROI;

3: l∗← number of location types;

4: if (l∗ < l)

5: Choose an additional l − l∗ types of locations;

6: for (1 : l − 1)

7: Select k-n candidate locations;

8: Greedily choose additional k-n locations from the

candidate locations;

9: return

The proposed PPCS approach can withstand a collu-

sion attack. A collusion attack is a type of attack involv-

ing multiple users. The location privacy of a user can be

efficiently preserved by choosing additional dummies in our

PPCS approach. If a hacker or attacker (hitherto denoted as

attacker) compromises userUA, he/she can obtain the location

information, which contains k locations of this user. Because

the current query probabilities of these k locations are approx-

imately the same and because any query probability may be

the true location of a user, the attacker can randomly select a

query probability from the k positions as the user’s true loca-

tion, even though the actual user location is not included in

the k locations. Thus, the probability of identifying the actual

location of the user is 0 or 1/k . The attacker subsequently

chooses user UB and intercepts his or her LBS query and

then obtains the location information of this user. However,

the probability that the attacker can successfully infer the

actual location of a user remains stable in our PPCS approach

because the dummies for different users are independently

generated. Therefore, among the intercepted k dummies, the

attacker can only make an uncertain conjecture concerning

the true location of the users, i.e., the attacker can randomly

speculate each user’s true location from the k dummies

while colluding with numerous participants. Thus, we can

conclude that the possibility of successfully identifying the

real location of a user remains stable in our proposed PPCS

approach.

B. DEFENSE AGAINST AN INFERENCE ATTACK

In this attack type, we assume that the LBS provider acts as an

active attacker who knows the historical queries, the historical

query possibility of each location, the users’ current queries

and the performance of a protection scheme.

Remark 2: If an attacker cannot correctly distinguish the

user’s true location from that user’s location information,

we consider this algorithm capable of defending against an

inference attack.

The proposed PPCS approach can be used to defend

against inference attacks. In our proposed PPCS approach,

regardless of whether the k locations we select contain the

user’s real location, PPCS is capable of ensuring k loca-

tions with minimum differences in query probability. Thus,

the LBS provider cannot be sure that the location information

includes the user’s true location when it receives the user’s

query.

In the analysis in this subsection, we assume that the loca-

tion information contains the true location of a user and that

the LBS provider knows this information. Although the LBS

provider has the historical query possibilities for all locations,

it cannot readily identify the true location of the user because

the k positions from the user have almost the same current

query probabilities and the location types have similar seman-

tic parameters and historical query probabilities. Despite the

efforts of the LBS provider, it will fail to reverse-engineer our

PPCS scheme because it does not know the location types

prespecified by users or their semantic location information.

Although the LBS can predict the semantic information of

each location type, that information is likely to differ from

the parameters prespecified by the user, which may produce

different dummy selection results.

In contrast, if we assume that the LBS provider knows that

the true location of the user has not been included in the

location information, then the LBS provider cannot deduce

the user’s true location because it does not know the num-

ber of sectors or the selected locations for a specific user

because our PPCS approach randomly selects dummies from

candidate locations. Although the LBS provider can attempt

to deduce the true location of the user based on the spatial

distribution of the selected k dummy locations, this attempt

will fail because the number of sectors is smaller than the

anonymity degree k in our PPCS approach. Thus, the k circu-

lar areas may generate more than one intersection area, and

some intersection areas will not enclose the real user location.

If the k circular areas generate more than one intersection

area, the provider will be unable to identify the intersection

area that includes the user’s true location. Even if the k

circular areas imply one intersection area, the provider knows

only that the intersection area contains the true location (e.g.,
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the shadowed area in Figure 5(b)), but will still be unable to

identify the user’s true location.

C. THEORETICAL ANALYSIS

In this subsection, we assume that an LBS provider may be

acting nefariously. Although the selected k locations have

equivalent or similar historical query probabilities in both the

PPCS approach and the DLS approach [23], the average prob-

abilities of successfully deducing the true location of a user

differ between these two algorithms. Although the selected

dummies cannot contain the true location of a user in either

the PPCS or the n-CD algorithm, the average probabilities

of successfully conjecturing the true location of a user using

these algorithms also differs. Let event X represent the LBS

provider, which filters the true location of a user from k loca-

tions, and let P(X = 0) and P(X = 1) denote the probability

of failure and the probability of success, respectively.

In the DLS algorithm [23], although the location infor-

mation contains the true user location, the LBS can only

randomly conjecture the true location of the user from k

locations when it obtains the user’s LBS query. Thus, we have

P(X = 0) = (k−1)/k and P(X = 1) = 1/k . Then, the math-

ematical expectation of X can be computed by Equation (8):

E(X )DLS =
1

k
. (8)

In our PPCS approach, the LBS provider cannot determine

whether the actual location of a user is included in the loca-

tion information; it can determine only whether the k loca-

tions include the true location of the user by the probability

of 1/2 and conjecture the true location of the user from k

locations when it receives the user’s LBS query. If the LBS

provider determines that the true location of a user is not

contained in k locations, then it must guess which locations

include the true user location. Here, we assume that an LBS

provider is aware of the number of sectors of the ROI and that

the LBS provider can obtain the actual location of a user once

it determines the n locations. If the LBS provider determines

that k locations do not contain the true location of the user,

then the probability of identifying the true location of the

user becomes 1/num. If the LBS provider determines that one

of the k locations contains the true user location, then the

probability of selecting the true location of the user becomes

1/k . Thus, we can obtain P(X = 1) = (1/k + 1/num)/2 and

P(X = 0) = 1−(1/k+1/num)/2 for the PPCS approach. The

mathematical expectation for X is defined in Equation (9):

E(X )PPCS =
1

2num
+

1

2k
. (9)

when k is greater than n, k must be smaller than num; there-

fore, we know that 1/k must be larger than (1/2k+1/2 num),

i.e., E(X )DLS is larger than E(X )PPCS.

In the n-CD algorithm [31], a user’s ROI is directly divided

into n sectors, where the value of n is equal to the value of k .

Then, we have P(X = 1) = 1 and P(X = 0) = 0. As shown

in Eq. (10), we obtain the expectation of X. When an LBS

provider discovers that one of the n locations contains the true

FIGURE 7. Entropy achieved by various schemes.

user location, we assume that it would be able to locate the

user’s true location.

E(X )n-CD = 1. (10)

The n-CD algorithm achieves the greatest E(X ) of the three

previously mentioned algorithms using the same assump-

tions.

V. SIMULATION AND ANALYSIS

A. SIMULATION ENVIRONMENT

To assess the performance of our designed PPCS approach,

we implemented it on a server with a 3.0 GHz CPU and

4 GB of memory. In this implementation, we assume that

the LBS provider’s service area contains 1600 equal-sized

cells, in which we generated 20 uniformly distributed POIs.

Each location is denoted by one cell. We associate each loca-

tion with a corresponding location type. In our simulations,

we assume that different users have different preferences

regarding anonymity.

B. SIMULATIONS FOR PRIVACY LEVEL

In the scenario in which a user’s real locations are included

in the dummy locations, we compare the privacy level of our

proposed PPCS algorithm and the privacy level of the DLS

algorithm [23] in terms of entropy.

Fig. 7 presents the simulation results for the privacy levels

of different approaches. The optimum entropy Hmax can

be calculated as Hmax = log2k . Generally, the entropy

increases as k increases. The optimal solution achieves the

highest entropy because the k value of every submitted loca-

tion has the same current query probability. Compared to

the DLS scheme, the PPCS scheme achieves higher entropy

because the DLS scheme considers only ancillary informa-

tion that hackers can exploit, whereas PPCS considers either

the semantic location information or the ancillary information

of each location type. The PPCS algorithm can achieve an

entropy close to the optimum value, which indicates that

PPCS can efficiently protect a user’s location privacy.

We investigate the relation between k and the privacy level

according to entropy and running time when a user’s real

locations are included in the dummy locations. Fig. 8 and
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FIGURE 8. Entropy of PPCS for various l values.

FIGURE 9. Running time of PPCS for various l values.

Fig. 9 illustrate the running times and entropies of the PPCS

scheme, respectively, for various l values. As shown in Fig. 8,

the entropy always increases as k increases. Different l values

result in different entropies (i.e., a larger l value generates

a larger entropy because the value of l directly influences

the number of candidate dummies selected, which enables

PPCS to generate multiple suitable dummies. Fig. 9 shows

the increase in the running time of PPCS for various sce-

narios. Additional candidate dummies must be selected by

PPCS while the value of k increases, resulting in greater time

consumption when generating dummies. As shown in Fig. 9,

a longer running time yields a larger l because the selected k

locations must belong to at least l/2 location types. When this

condition is not satisfied, other suboptimal dummy locations

must be chosen to replace dummies until the condition is

satisfied.

C. SIMULATIONS FOR E(X)

From the performance analysis in Section IV, the n-CD

approach achieves the highest average probabilities for suc-

cessfully identifying a user’s true location (i.e., E(X )) under

our assumptions. In this subsection, we compare the E(X ) of

the DLS and PPCS algorithms.

We explore the relationship between E(X ) and the value of

k. In this group of simulations, we let n equal four; the E(X )

of DLS and PPCS are defined in Eq. (8) and Eq. (9), respec-

tively. Note that E(X ) is influenced by both k and n in the

FIGURE 10. Simulation results for E(X).

FIGURE 11. Simulation results for E(X) of PPCS.

PPCS algorithm. As shown in Fig. 10, E(X ) decreases when

k increases because a larger k indicates that the LBS provider

cannot readily identify the real location of a user. Our PPCS

guarantees that the selected dummies do not include the real

location of a user, which enhances the challenges to the LBS

provider in distinguishing the true user location.

Fig. 11 provides the simulation E(X ) results of the PPCS

approach for various values of n. Generally, E(X ) decreases

while the value of k increases for a given n. E(X ) first

fluctuates and then remains stable. In contrast, the value of n

increases for a fixed k for the following reasons: the number

of cases for randomly selecting n locations from k locations

is Cn
k , i.e., nummax = Cn

k . Because C
n
k = Ck−n

k , for a specific

k , Cn
k increases with increasing n when n is less than k/2.

However, Cn
k increases while n increases if n equals k/2.

A similar trend appears when Cn
k is less than num for a given

value of k .

D. SIMULATIONS FOR ANONYMITY ZONE

Hackers can know only that the true location of a user is

not contained in the chosen k locations. The hackers can

infer which intersection area includes the true location of a

user based on the spatial distribution of the k chosen dummy

locations. We simulate the worst situation, in which a hacker

knows that the true location of a user is not included in

the k chosen locations. Although the hacker can infer the
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FIGURE 12. Simulation results for the anonymity zone.

true user location with a low probability, he or she knows

that the user must be within a certain intersection region

(e.g., the shadowed area in Fig. 6(b)) according to the spatial

distribution of the k chosen dummy locations, which is called

the hidden anonymity zone of a user. That is, the anonymity

zone is the ROI of the target users that hackers cannot infer.

In our designed PPCS approach, because the value of n is

less than the anonymity degree k , the spatial distribution of

the k chosen dummy locations generate anonymity zones, and

some of these locationsmay not contain the true user location.

In our simulation, we assume that the hacker knows the

anonymity zone that encloses a user’s real location. Based on

these assumptions, we evaluate the user’s hidden anonymity

zone. In our designed PPCS, the anonymity zone is affected

by the value of n and the amended parameter D for a specific

radius of the user’s ROI.

Fig. 12 provides the simulation results for the anonymity

zone of our PPCS and the n-CD approach proposed in [31].

In these simulations, we fix R at ten. The size of the

anonymity zone decreases as n increases. A large n produces

a smaller radius of each circular area, which decreases the

size of the anonymity zone (i.e., the overlapping of n cir-

cular areas). Fig. 12 shows that the anonymity zone of the

PPCS approach is substantially larger than that of the n-CD

approach. The size of the anonymity zone obtained by the

PPCS approach decreases more rapidly than that of the

n-CD algorithm as the number of sectors increases. Our PPCS

approach sets the ROI radius as the maximal radius of the n

generated circular regions, unlike the n-CD approach. There-

fore, our PPCS approach more efficiently preserves user

privacy than does the n-CD approach.

Fig. 13 shows the impact of parameter D on the anonymity

zone when R = 10. In PPCS, to generate n circular areas,

we define parameter D to amend their radii such that none of

the intersection points of the n circles is the true user location.

As shown in Fig. 13, a largeD value yields a large anonymity

zone because a largeD results in a large ROI radius for a user.

Thus, the size of the intersection zone of the n circular areas

is large. When D = 0.2, the rate of decline of the anonymity

zone size is higher than the rate of decline ofD = 0.1 because

the semidiameter of the n created circular areas decreases as n

FIGURE 13. Anonymity zone achieved by PPCS.

TABLE 1. Core syntax of the LBS(Service()).

increases, and a largeD value causes the size of the anonymity

zone to decline at a faster rate.

VI. EXPERIMENTS WITH LARGE-SCALE SIMULATIONS

AND REAL LOCATIONS

Experiments with large-scale simulations and real locations

are important for validating our PPCS approach. We devel-

oped an LBS Facebook API to test the validity of PPCS. The

system design and implementation are based on the cyber-

netics cloud software [32]. We used extensible access control

markup language (XACML) to define the privacy setting,

which can be enhanced by the LBS API. The core concept is

to add additional layers to hide users behind an identity-free

firewall and an anonymous identity layer. Thus, two layers of

defense are involved. First, a firewall layer protects all users.

Second, an anonymous identity layer completely hides users’

identities. The term ‘‘status ()’’ indicates that the LBS offers

real-time privacy enforcement. All LBS commands support

the functioning of these two privacy layers.

Table 1 lists the core syntax that enables the CTI LBS for

cyber security to attain the maximum level of privacy. When

the privacy is on (equal to 1), then the firewall service and

anonymous identity service are prompted to switch on. If they

cannot, the algorithm reports to the system, prepares the LBS

to take control, and starts both the firewall service and the

anonymous identity service before reporting to the central

service that the LBS(service()) is functional.

where

• ‘‘LBS(service( ))’’ is used to initiate the LBS and prompt

for a sequence of actions to support the LBS.

87434 VOLUME 7, 2019



G. Sun et al.: Location Privacy Preservation for Mobile Users in Location-Based Services

• ‘‘check(status( ))’’ is used to denote privacy status as 0 or

1. When the status is 1, the risk of identity exposure is

high, and the identity firewall is set to the highest level

to cause it to revert to 0.

• ‘‘firewall(status( ))’’ is used to enable the firewall

(setting it to on).

• ‘‘ (status( ))’’ is used to turn the anonymous identity to

on to maintain privacy.

• ‘‘report(status( ))’’ is used to report to the central sys-

tems about issues regarding the service or at the end of

the commands.

• ‘‘action(status( ))’’ is used to prepare all steps for ‘‘pri-

vacy == 1’’.

A. ACCURACY TESTS

One approach to testing the accuracy of the CTI LBS for

cybersecurity is to adopt the F-measure, precision and recall

metrics. Precision is the ratio of correctly detected positions

with privacy preserved to the number of all detected positions

with privacy preserved:

precision =
tp

tp + fp
. (11)

Recall is the ratio of the true detected positions with privacy

preserved to the number of known positions:

recall =
tp

tv
, (12)

where

• True positives (tp) represent the number of correctly

detected positions with privacy preserved;

• False positives (fp) refer to the number of detected posi-

tions that do not actually exist; and

• True detected positions (tv) represent the total number of

correctly detected positions (tp+fn).

The F-measure is presented in terms of precision and

recall as expressed in Eq. (13):

F − measure =
2× precision× recall

precision+ recall
. (13)

High values F-measure values indicate better reliabil-

ity [33]. To ensure a reliable measurement, we conducted

two sets of experiments using private cloud services with

100 CPUs running at 3.0 GHz each with 64 GB of RAM

and 2 TB of storage to perform the experiments. In the first

set of experiments, a maximum of 10,000 experiments are

performed to identify the extent of the F-measure over the

number of experiments. In the second set of experiments,

the F-measure values are tracked for 10,000 experiments

over a period of time to test the robustness. We compare the

LBS(service( )) = ‘‘on’’ and the LBS(service( )) = ‘‘off’’

to identify any differences between the sets of experiments.

The results of the first set of experiments are presented

in Figure 14. The F-measure values range between 0.89 and

0.91 for the LBS(service()) = ‘‘on’’ and decrease to between

0.41 and 0.44 as the number of experiments increases to

FIGURE 14. F-measure values for a maximum of 100,000 simulations
between an LBS((service) that is ‘‘on’’ and an LBS((service) that is ‘‘off’’.

FIGURE 15. F-measure values when the LBS(service()) is ‘‘on’’ over a
period of 100 hours.

100,000. These results indicate that when the LBS(service())

is ‘‘on’’, the F-measure values remain large and ensures

a greater level of location privacy under the experimental

conditions.

The goal for the second set of experiments is to identify

the quality of service (in terms of F-measure values) over a

period of time when the LBS(service()) is ‘‘on’’ (because the

F-measure values must remain high for as long as possible

to protect the users). The experiments were conducted over a

period of 100 hours to test the robustness of LBS(service()).

We obtained the results five times per hour and calculated the

mean values. As shown in Figure 15, the F-measure values

decrease from 0.91 to 0.80 by the end of 100 hours of service.

The F-measure values are 0.86 after 70 hours. At this point,

the quality of service (QoS) has decreased significantly.

B. EXPERIMENTS WITH REAL LOCATIONS

Experiments with real locations for the LBS for cybersecurity

are required to test the robustness of our proposal by involving

actual people directly in the verification process. Gedik and

Liu [12] demonstrated their k-anonymity-based architecture

and algorithms through simulation results but did not test with

real data.We tested our work with 20 real volunteers to ensure

the validity of our LBS service.

Twenty volunteers were recruited in Southampton and

London. Each volunteer had an LBS setting of ‘‘on’’ or
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FIGURE 16. F-measure value comparison between Southampton and
London with LBS privacy ‘‘on’’ for the first hour.

FIGURE 17. F-measure value comparison between Southampton and
London with LBS privacy ‘‘off’’ for the first hour.

‘‘off’’ and were located at least 100 meters apart to test

the validity. The results from each volunteer were treated as

individual results. All the experiments were performed five

times, and the mean values were calculated. The F-measure

values indicate the extent of the accuracy in these experi-

ments. Figure 16 shows the F-measure values of the same

volunteers/identities between Southampton and London with

LBS privacy set to ‘‘on’’ for the first hour. Higher F-measure

values were reported in Southampton. Because London

has more people, buildings and traffic than Southampton,

the validity and robustness of the F-measure values can be

expected to differ.

Figure 17 shows the F-measure values of the same volun-

teers/identities between Southampton and London with the

LBS privacy set to ‘‘off’’ for the first hour. The trend is similar

to that of Figure 15, with the exception that the F-measure

values are close to half of the F-measure values in Figure 15.

Our proposed LBS privacy preservation approach provides

significantly better location privacy and user anonymity in

our real-location experiments.

VII. CONCLUSION

Ensuring the location privacy of LBS users is important in our

increasingly connected society. To effectively preserve users’

location privacy, we design an efficient approach named

PPCS that efficiently generates dummy locations for which

we consider the semantics of location information that may be

used by hackers. Our proposed PPCS approach can generate

dummy locations that do not contain the real location of a

user and resist inference and collusion attacks. The simulation

results show the effectiveness of our PPCS approach. Com-

pared with the existing approaches, our PPCS approach has

the average optimization gain of 85% and 60% on E(X ) and

ROI metrics, respectively.

However, the trajectory privacy preservation for mobile

users in LBS leaves as a challenge. In our future work, we are

going to design efficient framework and algorithms to protect

the trajectory privacy of users in LBS.
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