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Nowadays, people can access a wide range of applications and services for mobile device users. Among them, location-based
services (LBS), where the application needs the user’s position to provide the service. Some examples of these applications are
Uber and Waze. Nevertheless, the repetitive use of an LBS can reveal confidential user information; thus, behavior patterns—
such as daily routes—could be deduced by some dishonest LBS. Furthermore, a query’s keywords could provide information
about a user’s health status or future position when it inquires about hospitals or hotels. Therefore, an adversary can use this
information for unethical purposes, and users need mechanisms that protect their privacy. At present, several approaches
separately tackle location privacy, location security, and query privacy. To the best of our knowledge, no previous work deals
with all these mentioned aspects simultaneously especially when users demand continuous protection when moving and
accessing an LBS. This paper proposes two batch techniques to provide location privacy, location safety, and query privacy in
an environment that considers a continuous LBS. These techniques apply l-diversity (query privacy) in a context that
contemplates query semantics, as well as a diverse set of users’ paths. Extensive experimentation shows that both techniques
are cost-effective and scalable solutions that offer unified location privacy, query privacy, and location safety protection for
many mobile users.

1. Introduction

The explosive technological development of sensors and
mobile devices and their overcrowding in the markets pro-
vide users with a wide range of choices to acquire some of
these devices at affordable prices. Furthermore, the process-
ing and storage capacity of these devices has led to the devel-
opment of useful applications for users, including the
development and use of location-based services (LBS) [1].
Users highly demand these latter services; for example, to
order food, request transportation, or meet other users, they
must release their locations to the LBS server. Nevertheless,
continuous delivery of our position can reveal essential
information about our behavior. For instance, whether a

user frequently visits a clinic or hospital, it could indicate
that the user has a disease. Moreover, an adversary could
use the user’s behavior patterns for different purposes,
including the malicious use of such information, so if a secu-
rity truck regularly follows particular routes, someone can
use this information to carry out a robbery (e.g., using
sophisticated statistical techniques to determine the actual
locations of users [2]). From this baseline, one way to fore-
stall an adversary—who uses such information [3, 4]—is to
blur our real position (i.e., this is well-known as location pri-
vacy [5–7]).

A user can hide their real position in an LBS by reporting
a cloaking region. A cloaking region consists of several loca-
tions in which the user could be, ensuring that they are
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present in one of them. Approaches such as in [8–18] give
support to the cloaking region. Overall, these approaches
deal with a trusted third party, named the anonymizer,
which is responsible for choosing other locations according
to the type of protection that the user is requesting.
Approaches such as in [19–21] suppose that users can col-
laborate to provide cloaking regions. Hybrid approaches
can be found in [22–24], where both the anonymizer and
the user work together to build cloaking regions. Another
thread is the use of the LBS anonymously, such as in
[8–10, 12, 19]; according to the authors, an adversary cannot
reveal users’ identifications who are in the service area. In
turn, other researches [3, 6, 13, 21] guarantee that each
cloaking region includes locations visited by at least K differ-
ent users at different points in time. Therefore, it is problem-
atic for an adversary to identify a user at the right time,
which requests a service to the LBS. By doing this, the user
safeguards their location through the time dimension.

On the other hand, another branch of research is aimed
at safeguarding users’ physical integrity, named as location
safety [5, 25, 26]. Location safety intends to avoid the phys-
ical damage that someone could receive in a specific geo-
graphical area. For instance, suppose an adversary wishes
to do as much harm as possible through an attack; they
should prefer to threaten densely populated areas because
location safety is related to the size of the area in which users
are. More precisely, location safety requires a server to satisfy
a safety level Θ relating to the size of a geographic area and
the number of users located there.

Another aspect that can reveal important information on
behavior patterns is related to users’ submitted queries to the
LBS. For example, a user is looking for information about
the availability of lodges or hotels in February in Villarrica
city for his whole family. This request could indicate that
his home could be without residents in that month. There-
fore, someone unscrupulous can use this information to per-
petrate a misdeed. Consequently, query privacy gains
importance, especially when the query terms can divulge
sensitive user information [27]. A technique used to hide a
user’s query is l-diversity, which hides this query by selecting
and submitting to the LBS a set of l-distinct queries, one of
which corresponds to the user’s actual query [4, 28].

On the other side, in the literature, it is workable to find
different schemes and approaches that deal with location
safety [5, 25]. Meantime, in [4, 7, 28–31], query privacy is
addressed. In addition, the researches presented in [2–4]
and [16] deal with queries in continuous location-based ser-
vice (cLBS) (i.e., a cLBS is regularly receiving users’ queries,
who frequently change their locations). There is a wide range
of research that addresses one or two particular issues (loca-
tion privacy, location safety, and query privacy), and to the
best of our knowledge, no previous work deals with all the
services mentioned above simultaneously in a cLBS.

In this work, we consider a traditional privacy-aware
architecture (as shown in Figure 1). Here, a trusted third
party called the “Location Anonymizer” must efficiently
and timely build privacy and safety protections for many
users accessing cLBS. This anonymizer acts as the middle-
ware between the LBS and users, protecting users’ privacy

from the adversary. Keep in mind that the anonymizer must
consider LBS efficiency, taking into account the simulta-
neous occurrence of the following requirements:

(i) To build a cloaking region required by a single user,
the anonymizer must select K feasible locations to
fulfill the user’s requirement

(ii) Suppose now a user additionally requires location
safety; in this case; the anonymizer must guarantee
that a cloaking region complies with the demanded
safety level. To achieve this goal, the anonymizer
may need to increase the size of a cloaking region,
degrading the LBS’s efficiency even more

(iii) This processing at the LBS becomes even more chal-
lenging when users also demand l-diversity. Here,
the anonymizer must provide l − 1 additional dis-
tinct queries. So, in this way, the LBS has to process
l queries to respond to the user’s actual query

With this in mind and considering a scenario of high
demand where many users frequently change their loca-
tions (i.e., cLBS), at the same time that they submit a con-
siderable quantity of queries, counting with efficient
algorithms to avoid bottleneck is a crucial factor in perfor-
mance terms.

1.1. Contribution. The main contribution of this paper can
be itemized as follows:

(1) Two techniques have been proposed; the first one is
named Diversity Bottom-Up (DBU), while the sec-
ond technique is denoted as Diversity Top-Down
(DTD) to work in a cLBS where users can change
their locations according to the time. Some users fol-
low routes; meantime, other users move freely. In
both cases, all users have requirements of location
privacy, location safety, and l-diversity

(2) The techniques’ efficiency is underlined beforehand
to process users’ requirements; the techniques cor-
roborate if each user is in any restricted space. Using
this rationale, it is unnecessary to compute users’
requirements when they are not in a restricted space.
A restricted space can be seen as a geographical area
where an adversary could determine the exact
location

(3) A new notion of geographical semantic is proposed.
This notion is based on ontologies, which contain
specific places related (i.e., place names are in the
ontology) to physical distance. We assume that an
essential proportion of queries submitted by users
is related to the geographical zone where the user is

(4) Aiming to tackle the l-diversity, we consider that
sensitive terms exist (which can be previously deter-
mined). In this manner, before computing l-diversity
for a user, our techniques decide whether it is neces-
sary to calculate l-diversity. If the query comprises
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terms that do not provide confidential information,
then the l-diversity is omitted

(5) Extensive experimentation using simulations has
been carried out to evaluate the techniques, consid-
ering different metrics such as cloaking regions,
computational saving, entropy, and size of cloaking
regions. In simulations, we have incorporated the
concept of the timestamp (i.e., a simple timestamp
can be seen as a picture of objects distributed in
the space for a particular point in time). Therefore,
the time in which users are in motion can be mod-
eled as a set of timestamps

This paper is an extended version of a work-in-progress
article presented at CODASSCA 2020 [32]. The remainder
of this paper is organized as follows: In Section 2, the related
work is presented. In Section 3, the methodological descrip-
tion is exposed. In Section 4, both techniques DBU and DTD
are presented. Section 5 exposes the security analysis for
both techniques. In Section 6, the experimental environment
and the empirical results are given. Finally, Section 7 pro-
vides some perspectives on future work along with the
conclusions.

2. Related Work

Aiming to organize the related work, we have considered
those approaches that involve more than one service or
requirement.

In [4], a novel query-perturbation-based scheme that
protects query privacy in continuous LBS is presented. The
scheme named DUMMY-Q provides dummy queries, which
consider query context and user motion models. According
to the researchers, this scheme does not need the existence
of a trusted third party. Aiming to reduce computational
capacity requirements and storage, DUMMY-Q uses a quad-
tree. In order to consider the context, historical query logs
are used at the same time the road density is utilized to carry
out simulations. Specifically, the road density information
was obtained from the second edition of the Topologically
Integrated Geographic Encoding and Referencing (TIGER)
2 system published by the US Census Bureau in 2006. The
service attribute values were obtained using Uniform and
Zipf distribution, while Brinkhoff’s Generator gives the
snapshots. Two performance metrics were evaluated both
for privacy protection: Query Success Rate (QSR), which

deals with the number of query dummies, and the Average
Size of the Candidate Set that captures the average number
of service attributes. Empirical results assert that the prob-
lem of ensuring both utility and privacy for dummy inser-
tion is NP-complete; in the meantime, their approach
based on heuristics can provide the dummy queries.

In [15], with the aim to enhance the response times of
queries without decreasing the degree of privacy protection,
an online method that relies on privacy region replacement
(PRR) is proposed. To achieve this goal, a privacy region is
built at the beginning, taking into consideration the people
density and privacy requirements. Thereafter, the privacy
region is changed to an anonymous region grounded on
people distribution in the privacy region. Subsequently, the
coverage degree between the user query and the anonymous
region is determined, so the new query region is employed to
submit the online query. Simulations were used to evaluate
people’s densities, while the dataset employed was Thomas
Brinkhoff (network-based Generator of Moving Objects).
The evaluated metrics correspond to anonymous degree K ,
query response time, and people density. Empirical results
are compared to Casper, Fragment, and ARC. The final
results indicate a reduction of at least 17.33% for PRR in
comparison with the other approaches.

In [33], a Cache-Based Privacy-Preserving (CBPP) is
exposed. From the researchers’ point of view, the use of this
approach diminishes the probability of knowing the real
position of users because only in some cases are the real
positions provided to the LBS. This approach deals with
both location privacy and query privacy while avoiding the
issue of a trusted third-party (TTP) server through the col-
laboration among users in a mobile peer-to-peer (P2P) envi-
ronment. In this approach, each user holds a buffer in its
mobile device to store service data, which works as a
micro-TTP server. Roughly, the user only interacts with
the LBS when its neighbors do not have the data that it is
looking for. Accordingly, less interaction among users and
LBS implies less risk to the users’ privacy. In the experi-
ments, 1000 user mobiles were spread out in a P2P network.
To provide query privacy, the l-diversity is used. The evalu-
ated metrics comprise the effects of l-diversity on cache use,
also considering the time. CBPP is contrasted with the
schemes DLS, Mobicache, and MobiCrowd. Empirical
results show better results for CBPP regarding other
schemes.

In [34], a dummy generation scheme, which contem-
plates the hierarchical structure of the address (DGS-HSA),

User’s location & Query
(1)

Location Cloaked & Query
(2)

Location Anonymizer
LBS

Candidate answer
(3)

Query’s answer
(4)

Figure 1: Traditional privacy-aware LBS architecture.
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is described. DGS-HSA provides a novel meshing method
splitting the historical location dataset taking into consider-
ation the administrative region division. In an attempt to
protect the user’s location, query privacy, and organization
information, dummy selections took place from the histori-
cal location dataset considering a two-level grid structure.
Aiming to adjust the privacy protection level and system
overhead, a multiobjective optimization problem is solved
to prove the scheme’s convenience. This scheme involves
sending continuous queries to the LBS by the user on-site.
To this end, K locations from historical locations are chosen
as dummies. DGS-HSA works like this: firstly, DGS-HSA
splits a city area where users are at different grids with
two-level structures. In that regard, each grid exemplifies
an organization, and all historical locations are gathered into
these grids according to their organizations. Regarding the
experimental environment, the Geolife Trajectories 1.3 data-
set and the POI dataset of AMAP were used. Studied metrics
are related to the balance between privacy protection and
system overhead. Despite the fact to reach a good balance,
the authors claim that the final results depend fundamen-
tally if the historical location dataset considers enough areas
as scarcely populated or inaccessible areas.

A theoretical model for location obfuscation is presented
in [16]; this model allows the specification of different obfus-
cation levels. To clarify the proposed model’s effectiveness,
the authors analyze a popular square grid-based obfuscation
mechanism, focusing mainly on obfuscation-based privacy-
preserving mechanisms. To model obfuscation, two
approaches, local and global, are presented. Broadly speak-
ing, the difference between both approaches is given by the
use or the nonuse of other users’ actual locations. Consider-
ing a scenario where continuous queries take place, the local
approach is expressed using a formal model. Aiming to
quantify the privacy of obfuscation, a probability is defined
considering the square grid-based location. According to
the authors, an advantage of techniques based on obfusca-
tion is that the user’s real location is mapped to an inaccu-
rate location, and therefore, it is not necessary to modify
the original LBS architecture. Besides, the researchers point
out that their theoretical results can be extended to other
privacy-preserving techniques.

In summary, all works mentioned above deal mainly
with two services, location privacy and query privacy, con-
sidering a context where users are in constant motion. Some
simulations are based on city maps; nevertheless, just one
approach uses different distribution probabilities to cover a
broader spectrum of empirical conclusions.

Unlike previous work, in [5], the authors propose two
scalable algorithms that deal with two services for a sporadic
LBS: location privacy and location safety. Towards that end,
the algorithms consider users who are close among them,
processing their requirements in batch. The algorithms are
named bottom-up and top-down according to their form
to work. The bottom-up algorithm firstly seeks a small can-
didate cloaking region, which fulfills users’ service require-
ments. By contrast, the top-down algorithm supposes that
the entire network is the initial candidate while the cloaking
region is pruned when the users’ requirements are reached.

Extensive experiments evaluated four metrics, computa-
tional cost, size of a cloaking region, number of cloaking
regions built, and entropy of a cloaking region. The experi-
ments were carried out using simulation considering Zipf,
exponential, and uniform distribution to spread out users
in the region. The bottom-up algorithm displays a good bal-
ance quality of a cloaking region and its size. Otherwise, the
top-down algorithm provides advisable results when the
quality and the number of built cloaking regions are consid-
ered despite the high computational cost. Incidentally, note
that this work does not contemplate a cLBS, where users
are in motion.

To sum up, none of the aforementioned works address
more than two services. Therefore, it is not feasible to evalu-
ate how different services affect LBS performance directly. In
addition, except for [5], few initial configurations of users in
the network are studied. Taking into consideration those
mentioned previously, in this research, we consider three
services—over a cLBS—using different initial configurations
of users in the network in an environment where users are
constantly in motion.

3. Methodology

3.1. Basic Concepts. When a user needs to contact an LBS
server, it must submit a location-based query, including the
user’s exact location and several terms that describe its
query. Without loss of generality, we assume a location-
based query, or simply, a query is a range query anchored
to the user’s exact location and demands information about
all points of interest (POI) matching the query terms. For
instance, a user may be interested in discovering all restau-
rants or dining places located nearby or all health centers
located nearby as well. Since the location and the terms
declaring the type of POI searched can compromise a user’s
privacy (i.e., location privacy and query privacy) and safety
(i.e., location safety), we aim to protect them.

In order to provide location privacy for a user, we use the
traditional scheme based on K-anonymity (i.e., the adver-
sary cannot distinguish the real user’s location from other
K − 1 locations submitted to the LBS [35]). Here, we define
a user’s cloaking region (CR) as a geographic area that
includes their real location (i.e., exact location), and any
other position is equally likely to be the real one.

Besides, to protect a user’s query, we use the geographi-
cal l -diversity notion. This concept is aimed at protecting
query privacy by selecting other l − 1 distinct queries that
are as popular as the actual user’s query in a specific location
[28]. When a user demands l-diversity and K-anonymity
simultaneously, the anonymizer must select K − 1 distinct
locations and l − 1 different queries regarding the query sub-
mitted by the user.

Aiming to determine whether two queries are similar or
not, we assume a set of ontologies. In this way, an LBS con-
tains different ontologies to classify queries. To illustrate
this, consider a user that has just arrived at a new city and
submits several travel queries to the LBS [36]. For instance,
a category (i.e., an ontology) can be queries related to lodg-
ing service, whereby this category should be confirmed by
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terms such as hotel, hostel, and bed-and-breakfast to men-
tion a few. In turn, another query category could have terms
related to dining queries, by which terms such as restaurants,
cafeterias, or bars should be part of this category. It should
be noted that when the l-diversity is applied, the sensitive
terms of the submitted query (i.e., these terms can provide
relevant information to the adversary) are changed by terms
of other categories to hide the original semantic of the sub-
mitted query.

Finally, we will take into account the concept of location
safety. This notion implies “identifying an area whose safety
level is below some safety threshold (θ).” Here, the safety level
corresponds to “the ratio of its area, and the number of nodes
inside it” [25], and therefore, the safety threshold corresponds
to the minimum safety level demanded by a user.

Our goal is to build CRs on-demand, considering the
location privacy, location query, and query privacy needed
by many mobile users during their journey. Since this task
can overwhelm an anonymizer, we want to efficiently and
timely build many CRs for many users but only when this
protection is beneficial. Yang and Cai [7] show that some
types of locations need cloaking protection but not others.
For instance, if a user discloses their location within a resi-
dential or a workplace place, this side information can help
the LBS conclude a customer’s identity. However, other loca-
tions like highways do not leak any detail about a user. The
authors call the former location as restricted spaces, and
based on this concept, they propose a technique called
restricted space cloaking to limit the number of cloaking
regions that an anonymizer has to build for a mobile user.
In this work, we also limit the usage of the l-diversity, only
when the terms used to specify a query can release private
details about its owner.

In the cLBS context, we assume that there are two types
of adversaries, a passive and an active. A passive adversary is
any user that can monitor and eavesdrop on the wireless
traffic or compromise any other user to obtain their private
data. An active adversary is any user who can perform an
attack on the LBS server to obtain its customers’ sensitive
data. The LBS can be seen as a potential adversary in this lat-
ter definition. The LBS can use the collected information
from its customers to infer more private details about them,
like their behavioral patterns and locations. Finally, we
assume these adversaries can perform the following attacks:
inference attack, colluding attack, and accessibility attack.

Given two consecutive cloaking regions CR1 and CR2
built for a known user at time t1 and t2, where t1 < t2, we
define the following:

(i) Inference attack: this attack is successful when a sin-
gle adversary can narrow down the location of the
user by collecting and correlating several locations
reported by this user with known public informa-
tion. Similarly, we say this attack is successful when
an adversary can conclude which queries were
issued by some user in some period.

(ii) Colluding attack: this attack is successful when
many adversaries collaborate and exchange loca-

tions and queries from users to perform inference
attacks.

(iii) Accessibility attack: this attack can be successful in
two cases. The first case arises when the adversary
finds out that there is no path in the service area
to travel from CR1 to a particular point in CR2.
The second case can arise even though such a path
exists, but it is not feasible to travel from CR1 to
some point in CR2 in a period t2–t1. Here, we
assume the adversary knows an upper bound of
the speed of the users.

3.2. System Overview.We assume our system architecture (S
) uses a single anonymity server to manage location privacy,
query privacy, and location safety requirements demanded
by many mobile users, as shown in Figure 1. Thus, a user
uðCu, tÞ is determined by a spatial location Cu (it can be rep-
resented by the points Xu and Yu or latitude and longitude)
and a point in time t. Following this reasoning, a timestamp
τi corresponds to the same point in time ti for all users of S
(i.e., τi = fujðCuj

, tiÞ, ∀uj ∈ Sg). In this way, users’

motions through time can be represented by a sequence of
timestamps τ1,⋯, τn, such as τi < τi+1. In order to efficiently
process each request for privacy and safety protection, the
entire network area is partitioned into a set of n × n disjoint
cells of equal size as shown in Figure 2. While a user u is
moving, it can submit anonymizer protection requests for
location and query anonymization. These requests consist
of the user’s current and exact location represented as a 2D
point(Xu ; Yu), its location-based query, its demanded Ku
-anonymity for location privacy, (lu)-diversity of query pri-
vacy, and its desired location safety (θu).

The anonymizer enqueues all anonymization requests in
a waiting list denoted as U . Finally, our system returns for
each user u in U a cloaking region denoted as CRu, consist-
ing of a set of selected cells that conform to each individual’s
privacy and safety requirements.

To protect location privacy, we build a cloaking region
for location privacy following a similar approach stated in
several articles [5, 6, 20]. Our system chooses as a cloaking
region a set of at least Ku cells that maximizes the entropy.
To do so, when users report their current location-based
queries, the anonymizer maintains a query frequency table
that counts how frequently a query (or type of query) comes
from a given cell in a similar way as proposed by [3]. Here,
we assume that the anonymizer classifies each query in only
one of many distinct classes or types according to their
semantic similarity (we will explain this issue in the next sec-
tion). Our server will keep a data structure for each cell to
estimate the probability of issuing a particular type of query
from a cell. Specifically, we say and define the query proba-
bility as

qi =
Number of times a given typeð Þquery is originated from cell i

Number #ð Þ of requests coming from the network area
,

ð1Þ
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where ∑n2

i=1qi = q1+⋯+qn+⋯+qn2 = 1, for all i = 1, ::, n2.
As a user u located in cell Cu demands query privacy, our

system needs to take into account as well their query diver-
sity ðluÞ, and therefore, it must select at least lu − 1 different
queries whose query probability are similar to the real query.

When a user also demands K-anonymity, our system
selects other K − 1 cells. To select those cells, we introduce
the notion of entropy of a cloaking region CR, denoted as
HðCRÞ, which is computed as

H CRð Þ = −〠
j=1

K

pj log2 pj
� �

, ð2Þ

where pj represents the normalized probability of requesting

the real user’s query from each specific cell c′j ∈ CR. This lat-
ter probability is computed as pj = qj/∑

K
l=1ql. The higher the

entropy of a CR is, the better the location privacy protection
offered.

On the other hand, a novelty aspect considered in this
paper corresponds to the geographical semantic notion.
Since many applications use georeferenced data, we assume
that many queries are related to users’ geographical areas.
By these means, places’ ontologies associated with nearby
spaces are used. For instance, an ontology could be related
to the downtown of Concepción city, where it can contain
names (i.e., it can be seen as terms) of banks, restaurants,
hotels, drugstores, and so on (i.e., indeed, an ontology can
be seen as a topic or type). Following this trend, a whole
space should be composed of several ontologies. Note that
each cell (see Figure 2) has an associated probability of sub-
mitting a query to the LBS in our architecture. Thus, ontol-
ogies are essential in building the queries and carrying out
the l-diversity. Therefore, a query is formed by several terms,
mainly belonging to the ontology associated with its geo-
graphical space and other terms related to other ontologies.

To achieve this goal, different probability distributions
are used to choose the specific ontology firstly and, subse-
quently, the particular term. In so doing, the query will be
formed mainly by terms of its ontology when the distribu-

tion probability is not uniform as the case of exponential
and Zipf distribution (i.e., from the semantic point of view,
when most of the terms belong to an ontology, we could
say they belong to a semantic type).

Once the ontology has been chosen, the uniform distri-
bution is utilized to select a term. Keep in mind that a query
can have between 5 and 8 terms. It means that a query can
have terms from different ontologies or types, such as occurs
in the real world. Recall that a query could have sensitive
terms, which eventually could be used by an adversary.
Thus, when the l-diversity must be computed, first, the iden-
tification of sensitive terms and the semantic type of query
must be determined. Later on, a similar cell regarding the
probability of submitting the query should be found.
Besides, this similar cell should be a different semantic type.
It should be noted that each query is associated with a spe-
cific cell in our approach. Hence, to carry out l-diversity,
the substitute query should have at least the same quantity
of sensitive terms, prioritizing the same quantity of terms
(i.e., sensitive and nonsensitive terms).

To facilitate our approach’s presentation, let us consider
the example shown in Figure 3. Here, user u, located at cell 1,
needs to find out all nearby health centers. In this figure, we
can see that there are four types of queries as indicated by
the legend. Since the query considers a sensitive term,
assume u demands 3-diversity, and 2-anonymity. First, the
anonymizer chooses a 3-diversity set that groups queries of
similar frequency. We can observe the query frequency table
for cell 1; the anonymizer can select from several alterna-
tives. A first option can be the set as hospital, hotel, and res-
taurant, but another set can be hospital, hotel, and ATM.
The anonymizer chooses randomly a set whose frequencies
for the other queries is closer to the real query, i.e., hospital.
Now, let us assume the anonymizer chooses as a diversity
set: hospital, hotel, and restaurant.

Now, the anonymizer searches for another cell to build a
2-anonymity set. Here, it chooses the cell that makes the
entropy of the anonymity set the highest one. In this exam-
ple, the anonymizer selects those cells with a similar query
frequency about hospitals, which are cells 2 and 4, but not
cell 3 since it shows a smaller query frequency for hospitals
and therefore a smaller entropy.

However, the anonymizer must also take into account
the chosen 3-diversity set. In this case, it chooses cell 4 since
this cell has a query frequency for restaurant closer than the
one counted for cell 2.

In case the same user demands protection of its location
safety, we follow a similar approach, as shown by Xu and Cai
[26]. These authors define the concept of the safety level of a
cloaking region CR as SLðCRÞ = AðCRÞ/NðCRÞ, where Að
CRÞ denotes the area of a CR and NðCRÞ denotes the popu-
lation of CR (i.e., the number of wireless users moving
within region CR).

Thus, given a user u located within a CR and demanding
a location safety requirement θu, then CR protects the loca-
tion safety of the user u if SLðCRÞ ≥ θu.

As a general remark, Xu and Cai [25] assume that a CR
is a convex region, which is not our case since our CR is a set
of fragmented areas or separate cells. Now having this

= 0.038

= 0.077

= 0.115

= 0.154

Figure 2: Grid partition of the network area and query frequencies
per grid.
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description in mind, we define a cloaking region for a user u,
CRu, as a set of K-disjoint cells (ci) of the network area, and
we propose to compute a safety level of CR as follows:

SL CRð Þ = ∑K
i=1Ai

∑K
i=1#of wireless usersmoving within ci

: ð3Þ

Since all cells have the same area ðAÞ, we can simplify
equation (3) as A/ð1/KÞ∑K

i=1#of users in ci. The higher the
safety level of a CR is, the better its location safety
protection.

4. Proposed Batching Techniques

Here, we briefly describe the notation used to describe our
proposed algorithms:

(i) Let ℂℕ be the set of all cells in the network area
sorted in ascending order according to their
probabilities

(ii) Let U be the current set of users requesting loca-
tion privacy and safety protection. Then, given a
user u in U , CRu is the user u’s cloaking region

(iii) Given a user u, Ku corresponds to its location pri-
vacy, while θu determines its location safety
protection

(iv) Let #ðCRÞ be the cardinality (size) of a cloaking
region CR defined as the number of cells c′j mak-
ing up this region

(v) Let ℂðu, qi, rÞ be a subset of ℂℕ, which consists of
those “r” neighbor cells at the right and at the left
of Cu in ℂℕ. These cells have similar probabilities
regarding qi. Thus #ðℂðu, qi, rÞÞ = 2 × r + 1

(vi) Given a cell Ci, the occupancy of Ci ðOcðCiÞÞ cor-
responds to the number of mobile users inside Ci.

(vii) Let θmax be the maximum location safety require-
ment a user can demand

(viii) Let Q be the set of semantic queries that can be
submitted to the LBS within the service area. Then,
the size of Q is denoted as jQj

(ix) Let lu be the diversity value demanded by user u.
Then, Lu corresponds to a set of lu-semantically
distinct queries, including u’s query

(x) Let pij be the probability associated with the cell j,
from which a user in Cj can submit a query i

The Algorithms 1 and 2 are aimed at finding a set of
dummy queries having similar probabilities to the user’s
actual query qj. These algorithms use Q, such that there
are subsets that have similar semantic queries, but each sub-
set is different regarding others. Specifically, Algorithm 1
selects lu − 1 queries whose query probabilities are similar
to those of qj. Here, the algorithm computes for each query
qi ði : 1, ::, jQjÞ the ratio between pi and pj. The anonymizer
then chooses the lu − 1 distinct semantic queries at random
with a probability proportional to its corresponding ratio.

Given Lu and the user’s query qu, Algorithm 2 finds all
cells (Ck) that have similar l-diversity to Cu. Then, Ck and
Cu have similar l-diversity regarding a set Lu if cells’ proba-
bilities Ck and Cu (note that the probability of a cell is asso-
ciated with the likelihood of submitting a query) are similar
considering the following notion of a norm:

Norm Ck, Cuð ÞLu =max
Lu

pki − pui
���

���
n o

, ∀qi ∈ Lu: ð4Þ

Here, we consider that pki is the query probability for the
query i in Lu in cell k, and pui is the query probability for the
query i in Lu in user’s cell Cu. Then, cell Ck is chosen as a
candidate cell only if the value for equation (4) is smaller
than a system threshold, denoted as s.

We developed two batching techniques based on the
above algorithms to compute efficiently cloaking regions
for many mobile users. The first one (DBU) follows a
bottom-up approach since it first finds a small candidate
cloaking region satisfying a location and query privacy
requirements. Then, it tries to enlarge this region until it
achieves the location safety requirement. Conversely, the
second technique (DTD) follows a top-down approach
assuming that the entire network is the initial candidate for
a cloaking region, and then, it attempts to reduce its size.
For both techniques, users’ requirements, along with the
prevention of accessibility attacks, are all constantly checked.
A common characteristic in both techniques is that a cloak-
ing region comprises similar users’ requirements, specifically
similar location privacy, location query, and safety.

4.1. Diversity Bottom-Up Technique. This bottom-up
approach is based on Algorithm 3. Given a user u, this algo-
rithm is aimed at computing a cloaking region CRu. In line
3, a candidate set S of cells offering similar l-diversity as
the user’s cell (Cu) is chosen. Then, it finds a candidate
cloaking set, composed of Ku cells having the highest
entropy (lines 8-9). Lines 10 and 1 check whether this candi-
date cloaking region is susceptible to being compromised by
an accessibility attack, assuming the knowledge of the user’s
current cloaking region (CRmax). Finally (lines 15 and 16), it
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Figure 3: Example of our basic idea.
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Data: l-diversity set Lu, actual query qu, user’s cell Cu, anonymity degree K
Results: a candidate set of cells (S) for l diversity and K-anonymity

1 i⟵ 0;
2 S⟵ℂðu, qu, rÞ;
3 for each c′ ∈ℂðu, qu, rÞ and c′ ≠ Cu and jSj ≥ K do
4 if norm ðc′, CuÞLu ≥ s (see equation (4)) then

5 Remove c from S;
6 end
7 end
8 Return S

Algorithm 2: A candidate set of cells satisfying l-diversity and K-anonymity for a user located at cell Cu and asking query qu.

Data: user u, qj, m, s, CRu,old
Results: a new cloaking region (CRu) for user u satisfying lu for a query qj

1 i⟵ 0;
2 Lu ⟵ call Algorithm 1 (qj, Cu, lu);
3 S⟵ call Algorithm 2 (Lu, Cu, Ku, 4Ku);
4 if CRmax is null then
5 CRmax ⟵ Cu
6 end
7 for i <m do
8 CR′ ⟵ Ku cells at random with equal probability from S;
9 CRaux ⟵ CR′ only if CR′ has the highest entropy computed with respect to Lu;
10 if there exist feasible paths from CRmax to CRaux and EðCRauxÞ > EðCRmaxÞ

then
11 CRmax ⟵CRaux;
12 end
13 i⟵ i + 1;
14 end
15 CRu ⟵ CRmax;
16 Return CRu, Lu;

Algorithm 3: Computing cloaking region for a user u.

Data: user u located at cell Cu and having an actual query qj
Results: a l-diversity set (LC) for user u

1 i⟵ 0;
2 Ri ⟵∅;
3 for ði < jQj and i ≠ jÞ do
4 Ri ⟵mincellCu

fðpi/pjÞ, ðpj/piÞg;
5 i⟵ i + 1;
6 end
7 i⟵ 0;
8 LC ⟵ fqjg;
9 while i < l do
10 From Q chooses a query qi with probability proportional to Ri;
11 LC ⟵ L ∪ fqig;
12 i⟵ i + 1;
13 end
14 Return LC

Algorithm 1: Computing a l-diversity set (LC) for a user located at cell Cu and having an actual query qj.
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returns the chosen set CRmax as the new cloaking region for
user u.

Algorithm 4 is the proper batching procedure whose
goal is to build in batch several cloaking regions for all users
in U (those users demanding privacy and safety protection).
The idea is to build a candidate CR for the user having the
largest location privacy requirement (uv). The anonymizer
verifies if CRv needs to be increased to satisfy user uv’s loca-
tion safety requirement.

Specifically, Algorithm 4 chooses first the user v
demanding the highest K-anonymity (Kv , line 2). Then, it
calls Algorithm 3 to obtain a candidate CRv that also satisfies
its l-diversity. Now, it verifies whether this CRv satisfies the
safety level (location safety) demanded by user v (line 5). If
this is not the case, our algorithm randomly chooses a cell
having a similar l-diversity but a low occupancy (lines 6-7),
and then, it verifies whether this cell is reachable from the
current user u’s CR (line 8). When this latter case is true,
our algorithm adds the chosen cell into CRv (line 9).

When the safety level is achieved (line 12), our algorithm
finds out what other users (labeled as user u) may share CRv
(line 13). Here, three restrictions need to be all satisfied
(lines 14-15). The first one prevents the accessibility attack
by finding at least a feasible path from any cell in user u’s
CR to any other cell in this new candidate CRv. The second
one checks whether the K-anonymity degree demanded by
user u is also satisfied by the candidate CRv. Finally, the
safety level demanded by the user u is also checked. Note
that the selected user u must have similar l-diversity as user
v (line 13). Finally, the process is finished when U becomes
empty or CRv =ℂN (lines 20-21).

4.2. Diversity Top-Down Technique. DTD (see Algorithm 5)
is aimed at computing an initial CR for a chosen user and
checking whether other users can share it as well. To do
so, it selects any user v in U (line 3) having the largest θ,
denoted as θv. In line 4, it filters out any cell not having a fea-
sible path to either CRv or Cv . Then, in line 6, it chooses a
candidate CRv satisfying the demanded diversity set Lv
(computed in line 5).

From now on (lines 7 to 22), it tries to reduce the size of
CRv (lines 11-17) as long as the cardinality of CRv ≥ Kv and
SLðCRvÞ ≥ θv (lines 22 and 12). To do that, it finds out
whether removing a randomly chosen cell c (line 12) from
CRv could achieve the lowest reduction of the entropy of C
Rv (line 14). After “m attempts” (line 10), only one cell is
chosen and removed from CRv (lines 15 and 20). Note that
the state variable Emax becomes nonzero (line 19) only when
lines 12 and 13 are satisfied. Thus, the anonymizer removes
cell c′ from CRv (line 15). In lines 23-27, this technique ver-
ifies whether another user can share the same cloaking
region CRv by checking K-anonymity, l-diversity, location
safety, and feasibility of having an accessibility attack.
Finally, the algorithm stops when the first repeat-end state-
ment finishes (lines 2 and 29). This latter happens when all
pending requests have been successfully attended.

4.3. Time Complexities. This section presents the time com-
plexities for all algorithms implied in our techniques.

4.3.1. Time Complexity for Algorithms 1 and 2. As stated pre-
viously, Algorithm 1 has as purpose of computing the l
-diversity. Consequently, it returns a similar semantic
query’s set (l − 1 queries from the set). The time complexity
to provide the l-diversity for a user comprises OðjQjÞ (lines
3-6) and OðlRÞ (lines 9-13). Notably, jRj = jQj − fqjg, by
which the latter can be seen as OðljQjÞ. Finally, the algo-
rithm implies OðljQjÞ for a single user.

Regarding the second algorithm, it provides both l
-diversity and K-anonymity. To achieve this goal, a subset
of cells ℂN with similar probabilities to the qi’s cell is used.
The algorithm’s invariant simultaneously depends on l, K ,
and s. Thus, the time complexity corresponds Oððmax ðl, K
, sÞÞÞ; however, s is much lower than K and l.

4.3.2. Time Complexity of Algorithm 3. Algorithm 3 provides
the CRs; for this purpose, Algorithms 1 and 2 are used (lines
2-3). The highest entropy takes Oðm2Þ (lines 7-9), in such a
way that there are m candidate sets from which the set with
the highest entropy is chosen. Following the same trend pre-
sented in [20], the candidate cells for each set are extracted
from a list of cells, which contains n × n cells (note that it
corresponds to our network domain and that these cells
are sorted according to their probabilities, using Merge
Sort). To this end, 4Ku (line 3) cells are selected from the list
(e.g., if Cu is at the middle of the list, 2Ku can be chosen
from the left side and 2Ku from the right side regarding Cu
; in particular, m < 4Ku). Checking the existence of a path
from CRmax to a cell (lines 10-12) takes OðMÞ, which in
the worst case implies checking 7 cells (M) (it occurs when
Cu is in the middle of its neighboring cells). At all events,
M is a constant, which can be omitted. Finally, the time
complexity for this algorithm is Oðmax ðAlgorithm 1,
Algorithm2,m2 +MÞÞ =Oðmax ðljQj, ðmax ðl, K , sÞÞÞ,
whether m2 < Algorithm 1 and m2 < Algorithm 2.

4.3.3. Time Complexity of DBU Algorithm. The DBU algo-
rithm gives a set of CRs for each user, which comply with
their requirements. Towards that goal, both Algorithms 2
and 3 are used. Without loss of generality, in the DBU’s
worst-case, DBU takes OðjU jðAlgorithm 3Algorithm 2MÞÞ
(lines 2, 3, and 6). Following the same trend as Algorithm 3,
checking a path’s existence implies corroborating M cells
(lines 8-10 and 14-16), which is a constant that can be dis-
carded. Note that the loop in line 13 implies checking all
users in CRv, such that there is at least one lu ≤ lv . Depend-
ing on the user distribution over the network domain, the
number of users CRv should be lower than jU j. If the num-
ber of users is jU j, this loop takes OðAlgorithm 2Þ. In this
way, the time complexity for BDU is OðjUjðmax ðljQj, ð
max ðl, K , sÞÞÞðmax ðl, K , sÞÞÞ.
4.3.4. Time Complexity of DTD Algorithm. The DTD algo-
rithm provides a set of CRs for all users in U . Note that
Algorithms 1 and 2 are employed (lines 5 and 6). Subse-
quently, the highest entropy is calculated for each user tak-
ing into consideration its K requirement. As a
consequence, this procedure takes Oðmax ðCRv,m2ÞÞ (lines
7-22), such that CRv is the maximum value considering all
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users that belong to U . In this way, the time complexity
between lines 3 and 22 implies OðjU jðAlgorithm 1 +
Algorithm 2 +max ðCRv,m2ÞÞ. Note that the last cycle (lines
23-28) is similar to the last cycle in DBU, whereby it takes
OððAlgorithm 2Þ. Finally, the time complexity for DTD is
OðjU jðAlgorithm 1 + Algorithm 2 +max ðCRv ,m2ÞÞð
Algorithm 2ÞÞ. Therefore, it can be seen as

O Uj j l Qj j max l, K , sð Þð Þ +max CRv ,m2� �� �
max l, K , sð Þð Þð Þ� �

:

ð5Þ

To sum up, DTD’s time complexity is more expensive
than DBU (see Table 1). An important point to note is that
the time complexity of Algorithm 1 depends on the number
of queries, which can be high. However, several strategies
could be implemented with the aim of improving the effi-
ciency of algorithms; between them, we avoid the increase
in the number of queries using some mechanism of caching
or the reduction of the K and m parameters in those algo-
rithms that use them.

5. Security Analysis

Section 2 compares our techniques with several previous
works. It is clearly shown that those works do not protect
the privacy of the user’s location, the physical security, and
the privacy of the queries simultaneously for a continuous
LBS, while our techniques (DBU and DTD) tackle at the
same time those requirements.

5.1. Resistance to Collusion Attack. Adversaries can collude
with other users to obtain additional information from legit-
imate users.

Theorem 1. Our scheme is resistant to collusion attacks.

Proof. The collusion attack can be carried out under a model
of honest but curious users. Here, it is assumed that users
can collaborate to broaden their knowledge and improve
the likelihood of learning more information from other
legitimate users. In our scheme, users release their sensitive
information only to our anonymizer and in no case is the
information of each user disclosed to other users. Therefore,
our schemes are resistant to collusive attacks.

In an extreme case, a passive adversary could collude
with the LBS server or directly compromise it to obtain all
the users’ information. In this scenario, this attacker
becomes an active adversary who could perform an infer-
ence attack.

5.2. Resistance to Inference Attacks

Theorem 2. Our schemes are resistant to inference attacks.

Proof. In this case, it is assumed that an active adversary
knows precisely the details of our schemes, as well as the his-
torical information collected from all users. In this sense, the

Data: set U
Results: a set of cloaking regions for every user u in U satisfying its respective Ku and θu

1 repeat
2 v⟵ chooses a user with the highest K from U (denoted as Kv). If there are

many of them, choose one with the highest θ in U
3 CRv , Lv ⟵ call Algorithm 3 (v, qv , 2Kv + 1, CRv);
4 repeat
5 if SLðCRvÞ ≥ θv then
6 Su ⟵ call Algorithm 2 (Lv , Cu, Ku, s);
7 C′u ⟵ from Su \ CRv with a probability inversely ∝ distance(Cv , Cu) ×

OCðCuÞ (occupancy);
8 if there exist feasible paths from any cell in CRu to cell C′u then
9 CRv ⟵CRv ∪ fCu′g;
10 end
11 end
12 else
13 for any user u located in CRv having a query type qu ∈ Lv and lu ≤ lv

do
14 if there exist feasible paths from CRu to CRv then
15 CRu ⟵ CRv if Kv − Δ ≤ Ku ≤ Kv and θu ≤ θv ;
16 Remove u from U only if CRu was set as CRv ;
17 end
18 end
19 end
20 until SLðCRvÞ < θv ;
21 until U =∅or CRv =ℂN ;

Algorithm 4: Diversity bottom-up cloaking batching algorithm (DBU).
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active adversary could at most possess the same information
as the LBS server.

In this scenario, our DBU and DTD algorithms mitigate the
consequences of an inference attack. First, our algorithms
guarantee that all the queries chosen by applying l-diversity
have similar query probabilities, and the active adversary
cannot distinguish the actual query from the set of l-diver-
sity, even when it executes our schemes several times. Simi-
larly, applying K-anonymity guarantees the protection of the
privacy of the user’s location. Second, since the cells that
make up a CR are chosen randomly, a user’s actual location
can be blurred in some candidate cells. Therefore, the adver-
sary cannot infer any helpful information from the users.

In order to meet the location safety requirement, it is
required that the ratio between the area enclosed by a CR
and the actual number of users who are in it is greater than
the security level demanded by each user. When this
requirement is not met, DTD and DBU add new cells to
the K-anonymity set to accomplish it. However, an attacker
can attempt to drop these new cells. The conditions of K

-anonymity and l-diversity are also applied to these new
selections to prevent this situation.

5.3. Resistance to Accessibility Attack

Theorem 3. Our schemes are resistant to accessibility attack.

Proof. Here, a passive adversary is assumed that has infor-
mation on all the CRs requested by a user and can perform
the following analyses. Consider two consecutive cloaking
regions CR1 computed at timestamp τ1 (recall that ti is a
point of time for the timestamp in τi in S) and CR2 com-
puted at timestamp τ2 for a given user, where τ1 < τ2. The
attacker computes the service area’s topology graph and ver-
ifies if all points in CR2 are reachable from CR1. This attack
is successful when this adversary finds no-reachable points
in CR2. Moreover, assuming that the maximum speed in
the network area is known, the adversary can reduce the size
of CR2 by checking whether it is feasible to achieve any point
in CR2 from any point in CR1 in a period t2 − t1 at the max-
imum speed.

Data: set U
Results: a set of cloaking regions for every user in U

1 if SFð“Service Area”Þ ≥ θmax then
2 repeat
3 v⟵ a user from U with the largest θ. If many, chooses the one with the

largest K , (Kv);
4 ℂ′v ⟵ set of cells of the service area having feasible paths to reach CRv ;
5 Lv ⟵ call Algorithm 1 (qv , Cv , lv);
6 CRv ⟵ call Algorithm 2 (Lv , Cv , Kv , ℂ′v);
7 repeat
8 Emax ⟵ 0;
9 i⟵ 0;
10 for i <m do
11 c′ ⟵ from CRv \ fCvg with a probability ∝ cell’s occupancy;
12 if SLðCRv − fc′gÞ > θv then
13 if EðCRvÞ > Emax then
14 Emax ⟵ EðCRv − fc′gÞ;
15 CRt ⟵ CRv − fc′g;
16 end
17 end
18 end
19 if Emax ≠ 0 then
20 CRv ⟵ CRt
21 end
22 until ð#ðCRvÞ = KvÞ or ðEmax = 0Þ;
23 for every user u in CRv do
24 if there exist feasible paths from CRu to CRv then
25 Set CRv for user v only if Kv − Δ ≤ Ku ≤ Kv and θu ≤ θv and

lu ≤ lv and query type qu ∈ Lv ;
26 Update set U removing those users whose cloaking region is CRv ;
27 end
28 end
29 until U ==∅;
30 end

Algorithm 5: Diversity top-down cloaking batching algorithm (DTD).
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Both DTD and DBU verify if the candidate cells composing
a new CR are workable to be reached from the user’s current
CR, and therefore, this attack can also be prevented.

6. Experimental Environment

We developed a C-based simulator intending to assess our
approaches considering the three service requirements (i.e.,
location privacy, query privacy, and location safety). Aiming
to simulate different configurations considering users’ num-
ber, initial locations of users, restricted spaces, motion users,
and service requirements of users, a network domain of 21
× 21 (similar to Figure 4), which is equally partitioned in
cells of size 3 × 3, was set up. We disseminate a number of
users in this area in a range of ½200,800�. 25% of these users
are stationary, and the remaining ones are mobile users. The
stationary users are disseminated based on three probability
distributions: uniform (Uniform), exponential (Exponential,
0.5), and Zipf (Zipf, 2.0). We want to simulate scenarios
where users are moderately and highly concentrated with
these two latter distributions. For example, a few cells have
many users regarding Exponential distribution, while others
have a few users. Conversely, Zipf has fewer populated cells
than the Exponential distribution, but those cells are much
more populated. Each mobile user follows a predefined tra-
jectory in the service area, and Figure 4 shows an example
of these trajectories. The value for θ is varied between
0:018 = 3 × 3/500, assuming all users are located within a
small area, and 0:882 = 21 × 21/500 when users are equally
distributed in the network area.

Aiming to evaluate DBU and DTD in a context where the
restricted spaces change (i.e., the LBS has to provide the ser-
vices to the users in these spaces), six restricted space scenarios
are analyzed. In the first scenario, there are no restricted
spaces; in the second scenario, 10.8% of the total service area
corresponds to a restricted space. The third scenario contem-
plates 18.1% of the service area; meantime, the fourth scenario
covers 43.5%. Regarding the fifth scenario, it involves 69.3%.
Finally, the sixth scenario implies the total area.

The variables in all experiments were instantiated as fol-
lows: the number of users is 500, mobile users correspond to
375, users with fixed routes are 50, θ is 0.45 (except for
Figure 5), the number of ontologies is 16, the number of sen-
sitive terms is 194, K takes the value 7, and the values used in
all figures consider the averages of 6 timestamps as well as
the minimum and maximum values. Finally, we set Δ = 0
and m = 4 × Ku + 1 when we run all techniques.

We evaluated the performance of our batching tech-
niques using simulations. Four performance metrics are
used, including the following:

(i) Number of cycles: the average total amount of work
(it is related to the time complexity) incurred on
building a set of cloaking regions.

(ii) Size of a cloaking region over K : the average number
of cells conforming to a cloaking region regarding K
-anonymity degree demanded by users. The best
value is when this ratio equals one, i.e., the size is
equal to K , but in general, this metric will be larger
than one.

(iii) Number of cloaking regions: the number of CRs built
by the anonymizer. The minimum value is one since
only one CR can be built to protect all users at once.
The maximum value corresponds to the number of
users deployed in the network area since a CR can
specifically be built for each user.

(iv) Entropy of a cloaking region: we apply formula (2) to
compute the entropy of a CR and then to obtain the
average entropy of many computed CRs. With this
metric, we want to evaluate the quality of the loca-
tion privacy protection offered by a CR. The higher
the entropy, the better the quality is.

(v) Safety level: we apply formula (3) to compute the
safety level of a CR. Then, we obtain the average
safety level of many computed CRs. With this met-
ric in place, we want to evaluate the quality of the
location safety protection offered by a CR, which
must be larger than the threshold (θ) established
by each user.

We are mainly interested in comparing how the anon-
ymizer performance is impacted and the quality of the com-
puted cloaking regions when we run independently our two
batching techniques (denoted as DBU and DTD) and also
the baseline. We chose as a baseline, a state-of-the-art
approach called by their authors as “T-Dummy” [3]. In this
work, like our proposals, a sequence of cloaking regions is
built for each user for continuous access to a LBS. However,
a cloaking region is built for each user independently and
only considers K-anonymity restrictions. T-Dummy does
not consider any l-diversity and location safety restrictions
demanded by users. Moreover, T-Dummy is not aware of
restricted areas, and therefore, it builds a cloaking region

Table 1: Summary of the time complexity of our proposed algorithms.

Algorithm Time complexity

Algorithm 1 O l Qj jð Þ
Algorithm 2 O max l, K , sð Þð Þð Þ
Algorithm 3 O max l Qj j, max l, K , sð Þð Þð Þð
Algorithm DBU O Uj j max l Qj j, max l, K , sð Þð Þð Þ max l, K , sð Þð Þð Þð
Algorithm DTD O Uj j l Qj j max l, K , sð Þð Þ +max CRv ,m2� �� �

max l, K , sð Þð Þð Þ� �
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every time it is requested. In our results, instead of referring
to T-Dummy we simply mentioned it as baseline.

6.1. Experimental Results. From Figures 6(a) and 6(b), it is
workable to appreciate the performance (i.e., the perfor-
mance is expressed in terms of cycles) for both techniques,
when l-diversity is required by users considering three dif-
ferent distributions. The proposed techniques (specifically
averages) in both figures outperform the baselines, consider-
ing all distributions. These baselines do not consider the
restricted spaces; therefore, l-diversity is computed in all
timestamps. Roughly, l-diversity is carried out similarly to
how K-anonymity is obtained. In Figure 6(a), DTD’s behav-
ior remains constant considering the three distributions;
however, the technique executes more cycles when the dis-
tribution is Uniform, followed by the Zipf distribution and
subsequently by the Exponential distribution. When the dis-
tribution is Uniform, the technique runs more cycles since it
should discard those cells that do not hold the location safety
considering at the same time that it should satisfy the user’s
requirements; this latter can be seen as an exhaustive search
since all users are distributed in cells with similar probabili-
ties. Conversely, the Zipf distribution provides fewer cells
occupied by users, such that most of the cells have a single
user while the rest contain a high concentration of users.
DTD provides better performance when the distribution is

exponential since more occupied cells exist than the Zipf dis-
tribution. Finally, it is worth noting that the probability of
submitting a query for some user is linked to the cell proba-
bility where the user is.

On the other hand, in Figure 6(b), DBU’s performance is
displayed, which follows a similar DTD behavior. Neverthe-
less, when the Exponential distribution occurs, the technique
chooses 4K and 2K (i.e., this is due to the invariant of the
technique) cells with similar odds to build the cloaking
region. In this case, the role of maximum entropy in the
technique’s invariant is vital considering the users’ distribu-
tions. In this way, the technique’s performance is more effi-
cient in cycles when there are few cells populated by users (i.
e., unlike the Uniform distribution, the Zipf distribution pre-
sents few occupied cells, and very few of them have a high
concentration of users). Broadly speaking, DBU is more
sensitive to the users’ distributions than DTD; however,
DBU is more efficient in terms of executed cycle numbers.
This latter is in line with the time complexities of algo-
rithms, where DTD presents a more expensive complexity
than DBU.

In either Figures 6(a) or 6(b), when our techniques are
compared to the baseline approach, we can observe that
our techniques incur less computational cost since several
users share a cloaking region.
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In Figure 7(a), the average number of cells used to build
CRs is analyzed when restricted areas are increased. DTD
has a similar behavior when the users’ distributions are Uni-
form and Zipf. In simple words, most cells have a single user
while the rest are highly populated (in particular for Zipf dis-
tribution), but this is enough to satisfy the three services simul-
taneously: location safety, location privacy, and query privacy.
Nevertheless, when the distribution is Exponential, the tech-
nique tends to increase the average number of cells to build
CRs (i.e., fulfilling the location safety and query privacy). On
the other hand, DBU uses a greater cell average to build CRs
than DTD considering the three distributions. When
restricted spaces are greater than 43%, the cells’ average does
not suffer a substantial variation regarding the distributions.
The main differences between algorithms are underlined, first,
by how CRs are built while the user requirements are satisfied;
second, this difference also depends on how users are spread at
the service area. When our techniques are compared to the
baseline approach, we can observe that our techniques com-
pute a smaller amount of CRs since the baseline approach
builds a CR for each user independently of the location privacy
requirements of other users.

In Figure 7(b), CRs for each technique are displayed.
Note that both techniques provide more cloaking regions
when the Uniform distribution takes place according to the
increment of restricted spaces. This behavior is in line with
what is exposed in Figure 7(a), where the averages of cells
used by both techniques are also higher. Note that the num-

ber of CRs built by DBU considering all distributions is sim-
ilar among them. On the other side, from the fourth to the
sixth restricted space, DTD provides the smallest number
of CRs, such that there are some cells which contain many
users (see Figure 7(a)).

The average entropy for both techniques considering the
three distributions is exposed in Figure 8. The best average
entropy for DBU is presented under the Uniform distribu-
tion, which makes sense since cells inside the service area
have the same probabilities (i.e., entropy is maximized for
service area users). Following the same trend, the best aver-
age entropy presented by DTD is obtained under Uniform
distribution—which is very similar to the Zipf distribution
for this technique—notably, the best entropy averages
shown by both techniques are consistent with the results dis-
played in Figure 7(b). Here, there exist more cloaking
regions according to the increasing of restricted spaces, but
the entropy is more or less constant. In turn, the worst
entropies for both algorithms are given under the Exponen-
tial distribution.

Some interesting conclusions can be extracted from
Figures 7(b) and 8. First, in a service area where users are
spread out with a probability distribution similar to a Uni-
form distribution, DBU would bring a hard task for an
adversary who wants to determine the real user location.
Nevertheless, we believe this situation is ideal and escapes
from real-world scenarios. Note that although DTD’s invari-
ant does not search to maximize the entropy as a first

600

500

400

300

200

100

0
1 2 3 4 5 6

Scenarios of restricted space

Baseline
DBU Uniform
DBU Exponential 0.5

DBU Zipf 2.0
DTD Uniform
DTD Exponential 0.5

DTD Zipf 2.0

N
um

be
r o

f b
ui

lt 
CR

s

(b)
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priority, by bringing the location safety first, it converges to a
better entropy when users are not evenly distributed, such as
occurs in the Uniform distribution.

When our techniques are compared to the baseline
approach, we can observe that our techniques compute
cloaking regions whose entropy is equal or higher than for
the baseline. This result is because some cloaking regions
are overdimensioned (i.e., the size of this CR is larger than
K) due to the location safety requirement demanded by
users. When a cell is highly populated, our techniques will
choose other less densely populated cells having similar l
-diversity characteristics.

Figure 9(a) shows the number of CRs built by both tech-
niques. In this graph, the number of CRs is the largest when
users are distributed uniformly. This is because users are dis-
seminated in a larger area, and a few are in the same cells.
Furthermore, DTD tends to compute a smaller amount of
CRs when compared to DBU. Additionally, when the distri-
bution of users becomes more skewed, users tend to be
located in the same cells, and many of them share the same
CRs. As a result, there is a reduction of CRs built. On the
other hand, independent of the users’ distribution, DTD
builds a smaller amount of CRs than DBU. This latter occurs
because DTD begins the computation of a CR, setting the
entire network area as an initial CR candidate. Therefore, a
CR computed by DTD satisfies many more users at once
than that by DBU. As we previously explained, it is not sur-
prising that the baseline approach builds more cloaking
regions than our approaches. The baseline does not verify
whether other users can share the same cloaking region

and builds cloaking regions even when users are in nonre-
stricted areas.

Figure 9(b) displays the safety level (SL) of CRs built by
DBU considering different distributions of users within the
service area. Note that SL decreases when the users’ number
grows. This result was expected since SL, by definition,
declines when more users are located in the same geographic
area. Furthermore, take into consideration that the highest
SL is obtained when the distribution is Uniform. Finally,
due to DTD providing similar results, we decided to omit
its results.

On the contrary, a smaller SL can be observed when
users are distributed nonuniformly (Zipf and Exponential).
Furthermore, this result is coherent with the nonuniform
case since many cells are overpopulated and have a lower
SL than the Uniform distribution. Finally, and in conclusion,
the computed SL is greater than the θ threshold for all stud-
ied scenarios.

Figure 5(a) shows the number of CRs built for all tech-
niques. Unsurprisingly, there is a slight tendency of decreas-
ing the number of built CRs when θ is increased. Consider
that this result is more evident when θ grows from 0.594
to 0.882. Recall that this technique has to accomplish the θ
required, considering at the same time that the number of
users is fixed. To achieve this goal, the area covered by a
CR had to be increased. In turn, when the distribution was
Uniform, more CRs were built since users were evenly dis-
tributed in all cells that form the service area. On the one
side, when the distribution becomes more skewed, it is pos-
sible to appreciate a decreasing number of CRs since users
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are mostly located within a smaller area. On the other side,
consider that BU builds more CRs than DTD since the for-
mer technique finds the minor CR that satisfies users’ K
-anonymity; thereafter, it begins to enlarge the area until θ
is achieved. Lastly, note that DTD builds a smaller amount
of CRs when it is compared to DBU.

Figure 5(b) corroborates the conclusions obtained
before. Each time θ is increased, both techniques converge
to build larger CRs since a greater θ demands a larger CR.
Interestingly, DBU tends to build larger CRs than DTD,
but when θ is increased from 0.594 to 0.882, this situation
becomes the opposite, and DTD builds larger CRs. This
result makes us think that it should be appropriate to use
DTD when θ is more relaxed and then switch to DBU when
θ is larger or demanding.

7. Conclusions and Future Work

This paper introduced two batching techniques to build
cloaking regions for users with diverse requirements, such
as diverse location privacy, query privacy, and location
safety. Those requirements are solicited to cLBS, consider-
ing that users constantly change their locations when
requesting a service. Our proposed techniques attempt to
balance computational cost at the anonymizer and LBS.
Toward that goal, both techniques take into consideration
whether users are in a restricted space; from this baseline,
when users are not in a restricted space, it is unnecessary
to satisfy their requirements. Furthermore, aiming to pro-
vide query privacy, a new notion of geographical seman-
tics based on ontologies is introduced. This notion
considers sensitive terms in the query, which brings signif-
icant savings when the l-diversity is required, and the
query does not have sensitive terms. Our techniques also
consider several safeguards against three types of attacks
(inference, collusion, and accessibility) that intend to
reduce a user’s location uncertainty through a cloaking
region.

Extensive experimentation was carried out using simula-
tion. Different scenarios were evaluated considering metrics
such as cloaking regions, computational saving, entropy, and
size of cloaking regions. In addition, the notion of the time-
stamp was incorporated with the purpose of emulating the
users’ motion in the space through time. Also, different con-
figurations of restricted spaces were considered and evalu-
ated, providing for their impact on the metrics over both
techniques.

From empirical results, the following remarks were
extracted:

(i) Regarding the l-diversity metric, DBU is more sen-
sitive to the l-diversity than DTD. Nonetheless,
DBU has a more efficient behavior in terms of exe-
cuted cycle numbers

(ii) As regards the cell average used to build CRs when
restricted areas are increased, DBU uses a greater
cell average to build CRs than DTD considering
the three distributions

(iii) Referred to CRs, both techniques provide more CRs
when users are evenly spread out. DTD provides
the smallest number of CRs, when users are not
evenly distributed and restricted spaces increased

(iv) Empirical results align with the time complexities
for both techniques, and these techniques are more
efficient (in terms of executed cycles) than the pre-
sented baseline

(v) Concerning entropy, the worst results for both
techniques are obtained under Exponential distri-
bution; when the distribution is more biased like
Zipf, both techniques provide similar results

(vi) DTD seems to show the right balance between size,
K-anonymity, and location safety

(vii) Roughly, both techniques present stable behaviors
(i.e., there is a tendency for every metric) whenever
the users’ number is increased. This latter suggests
that both techniques are scalable

Further experiments should be carried out to obtain
more precise values for all metrics while varying the safety
location. Nevertheless, we believe that our results are prelim-
inary yet promising. As a future work, we wish to test diverse
scenarios and find optimal values for some system parame-
ters, such as m and Δ. We would also like to simulate other
scenarios because DBU seems to work better when users are
distributed uniformly and DTD when the distribution is
skewed and to increase the safety level demanded of users
in order to determine feasible conditions to build a cloaking
region satisfying location privacy, location safety, and query
privacy restrictions.
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