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Abstract. The localization capability of a mobile robot is central to
basic navigation and map building tasks. We describe a probabilistic en-
vironment model which facilitates global localization scheme by means
of location recognition. In the exploration stage the environment is parti-
tioned into several locations, each characterized by a set of scale-invariant
keypoints. The descriptors associated with these keypoints can be ro-
bustly matched despite the changes in contrast, scale and affine distor-
tions. We demonstrate the efficacy of these features for location recog-
nition, where given a new view the most likely location from which this
view came is determined. The misclassifications due to dynamic changes
in the environment or inherent location appearance ambiguities are over-
come by exploiting the location neighborhood relationships captured by
a Hidden Markov Model. We report the recognition performance of this
approach in an indoor environment consisting of eighteen locations and
discuss the suitability of this approach for a more general class of recog-
nition problems.

1 Introduction and Related Work

The two main instances of mobile robot localization problem are the continu-
ous pose maintenance problem and the global localization also known as ’robot
kidnapping’ problem. While the successful solution to the localization problem
requires addressing both, here we concentrate only on the global localization as-
pect. The problem of vision-based global localization shares many aspects with
object recognition and hence is amenable to the use of similar methodologies.
While several instances of vision-based localization have been successfully solved
in smaller scale environments [1–4], the applicability of these methods to large
dynamically changing environment poses additional challenges and calls for al-
ternative models. The methods for localization vary in the choice of features and
the environment model. The two main components of the environment model are
the descriptors chosen to represent an image and the representation of changes
in image appearance as a function of viewpoint. Similarly as in the case of ob-
ject recognition, both global and local image descriptors have been considered.
Global image descriptors typically consider the entire image as a point in the
high-dimensional space and model the changes in appearance as a function of
viewpoint using subspace methods [5]. Given the subspace representation the



pose of the camera is typically obtained by spline interpolation method, exploit-
ing the continuity of the mapping between the object appearance and continu-
ously changing viewpoint. Robust versions of these methods have been applied
in the robot localization using omnidirectional cameras [1]. Alternative global
representations proposed in the past include responses to banks of filters [6],
multi-dimensional histograms [7, 8] or orientation histograms [9]. These types
of global image descriptors integrate the spatial image information and enable
classification of views into coarser classes (e.g. corridors, open areas), yielding
only qualitative localization. In the case of local methods, the image is repre-
sented in terms of localized image regions, which can be reliably detected. The
representatives of local image descriptors include affine or rotationally invariant
features [10, 11] or local Fourier transforms of salient image regions [12]. Due to
the locality of these image features, the recognition can naturally handle large
amounts of clutter and occlusions. The sparser set of descriptors can be, in case
of both global and local features, obtained by principal component analysis or
various clustering techniques.

Our approach is motivated by the recent advances in object recognition using
local scale invariant features proposed by [10] and adopts the strategy for local-
ization by means of location recognition. The image sequence acquired by a robot
during the exploration is first partitioned to individual locations. The locations
correspond to the regions of the space across which the features can be matched
successfully. Each location is represented by a set of model views and their as-
sociated scale-invariant features. In the first localization stage, the current view
is classified as belonging to one of the locations using standard voting approach.
In the second stage we exploit the knowledge about neighborhood relationships
between individual locations captured by Hidden Markov Model (HMM) and
demonstrate an improvement in the overall recognition rate. The main contribu-
tion of the presented work is the instantiation of the Hidden Markov Model in
the context of this problem and demonstration of an improvement in the overall
recognition rate. This step is essential particularly in the case of large scale en-
vironments which often contain uninformative regions, violating the continuity
the of the mapping between the environment appearance and camera pose. In
such case imposing a discrete structure on the space of continuous observations
enables us to overcome these difficulties while maintaining a high recognition
rate.

2 Scale-Invariant Features

The use of local features and their associated descriptors in the context of object
recognition has been demonstrated successfully by several researchers in the
past [13–15]. In this paper we examine the effectiveness of scale-invariant (SIFT)
features proposed by D. Lowe [10]. The SIFT features correspond to highly
distinguishable image locations which can be detected efficiently and have been
shown to be stable across wide variations of viewpoint and scale. Such image
locations are detected by searching for peaks in the image D(x, y, σ) which is



obtained by taking a difference of two neighboring images in the scale space

D(x, y, σ) = (G(x, y, kσ) − G(x, y, σ)) ∗ I(x, y)

= L(x, y, kσ) − L(x, y, σ). (1)

The image scale space L(x, y, σ) is first build by convolving the image with Gaus-
sian kernel with varying σ, such that at particular σ, L(x, y, σ) = G(x, y, σ) ∗
I(x, y). Candidate feature locations are obtained by searching for local maxima
and minima of D(x, y, σ). In the second stage the detected peaks with low con-
trast or poor localization are discarded. More detailed discussion about enforcing
the separation between the features, sampling of the scale space and improve-
ment in feature localization can be found in [10, 16]. Once the location and scale
have been assigned to candidate keypoints, the dominant orientation is computed
by determining the peaks in the orientation histogram of its local neighborhood
weighted by the gradient magnitude. The keypoint descriptor is then formed by
computing local orientation histograms (with 8 bin resolution) for each element
of a 4× 4 grid overlayed over 16× 16 neighborhood of the point. This yields 128
dimensional feature vector which is normalized to unit length in order to reduce
the sensitivity to image contrast and brightness changes in the matching stage.
Figure 1 shows the keypoints found in the example images in our environment.
In the reported experiments the number of features detected in an image of size

Fig. 1. The circle center represents the keypoint’s location and the radius the keypoint’s
scale.

480× 640 varies between 10 to 1000. In many instances this relatively low num-
ber of keypoints, is due to the fact that in indoors environments many images
have small number of textured regions. Note that the detected SIFT features
correspond to distinguishable image regions and include both point features as
well as regions along line segments.

3 Environment Model

The environment model, which we will use to test our localization method is
obtained in the exploration stage. Given a temporally sub-sampled sequence



acquired during the exploration (images were taken approximately every 2-3
meters), the sequence is partitioned into 18 different locations. The exploration
route can be seen in Figure 2. Different locations in our model correspond to hall-
ways, sections of corridors and meeting rooms approached at different headings.
In the current experiment, the environment is mostly comprised of network of
rectangular corridors and hallways which are typically traversed with four pos-
sible headings (N, S, W, E). The deviations from these headings can be handled
as long as there is a sufficient overlap between the model views acquired during
the exploration and current views. In case the current view cannot be matched
successfully, a new location is added to the model. The number of views per
location vary between 8 to 20 depending on the appearance variation within
the location. The transitions between the locations occur either at places where
navigation decisions have to be made or when the appearance of the location
changes suddenly. The transitions between individual locations are determined

Fig. 2. The map on the fourth floor of our building. The arrows correspond to the
heading of the robot and the labels represent individual locations.

depending on the number of features which can be successfully matched between
the successive frames. These are depicted in Figure 3 for a sequence captured by
a still digital camera along the path which visited all eighteen locations (some
of them twice) and for a video sub-sequence along a path which visited three
locations. The transitions between individual locations are marked by the peaks
in the graph, corresponding to new locations. In order to obtain a more compact
representation of each location a number of representative views is chosen per
location, each characterized by a set of SIFT features. The sparsity of the model
is directly related to the capability of matching SIFT features in the presence
of larger variations in scale. The number of representative views varied between
one to four per location and was obtained by regular sampling of the views be-
longing to individual locations. Examples of representative views associated with
individual locations are depicted in Figure 4.



Fig. 3. The number of keypoints matched between consecutive views for the sequence
comprised of 18 locations (snapshot was taken every 2-3 meters) captured by a digital
camera (left); the number of keypoints matched between the first and i-th view for a
video sequence comprised of 3 locations (right).

Fig. 4. Examples of representative views of 14 out of 18 locations.

4 Location recognition

The environment model obtained in the previous section consists of a database
of model views 1. The i-th location in the model, with i = 1, . . . N is repre-
sented by n views Ii

1
, . . . , Ii

n with n ∈ {1, 2, 3, 4} and each view is represented
by a set of SIFT features {Sk(Ii

j)}, where k is the number of features. Given
the environment model we now want to classify the new images as belonging to
particular locations. The location recognition is accomplished by using a simple
voting scheme. For a new query image Q and its associated keypoints {Sl(Q)} a
set of corresponding keypoints between Q and each model view Ii

j , {C(Q, Ii
j)},

is first computed. The correspondence is determined by matching each keypoint
in {Sl(Q)} against the database of {Sk(Ii

j)} keypoints and choosing the near-
est neighbor based on the Euclidean distance between two descriptors. We only
consider point matches with high discrimination capability, whose nearest neigh-
bor is at least 0.6 times closer then the second nearest neighbor. More detailed
justification behind the choice of this threshold can be found in [10]. In the sub-

1 It is our intention to attain a representation of location in terms of views (as opposed
to some abstract features) in order to facilitate relative positioning tasks in the later
metric localization stage.



sequent voting scheme we determine the location whose keypoints were most
frequently classified as nearest neighbors. The location where the query image
Q came from is then determined based on the number of successfully matched
points among all model views

C(i) = max
j

|{C(Q, Ii
j)}| and [l, num] = max

i
C(i)

where l is the index of location with maximum number num of matched key-
points. Table 1 shows the location recognition results as a function of number
of representative views per location on the training sequence of 250 views and
two test sequences of 134 and 130 images each. All three sequences were sparse
with images taken 2-3 meters apart. The two test sequences were taken at differ-
ent days and times of day, exhibiting larger deviations from the path traversed
during the training. Despite a large number of representative views per loca-
tion relatively poor performance on the second and third test sequence was due
to several changes in the environment between the training and testing stage.
In 5 out of 18 locations several objects were moved or misplaced. Examples of
dynamic changes can be seen in Figure 5.

sequence (# of views) NO.1 (250) NO.2 (134) NO.3 (130)

one view 84% 46% 44%

two views 97.6% 68% 66%

four views 100% 82% 83%

Table 1. Recognition performance in terms of % of correctly classified views.

L4 train L4 test L6 train L6 test

Fig. 5. Changes in the appearance of location L4 and L6 between the training and
testing. In the left image pair the bookshelve was replaced by a table and couch and
in the right pair recycling bins were removed.

The poorer performance due to dynamic changes is not surprising, since
the most discriminative SIFT features often belong to objects some of which
are not inherent to particular locations. In the next section we describe how to



resolve these issues by modelling the spatial neighborhood relationships between
individual locations.

5 Modelling spatial relationships between locations

We propose to resolve these difficulties by incorporating additional knowledge
about neighborhood relationships between individual locations. The rationale
behind this choice is that despite the presence of ambiguities in recognition of
individual views the temporal context should be instrumental in resolving them.
The use of temporal context is motivated by the work of [17] which addresses
the place recognition problem in the context of wearable computing application.
The temporal context is determined by spatial relationships between individual
locations and is modelled by a Hidden Markov Model (HMM). In this model the
states correspond to individual locations and the transition function determines
the probability of transition from one state to another. Since the locations cannot
be observed directly each location is characterized by the location observation
likelihood P (ot|Lt = li). The most likely location is at each instance of time
obtained by maximizing the conditional probability P (Lt = li|o1:t) of being at
time t and location li given the available observations up to time t. The location
likelihood can be estimated recursively using the following formula

P (Lt = li|o1...t) ∝ P (ot|Lt = li)P (Lt = li|o1:t−1) (2)

where P (ot|Lt = li) is the observation likelihood, characterizing how likely is the
observation ot at time t to come from location li. The choice of observation like-
lihood depends on the available observations and the matching criterion. When
local descriptors are used as observations, several such choices have been pro-
posed in the context of probabilistic approaches to object recognition [18, 19].
The proposed likelihood functions properly accounted for the density and spatial
arrangements of features and improved overall recognition rate. In the case of
global image descriptors the locations were modelled in terms of Gaussian mix-
tures proposed in [17]. Since the location recognition problem is notably simpler
then the object recognition problem due to occlusions and clutter not being some
prominent, we used a simpler form of the likelihood function. The conditional
probability p(ot|Lt = li) that a query image Qt at time t characterized by an
observation ot = {Sl(Qt)} came from certain location, is directly related to the
cardinality of the correspondence set C(i), normalized by the total number of
matched points across all locations

p(ot|Lt = li) =
C(i)∑
j C(j)

.

The second term of equation (2) can be further decomposed to explicitly incor-
porate the location neighborhood relationships

P (Lt = li|o1:t−1) =
N∑

j

A(i, j)P (Lt−1 = lj |o1:t−1) (3)



where N is the total number of locations and A is a N × N matrix, where
A(i, j) = P (Lt = li|Lt = lj) is the probability of two locations being adjacent.
In the presence of a transition between two locations the corresponding entry
of A was assigned a unit value and in the final stage all the rows of the matrix
were normalized. The results of location recognition employing this model are

a) Sequence 2 with HMM b) Sequence 2 without HMM

c) Sequence 3 with HMM d) Sequence 3 without HMM

Fig. 6. Classification results with for Sequence 2 and Sequence 3 with (left column)
and without (right column) considering the spatial relationships modelled by HMM.
The black circles correspond to the location labels assigned to individual frames of the
video sequence.

in Figure 6. For each frame of two test sequences Figure 6 we plot the location
label which had the highest probability. Both sequences visited the locations in
the same order at different days, exhibiting different deviations compared to the
training sequence. The recognition rate with HMM for Sequence 2 was 96.3%
and for Sequence 3 it was 95.4%. While in both cases some images were misclas-
sified the overall recognition rates are an improvement compared to the rates



reported in Table 1, which reports rates of single shot recognition. Despite some
classification errors in Sequence 2, the order of visited locations was correctly
determined. For Sequence 3, where we exhibited some intentional deviations be-
tween the path taken during training and testing, the classification of frames
69-70 as location 14 was incorrect (Figure 6c) . The effect of HMM model can be
examined by making all the probabilities in the transition matrix A uniform and
essentially neglecting the knowledge of location neighborhood relationships. The
assigned location labels for this case are in the right column of Figure 6. Com-
paring the result with Figure 6a which is closest to ground truth, the recognition
performance in 6b and 6d degraded noticably.

6 Conclusions and Future Works

We have demonstrated the suitability and the discrimination capability of the
scale-invariant SIFT features in the context of location recognition and global
localization task. Although the matching and location recognition methods can
be accomplished using an efficient and simple voting scheme, the recognition rate
is affected by dynamic changes in the environment and inherent ambiguities in
the appearance of individual locations. We have shown that these difficulties can
be partially resolved by exploiting the neighborhood relationships between the
locations captured by Hidden Markov Models.

Since the notion of location is not defined precisely and is merely inferred in
the learning stage the presented method enables only qualitative global localiza-
tion in terms of individual locations. We are currently extending the proposed
method by endowing the view matching scheme by geometric information which
enables us to compute the relative pose of the robot with respect to the closest
reference view [20] and hence facilitate various relative positioning tasks. More
extensive experiments are currently underway. The presented approach suggests
an alternative models which can be efficiently exploited in the context of 3D-
object recognition and classification of object classes.
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