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Location-Specific Influence�antification in Location

based Social Networks

ANKITA LIKHYANI, Indraprastha Institute of Information Technology, India
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DEEPAK P., Queen’s University Belfast, UK

Location-based social networks (LBSNs) such as Foursquare o�er a platform for users to share and be aware of
each other’s physical movements. As a result of such a sharing of check-in information with each other, users
can be in�uenced to visit (or check-in) at the locations visited by their friends. Quantifying such in�uences in
these LBSNs is useful in various settings such as location promotion, personalized recommendations, mobility
pattern prediction etc. In this paper, we develop a model to quantify the in�uence speci�c to a location between
a pair of users. Speci�cally, we develop a framework called LoCaTe, that combines (a) a user mobility model
based on kernel density estimates; (b) a model of the semantics of the location using topic models; and (c) a
user correlation model that uses an exponential distribution. We further develop LoCaTe+, an advanced model
within the same framework where user correlation is quanti�ed using a Mutually Exciting Hawkes Process.
We show the applicability of LoCaTe and LoCaTe+ for location promotion and location recommendation tasks
using LBSNs. Our models are validated using a long-term crawl of Foursquare data collected between Jan 2015
- Feb 2016, as well as other publicly available LBSN datasets. Our experiments demonstrate the e�cacy of
the LoCaTe framework in capturing location-speci�c in�uence between users. We also show that our models
improve over state-of-the-art models for the task of location promotion as well as location recommendation.
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1 INTRODUCTION

Determination of user in�uence on social networks is often seen as a tool for viral marketing [26].
Understanding of social media in�uence has been exploited for legitimate purposes such as promo-
tion of health-information [27], as well as for misleading users through campaigns such as political
astroturfs [33]. In the scholarly community, the problem of in�uence maximization has attracted
much attention. In�uence maximization [4, 17, 39] is the task of �nding a set of users who have a
strong in�uence in the social network; these users are potentially good seed users to run promotion
campaigns which try to maximize the reach of the campaign.
With social media yielding eminently to broad-based social campaigns such as those around

health and politics, generic social networks are less suited to localized campaigns by businesses
such as salons, �tness clubs, restaurants and others, since information about user locations is not
as pervasive within them. Location-based social networks such as FourSquare, on the other hand,
consider location information as a �rst class citizen, with most user activity within them involving
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Fig. 1. Location Usage in FourSquare

the sharing of user location. This makes them a suitable platform for hosting localized marketing
and advertising information, probably the category of most advertising information that we, as
humans, come across in real life. The pervasiveness of GPS1 within current-day smartphones has
led to signi�cant improvements in the penetration of location-based social networks.
Typical location-based social networks (LBSNs) allow users to simply share the location of

their visit in a check-in post, optionally allowing to augment the check-in with additional text
and/or media. Figure 1 illustrates the central role played by location information in FourSquare,
a popular LBSN. The check-in history in the left-most screen is represented as a sequence of
locations along with the timestamp, the categories of the locations indicated in the icon. The middle
screen represents a typical search scenario in FourSquare, involving a purpose with the location
implicitly being the primary factor that �lters the search results. The third screen indicates a listing
of connections sorted according to the distance from the user. As a simple example of usage of
marketing campaigns within FourSquare, consider a restaurant that might want to have their
business listed at the top of the search results, or as an advertisement banner along with the search
results, for dining searches by users in their vicinity. At the user side, on the other hand, one may
want the search to be specialized to prefer the restaurants that her friends have visited frequently
and recently and also rated highly. Check-ins of connections have been shown to in�uence the
check-in preferences of LBSN users; for example, [6, 42] have reported evidence of geographical
in�uence over social linkages in LBSNs .
The primacy of locations in LBSNs has sparked interest in location-seeded variants of general

in�uence problems that have been studied for generic social networks. Locations, for the purposes
of LBSNs, includes any geo-localized entity that could be the subject of a check-in. This may include
particular businesses, e.g., XYZ Restaurant, public amenities such as railway stations, as well as
things such as parks that have a wider location spread. The location promotion problem [49] in
LBSNs is the location-seeded version of the in�uence maximization problem. This task instantiates
the in�uence maximization task on a speci�ed target location (e.g., a particular restaurant), with
the intent of �nding a set of seed users who are well-positioned for the promotion of the business

1https://en.wikipedia.org/wiki/Global_Positioning_System
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operating at that location [49]. Once a set of seed users is identi�ed, it can be used to issue targeted
special o�ers to encourage them to visit the location/business being promoted. Once these users
visit the business, their check-ins would be expected to consequently attract other users, those
over whom they have in�uence. The location promotion problem is of signi�cant importance for
launching e�ective campaigns to help small businesses gather more customers.

We now outline the task of in�uence quanti�cation as a basic building block for a variety of tasks in
LBSNs, including the task of location promotion. In�uence quanti�cation is the task of quantifying
the in�uence that a user has over another user, within the context of a location, often modeled
probabilistically [9, 45]. Thus, this task associates a triplet, [u,v, l] with a score that indicates the
in�uence of user u over v in the context of the location l . We now motivate as to why in�uence
quanti�cation may be seen as a generic building block for in�uence tasks in LBSNs. Once the
scores for [u,v, l] triplets are rolled up (aggregated) across various v’s using a suitable aggregation
function, we achieve a score for [u, l] pairs that indicate the in�uence of u in the network, for the
location l . The top-scoring u’s may then be chosen as a result set for location promotion. This
roll-up may be performed on di�erent facets, leading to intuitive solutions for respective problems.
For example, the scores for [u,v, l] triplets may be aggregated over multiple locations in a city, to
get an estimate of the in�uence of u over v within the city. Further, an aggregation of in�uence
scores over multiple locations within a category (for example, restaurants or hospitals) would lead
to an estimate of a category-speci�c in�uence between u and v . As an example, a user might be
in�uenced by one connection for food recommendations, but by another for outdoor activities,
and a third for medical purposes. Aggregating the [u,v, l] for a particular user v over the various
connections of her (as us) who have recently visited l , achieves a quanti�cation of the likelihood of
v to visit l ; this could be used to order the recommendations to o�er personalized LBSN search for
user v . Thus, in�uence quanti�cation forms a critical and basic building block for various LBSN
tasks.

In�uence quanti�cation can take into consideration a variety of information that an LBSN o�ers:

• geographic features: user’s mobility over di�erent locations,
• semantic features: type/category of location (e.g., restaurant, cafe),
• social correlation: the relationship between users in the social network, and
• temporal correlation: the degree to which a user’s movement is correlated with the movement
of another user.

Previous work on in�uence quanti�cation for location promotion has mostly focused on modeling
geographic features and social correlation [49]. Studies on semantic features such as category have
been limited primarily since datasets containing such information have been scarce [6, 8]; such
de�ciencies are being addressed recently (e.g., in [11, 23, 40]). The temporal correlation of users
behavior has been modeled previously in online social networks, but not in LBSN as we will model
in our task. The socially induced followship based on temporal correlation has been of interest in
LBSN studies in other contexts [31].

1.1 Contributions

In this paper2, we develop a novel model and framework called LoCaTe for quantifying the location-
speci�c in�uence between a pair of users who are connected in a social network. LoCaTe combines
geographic features of the location, semantics associated with the location and temporal aspects
of social following. Speci�cally, LoCaTe incorporates –and derives its name from– the following
aspects of check-in information in LBSNs:

2This paper is an extended version of [22], we include this for the review process, but this footnote will not appear in the
�nal draft.
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Technique Spatial Target User Location Pairwise User In�uence

Loc-IM [17] Location Single Location Location-independent
Loc Promotion [49] Location Set of Locations Location-dependent
Reg IM [4] Region Set of Locations Location-independent
Geo Soc Inf [45] Location Single Location Location-independent

Table 1. Summary of Related Work (adapted from [16]) in Influence Models for Location Promotion

• Location a�nity: The mobility patterns of users that hold cues to whether they frequent the
proximity of the target location.
• Category a�nity: The a�nity of a user to the semantic categories of the location.
• Temporal correlation: The temporal correlation of movements between the user and the
candidate seedset, thus modeling time-conditioned social followship.

While the basic LoCaTe model makes use of exponential distribution in order to quantify tem-
poral correlation, LoCaTe+ uses advanced modelling (involving more parameters to learn) using
mutually exciting hawkes process for the task. In order to illustrate the general purpose utility of
LoCaTe/LoCaTe+ for various LBSN tasks, we empirically evaluate our approach not only over the
location-speci�c in�uence quanti�cation task, but also for the more general problem of location
promotion.
Our algorithms are evaluated over large-scale real-world LBSN data. We conduct a large-scale

Foursquare check-in crawl spanningmore than one year for use in all our experiments and also have
made the collection available for other researchers. We also use the publicly available collections
of LBSN data that are commonly used by others in the area. Unfortunately, these previously used
collections do not have semantic category information associated with each location. We overcome
this limitation by a spatial join with categorical information obtained through separate Foursquare
APIs. The LBSN data collected in our crawls, as well as the category mappings to check-in locations
in other crawls used in our experiments are made publicly available. Our experimental evaluation
establishes the utility of our LoCaTe models in accurately quantifying the in�uence between users
in the context of speci�c locations.
In summary, the contributions we make in this paper are three-fold:

(1) We propose a novel model that combines spatial, temporal and location semantics in the
LBSN domain for location-based in�uence quanti�cation.

(2) We demonstrate the applicability of our in�uence quanti�cation models for identifying the k
(user speci�ed input) seed users for the promotion of a location.

(3) We conduct experimental evaluation over real datasets and show that our proposed model
achieves high accuracy, outperforming state-of-the-art in�uence quanti�cation models.

The remainder of the paper is organized as follows: Section 3 formally de�nes the in�uence
quanti�cation problem within the larger context of location promotion. Section 2 talks about
existing work in this area, and section 4 discusses the modeling methodology. Section 6 shows
how to evaluate the proposed in�uence quanti�cation model and the experimental results obtained.
Finally, section 7 concludes the paper and outlines possible future directions.

2 RELATED WORK

While in�uence maximization has been a well-studied problem (e.g., [5, 9, 12, 13]), the geo-seeded
instantiation motivated by LBSNs has gathered attention only recently [4, 17, 31, 34, 37, 45, 48–50].
Apart from the location promotion problem where we start with a speci�c target location, there
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have been studies on region promotion, where the target is a larger geo-region [4]. Also, there exist
recent studies on determing top-k in�uential locations [34] and product promotion in context of
location [48]. Users’ geo-location a�nities have been modeled by either associating one speci�c
geo-location with each user (usually the most frequently one visited by the user) [17, 37, 45] or a
set of geolocations or only the social network structure [4, 49, 50]. In a similar way, the user-user
pairwise in�uence propagation probabilities are estimated either using just the (social) network
structure [4, 17, 45] or taking into consideration the seed location/region [49, 50]. To the best of
our knowledge only the recent work in [31], have looked at de�ning user-user pairwise in�uence
in spatio-temporal context, but for identifying followship.

A summary of important previous techniques categorized along the above dimensions appears in
Table 1. In our empirical evaluation, we compare against the most recent work by Zhu et al. [49, 50],
that associates a set of locations for each user and considers the in�uence between two users to be
dependent on the location. Note that in their paper, Zhu et al., have presented results using only
two popular target locations (viz., the Central Park in New York City, and Cal-Train Station in San
Francisco). Our evaluation, on the other hand, considers a much broader set of locations that could
be the subject of user check-ins.
User Mobility Models: Capturing humans’ mobility behaviors over spatial and temporal space
have been studied quite intensly over past few years for applications such as Location Prediction
[7, 8, 19, 23, 30], and Location Recommendation [18, 20, 24, 36, 42, 43, 47]. We utilize user mobility
models in our method, drawing inspiration from earlier work on characterizing user behavior in
LBSNs. Since LBSN data provides a trail of user’s locations, it provides a rich data platform for
studying user mobility patterns; such patterns are of interest for tasks such as location prediction

and personalized recommendation. In literature, mobility models that mine spatial patterns based on
generative models [7, 8], Gaussian distributions [6] and kernel density based estimations [21] have
been particularly successful. Accordingly, we use the kernel density based mobility model [21] to
model and exploit user-location a�nities. On the other hand, the baseline technique from [49, 50]
uses a distance-based mobility model, DMM, in their in�uence quanti�cation method for location
promotion.
Other information associated with a location such as users’ activities, and documents that

induces spatio-temporal topics are also used for modeling user’s mobility behavior [44, 46]. These
induced topics can be used to extend LoCaTe further, based on the availability of the integrated
data (checkins along with location and social information).

3 PROBLEM STATEMENT

Now we provide a formal de�nition of in�uence quanti�cation problem in an LBSN. Table 2 lists a
set of notations that will be used. We model a location as having a �xed geographic coordinate
as well as a set of categories associated with it. This allows for modeling of locations such as
movie multiplexes that would screen movies as well as contain eateries. This is consistent with
conventions for location representation in other domains such as OpenStreetMap3, where multiple
tags4 may be attached to one location. In the following narrative, we use location and venue
interchangeably; though we feel venue is a more appropriate word, location corresponds to the
convention in existing literature.
In�uence quanti�cation is the task of quantifying the in�uence of a user over another in the

context of a location. For most usage scenarios, we would like to quantify the in�uence as the

3https://www.openstreetmap.org/
4http://wiki.openstreetmap.org/wiki/Tags
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Symbol Description

G A location based social network
U Set of users in G
E Set of connections from ui to uj s.t. ui ,uj ∈ U

and ui , uj
ℓ A location speci�ed by a triple (x,y,Cℓ),

where x ,y correspond to geo-coordinates and
Cℓ to category set of ℓ

⟨u, ℓ, t,Cℓ⟩ A check-in record of user u at time t at loca-
tion ℓ that has a category set Cℓ

Mu set of check-in records ⟨u, ℓ, t,Cℓ⟩

L A set of locations
C A set of categories

Table 2. Notations used in this paper

likelihood of a user visiting the location given the visit to the same location by another (i.e., seed)
user. We now use this perspective to provide a formal de�nition.

De�nition 3.1 (In�uence quanti�cation). Given an LBSN G, a target location ℓ, a seed-user u
(usually a user who has previously visited ℓ), the in�uence quanti�cation problem is to quantify the
likelihood P( ℓ,u,v | G ), the likelihood that any user v among u’s connections is likely to visit ℓ. □

There are two implicit assumptions in this de�nition. First, that the seed user u has visited the
location ℓ; this is typically justi�ed since some evidence of association between u and ℓ would be
necessary for the premise that u would in�uence v in the context of ℓ. Second, most LBSNs, like
general social networks, have a timeline display where each user would be provided with (largely
reverse-chronological ordering of) her connections’ recent check-ins. This is in addition to a second
functionality, that of location-targeted search, where a user pro-actively looks up the visitors of a
particular location. With most implicit in�uence being through the more popular former channel,
that of timelines, we will attempt to quantify the in�uence between connected users, since they
could �gure in the timelines of each other.
In many contexts, we may want to score target users within the context of the seed user and

chosen location. Thus, it is appropriate to model the in�uence quanti�cation as a distribution over
the set of users v; accordingly, we will use Pℓ,u (v |M) to indicate the in�uence quanti�cation for
the combination [u,v, ℓ], withM indicating the in�uence quanti�cation model being employed.

4 LOCATE FRAMEWORK ANDMODELS FOR INFLUENCE QUANTIFICATION

We now outline our in�uence quanti�cation framework, LoCaTe, that estimates Pℓ,u (v | M), a
scoring that captures the likelihood that the user v from u’s connections would visit the location
ℓ quanti�ed using the check-in records in the training part, denoted as M . Figure 2 shows the
framework of LoCaTe. LoCaTe combines information from three kinds of features to arrive at a
estimation as follows:

Pℓ,u (v | M) =

(
α PL(v, ℓ | M)︸        ︷︷        ︸

location a�nity

+ (1 − α) PC (v,Cℓ | M)︸          ︷︷          ︸
category a�nity

)
× T (u → v | M)

︸           ︷︷           ︸
temporal correlation

(1)

such that for all the usersU , locations L and the entire time range T
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social connections

seed user

check-in records

target location

LoCaTe / LoCaTe+

p(l,u,vi,M) = f

(PL(vi,l | M) , PC(vi,Cl | M), T(u,vi | M) )

u

M = {Mu1,..,Mvi,..,

Mun,…,Mvm}
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0.2

0.3

0.2

Fig. 2. LoCaTe: Framework for Influence �antification

Pa =
∑

v ∈U ,ℓ∈L

(
α PL(v, ℓ | M)︸        ︷︷        ︸

location a�nity

+ (1 − α) PC (v,Cℓ | M)︸          ︷︷          ︸
category a�nity

)
= 1 (2)

P =

∫ T

0

Pa .T (u → v | M) = 1 (3)

PL(v, ℓ |M)models the a�nity of v to location ℓ, and PC (v,Cℓ |M)models the a�nity of v to the
categories that are associated with the location ℓ (denoted as Cℓ). These two terms are interpolated
using an interpolation parameter α . Further, T (u → v | M) captures the temporal correlation
between users u and v , a term that we model as being independent of the location ℓ. The �rst two
terms quantify user’s a�nity for the location using mobility and categories respectively and are
combined using a weighted sum. The third term quantifying location-agnostic (in the sense that
the quanti�cation is performed over all check-ins comprising a number of locations) user-user
temporal a�nity is merged using a product. Thus, the �nal scoring, due to its product form, ensures
that users who are strong on both location and temporal aspects score much higher than others.
Pℓ,u (v | M), being a normalized score, ranges between [0,1]. The usage of Location a�nity,

Category a�nity and Temporal correlation in our model lends the name to our method. The
two models that we propose based on this framework di�er in the model used for the Temporal
correlation; while the basic model, also called LoCaTe uses an exponential distribution in the
modelling, LoCaTe+ makes use of mutually exciting Hawkes process.

4.1 Location A�inity

The mobility of each user is typically restricted to a few key locations, which would typically include
the location of stay and work [6]. Thus, a user has an inherent preference for some geo-locations.
This inherent preference of number of geo-locations vary from individual to individual. Thus �xing
it to two or more components can lead to inability to either capture many of high density patterns
or waste considerable probability mass over certain regions. Lichman et al. in [21] addresses the
limitations of �xating the densities to a speci�c number by introducting Kernel Density Estimates.
Kernel Density Estimation is a non-parametric method for estimating the density function from
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random sample of data [35], and are robust to sharp transitions in spatial densities that human
mobility witnesses, especially in contexts involving travels that take users far away from their
usual location of residence.

The a�nity of v to ℓ based on her own check-in history (i.e. E = {l1, ..., ln}, where, lj = <x,y> is a
two-dimensional location, 1 ≤ j ≤ n) is modeled as the kernel density estimate that quanti�es the
average weighted similarity between ℓ and each checked-in location lj , using a hyper-parameter k

PL (v, ℓ | Mv ) = fKD (l | Mv ,k) =
1

|Mv |

|Mv |∑

j=1

κj ,k
(
ℓ, ℓj

)
(4)

κj ,k (·, ·) estimates the similarity between locations as inversely related to the Euclidean distance
between them:

κj ,k
(
ℓ, ℓj

)
=

1

2π hj ,k
exp

(
−

1

hj ,k
∥ℓ − ℓj ∥

)
(5)

Here, hj ,k is a location-dependent scalar factor that is set to be the Euclidean distance of ℓj to

it’s k th nearest neighbor, and ∥ℓ − ℓj ∥ =
√
(ℓ.x − ℓj .x)2 + (ℓ.y − ℓj .y)2. The bandwidth hj ,k adapts

according to the kth nearest neighbor, thus facilitating robustness towards varying densities. For
example, setting a bandwidth value very high in urban areas where events are densely populated
within a small region will lead to oversmoothing, while setting the badnwidth to a small value
in sparsely populated areas will lead to over�tting. Thus, bandwidth computed using the nearest
neighbors approach ensures the bandwidth computation is sensitive to di�erential densities of
locations in urban and rural areas.

4.1.1 Mixture of Kernel Density models. The location a�nity for a user v is learnt using v’s
check-in records. But, for some users we have very little data to make predictions. To overcome this
data sparsity issue we interpolate individual user’s model with the kernel density model learned
over check-in records of all users, as follows:

PkL (v, ℓ | M) = βv fKD (ℓ | Mv ,k) + (1 − βv ) fKD (ℓ | M,k) , (6)

where, βv is a user-speci�c mixing weight, determining the relative in�uence between the user
model and the global model. We will denote this as PL(., .) when the value of k is clear. We will
estimate both k and βv using the corpus of check-in records, as we describe later in section 4.4.

Note that, in the above model we have used only two components in the mixture model, where
�rst component models individual’s check-ins and second component models full-population
check-ins. But, the intermediate components between these two can be de�ned at di�erent spatial
scales such as neighborhoods, cities, states, and even countries. Moreover, the users’ connections
can also be exploited at di�erent spatial scales. In this work, instead of �ne tuning to di�erent levels
of smoothing we have kept the simplistic model with two components, since this is an orthogonal
research to our current work.

4.2 Category A�inity

Locations often record correlated check-in behavior across LBSN users. For example, a restaurant
might be better o� targeting a user who frequently checks in to food places due to the correlation
across various categories of food joints. As an example, consider two users in Figure 3 represented
by the word cloud of the categories of their checked-in locations (larger font indicates higher
frequency); User A evidently exhibits a�nity towards visiting restaurants while user B prefers gym
and �tness centers. We use topic modeling to identify such higher-level contexts, and exploit it to
model the user-category a�nity term, PC (v,Cℓ | M).
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Location-Specific Influence �antification in Location based Social Networks :9

(a) User A (b) User B

Fig. 3. Category wise check-in Distribution

For topic modeling, we use Latent Dirichlet allocation (LDA) [3] which models semantic matching
between text documents by learning latent topics, each of which is a probability distribution over
the set of words. The LDA model ensures that words that are semantically related would have
high probabilities associated with the same topic(s). In our adaptation of LDA for modeling topical
contexts across check-in categories, each user v is treated as a document constructed as a bag of
categories vC (i.e., each category as a word) of checked-in locations. These documents across the
users in the population form a document corpus. We apply LDA on this document corpus, to learn
topics which are probability distributions over the set of categories. We then use the learned topics
to estimate the user’s a�nity to the set of categories associated with the location of interest:

PC (v,Cℓ | M) =
∑

Z ∈Topics(M )

P (Cℓ | Z ) × P (v | Z ) , (7)

where Topics(M) is the set of topics learned as described, and Z represents a topic from the learnt
topic-set. P (v | Z ) and P (Cℓ | Z ) quantify how well the category distribution associated with Z

match against those of the check-ins of v and the categories of ℓ respectively. High values of
PC (v,Cℓ | M) are achieved when the user’s category distribution and that of the location under
consideration are correlated with the same set of topics.

4.3 Temporal User Correlation

We now turn our attention to the temporal correlation term, T (u → v | G), that quanti�es the
extent of in�uence that u has over v . This primarily accounts for the socially induced followship in
our In�uence Quanti�cation model. The task at hand is to quantify the chance that v will follow
u in checking-in to a location, such that (u,v) ∈ E. We target to arrive at a quanti�cation based
on historical check-ins of the users, so that cases where a user u has been closely followed by v
historically yields a high value for the T (u → v | G). We �rst empirically analyze the behavior of
general inter-arrival times (in days) of users in the LBSN at a given location, without distinguishing
whether they are connected to each other in the LBSN network or not; we call this the time lag

distribution across userbase. The analogous time lag distribution across connections considers the
distribution of the time duration elapsed between two users who are connected to each other,
visiting the location in question.

These two di�erent distributions of time lags are given in Figure 4, where u3 and u4 are the
followers ofu1. We collect these time lag distributions across all locations in the LBSN and study their
frequency distribution using a histogram-style analysis. As expected, the general across userbase
time lag distribution follows a classical Heavy Tailed distribution (see Figure 5(a)). However, the
across connections time lag distribution (in Figure 5(b)) does not quite follow a power law distribution
despite exhibiting a monotonic decay with increasing values of time lag. It may also be noted
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location
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u4 u5
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across user-base

across connections
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u3u2u1

Fig. 4. Depicting the time lag between check-ins at a location for connected and non-connected users, u3
and u4 are followers of u1

that the across connections data is much sparser than across userbase; this is so since there are a
signi�cantly fewer number of occurrences of connected users visiting the same location.

These observations leads us to a natural and simple model of time lag distribution between users
that uses an exponential distribution, used in similar settings elsewhere [31]. Despite its simplicity,
this formulation surprisingly e�ective in practice as seen in our experiments.
However, the above model of temporal correlation or time lag distribution of checkins at a

location between socially connected users using exponential distribution makes a rather strong,
simplifying assumption that events (i.e., checkins) arrive at a constant rate, λ, throughout the
time of observation. In reality, however, that is rarely the case. ce, when there are well-advertised
promotions at a location we can expect checkin activity of each user to show a bursty behavior
with higher rates of checkins, and consequently shorter time-lags, than during regular times.
In our second model, we incorporate changing intensity of checkins by using nonhomogenous
Poisson processes (NPP) to model the checkin behavior. Speci�cally, we use a class of NPPs, viz., the
mutually-exciting Hawkes processes [10, 14] (meHP), which has been successfully used to model
contagions in Financial markets [1] as well as in Social media [41]. Note that we found the use of
meHP particularly attractive because it allows for a clean modeling of “self-excitation” of a user
independent of the in�uence of another user in the LBSN (as in the case of a well-promoted location
given above). Thus, the resulting temporal user correlation is capable of more accurately modeling
the true followship strength between users.

We call the full in�uence quanti�cation mdoel (Ref. Eq. 1) that uses the exponential distribution
for estimating user correlation as LoCaTe and the one that uses mutually exciting Hawkes process
modelling as LoCaTe+. We provide the details of the temporal user correlation models in separate
subsections herein.

4.3.1 Modeling using exponential distribution. According to the exponential distribution mod-
eling , the weight associated with any value of time lag, denoted δt , would be quanti�ed as the
following:

p(δt) = λte
−λt δ t (8)

We set λt is the inverse of the mean time lag between check-ins by connected users:

λt = 1/avд {|t2 − t1 | | ∃⟨u, ·, t1, ·⟩ ∈ M ∧ ∃⟨v, ·, t2, ·⟩ ∈ M ∧ (u,v) ∈ E} , (9)

where the ⟨u, ·, t, ·⟩ implies that we consider all check-ins by u at time t irrespective of the location
of the check-in or the set of categories associated with the location. This feeds into our user
correlation estimateT (u → v | G) which is modeled as the cumulative weight of v checking in at a
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Fig. 5. Time lag (in days) probability distribution plot

location visited by u after a time lag of any t ≥ tmin
u ,v :

T (u → v | G) =

∫ ∞

tmin
u ,v

λte
−λt δ td(δt) (10)

= −e−∞ + e−λt t0 = e−λt t
min
u ,v (11)

tmin
u ,v = min {(t2 − t1) | ∃⟨u, ·, t1, ·⟩ ∈ M ∧ ∃⟨v, ·, t2, ·⟩ ∈ M}

As indicated above, we set tmin
u ,v to be the earliest time that v has checked in after u at the same

location, according to training data; this ensuring thatT (u → v | G) re�ects the extent of correlation
between u and v , since T (u → v | G) would have a high value for those user pairs where the latter
follows the former (temporally) closely.

4.3.2 Modeling using Mutually Exciting Hawkes Processes. We de�ne, for a user v , the activity of
checking in to location ℓ at time t as a function of three components:

(1) µv : user’s base (location-agnostic) intensity of checking in,
(2) αv

∑
ti ∈Hv (t ) exp(−ηvv (t − ti )): self excitation or the component that accounts for repeated

check-ins by the user to the same location,
(3) αu→v

∑
tj ∈Hu (t ) exp(−ηuv (t − tj )): excitation caused by neighbors/ friends checking into the

location.

In the above, Hu (t) and Hv (t) indicates all checkin event timestamps prior to current time t of
user u and v respectively. Although we can parameterize the in�uence impulse responses for each
pair of users, for the sake of model simplicity we set all of them to a common user-speci�c kernel
exp(−ηv (∆t)). Thus, λ(t, ℓ) can be written as:

λv (t, ℓ) = µv + αv

∑

ti ∈Hv (t )

exp(−ηv (t − ti )) I (li = ℓ) + αu→v

∑

tj ∈Hu (t )

exp(−ηv (t − tj )) I (lj = ℓ), (12)

where the �rst, second and third terms account for base intensity, self-excitation and neighbors’
excitation respectively. For parameter estimation under this model, we outline the likelihood
expression (of a set of check-ins for the model parameters), which we would like to maximize over
the entire observed set of check-ins. The design of the model allows us to break down the likelihood
expressions into a product of likelihood expressions, one expression for each user that speci�cally
deals with parameters that relate to the user.

L (µµµ,ααα,A,ηηη) =
∏

v

Lv (µv ,αv ,A∗→v ,ηv ) , (13)
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where, µµµ, ααα and ηηη are vectors of user-speci�c parameters, A is a user-user in�uence weight (i.e.
αu→v above) matrix and A∗→v is a row of all in�uence weights for a user v . Each Lv (·) can now be
optimized separately. According to the meHP model, their construction is as follows:

Lv (µv ,αv ,A∗→v ,ηv ) =

Nv∏

n=1

λv (tn, ln) ×

(∫ T

0

exp (−ηv (t, ln))

)
dt (14)

where product is over the Nv check-ins made by the userv , and with tn and ln denoting the time and
location associated with the nth check-in. After optimization procedure, we are ready to quantify
the user correlation using the parameter estimates αu→v . Once user u checks-in at a location, there
is a time lag for the check-in information to propagate tov before the latter can make an in�uenced
check-in. Let this time-lag be tmin

u ,v as in the case with exponential distribution modelling in the
previous section. The temporal user correlation is simply the estimation of how likely v is, to check
in at a location visited by u after a time lag of t ≥ tmin

u ,v , solely by virtue of in�uence from u:

T (u → v | G) =

∫ ∞

T

αu→v

∑

tj ∈Hu (t )

exp
(
−ηv

(
t − tj

) )
dt

=

∑

tj<T

(
αu→v

ηv

)
exp

(
−ηv (T − tj )

)
,

(15)

where, T is given as:
T = tu + t

min
u ,v (16)

tu is the time u checked-in in the test data and tmin
u ,v is estimated as in the case of the exponential

distribution-based modelling:

tmin
u ,v = min {(t2 − t1) | ∃⟨u, ·, t1, ·⟩ ∈ M ∧ ∃⟨v, ·, t2, ·⟩ ∈ M} .

4.4 Parameter Estimation

There are multiple parameters to be estimated α , βv , k , µv , αv , αu→v , and ηv where βv and k

are the parameters speci�c to Location A�nity model and α is the mixing weight parameter of
Location and Category a�nity. The parameters (µv , αv , αu→v , and ηv ) are associated to the meHP
based Temporal Correlation. We use EM-algorithm for estimation of parameters βv and α . The EM
algorithm to used learn α is as follows:

• E-step: Here, we compute a data point speci�c α whose estimate at the ith iteration is denoted

as α (i)p . Note that α (i)p ∈ [0, 1]. This is done for each data point in the validation set, a held-out
part of the check-ins, denoted as N .
• M-step: The data point speci�c weights are then aggregated to arrive at a revised overall
estimate for α for this iteration, denoted as α (i). This is done as follows:

α (i) =

∑
p∈N α

(i)
p

|N |
(17)

• With α (i), the new likelihood is computed. For convergence we check the di�erence be-
tween the old likelihood and the new likelihood is less than the threshold set to 0.01. Upon
convergence, α (i) is output as the value for the α to be used for the dataset.

For βv , similar procedure is followed. The only di�erence is that it is done over the training
dataset, and not on validation set since there are many users who do not have any check-ins in the
validation set (i.e. the heldout part from training and testing). Table 3 shows values of βv and α
learned for di�erent datasets.

, Vol. 1, No. 1, Article . Publication date: November 2018.



Location-Specific Influence �antification in Location based Social Networks :13

dataset FSq’16 FSq’11 FSq’10 BrightKite Gowalla

α 0.90 0.95 0.92 0.93 0.94
βv 0.78 0.86 0.85 0.91 0.90

Table 3. α and βv values

k 2 3 4 5 6 7 8 9 10

Fsq’16 -2.032 -1.804 -1.704 -1.640 -1.670 -1.687 -1.722 -1.744 -1.817
Fsq’11 -2.711 -2.640 -2.063 -1.726 -0.939 -0.738 -0.677 -0.794 -0.851
Fsq’10 -1.283 -1.251 -1.233 -1.211 -1.225 -1.231 -1.246 -1.260 -1.278

Brightkite -1.915 -1.869 -1.836 -1.789 -1.779 -1.821 -1.850 -1.879 -1.897
Gowalla -1.978 -1.896 -1.847 -1.804 -1.825 -1.854 -1.877 -1.890 -1.931

Table 4. Log-likelihood at di�erent values of k

The hyper-parameter k is estimated as the value that maximizes the likelihood of check-ins in a
chosen validation set. Thus, we set k to the value that maximizes the following:

k = argmax
k ′

∑

⟨v ,ℓ, ·, ·⟩∈V

log
(
Pk
′

L (v, ℓ | M)
)

(18)

The distribution of log-likelihood across various values of k are shown in Table 4; accordingly,
we chose k = 5 for usage in our method.

The parameters of the meHP model of temporal user correlation (i.e., µv , αv , αu→v , and ηv ) are
learnt jointly by maximizing the likelihood function for each user v given in Equation 14 using the
simplex method [28].

5 APPLICATIONS USING THE LOCATE INFLUENCE QUANTIFICATION MODELS

The quality of the LoCaTe models may be used for the �ne-grained task of predicting the set of v’s
connections who would check-in into a location ℓ shortly after v’s check-in. However, this task in
itself is not of enough utility to allow for practical use cases such as those allowing businesses to
intervene into the market and focus their activities towards achieving desirable e�ects on their
clientele. The estimates from the in�uence quanti�cation model, as observed in the introduction,
could be aggregated along di�erent facets, for a variety of interesting tasks in LBSNs, including
those that allow for interventions. We consider the usage of in�uence quanti�cation models such as
LoCaTe/LoCaTe+ in two scenarios: location promotion and personalized location recommendations.
Our empirical evaluation is limited to the location promotion task since that can be evaluated using
the datasets without expensive user studies.

5.1 Location Promotion

We �rst start with a de�nition of the location promotion problem.

De�nition 5.1 (Location Promotion). Given an LBSN G, a target location ℓ, whose category set is
Cℓ , the location promotion problem is to select a small set of seed users S , S ⊆ U , such that seed
users corresponding to S lure other users to the target location ℓ maximally. The task typically uses
a hyper-parameter τ , that limits the number of seed users in the output, to τ . □
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Fig. 6. Location Promotion Framework

ALGORITHM 1: In�uence Maximization
Data: Target Location ℓ, τ , In�uence Quanti�cation ModelM , threshold ρ

Result: τ seed users, denoted as S
initialize S ← ϕ ;
initialize I ← ϕ ;
while |S | < τ do

u’← argmax∀u ∈visited (ℓ)
{
v | v < I ∧ Pℓ,u (v | M) ≥ ρ

}
;

S ← S ∪ u ′ ;
I ← I ∪

{
v | Pℓ,u′ (v | M) ≥ ρ

}
;

end

return S

Figure 6 illustrates the schematic of a location promotion framework using the LoCaTe models.
We �rst localize our interest to the location that forms the target, i.e., the one to be promoted.
The chosen LoCaTe model is run just for the location of interest, to arrive at a set of user-user
edge-weights represented in the bottom right corner. These weights can then be consumed by
a greedy algorithm for in�uence maximization that we outline in Algorithm 1. In Algorithm 1,
we use a threshold ρ to determine the users who in�uence others; in other words, we estimate
v to be in�uenced by u for the location ℓ if Pℓ,u (v | M) ≥ ρ is satis�ed. The greedy strategy is
then straightforward in that it builds a set S of potential seed users, and the corresponding set of
in�uenced users I . Both these sets are initialized to null; at each iteration, the user who can bring
in the largest number of new users to I is chosen for inclusion in S . This seed user accumulation
stops on reaching the desired output size τ , upon which the set of chosen seed-users S is output.

5.2 Personalized Location Recommendations

A user u, who is at a particular geo-position p, may be interested in getting a list of personalized
recommendations of locations to visit, based on her interests and the interests of her connections in
the LBSN. In such a scenario, it is likely that the user is interested in locations that are (i) proximal
(i.e., geographically closer), (ii) in line with her interests, and (iii) are aligned with the interests of
her connections. Accordingly, the scoring for a location may be arrived at using separate modeling
of each of these factors, and then aggregated using a weighted sum; this, followed by the choice of
the top-k scored locations, would complete a solution to the location recommendation problem.
This leads to the following scoring function:
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Su ,p (ℓ) = γ1 × Proximity (ℓ,p) +

γ2 ×

(
αPL (u, ℓ | M) + (1 − α) PC (u,Cℓ | M)

)
+

γ3 ×
∑

v ,[u ,v]∈E

Pℓ,v (u | M) (19)

The �rst term quanti�es the proximity between the location and the user’s position using a suit-
able geo-similarity measure, whereas the second term uses the same models as in LoCaTe/LoCaTe+
to quantify the user’s likely interest in the location ℓ using both location and category a�nities.
The third term is where the in�uence quanti�cation model gets plugged in, whereby the scoring is
boosted based on the in�uence from connections of the user who have previously visited ℓ, the
extent of the boosting determined by the estimate from the in�uence quanti�cation. The parameters
γ1, γ2 and γ3 are estimated in the same manner as we estimate the weight parameters for the chosen
LoCaTe model using EM-algorithm, as described in section 4.4. This is followed by choosing the
locations with the top-k scores to be displayed to the user in a scored list. The usage of the in�uence
models is intuitively expected to cause desirable deviations from a simple scoring such as one based
on just the user interests and proximity, leading to enhanced user satisfaction and reliance on the
search interface.

6 EXPERIMENTAL DETAILS

In this section, we evaluate the e�ectiveness of both our proposedmodels, viz., LoCaTe and LoCaTe+,
against state-of-the-art in�uence quanti�cation models, those from [49, 50]. We perform empirical
evaluation over the in�uence quanti�cation task, as well as over the more coarse-grained tasks of
location promotion, and location recommendation. In additional to the comparative evaluation,
we also present trends across varying values of cut-o� thresholds used to discretize the in�uence
scoring to sets of in�uenced and other users.

6.1 Datasets used

We tested over 5 datasets as shown in Table 5, of which FSq’16 is the one that we collected using
Twitter and FourSquare APIs, and rest are publicly available datasets [6, 8]. In our method, we
make use of check-in histories, social connections as exempli�ed in the social graph, as well as the
categories associated with each location. However, the publicly available datasets, from [6, 8], do not
have category information associated with locations. With the location names being anonymized
as well, there is no possibility of inferring the category from the location name. Thus, we follow the
approach outlined in [23] – from FourSquare location API, we obtain for each location (speci�ed
using its GPS coordinates) a set of categories that correspond to actual venues within a distance
threshold (we use 50m) of the location. Note that this spatial join can be noisy, particularly in urban
centres where venues with diverse categories may be located within a 50m radius of the location
(e.g., in large malls or shopping districts). Nevertheless, this is the only way we were aware of
that circumvents the lack of category information. There are some recently released FourSquare
datasets (e.g.,[40]) which could not be used in our experiments since they do not have even the
social graph information, making them unsuitable in tasks relating to social in�uence.

6.1.1 Data Collection. We now describe the data collection process used for compiling the
FSq’16 dataset that comprises check-ins, location information and social graphs.
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First, for check-in information, it may be noted that FourSquare users’ check-in information is
visible only within their respective social circles. However, users can choose to broadcast their
check-ins to Twitter while using mobile-based app from Foursquare, Swarm app. This provides us
an opportunity to capture their check-ins by crawling tweets with keyword swarmapp.com on the
Twitter public stream API 5. This limits our dataset to FourSquare check-ins that are also posted via
Twitter. We improve the coverage by �rst extracting the userIDs from these check-in tweets and
using it to harvest more check-ins of the user by crawling their tweet timelines with Twitter API6.
In the second step, we get the location information by following the FourSquare URL in the

tweet that leads to the FourSquare location page. We parse this web page to get the information
about the checked-in location. Speci�cally, we scrape the category information from this page, and
augment it to the location. Thus, we were able to get single �ne-grained category for each location
as against the others for which we use approximate spatial joins to infer categories.

Thirdly and lastly, for gathering social graph information, FourSquare poses the same restriction,
due to privacy reasons, as for check-ins, since it limits the connection information to just the users’
social circles. We circumvent this again using Twitter, crawling Twitter connection information
among users in our check-in dataset by using Twitter API7. While the resulting social graph is not
expected to be identical to the original Foursquare graph, but it is a subset where each user has
their Twitter pro�le public and have linked with the FourSquare pro�le. To extract the check-in
details of friends we crawl tweets on their timeline in the same manner as above.
Some key characteristics of the resulting combined dataset, which we denote as FSq’16, along

with those of other public datasets we use, is shown in Table 5.

Dataset FSq’16 FSq’11 FSq’10 Brightkite Gowalla

Duration Jan’15 - Feb’16 Jan’11 - Dec’11 Mar’10 - Jan’11 Apr’08 - Oct’10 Feb’09 - Oct’10
#users 119, 756 11, 326 18, 107 58, 228 196, 591

#check-ins 9, 317, 276 1, 385, 223 2, 073, 740 4, 491, 143 6, 442, 890

#unique locations 183, 225 187, 218 43, 064 772, 966 1, 280, 970

#unique categories 734 638 624 683 680

#friendship-links 1, 308, 337 47, 164 115, 574 214, 078 950, 327

avg. degree 21.85 8.33 12.76 7.35 9.66

#users (training records > 10) 78, 312 11, 324 17, 369 23, 356 72, 925

A(ℓ,u) 55, 884 15, 951 4, 056 2, 642 88, 865

cut-o� timestamp 1/12/2015 1/10/2011 1/12/2010 1/5/2010 1/6/2010

Mean(#categories / location) 1.00 12.12 20.47 8.38 1.28
Mean(#categories / topic) 330.23 305.12 319.45 249.92 352.56

Table 5. Statistical properties of the datasets

6.1.2 Train-Test Partitioning. For each dataset, we assign a cut-o� timestamp, the data prior to
it is used for training the in�uence models and rest of the check-ins for testing the validity of their
predictions. The cut-o� timestamp is chosen such that 80% of total checkins are used for training.

6.1.3 Implementation Details. We implemented our model and the baselines in Java. Whenever
speci�c building blocks were available o�-the-shelf, we made use of those; this includes the kernel
density estimation code from the UCI Datalab website (http://www.datalab.uci.edu/resources) and
the topic modelling implementation from Mallet http://mallet.cs.umass.edu/topics-devel.php. We

5https://dev.twitter.com/streaming/public
6https://developer.twitter.com/en/docs/tweets/timelines/api-reference/get-statuses-user_timeline.html
7https://developer.twitter.com/en/docs/accounts-and-users/follow-search-get-users/api-reference/get-friends-list
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ran all algorithms on a server with 6-core 2.5GHz Intel Xeon CPU with 64GB of RAM. The source
code and the datasets used will all be made publicly available through https://goo.gl/ayzehx.

6.2 Influence�antification Models

We compare our proposed LoCaTe models with three baseline methods;

(1) Distance-based mobility models (DMM) [49, 50],
(2) Gaussian-mixture models (GMM) [6, 49, 50] and
(3) a Baseline model that brings together mobility, categorical and temporal features using a

simple aggregation.

The �rst and second methods yield variants based on the usage of social connections and location
categories; however, they do not use any form of user correlation information. Thus, we compare
against the third method that uses a simplistic temporal user correlation modelling, to illustrate
the e�ectiveness of our method.

(1) GMM: It models user’s mobility patterns using a Gaussian mixture model. Each user’s
check-in records can be represented using several states, and each state can be modeled using
Gaussian distribution. In our experiments we choose two states: home and work states as
suggested in [6, 49]

N (x | µ, Σ) =
1

(2π )D/2
1

|Σ|1/2
exp

{
−
1

2
(x − µ)T Σ−1(x − µ)

}

p(x) =

K∑

k=1

πkN (x | µk , Σk )

where, π1...πk , are the mixture weights of the states, µ1...µk , the mean of each state and
Σ1...Σk , the variance of each state.
GMM-category: Zhu et. al. in [50] extends the basic GMM model to incorporate category
information as follows:

p(ℓ | u) = P(x,y,Cℓ | u) = p(x,y | Cℓ,u)p(Cℓ | u)

To derivep(x,y |Cℓ,u),u’s check-in records that belong toCℓ are selected to build the Gaussian
distribution if u has a su�cient number (i.e., larger than θCℓ

) of check-in records that belong
to Cℓ . Otherwise the check-ins under category Cℓ in the region Rx ,y,r , i.e., p(x,y | Cℓ,Rx ,y,r ),
is used instead of directly calculating P(x,y | Cℓ,u), where Rx ,y,r is a circular region with
center (x,y) and radius r .

p (x,y | Cℓ,u) =

{
N

(
µu ,Cℓ

, Σu ,Cℓ

)
if
��{(u, ℓ = (x,y,Cℓ) , t) | u,Cℓ}

�� > θCℓ

p
(
x,y | Cℓ,Rx ,y,r

)
= N

(
µRx ,y ,r ,Cℓ

, ΣRx ,y ,r ,Cℓ

)
otherwise

θCℓ
and r is set to 10 and 1km, respectively as used in [50].

(2) DMM: Distance based mobility model, models the probability of a user moving from visited
locations to the target location.
DMM_Basic: Pareto distribution [29] is used for modeling the distances between the checked-

in locations of a user.

pu (ℓ) =
∑

l

P(u is at l) P(u moves distance d(l, ℓ) from l )

=

∑

l

pu ,lαM

(d (l, ℓ) + 1)αM
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DMM_Social: It models user’s and user’s friends mobility patterns using Pareto distribution
as above and the resulting model is the mixture of individual’s distance density and social
distance density as follows:

Pu (ℓ) =
∑

l

pu ,l

[
p(M)αM

(d(l, ℓ) + 1)αM
+

p(S)αS

(d(l, ℓ) + 1)αS

]

where, p(M) and p(S) are mixing components and αM and αS are the Pareto distribution
parameters learned using individual and social data, respectively.

DMM_Category: Similar to GMM_Category, DMM_Category is adopted from DMM_Basic
as follows:

p(x,y |Cℓ,u) =





∑
l

pu ,lαu ,Cℓ

(d (l ,ℓ)+1)
αu ,Cℓ

if
��(u, ℓ = (x,y,Cℓ) , t) | u,Cℓ

�� > θCℓ

p(x,y |Cℓ,Rx ,y,r ) =
∑
l

pu ,lαRx ,y ,r ,Cℓ

(d (l ,ℓ)+1)
αRx ,y ,r ,Cℓ

otherwise

(3) Baseline: In equation (1) in section 4 we pluginmost frequent checkins as the location model,
simple category distribution as the category model and average time lag based exponential

distribution as the temporal model. These are combined in exactly the same way as the
analogous terms are combined within the LoCaTe model, i.e.:

Pℓ,u (v |M) =

(
α

Iℓ

|Mu |
+ (1 − α)

ICℓ

∑ |Mu |
i=1 |Ci |

)
× exp

(
−∆tu ,v

)
,

where, Iℓ is the number of instances whenu has checked-in at ℓ, ICℓ
is the number of instances

when u has checked-in at category set Cℓ , and ∆tu ,v is the average of time lag between u

and v check-ins in the training data.

6.3 Evaluation on Influence�antification Task

For evaluation on In�uence Quanti�cation task, we use the same framework as used in an earlier
work [49]. Consider a particular instance of the in�uence quanti�cation problem for location ℓ
and a seed-user u; the in�uence quanti�cation output would be an ordered list of u’s connections,
ordered in the decreasing (non-increasing) order of estimated likelihood to visit ℓ. This list can be
cut-o� using a threshold ρ to identify a set of users who are deemed to be highly likely to visit
ℓ - this set forms the predicted set, PS(ℓ,u, ρ |G). The ground truth activated set, A(ℓ,u), is the
subset of u’s connections who have actually visited ℓ after the cut-o� timestamp (i.e., from the test
set). The match between PS(ℓ,u, ρ |G) and A(ℓ,u) measured at various values of the threshold ρ

quanti�es the goodness of the in�uence quanti�cation method employed. Any measure of match
between sets can be aggregated over all users (i.e., by iterating u over the set of LBSN users) to get
a single goodness value for the combination [ℓ, ρ]. We use the ROC curve (generated by varying ρ)
to compare our method against baselines in our empirical evaluation.
Now, to arrive at a set of target locations for ℓ to perform the aforementioned ROC curve

evaluation, we identify a set of locations from the dataset where there are many users checking-in
before the train/test cut-o� timestamp, and their followers checking-in after the cut-o� timestamp.
This will ensure that there are enough users in the respective A(ℓ,u) sets formed for the location,
to alleviate sparsity issues in the evaluation. Table 5 shows the number of test cases, A(ℓ,u), along
with the cut-o� timestamp for each dataset.

6.3.1 ROC and AUC. Figure 7 shows ROC curves and table 6 shows AUC (Area Under the Curve)
of di�erent in�uence quanti�cation models on di�erent datasets. It can be observed that the LoCaTe
models outperform DMM_Basic, DMM_Social and DMM_Category models quite signi�cantly on
FSq’16 dataset, where we have accurate location category information. Even on the other datasets,
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Fig. 7. ROC for di�erent influence quantification models (AUC is in table 6)

we observe that LoCaTe models outperform DMM_Basic, DMM_Social and DMM_Category models
by moderate to large margins, illustrating the e�ectiveness of our in�uence modelling framework.
Moreover, the LoCaTe+ model further outperforms LoCaTe model, as the temporal correlation
modeled in LoCaTe+ is speci�c to the location thus it is better in capturing the in�uence as
compared to LoCaTe. The e�cacy of the LoCaTe models is not only contributed by additional
knowledge we gain from categories, but also due to the usage of temporal user-user correlation,
modeled using exponential distributions and mutually exciting hawkes processes respectively. The
Temporal correlation captures the social in�uence by modeling the time lag between checkins of
the connected users. To verify this claim we computed the AUC with and without Te model (i.e.
Temporal modeling). For FSq’16 the AUC for LoCaTe (LoCaTe+) is 0.839 (0.857) and LoCa(without
Temporal modeling) is 0.752, this shows thatTemodel indeed captures social followship and that the
mutually exciting Hawkes process modelling delivers improvements over the simpler exponential
distribution based modelling. For the sake of brevity, we have not provided the expanded results,
although similar trends were observed across all datasets. From these results, it may also be inferred
that our Location model provides a better �t to the mobility data as for each testing location the
distance around it is determined using the k nearest neighbours (from the training data). On the
other hand, the distance based mobility model (DMM) is sensitive to short distances and thus
assigns a low probability to locations at larger distances. The Lo and Te components along with
semantic location modelling using category information is seen to provide signi�cant gains in
accuracy of in�uence quanti�cation.

6.3.2 Parameter Tuning. Figure 8 (a) and (b) shows the variation in the AUC (Area Under the
Curve) as the tuning parameter α (weighted parameter for Lo and Ca in eq (1)) and βv (weighted
parameter for user and global KDE model in eq (6)) varies, respectively. It can be observed that the
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Datasets
Techniques

Baseline GMM GMM_category DMM_basic DMM_social DMM_Category LoCaTe LoCaTe+

Fsq’16 0.582 0.599 0.473 0.521 0.568 0.573 0.839 0.857

Fsq’11 0.721 0.716 0.605 0.727 0.716 0.579 0.789 0.816

Fsq’10 0.575 0.718 0.717 0.699 0.588 0.671 0.741 0.781

Brightkite 0.517 0.526 0.534 0.601 0.627 0.494 0.707 0.746

Table 6. AUC (area under the curve) of di�erent influence quantification models over di�erent datasets

Datasets
Techniques

Baseline GMM GMM_category DMM_basic DMM_social DMM_Category LoCaTe LoCaTe+

Fsq’16 0.008 0.035 0.031 0.027 0.036 0.035 0.038 0.040

Fsq’11 0.003 0.016 0.018 0.014 0.022 0.021 0.023 0.033

Fsq’10 0.006 0.065 0.060 0.086 0.021 0.020 0.093 0.112

Brightkite 0.008 0.031 0.030 0.036 0.031 0.024 0.032 0.036

Gowalla 0.007 0.028 0.021 0.012 0.027 0.025 0.032 0.035

Table 7. F-measure of di�erent influence quantification models over di�erent datasets

highest value of AUC is achieved close to 0.90 for all the datasets, giving less weightage to topic
model. But, at α = 1 the performance decreases sharply, thus it shows topic model is essential as it
covers the zero probability cases and improves the overall performance of the LoCaTe (LoCaTe+)
model.
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Fig. 8. AUC(Area Under the Curve) varies as the tuning parameter α and βv varies from 0.0 to 1.0

6.3.3 F-measure. PS(ℓ,u, ρ | G) andA(ℓ,u), both being sets, allow comparing the methods based
on the F-Measure [32]. The Table 7 shows F-measure of di�erent in�uence quanti�cation models
on di�erent datasets. F-measure is computed as follows:

F −measure =
2.Precision.Recall

Precision + Recall

Overall, we observed that both the LoCaTe models perform better in terms of F-measure over
other in�uence quanti�cation models for all the datasets, except on Brightkite where DMM_Basic
is seen to be neck-to-neck with LoCaTe+. It is notable that the temporal modelling in LoCaTe+ lead
to very signi�cant gains in F-measure over the basic LoCaTe model.

, Vol. 1, No. 1, Article . Publication date: November 2018.



Location-Specific Influence �antification in Location based Social Networks :21

Datasets
Techniques

Baseline GMM GMM_category DMM_basic DMM_social DMM_Category LoCaTe LoCaTe+

Fsq’16 19.2 3.5 446.8 3.1 5.1 508.3 3.5 4.2
Fsq’11 70.2 6.9 35.5 3.2 16.7 50.2 31.5 35.3
Fsq’10 17.0 6.1 151.5 3.2 10.8 15.6 5.4 7.5

Brightkite 1003.7 46.9 2626.6 26.1 154.4 1937.8 129.4 140.8
Gowalla 24.9 3.7 130.1 2.8 27.0 141.8 5.0 8.9

Table 8. Average time taken in execution of a testcase in (ms) for di�erent influence quantification methods

over di�erent datasets

6.3.4 Execution Time. Table 8 shows average execution time (in milli seconds) of each test case
using di�erent in�uence quanti�cation models on all the datasets. Overall, we observed that the
LoCaTe models run slightly slower than the simple DMM_Basic, but remains faster than other
methods considered. Moreover, LoCaTe+ is further slower because of the extra sophistication
involved in modeling. On the other hand, GMM_Category and DMM_Category are signi�cantly
slower. It may be noted that within the LoCaTe framework, the location-a�nity terms are user-
speci�c and thus can bemaintained in current state as the stream of check-ins arrive, and they simply
need to be looked up at query time; this opens up possibilities for further e�ciency improvements for
the LoCaTe models, in real-time usage scenarios (our timings were based on an o�ine evaluation).

6.4 Evaluation on Location Promotion Task

In evaluating the location promotion task, our interest is in the quality of the set computed using
Algorithm 1 based on using various underlying in�uencemodels. Unlike the in�uence quanti�cation,
this task is just location-speci�c (and not user-speci�c). For each location, based on the training
data, location promotion is the task of �nding a set of good seed users S , who are likely to lure a
lot of their connections to the location. More formally, consider a target location ℓ, and the input
parameter τ (the desired size of the output seed set, S), the in�uence quanti�cation modelM and
the in�uence quanti�cation threshold ρ that are passed to the location promotion algorithm. The
goodness of S , as estimated from the test data, are the set of connections of S who visit the location
ℓ, in test data. This is computed as:

I (S) = {v | (u,v) ∈ E,u ∈ S &v has visited ℓ in test data}

The size of the set I (S) indicates the amount of collective in�uence that users across S have, in
luring their connections to the target location. Accordingly, we simply use the size of I (S), i.e., |I (S)|,
as a measure of quality to evaluate the seed sets output by the various methods for the location
promotion task.

For constructing the test set of target locations ℓ, we choose those locations that have a sizeable
number of users checking-in, in the test set. This ensures that a reasonable sized I (S) may be
achieved, for good quality estimates of S , thus alleviating sparsity issues in the evaluation.

6.4.1 Results. Table 9 reports the results of |I (S)| computed in the test data where ρ is set to
0.003. The threshold value of 0.003 is determined using the knee-point in the curve of |I (S)| as
we vary the value of ρ, following the method suggested in [5]. We observe that both the LoCaTe
models perform better than the baselines in terms of |I (S)| on all datasets but for FSq’16 where
DMM_Social scores slightly better than the basic model but is overshadowed by LoCaTe+. The
overall trends underline the e�ectiveness of LoCaTe framework in the location promotion task.
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Datasets
Techniques

GMM GMM_category DMM_basic DMM_social DMM_Category LoCaTe LoCaTe+

Fsq’16 18.11 14.98 18.66 33.24 30.32 32.95 35.91

Fsq’11 20.42 24.91 26.74 34.35 30.17 35.06 39.48

Fsq’10 16.52 22.05 19.38 23.14 20.67 27.61 29.33

Gowalla 7.51 26.84 21.94 35.18 36.12 39.78 43.44

Table 9. |I (S)| at ρ = 0.003 and τ = 5
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6.4.2 Varying ρ. To understand the trends over varying ρ, we evaluate at di�erent values of
ρ (the in�uence quanti�cation threshold) ranging from 0.001 to 0.05 at two di�erent settings
of seed set size, τ . The |I (S)| numbers are plotted in Figures 9, and 10. It can be observed that
LoCaTe models perform consistently better at all the threshold values, with the di�erence being
exceedingly pronounced in the Gowalla dataset. This consistent performance is contributed to
LoCaTe’s capabilty to capture the in�uence in a better way. The trends were found to be similar for
other values of τ ; thus, we omitted those graphs for brevity.
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6.5 Impact of Time Window on Location Promotion

Social Networks in general are dynamic in nature, and users’ in�uence strength changes over
time. For example, consider the seed user u visited the target location at time tu and her follower
visits the target location at time tv such that tv > tu . It may happen that as tv → ∞, and the
seed user does not contribute anymore towards the in�uence process. As a consequence of this
assumption, we will end up getting seed users set which does not hold much value in in�uencing
and activating their followers. In the previous section, the evaluation technique described does
not consider temporal dynamics. Since the check-in activity that we consider is time based and it
is possible that a user at some time in future may become useful/useless for the promotion of a
speci�c location. Thus, while computing the set of in�uenced users I in the algorithm 1 we consider
the time-window T upto which the in�uence persists, and the set of in�uenced users is computed
as:

I = {v |Pu ,ℓ(v) > ρ & tv − tu < T },

such that (u,v) ∈ E and v has visited the target location ℓ. Pu ,ℓ(v) is the in�uence score between u
and v , and tv and tu are the timestamps when v and u visited the target location ℓ.

For the evaluation of the time window impact, we observe that with the time window constraint
the in�uence period of a seed user may intersect with the test set. Thus, in order to make sure that
the entire training data with the in�uence period lie within the global cut-o� timestamp limits,
we use last checked-in time stamp of the seed user for training without compromising on the test
set. For instance, consider a target location ℓ, the global cut-o� timestamp as Oct 1 and the time
window T is 20 days. A candidate seed user u visits the target location ℓ on Sep 20 (this is the
last check-in in the training data at ℓ by u) and u’s follower v visits the ℓ on Oct 5; the in�uence
period of u is till Oct 10, which intersects with the test data. If we want to choose a global cut-o�
timestamp where this intersection doesn’t happen then how far we have to go backward in the
training data is a question and if we go forward in the test data then we may have to compromise
the size of the test data. Thus, for each candidate seed user u and its followers (like v) we use the
training data until last checked-in time stamp of u, as it ensures su�cient and also same amount of
data for training at all the time window sizes.
Figures 11, shows results of time based evaluation at di�erent values of time window sizes,

here ρ is set to 0.003. It can be observed that as the time window size increases from 10 to 90
days, the number of in�uenced users has also increased; the relative trends show that the LoCaTe
models record higher number of in�uenced users consistently. To understand the phenomenon
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Fig. 12. ϕ at di�erent time_windows atρ = 0.003 and τ = 5
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that why the number of in�uenced users has increased with time window sizes, we analyze the graph
structural properties of the graph formed using the set of in�uenced users and seed users. We
analyze the graph structural properties because we know that there exists community formation
with information propagation in social networks [2, 15, 25, 38].

6.5.1 Graph Structural Analyses with Time. In this section, to analyze whether a certain lo-
cation becomes prevalent in a community or does the check-in activities leads to community
formation, we determine the diameter ϕ, clustering coe�cient C , and average Degree Centrality
CD of the in�uencers (S) and in�uenced users’(I (S)) graph GT (VT , ET ), where VT = I (S)

⋃
S and

ET = {(u,v)|(u,v) ∈ E}.
ϕ andC: Figures 12 and 13 shows the results for diameter and clustering coe�cient of the graph

GT with respect to the time window size T . It can be observed that as T increases the clustering
coe�cient C increases and the diameter ϕ decreases. Thus, with time as the in�uence propagates
there exist community formation. Hence, a location becomes prevalent amongst a group of users.
Degree Centrality Test: We analyze the average Degree Centrality CD of GT computed using

di�erent quanti�cation models to understand how much cohesive GT does each model renders.
Tables 10, 12, 11, and 13 shows that the LoCaTe models are able to render better average degree
centrality ofGT . Note that, GT is an unobserved graph and is formed while testing. Thus, we can
conlude that LoCaTe models provide us with more cohesive unboserved graph as compared to
other quanti�cation models.
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Time Window
Techniques

GMM GMM_category DMM_basic DMM_social DMM_category LoCaTe LoCaTe+

10 0.234 0.199 0.243 0.258 0.258 0.253 0.263
20 0.262 0.224 0.270 0.282 0.284 0.267 0.280
30 0.267 0.243 0.278 0.284 0.283 0.275 0.288
40 0.276 0.258 0.294 0.296 0.297 0.291 0.301
50 0.285 0.267 0.301 0.302 0.300 0.294 0.304
60 0.289 0.277 0.307 0.306 0.303 0.303 0.313
70 0.291 0.288 0.306 0.299 0.299 0.312 0.322
80 0.286 0.299 0.313 0.306 0.306 0.325 0.325
90 0.285 0.308 0.311 0.309 0.310 0.326 0.328

Table 10. Average Degree Centrality CD of Influenced Users graph for FSq’16

Time Window
Techniques

GMM GMM_category DMM_basic DMM_social DMM_category LoCaTe LoCaTe+

10 0.327 0.376 0.397 0.400 0.385 0.403 0.423
20 0.339 0.386 0.395 0.399 0.391 0.409 0.419
30 0.347 0.393 0.401 0.399 0.403 0.404 0.424
40 0.346 0.383 0.391 0.390 0.406 0.400 0.420
50 0.346 0.388 0.392 0.394 0.408 0.416 0.422
60 0.343 0.376 0.387 0.389 0.407 0.416 0.426
70 0.346 0.374 0.385 0.389 0.403 0.413 0.424
80 0.343 0.374 0.388 0.391 0.401 0.417 0.427
90 0.340 0.373 0.391 0.390 0.401 0.416 0.425

Table 11. Average Degree Centrality CD of Influenced Users graph for FSq’11

Time Window
Techniques

GMM GMM_category DMM_basic DMM_social DMM_category LoCaTe LoCaTe+

10 0.391 0.325 0.378 0.458 0.401 0.466 0.476
20 0.363 0.431 0.421 0.452 0.417 0.480 0.490
30 0.353 0.393 0.407 0.418 0.403 0.458 0.479
40 0.363 0.401 0.429 0.413 0.392 0.429 0.449
50 0.380 0.363 0.390 0.387 0.420 0.431 0.441
60 0.357 0.351 0.390 0.393 0.417 0.425 0.435
70 0.348 0.327 0.377 0.376 0.416 0.402 0.412
80 0.338 0.354 0.372 0.359 0.409 0.425 0.435
90 0.342 0.356 0.365 0.356 0.418 0.418 0.428

Table 12. Average Degree Centrality CD of Influenced Users graph for FSq’10

6.6 Evaluation on Location Recommendation Task

For the evaluation of the Location Recommendation Task, �rst of all we consider all the locations
in the training set as the candidate locations (that can be recommended), then we assign score
to each candidate location using the scoring method as described in section 5.2. Next, we rank
the locations based on the scores obtained and compare it against the actual checked-in location.
Recall and NDCG are used as the evaluation metrics. For measuring the e�ciency of our model
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Time Window
Techniques

GMM GMM_category DMM_basic DMM_social DMM_category LoCaTe LoCaTe+

10 0.111 0.331 0.342 0.342 0.320 0.329 0.349
20 0.131 0.346 0.347 0.352 0.336 0.348 0.368
30 0.151 0.353 0.368 0.373 0.347 0.370 0.380
40 0.165 0.346 0.350 0.350 0.327 0.373 0.383
50 0.174 0.341 0.351 0.353 0.335 0.366 0.376
60 0.182 0.345 0.357 0.357 0.336 0.369 0.379
70 0.187 0.349 0.351 0.352 0.332 0.365 0.375
80 0.198 0.349 0.351 0.354 0.332 0.369 0.379
90 0.211 0.354 0.348 0.347 0.325 0.380 0.370

Table 13. Average Degree Centrality CD of Influenced Users graph for Gowalla

Datasets
top-k FSq’16 FSq’10 FSq’11 Brightkite Gowalla

LoCaTe+ GeoMF++ LoCaTe+ GeoMF++ LoCaTe+ GeoMF++ LoCaTe+ GeoMF++ LoCaTe+ GeoMF++
5 0.163 0.084 0.420 0.399 0.168 0.124 0.378 0.288 0.203 0.078
10 0.392 0.254 0.613 0.564 0.330 0.289 0.420 0.355 0.270 0.135
20 0.602 0.482 0.692 0.667 0.556 0.467 0.480 0.417 0.366 0.224

Table 14. Recall at di�erent values of top − k for di�erent datssets

Datasets
top-k FSq’16 FSq’10 FSq’11 Brightkite Gowalla

LoCaTe+ GeoMF++ LoCaTe+ GeoMF++ LoCaTe+ GeoMF++ LoCaTe+ GeoMF++ LoCaTe+ GeoMF++
5 0.122 0.084 0.160 0.138 0.118 0.093 0.151 0.126 0.111 0.089
10 0.130 0.112 0.212 0.189 0.150 0.122 0.211 0.174 0.132 0.106
20 0.157 0.130 0.252 0.220 0.208 0.187 0.228 0.208 0.151 0.127

Table 15. NDCG at di�erent values of top − k for di�erent datasets

we compare our results against GeoMF++ (Joint Geographical model and Matrix Factorization
for Location Recommendation) [20]. The evaluation is performed over 2608178, 495616, 148424,
324091, and 386203 number of test cases for FSq’16, FSq’11, FSq’10, Brightkite, and Gowalla dataset,
respectively. Table 14 and table 15 reports the Recall and NDCG obtained on the Personalized
Location Recommendation Task at di�erent top − k values using LoCaTe+ model and GeoMF++
[20], respectively. It can be observed that LoCaTe performs signi�cantly better than GeoMF++ over
all the datasets. This we believe is because LoCaTe incorporates additional information i.e. Category
A�nity and Temporal Information, while GeoMF++ only models users’ location preferences based
on its mobility. The trends were found similar for the LoCaTe model, thus we omitted those results
for brevity. Table 16 report values of tuning parameters γ1, γ2 and γ3 used for the above evaluation
for all the datasets learned for the LoCaTe+ model. We also performed grid search using grid sizes
of 0.01 to demonstrate the chosen parameter values return the best performance. Table 17 reports
the Recall result for the FSq’10 dataset of the grid search at di�erent values of γ1, γ2 and γ3. We
only report few values, although an exhaustive grid search was performed.

7 CONCLUSION

In this paper, we proposed a framework LoCaTe that incorporates not only the traditional user
mobility models but also temporal correlation within the social network of users as well as the
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Datasets γ1 γ2 γ3
FSq’16 0.05 0.68 0.28
FSq’11 0.10 0.65 0.25
FSq’10 0.10 0.70 0.20

Brightkite 0.15 0.70 0.15
Gowalla 0.12 0.70 0.18

Table 16. γ1, γ2 and γ3 used for di�erent datasets

γ1 γ2 γ3 Recall
0.2 0.3 0.5 0.601
0.5 0.3 0.2 0.578
0.5 0.1 0.4 0.570
0.2 0.6 0.2 0.605
0.1 0.7 0.2 0.613

0.2 0.7 0.1 0.604
Table 17. Recall at di�erent values of weight pa-

rameters at top − k = 10 for FSq’10 dataset

a�nity of users to a location based on semantics of the location (i.e., categories). We developed
two models based on the framework; a basic model, also called LoCaTe, that uses exponential
distributions to model temporal correlation between users, and a more advanced model, called
LoCaTe+ that makes use of mutually exciting hawkes processes. We empirically evaluated our
approaches using the in�uence quanti�cation task, and the more general problem of location
promotion over a number of real-world LBSN data with a large number of users and spanning more
than a year. For the in�uence quanti�cation task we observed that LoCaTe models demonstrated
more than 54% improvements over state-of-the-art methods. Further for the location promotion
setting, LoCaTe models were seen to be able to predict the graph of in�uenced users with better
degree centrality. The gains transferred nicely over to the location recommendation task as well,
where LoCaTemodels provided more than 50% improved recommendation over existing methods. In
our future work, we would like to further explore the di�usion process of location based in�uence.
Moreover, we would also like to enhance the LoCaTe framework to encompass location attributes
from other sources which could be integrated and leveraged.
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