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The wireless sensor network is an emerging technology that may greatly aid humans by providing
ubiquitous sensing, computing and communication capabilities, through which people can more
closely interact with the environment wherever they go. To be context-aware, one of the central issues
in sensor networks is location tracking, whose goal is to monitor the roaming path of a moving object.
While similar to the location-update problem in PCS networks, this problem is more challenging
in two senses: (1) there is neither a central control mechanism nor a backbone network in such
an environment and (2) the wireless communication bandwidth is very limited. In this paper, we
propose a novel protocol based on the mobile agent paradigm. Once a new object is detected, a
mobile agent will be initiated to track the roaming path of the object. The agent is mobile since it
will choose the sensor closest to the object to stay. The agent may invite some nearby slave sensors to
cooperatively position the object and inhibit other irrelevant (i.e. farther) sensors from tracking the
object. As a result, the communication and sensing overheads are greatly reduced. Our prototyping
of the location-tracking mobile agent based on IEEE 802.11b NICs and our experimental experiences

are also reported.
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1. INTRODUCTION

The rapid progress of wireless communication and embedded
micro-sensing MEMS technologies have made wireless
sensor networks possible. Such environments may have
many inexpensive wireless nodes, each capable of collecting,
processing and storing environmental information and
communicating with neighboring nodes. In the past, sensors
were connected by wire lines. Today, this environment
is combined with the novel ad hoc networking technology
to facilitate inter-sensor communication [1]. Flexibility in
installation and configuration is greatly improved. There has
been a flurry of research activity recently in sensor networks.

With sensor networks, the physical world can interact
with the internet more closely. Grouping thousands of sen-
sors together may revolutionize information gathering. For
example, a disaster detector could be set up so that tempera-
tures in a forest can be monitored by sensors to prevent small
harmless brush fires from becoming monstrous infernos.
Similar techniques can be applied to flood and typhoon de-
tection. Another application is environment control; sensors
can monitor factors such as temperature and humidity and
feed this information back to a central air conditioning and
ventilation system. By attaching sensors on vehicles, roads
and traffic lights, traffic information can be fed back to the
traffic control center immediately. Location-based services
can be combined with sensor networks. We can dispatch

a mobile agent that follows a person and provides on-site
services (such applications might be attractive for disabled
people who have hearing or visual problems). Sensors may
also be used in combination with GPS to improve position-
ing accuracy. However, many issues remain to be resolved
for the success of sensor networks.

• Scalability. Since a sensor network typically com-
prises a large number of nodes, the management of
these resources and information is not an easy job. Dis-
tributed and localized algorithms are essential in such
environments [2, 3, 4]. Also, scalability is a critical
issue in handling the related communication problems.
In [5, 6, 7], the coverage and exposure of an irregular
sensor network are formulated as computational geom-
etry problems. This coverage problem is related to the
Art Gallery Problem and can be solved optimally in a
two-dimensional (2D) plane, but is shown to be NP-hard
in the 3D case [8]. Regular placement of sensors and
their sensing ability are discussed in [9] and [10].

• Stability. Since sensors are likely to be installed in
outdoor or even hostile environments, it is reasonable to
assume that device failure will be regular and common.
Protocols should, therefore, be stable and fault-tolerant.

• Power-saving. Since no plug-in power is available,
sensor devices will be operated by battery power.
Energy conservation should be kept in mind in all cases
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FIGURE 1. (a) Triangular, (b) square and (c) irregular sensor networks.

and energy consumption during communications might
be a major factor. Techniques such as data fusion may
be necessary [11], but the timeliness of data should be
considered too. Data dissemination is investigated
in [12]. Mobile agent-based solutions are sometimes
more power-efficient [13].

Since sensor networks are typically used to monitor the
environment, one fundamental issue is the location-tracking
problem, whose goal is to trace the roaming paths of moving
objects in the network area [14, 15, 16, 17, 18]. Reference
[19] also considers this problem by addressing how to
estimate the density or number of targets to be tracked and
how to allocate resources to the sensing problem. The
location-tracking problem is similar to the location-update
problem in PCS networks, but is more challenging in two
senses: (1) there is neither a central control mechanism nor
a backbone network in such an environment and (2) the
wireless communication bandwidth is very limited. In this
paper, we propose a novel protocol based on the mobile agent
paradigm. Once a new object is detected, a mobile agent
will be initiated to track the roaming path of the object. The
agent is mobile since it will choose the sensor closest to the
object to stay. In fact, the agent will follow the object by
hopping from sensor to sensor. The agent may invite some
nearby slave sensors to cooperatively position the object and
inhibit other irrelevant (i.e. farther) sensors from tracking the
object. Using mobile agents may have two advantages. First,
the sensing, computing and communication overheads can be
greatly reduced. Second, on-site or follow-me services may
be provided by mobile agents. In this work, we will address
the fusion of the tracking results. We propose two schemes
to send the fused results to the outside world. The first
one is called a threshold-based (TB) scheme, which simply
forwards the results as the data size reaches an upper bound.
The second one is called a distance-based (DB) scheme,
which considers both data size and the distance from the
mobile agent to the gateway of the network. Our prototyping
of the location-tracking mobile agent based on IEEE
802.11b NICs and our experimental experiences are also
reported.

The organization of this paper is as follows. Section 2 de-
scribes our network model and defines the location-tracking
problem. Our protocol based on mobile agents is presented
in Section 3. Fusion and delivery of tracking history are
discussed in Section 4. Our prototyping experiences and

some simulation results are given in Section 5 and Section 6
concludes.

2. NETWORK MODEL AND PROBLEM
STATEMENT

We consider a sensor network that consists of a set of sensor
nodes placed in a 2D plane. Sensors may be arranged as a
regular or irregular network, as shown in Figure 1. However,
unless otherwise stated, throughout the discussion we will
assume a triangular network as illustrated in Figure 1a; our
framework could be easily extended to other regular, or even
irregular, networks (this will be discussed in Section 3.3). In
order to track objects’ routes, each sensor has to be aware of
its physical location as well as the physical locations of its
neighboring sensors. Each sensor has sensing capability as
well as computing and communication capabilities, so as to
execute protocols and exchange messages.

Each sensor is able to detect the existence of nearby moving
objects. We assume that the sensing scope is r , which is equal
to the side length of the triangles.1 Within the detectable
distance, a sensor is able to determine its distance to an
object. This can be achieved either by using the fly time
or signal strength that are transmitted by the object, or by
using signals that are transmitted by the sensor and reflected
by the object.

We assume that three sensors are sufficient to determine
the location of an object. Specifically, suppose that an object
resides within a triangle formed by three neighboring sensors
S1, S2 and S3 and that the distances to the object detected
by these sensors are r1, r2 and r3 respectively. As shown
in Figure 2a, by the intersections of the circles centered
at S1 and S2, two possible positions of the object can be
determined. With the assistance of S3, the precise position
can be determined. (It should be noted that, in practice, errors
may exist, and thus more sensors will be needed to improve
the accuracy.)

The goal of this work is to determine the roaming path of a
moving object in the sensor network. The trace of the object
should be reported to a location server from time to time,
depending on whether this is a real-time application or not.
The intersection of the sensing scopes of three neighboring
sensors is as shown in Figure 2b. We further divide the area

1 In practice, r should be slightly larger than the side length. We make
such an assumption for ease of presentation.
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FIGURE 2. (a) Positioning example and (b) working area and
backup areas.

into one working area A0 and three backup areas A1, A2 and
A3. Intuitively, the working area defines the scope where
these three sensors work normally, while the backup areas
specify when ‘handover’ should be taken.

3. THE LOCATION-TRACKING PROTOCOL

3.1. Basic idea

Our location-tracking protocol is derived by the cooperation
of sensors. Whenever an object is detected, an election
process will be conducted by some nearby sensors to choose
a sensor, on which an agent will be initiated, to monitor the
roaming behavior of the object. As the object moves, the
agent may migrate to a sensor that is closer to the object
to keep on monitoring the object. Figure 3 illustrates this
concept, where the dashed line is the roaming path of the
object, and arrows are the migration path of the agent. By
doing so, the computation and communication overheads can
be reduced significantly.

Recall that positioning an object requires the cooperation
of at least three sensors. The mobile agent, called the
master, will invite two neighboring sensors to participate
by dispatching a slave agent to each of them. These three
agents (master and slaves) will cooperate to perform the
trilateration algorithm [2]. From time to time, the slaves will
report their sensing results to the master agent, who will then
calculate the object’s precise locations. As the object moves,
these slave agents may be revoked and reassigned. Certain
signal strength thresholds will be used to determine when
to revoke/reassign a slave agent. The details will be given
later. In Figure 3, those sensors that host a slave agent are
marked in black. We remark that although our development
is based on the cooperation of two slave agents, it will be
straightforward to extend our work to more slave agents to
improve the positioning accuracy. To reduce the amount of
data to be carried on, a master may decide to forward some
tracking histories to the location server. This issue will be
further addressed in Section 4.

We now discuss how slave agents are revoked and
reassigned. Observe the top part of Figure 3. When resident
in the working area A0, the object is tracked by sensors S0,
S1 and S2. On entering the backup area A1, since the signals

FIGURE 3. Roaming path of an object (dashed line) and the
migration path of the corresponding master agent (arrows). Sensors
that host a slave agent are marked in black.

FIGURE 4. Inhibiting farther sensors S3, S4, . . . , S11 from
monitoring the object.

received by S2 will reduce to a level below a threshold, the
slave agent at S2 will be revoked and a new slave will be
issued to S6. Similarly, on entering the backup area F1, the
slave at S1 will be revoked, and a new one will be issued to
S5. As the object passes S5, the master itself will lose the
target, in which case the master itself will migrate to S5. All
old slaves will be revoked and new slaves will be invited.

When an object is in the backup areas of some sensors, it
is possible that it can be sensed by more than three sensors.
To reduce the sensing overheads, master and slave agents can
inhibit other irrelevant sensors from monitoring the object.
This concept is illustrated in Figure 4. The object is currently
in area A0. Sensors S3, S4, . . . , S11, which may sometimes
detect the object, will be inhibited from tracking this object
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FIGURE 5. State transition diagram of a sensor (for one particular
object).

by warning signals that are issued periodically by the agents
in S0, S1 and S2.

3.2. Protocol details

Below, we formally develop our tracking protocol. Since
there may exist multiple objects in the network, we have to
assume that sensors can distinguish one object from the other.
This can be done by having each object periodically send a
unique ID code. Otherwise, some mechanism is needed for
sensors to combine proper signals from proper sensors to
differentiate objects.

We consider an environment with multiple objects.
However, since the processing of each individual object is
independent, the following discussion will focus on only one
particular object. For each object, three or more sensors
will be able to detect its existence. Figure 5 shows the state
transition diagram of each sensor. (It should be noted that
for different objects, a sensor may stay in different states.)
Initially, each sensor is in the idle state and performs the Basic
Protocol. Under this state, a sensor will continuously detect
any object appearing in its sensing scope. Once detecting
a new object, the sensor will enter the election state and
perform the Election Protocol to bid for serving as a master.
Most likely, the sensor that is closest to the object will win
and become the master agent, which will then dispatch two
slave agents to two nearby sensors. The master will go to the
master state and perform the Master Protocol, while the slaves
will go to the slave state and perform the Slave Protocol. To
prevent agents from moving too frequently, as long as the
object remains in the working area, the states will not change.
However, once the object enters the backup areas, the roles of
master and slave may be changed. In this case, an idle sensor
may be invited to serve as a master or slave. Another situation
in which a sensor may stay in the idle state is when it detects
an object in its backup areas and keeps on receiving inhibiting

S0

FIGURE 6. Possible roaming tracks for an object to leave a
triangle.

messages from neighboring sensors. This is reflected by the
self-looped transition for the idle state.

Figure 6 shows six tracks along which an object may leave
a triangle. Suppose that the master is currently in S0, and
the two slaves are in S1 and S2. By symmetry, these can be
reduced to three tracks (numbered by 1–3). For track 1, the
master discovers two slaves losing the target simultaneously.
So the master will revoke all slaves and invite two new slaves.
For track 2, only the slave agent in S1 will be revoked, and
a new one will be invited. For track 3, the master discovers
one slave as well as itself losing the target. In this case, the
master itself should migrate to the sensor that can still detect
the object (typically with the strongest receive signals) and
revoke all current slaves. After moving to the new sensor,
two new slaves should be invited. Finally, we would like to
remark that the object may move too fast to be detected. If
so, sensors may suddenly lose the target. In this case, we can
let the agents automatically dissolve after losing an object for
a timeout period. Since no inhibiting message will be heard,
all sensors must remain in the idle state for this particular
object, and a new election process will take place to choose
a new master to track this object. Our protocol is thus quite
fault-tolerant in this sense.

Each sensor will keep an object list (OL) to record the
status of all targets in its sensing scope. Each entry in OL
is indexed by the object’s unique identity, denoted by ID.
For each object, there are two subfields: status and time-
stamp. ID.status can be one of the four values: Master, Slave,
Standby and Inhibited. ID.time-stamp is the time when the
record is last updated.

Seven types of control messages may be sent by our
protocol.

(i) bid_master(ID, sig): This is for a sensor to compete
as a master for object ID, if no inhibiting record has
been created in OL for ID. The parameter sig reflects
the receive signal strength for this object.

(ii) assign_slave(ID, si , t): This is for a master to invite
a nearby sensor si to serve as slave agent for object
ID for an effective time interval t .

(iii) revoke_slave(si): This is for a master to revoke its
slave at sensor si .
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FIGURE 7. The Basic Protocol.

(iv) inhibit(ID): This is a broadcast message for a mas-
ter/slave to inhibit neighboring irrelevant sensors from
tracking object ID. The effective time of the inhibiting
message is defined by a system parameter Tinh.

(v) release(ID): This is to invalidate an earlier inhibiting
message.

(vi) move_master(ID, si, hist): A master uses this mes-
sage to migrate itself from its current sensor to a
nearby sensor si , where hist carries all relevant
codes/data/roaming histories related to object ID.

(vii) data(ID, sig, ts): A slave uses this packet to report to
its master the tracking results (sig = signal strength
and ts = timestamp) for ID.

Below, we formally present our four protocols. The Basic
Protocol is shown in Figure 7. This is an endless loop
containing six event-driven actions. The first one describes
the reaction when detecting an object. If an inhibiting record
exists, it will ignore the object. Otherwise, the sensor will
go to the election state. The next four events describe
the reactions when receiving a message from a neighboring
sensor. In particular, if an inhibit(ID) message is received,

a timer Tinh(ID) will be set. The last event describes the
reaction when the above timer expires, in which case the
object’s status will be changed to Standby and the sensor
will be allowed to monitor this object.

The Election Protocol is shown in Figure 8. In the
beginning, a bid_master message will be sent and a timer
Tbid(ID) will be set. Then the sensor will wait for three
possible events to occur: receiving bid_master, receiving
inhibit and finding timer Tbid expired. Signal strength will
be used in the competition. Depending on different events,
the sensor will go to the Master or Idle state.

Figure 9 shows the Master Protocol. The first event is to
collect data from neighboring sensors. The next two events
are for slave agents and the master agent when losing the
target, respectively. Note that the areas A1, A2 and A3 refer
to Figure 2b. The last event is to inhibit irrelevant sensors
from monitoring the object.

The Slave Protocol is shown in Figure 10. The first event
controls the timing, by timer Trep, to report data to the master.
The second event is for the master to revoke the slave. The
last event is to inhibit other irrelevant sensors.
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FIGURE 8. The Election Protocol.

3.3. Extension to irregular network topologies

The above discussion has assumed a triangular sensor
network topology. In the following, we briefly discuss how
to extend our work to handle irregular deployment of sensors.

The election process does not need to be changed because
sensors can still bid for serving as a master/slave based on
their receive signal strengths. However, the rules to migrate
masters/slaves need to be modified slightly as follows.
Sensors need to know the locations of at least their two-hop
neighbors. The working and backup areas are redefined based
on the sensing scope, r , of each sensor.

Specifically, there is a predefined value r ′ < r . The
working area of a sensor is the circle centered at itself with
radius r ′. The rest of the area is the backup area. As before,
we still use one master and two slaves to track an object
(although more slaves may be used). Whenever the master
finds the object moves into the backup area of itself or any
of the slaves, the corresponding agent will be revoked and a
new agent will be assigned.

One interesting theoretical problem is how to define the
master and two slaves given an object in an irregular network.
This can be related to the classical Voronoi graph problem
in geometry [20]. Given a set of points V in a 2D plane, the

Voronoi graph partitions the plane into |V | segments such
that each segment contains all points that are closest to the
(only) vertex in the segment. As a result, if V is the set of all
sensors, the sensor of the segment containing the object will
serve as its master agent. Figure 11a shows an example. The
problem can be solved by a divide-and-conquer solution in
time complexity O(|V | log |V |) [20].

The next two sensors that are closest to the object will serve
as the slave agents. This can be found recursively as follows.
Specifically, let m be the master sensor. We can construct the
Voronoi graph again based on the vertex set V − {m}. Then
the sensor, say s1, of the segment containing the object will
serve as the first slave. For example, Figure 11b is the new
Voronoi graph after removing the master sensor m. Similarly,
to find the second slave, we repeat the process by constructing
the Voronoi graph of V − {m, s1}. Then, the sensor, say s2,
of the segment containing the object will serve as the second
slave. An example is shown in Figure 11c.

The advantage of using the Voronoi graph is as follows. For
a particular location of the object, we can sort its distance to
each sensor and pick the first three sensors closest to it. The
complexity is O(|V | log |V |). However, whenever the object
moves, the list needs to be re-sorted. The computational cost
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FIGURE 9. The Master Protocol.

FIGURE 10. The Slave Protocol.

FIGURE 11. Using Voronoi graphs to find the master and slaves: (a) the Voronoi graph of all vertices, (b) the Voronoi graph after removing
the master and (c) the Voronoi graph after removing the master and first slave.
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increases as time proceeds. If the above approach is used,

we only need to pre-compute 1 +
(

|V − 1|
1

)
+

(
|V − 1|

2

)

Voronoi graphs. So the saving of computational time when
using Voronoi graphs is clear when we need to track the object
for longer time.

4. FUSION AND DELIVERY OF TRACKING
RESULTS

One issue not yet addressed is when a master agent should
deliver its tracking result to the outside world. We assume
that one of the sensors in the network serves as the gateway
connecting to a location server in the wireline network.
From time to time, the tracking result should be sent to the
location server. We assume that more tracking results will be
accumulated as time proceeds. So an optimization problem
is that the master agent needs to decide whether it should
carry the tracking result from sensor to sensor, or forward the
result to the gateway.

We assume that for each object being tracked, the tracking
results are generated at a constant rate γ , and each tracking
result is of size d bytes. That is, in a time interval �t , the
amount of tracking result is �t · γ · d . Further, a sequence
of tracking results can be combined with a fusion factor ρ,
0 ≤ ρ < 1, at a basic cost of b bytes. Specifically, the above
tracking results can be compressed into b + �t · γ · d · ρ

bytes. In most cases, data fusion is beneficial. This normally
happens when the data have a certain level of dependence.
In the following, we propose three data delivery solutions.
Note that the first one is in fact not an agent-based solution.
It only serves as a referential strategy for comparison to our
agent-based solutions.

The first one is called the Non-Agent-Based (NAB) strat-
egy. Each sensor works independently and forwards its
sensing results back to the gateway from time to time. Note
that the sensing result is raw data and needs to be combined
with other sensors’ sensing results at the gateway to cal-
culate the object’s locations. The shortest paths, which are
assumed to be supported by the underlying routing protocol,
are always used for data delivery. Also, we assume an ideal
situation when only the three sensors nearest to the object
will track the object.

The second solution is called the TB strategy. A predefined
threshold value T is given. The master agent will accumulate
the tracking results and ‘carry’ the result with it as long as the
amount of results does not exceed T . Whenever the amount
of results (after fusion) reaches T , it will be forwarded to the
gateway through a shortest path.

The third solution is called the DB strategy. The delivery
action may be taken only when the master agent moves.
Basically, the distances from the agent’s current and next
sensors to the gateway are considered. Suppose that the
master agent is currently at sensor Si and is going to be
migrated to sensor Si+1. Let Ni be the current amount of
tracking results accumulated by the agent before it leaves Si .
Also, we assume that Ni+1 is the expected amount of tracking
results that shall be accumulated by the agent at Si+1 (this

value can be formulated by a constant T · γ · d · ρ, where T

is the expected residential time of an agent at a sensor).
If the master decides to carry the tracking result with it,

the expected cost is:

C1 = Ni + (Ni + Ni+1) × d(g, Si+1),

where the first term is the cost to migrate the current result to
the next sensor, and the second term is the expected cost to
deliver the fused result at the next sensor to the gateway, g.
Function d() specifies the minimum number of hops between
two sensors. Note that the basic cost, b, is not needed since
this cost is already involved in the previous tracking result
(Ni). If the master decides to deliver its current tracking
result to the gateway, the expected cost is:

C2 = Ni × d(g, Si) + (b + Ni+1) × d(g, Si+1).

Subtracting these two factors, we have

C2 − C1 = b×d(g, Si+1) + Ni×(d(g, Si) − d(g, Si+1))−Ni.

So the master agent will carry the results with it iff C1 < C2;
otherwise, the results will be sent back to the gateway. Since
sensors Si and Si+1 are neighbors, d(g, St ) − d(g, St+1) =
−1, 0 or 1. Considering whether the agent is moving away
from or closer to the gateway, we simplify the condition into
three cases.

• Move away. That is, d(g, Si) − d(g, Si+1) = −1.
Then, we have

C1 < C2 ≡ d(g, Si+1) >
2Ni

b

≡ d(g, Si) >
2Ni

b
− 1. (1)

• Move parallel. That is, d(g, Si) − d(g, Si+1) = 0.
Then, we have

C1 < C2 ≡ d(g, Si+1) >
Ni

b

≡ d(g, Si) >
Ni

b
. (2)

• Move closer. That is, d(g, Si) − d(g, Si+1) = 1. Then,
the agent will always carry the data with it because

C1 < C2 ≡ b × d(g, Si+1) > 0 ≡ TRUE. (3)

5. PROTOTYPING EXPERIENCES AND
SIMULATION RESULTS

5.1. Prototyping experiences

In order to verify the feasibility of the proposed protocol,
we have prototyped a system based on IEEE 802.11b NICs.
Signal strength is used as the criterion to position objects.
Specifically, one laptop equipped with a Lucent ORiNOCO
802.11b WaveLAN card is used to simulate an object. A
number of laptops, also equipped with IEEE 802.11b cards,
are placed in triangular/square patterns to emulate sensor
nodes, as shown in Figure 12. The object can roam around
and will measure beacon strengths transmitted from different
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FIGURE 12. Experimental environment: (a) triangular sensor
network and (b) square sensor network. Dashed lines represent
tested roaming paths.

FIGURE 13. Experiment of signal strength versus distance for
IEEE 802.11b.

sensors. For better accuracy, we average 10 samples in 1 s.
It is worth noting that using the signal strength is only one of
the possible methods of realizing the proposed idea. Other
methods, such as ToA and TDoA, may also be applied.

First, we measure the degradation of signal strength versus
distance. Figure 13 shows one set of data that we had
collected. For every 5 m from 0 to 100 m a measurement is
recorded. As can be expected, signal strengths received from
IEEE 802.11b are not very stable. We use the ‘regression
quadratic polynomial’ to smooth out the curve, as illustrated
by the solid line in Figure 13. The curve is used to convert a
received signal strength into an estimated distance.

Since signal strength is not an accurate measurement,
the aforementioned trilateration algorithm cannot be applied
directly. In fact, as one may expect, signal strengths change
all the time, even under a motionless situation. Certain gaps
inherently exist between estimated distances and actual
distances. The real situation is as shown in Figure 14,
where the three estimated circles centered at sensors have
no common intersection.

To solve the problem, we propose an approximation
algorithm as follows. Let A, B and C be the sensor
nodes, which are located at (xA, yA), (xB, yB) and (xC, yC)

respectively. For any point (x, y) on the plane, we then define
a difference function

σx,y = |
√

(x − xA)2 + (y − yA)2 − rA|
+ |

√
(x − xB)2 + (y − yB)2 − rB |

+ |
√

(x − xC)2 + (y − yC)2 − rC |,

FIGURE 14. The position approximation algorithm.

where rA, rB and rC are the estimated distances to A, B and
C respectively. The location of the object is determined to
be the point (x, y) among all points such that its difference
function σx,y is minimized. In our experiment, we consider
only integer grid points on the plane. We measure the location
of the object every second. Furthermore, to take sudden
fluctuation of signal strength into account, we enforce a
condition that the object does not move faster than 5 m/s. As
a result, when searching for the object’s location, only those
points in (x ± 5, y ± 5) are evaluated for their difference
functions, where (x, y) represents the location in the previous
measurement.

Our experiments were done in an outdoor, plain area with
no obstacles. Two roaming paths as illustrated in Figure 12a
were tested. For roaming path (1), three sets of results are
shown in Figure 15. For roaming path (2), the results are
demonstrated in Figure 16. As can be seen, the predicted
paths are close to the actual roaming paths, but there are still
large gaps remaining that need to be improved further.

We have also tested the arrangement in Figure 12b,
where four sensors arranged as a square are used. The
extension for the tracking protocol and positioning algorithm
is straightforward. Our tested results are shown in Figures 17
and 18.

A larger-scale experiment with 12 sensors is shown in
Figure 19a. With our agent-based approach, the object is
tracked by the four sensors with the strongest signals. The
other distanced sensors will be inhibited from monitoring the
object (and thus reporting their tracking results). In contrast,
if all sensors which can detect the object are allowed to track
the object, the tracking result will be as shown in Figure 19b.
Surprisingly, the result shows that the positioning accuracy
only improves very slightly. We believe that this is because
the signal strength from a distanced sensor is typically very
unstable. This usually enlarges the range of error. As a result,
using our agent-based approach not only reduces the amount
of data being transmitted, but also results in the same level
of positioning accuracy.
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FIGURE 15. Tracking result of path (1) in Figure 12a.

FIGURE 16. Tracking result of path (2) in Figure 12a.

FIGURE 17. Tracking result of path (3) in Figure 12b.

FIGURE 18. Tracking result of path (4) in Figure 12b.

5.2. Simulation results

To verify the advantage of using our agent-based approach,
we have developed a simulator. Sensors are deployed in a
10,000 × 10,000 m2 environment with triangular topology.
The distance between two neighboring sensors is 80 m. The
gateway is located at the center of the network. Each control
packet is 2 bytes. Each location is represented by 2 bytes.

Each routing header is equal to 2 bytes and each maximum
transmission unit (MTU) can be as large as 500 bytes.

The Random Way Point Model [21] is used to simulate the
mobility of objects. The initial locations of objects are chosen
randomly. Each object alternates between moving and paus-
ing states. On entering the moving state, the object’s next
destination is randomly chosen from (x ± 15, y ± 15), where
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FIGURE 19. Comparison of tracking accuracy: (a) agent-based approach by using at most four sensors and (b) non-agent-based approach.
Dashed lines are the real roaming paths and dots are the tracking results.

FIGURE 20. Simulation results: (a) the threshold T of TB versus traffic load and (b) the data fusion factor ρ versus traffic load.

300

FIGURE 21. Simulation results: (a) network size versus traffic load (ρ = 0.1) and (b) mobility ratio versus traffic load (ρ = 0.1).

(x, y) is its current location. Note that locations outside the
boundary are not considered. Under the moving state, the
object moves at a constant speed of a uniform distribution
between 1 and 3 m/s. After arriving at its destination, the
object will pause for a period with an exponential distribution
of mean = 5 s.

We first experiment on different threshold values of T for
the TB strategy. The result is in Figure 20a. We measure the
traffic load, which is defined to be the total data transmitted
by all sensors (including relay traffic). A T significantly less
than the largest MTU is not good due to high packet header

overheads. In contrast, tuning T too large is also inefficient
because the master agent will need to carry too much history
while traveling. The figure suggests that a T equal to or
slightly larger than the largest MTU would be a good choice.
Figure 20b further demonstrates the effect of the fusion
factor ρ. We compare different strategies. The DB strategy
performs the best. The TB also performs very well, if a proper
T can be selected. In all cases, NAB performs the worst.

In Figure 21a, we change the network size to visualize the
effect. It is reasonable that larger networks incur higher traffic
due to longer delivery paths. This justifies the importance of
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FIGURE 22. Size of accumulated data over time for different
strategies.

using our agent-based strategies. In Figure 21b, we further
vary the mobility ratio, which is defined to be the ratio
of moving time to pausing time. A higher mobility ratio
indicates more frequent change of master agents. DB and
TB with lower thresholds are less sensitive to mobility. With
too large a threshold, TB will degrade significantly because
the overhead for agents to carry tracking results would be
significant as the mobility ratio increases.

Using agents to accumulate tracking results may cause
some delay for the outside world to obtain the results.
However, delay is difficult to calculate because it is related
to many network characteristics (such as MAC, routing and
transport protocols). So, we observe the amount of data in
agents instead. Figure 22 shows the sizes of the accumulated
tracking results over time for different strategies. NAB
never accumulate data. TB has a regular (linear increasing)
shape of accumulated size (here we used 10,000 as the
threshold). DB’s accumulated size is around 1235 in
average.

To summarize, we conclude that DB performs well in all
cases. TB is quite simple, but one needs to be cautious in
choosing its threshold. These strategies outperform NAB by
60–80% in terms of average traffic load.

6. CONCLUSIONS

We have proposed a novel location-tracking protocol for
regular and irregular sensor networks. A mobile-agent
approach is adopted, which enables agents to roam around to
follow the moving objects, hence significantly reducing the
communication and sensing overheads. A data fusion model
is proposed, and several data delivery strategies are proposed
and evaluated. We have prototyped a system based on the
idea using IEEE 802.11b NICs, where signal strengths are
used as the criterion to measure objects’ positions. While it
has been proved that the prototyping works correctly, there
is still room for improvement in the accuracy.
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