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Lock-in Time-of-Flight (ToF) Cameras: A Survey
Sergi Foix, Guillem Alenyà and Carme Torras

Abstract—This paper reviews the state-of-the art in the field
of lock-in ToF cameras, their advantages, their limitations, the
existing calibration methods, and the way they are being used,
sometimes in combination with other sensors. Even though lock-
in ToF cameras provide neither higher resolution nor larger
ambiguity-free range compared to other range map estimation
systems, advantages such as registered depth and intensity data at
a high frame rate, compact design, low weight and reduced power
consumption have motivated their increasing usage in several
research areas, such as computer graphics, machine vision and
robotics.

Index Terms—Lock-in, time-of-flight, calibration.

I. INTRODUCTION

TOF camera is a relatively new type of sensor that delivers

3-dimensional imaging at a high frame rate, simulta-

neously providing intensity data and range information for

every pixel. Despite the number of pixels in the images is

still small (i.e 176×144 in Swissranger SR3000 and SR4000

cameras, and 204×204 in PMD CamCube camera) and noise

in the depth values can not yet be completely removed after

calibration, ToF imaging is rapidly showing a great potential

in numerous scientific domains.

Due to continuous progress in microelectronics, micro op-

tics and micro technology, the development of ToF cameras

has been possible over the last decade. They outperform past

technologies at the still difficult and slow task of depth-

intensity image matching. Further efforts are being devoted

to the optimisation of the cameras themselves. More compact

and lighter cameras with better signal-to-noise ratio are being

developed, and work continues in order to improve present-day

products. New camera models have recently appeared, such as

PMD CamCube and Swissranger 4K, and impressive results

are expected once researchers start to work extensively with

these new models.

Depth-intensity pixel-associated images at a high frame

rate without need of mobile components, combined with

other technical advantages such as robustness to illumination

changes and low weight, make it foreseeable that ToF cameras

will replace previous solutions, or alternatively complement

other technologies, in many areas of application.

Thus, this paper tries to give a comprehensive overview

of the state-of-the-art for the off-the-shelf, most widely used

ToF cameras, mainly those relying on demodulation lock-in

pixels, describing not only their principles and advantages,
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Fig. 1. Distance measurement using the phase offset

but also their current limitations and the research that is

in progress. The survey is structured as follows. Section II

explains the underlying principle of lock-in ToF cameras.

Section III discusses their advantages in comparison with

alternative systems. Systematic and non-systematic errors are

classified in Sec. IV, where some methods to compensate them

are also presented. Section V gives an overview of the cur-

rent intrinsic and extrinsic calibration methodologies, useful

e.g. for sensor fusion. Section VI discusses the main ToF

advantages that are being exploited in applications. Finally,

conclusions and some unresolved challenges are drawn in

Sec. VII.

II. TOF CAMERA PRINCIPLE

Depth measurements are based on the well-known time-of-

flight principle. Time-of-flight can be measured by using either

pulsed or continuous-wave (CW) modulation. Although there

are ToF cameras based on both technologies, this article will

focus on those based on CW modulation, and more precisely

on those that use demodulation lock-in pixels [1], no matter

whether the demodulation is digital or analog. Lock-in ToF

cameras are surveyed because they have been commercially

available for more than half a decade and have been exten-

sively used in multiple applications [2], while applications

using pulsed-based ToF cameras are still scarce.

Whereas sensors based on discrete pulsed modulation mea-

sure the time of a light pulse trip to calculate depth, sensors

based on lock-in measure phase differences between emitted

and received signals (see Fig. 1). A near-infrared light (NIR),

via light-emitting diodes (LED), is emitted by the system

and then reflected back to the sensor. Many authors [9]–[12]

provide formulations for sinusoidal signals, although other

periodic functions can be used. Every pixel on the sensor

samples the amount of light reflected by the scene four times

at equal intervals for every period (m0, m1, m2 and m3 in

Fig. 1), which allows for the parallel measurement of its phase
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(a) SR3000, 176x144 (b) SR4000, 176x144 (c) O3D100, 64x48 (d) CanestaVisionTM, 64x64 (e) 19k, 160x120 (f) CamCube 2.0, 204x204

Fig. 2. Current commercial lock-in ToF cameras. (a-b) Mesa Imaging AG c© [3]. (c) Ifm electronic c© [4]. (d) CanestaVisionTM [5]. (e-f) PMD[Vision] R© [6].
Particularities of each solution include the use by CanestaVisionTM of square modulated waves [7], the use of a smart pixel - photonic mixer device (PMD)
for simultaneous wave sensing and mixing by PMD[Vision] R© [8], and the addition by Mesa Imaging AG c© of a coded binary sequence (CBS) modulation
for multi-camera operation on SR4000 new models.
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This phase demodulation tecnique is commonly known as

“four-bucket” sampling and it permits to calculate easily the

target depth

D = L
ϕ

2π
, (4)

and the intensity (B), whose amplitude (A) helps to predict the

quality of the measurements. The modulation frequency (fm)

of the emitted light determines the ambiguity-free distance
range of the sensor

L =
c

2fm
, (5)

where c is the speed of light in vacuum.

Although current off-the-shelf lock-in ToF cameras are

based on analog phase demodulation, such as the ones shown

in Fig. 2, new prototypes based on digital phase demodula-

tion using single-photon synchronous detection (SPSD) are

emerging and claiming better performance [13], [14]. SPSD

prototypes use single-photon avalanche diodes (SPADs) as

digital single-photon detectors instead of CCD/CMOS photo-

gates used by lock-in pixels. Due to its digital nature, typical

analog accumulating diffusion used by previous approaches

is simply replaced by a digital counter. Since SPSD does

not use any analog processing or analog-to-digital conversion,

it is considered virtually noise-free at signal detection and

demodulation. Digital and analog approaches share the same

mathematical representation shown previously.

From now on and for the sake of simplicity, we will refer

to lock-in ToF cameras as just ToF cameras.

III. DEPTH COMPUTATION AND TOF CAMERAS

Compared to other technologies to obtain scene depth, ToF

cameras exhibit some interesting properties:

1) Registered dense depth and intensity images

2) Complete image acquisition at a high frame rate

3) Small, low weight and compact design

4) No mobile parts needed

5) Auto-illumination

Traditionally, depth computation has been carried out by

camera and laser-based systems (see [15] for a complete re-

view on laser and other light emitting devices). The following

subsections discuss their main disadvantages as compared to

ToF cameras.

A. Camera-based Systems

In this group we can place methods such as depth-from-

focus/defocus/blur, depth-from-motion, depth-from-shape,

stereo and structured light triangulation methods [16].

Depth-from-focus, depth-from-motion and depth-from-shape

methods are based on focus variation, motion estimation,

and shape change determination, respectively. Generally, they

produce ambiguities and singularities, and often require using

multiple images and solving a correspondence problem, which

implies additional temporal, spatial and computational costs.

Conversely, depth information obtained with ToF cameras

is generally more precise, and it is obtained using only one

image.

Triangulation methods can be divided into passive (stereo

vision) and active (such as projected structured light methods).

Table I shows the main differences between ToF cameras and

common stereo and structured light methods.

1) Passive triangulation methods:
Passive triangulation methods require two cameras sepa-

rated by a baseline that determines a limited working depth

range (the higher the needed depth resolution, the larger the

needed base). These algorithms have to solve the so-called

correspondence problem: determining what pairs of points in

the two images are projections of the same 3D point. This is

a computationally expensive and complex problem, as stereo

vision systems are unable to match corresponding points in

homogeneous regions [17]. In contrast, ToF cameras naturally

deliver depth and simultaneous intensity data avoiding the

correspondence problem, and do not require a baseline in

order to operate. In addition, the ambiguity-free range of ToF

cameras (usually from 30cm to 7m) can easily be extended

by varying the modulation frequency1, while that of stereo

systems is limited and usually requires changing the baseline,

controlled camera motions, or zooming techniques.

1In this case, however, some internal parameters would change, making
camera recalibration necessary.
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TABLE I
TOF CAMERA VS. TRIANGULATION METHODS.

Differences ToF cameras Stereo vision Structured light

Correspondence
No Yes Yes

problem

Extrinsic No,
Yes Yes

calibration when used alone

Auto
Yes No Yes

illumination

Untextured Good Bad Good
surfaces performance performance performance

Depth range 0.3 ÷ 7.5 m.
Base-line Light-power
dependent dependent

Image resolution Up to 204x204
High resolution.

Camera dependent

Frame rate Up to 25 fps.
Typically 25 fps.

Camera dependent

2) Active triangulation methods:
Contrarily to the preceding methods, active triangulation

ones require only one camera together with a structured light

emitter that projects one line or a complete set of patterns.

Disadvantages here, in comparison with ToF cameras, include

partial occlusions that involve missing depth measurements, a

need of highly powered and focused light, occasional scanning

of the light through the scene which results in low frame

rates, and a very controlled light environment that leads to

a big restriction in domestic or outdoor robotics applications.

Recent approaches [18] solve the partial occlusions problem

and the low frame rate by projecting the structured light along

the optical path of the camera, and using pattern defocus as a

depth estimation technique.

B. Laser-based Systems

Laser-based systems provide very precise sliced 3D mea-

surements. Albeit they have been successfully applied to

solve Simultaneous Localization and Mapping (SLAM) prob-

lems [19], difficulties in collision avoidance have been re-

ported due to their 3D reduced field of view [11]. The common

solution has been mounting the sensor on a pan-and-tilt unit.

This implies row by row sampling, and makes this solution

inappropriate for real-time, dynamic scenes, as opposed to ToF

cameras. Although high depth range, accuracy and reliability

are advantageous in these systems, they are voluminous, heavy,

increase the power consumption, and add additional moving

parts. ToF cameras, on the contrary, are compact and portable,

they do not require the control of mechanical moving parts,

thus reducing power consumption, and they do not need row

by row sampling, thus reducing image acquisition time.

In sum, ToF cameras have evolved rapidly during the

last two decades and, despite their low resolution and low

ambiguity-free range, they are already showing great potential

in many applications where not very precise but fast 3D

image range data acquisition is needed, such as obstacle

avoidance [11], [20] , pose estimation [21], [22] , coarse 3D

object reconstruction [23], [24] , human body parts recognition

and tracking [25]–[27] among others (see [2] for a detailed
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Fig. 3. Depth distortion offset (Wiggling effect). (Blue dots) Measurements
captured with a SR3100 ToF camera at multiple integration times (2ms - 32
ms). (Red line) 6 degrees polynomial approximated function.

application review). Although ToF cameras can not be con-

sidered yet as a mature sensor compared to other camera-

based measuring techniques and other depth sensors, a very

promising future can be foreseen.

IV. DEPTH MEASUREMENT ERRORS AND COMPENSATION

ToF cameras are evolving and a lot of work is devoted

to understanding the sources of errors and to minimizing

them [28]–[30], as well as to model their effect for camera

simulation [31]. In this section we will present a classification

and characterisation of the different errors as well as the

currently available compensation methods and the quantitative

error reduction attained.

Depth measurements with ToF cameras face the appear-

ance of both systematic and non-systematic errors. Generally,

systematic errors can be managed by calibration and non-

systematic ones by filtering.

A. Systematic Errors

Five types of systematic errors have been identified:

Depth distortion appears as a consequence of the fact that

the emitted infrared light can not be generated in practice as

theoretically planned (generally sinusoidal) due to irregular-

ities in the modulation process. This type of error produces

an offset that depends only on the measured depth for each

pixel. Usually, the error plotted against the distance follows a

sinusoidal shape2 (see Fig. 3). This error is sometimes referred

to as wiggling or circular error.

This type of error depends on the measured depth dis-

tance, and it can be addressed by comparing camera depth

measurements with a reference ground truth distance, or by

means of an optimisation process that models the error from

multiple relative measurements. While the first approach has

the disadvantage of needing an additional sensor in order to

acquire the reference distance, i.e. high accuracy track line as

2This has been explained by means of perturbations on the measured signal
phase caused by wrapping of odd harmonics contained in the emitted reference
signal [32].
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(c) 8ms integration time

Fig. 4. Depth-colored 3D point cloud view of a white wall at a constant distance of 1 meter. Each figure shows the X/Z view at different integration times
(a) 2ms (b) 4ms (c) 8ms. A systematic depth offset can be observed dependent on the integration time. Amplitude-related errors also appear on the boundary
edges in Fig. (a) and (b) due to low amplitudes.

in [33], [34] or a calibrated color camera as in [35]–[37], the

second approach has the disadvantage of being only suitable

in a limited operating range [38], [39]. Applications in robot

navigation, localization and mapping should be better suited

by the first approach in order to ensure the most reliable

acquisition depth range, while for applications such as object

modelling the second one will be more adequate.

There are several approaches to encode the error data. A

Look-up Table (LUT) has been proposed [33] that stores the

depth errors depending on the measured depth distance using

only one central pixel. The representation of depth errors

has a sinusoidal shape, so a B-Spline can be used to store

these values in a more compact form [34], [39]. Alternatively,

a polynomial function has been also used, although, on the

contrary of B-Splines, undesirable border effects can appear

outside the interpolation range. The degree of the polynomial

that models the depth error has to be chosen depending on the

required measurement depth range. This detail has been left

undetermined in some works [38], [40]. In the general case

a 6-degree function is adequate [41]. For small ranges (1-2

meters) only a portion of the function has to be represented

and a simple 3-degree polynomial function suffices [37]. In

general this is a time-consuming process as several distances

have to be measured.

In a different way, Lindner et al. [36] present a new demod-

ulation algorithm applicable to the PMD camera. They use the

fact that the modulated signal is composed of a sinusoidal with

a rectangular reference signal. The combination of both does

not provide more accurate depth images, but can be used to

better determine the depth distortion errors.

Integration-time-related error. Integration time (IT) can

be selected by the user. It has been observed that for the same

scene different IT cause different depth values in the entire

scene (see Fig. 4). The main reason for this effect is still a

subject of investigation.

IT affects the range of depths that the camera is sensing

with more precision. This has the effect of changing the former

calibration solutions. A lot of works do not mention this source

of error and usually it is not reported whether it is explicitly

taken into account or not. We note that some cameras have an

auto mode for the IT. Although it may seem as a good feature,

its use makes the calibration methods hard to apply.

Fig. 5. Depth-colored Fixed Pattern Noise (FPN) offset per pixel. Figure
extracted from Kahlmann et al. [33].

There are two main strategies to solve this problem. The

first one is to choose one integration time value, perform the

calibration for the rest of the errors with this value, and never

change it [34], [39], [41], [42]. This is possible when the range

of depths is small.

For the second one the idea is to repeat the depth distortion
calibration process for different integration times [33], [35],

[43] and then apply the corresponding correction values taking

into account the current IT.

Built-in pixel-related errors arise from two main sources.

On the one hand, errors due to different material properties in

CMOS-gates. This produces a constant pixel-related distance

offset, leading to different depths measured in two neighbour

pixels corresponding to the same real depth. On the other

hand, there are latency-related offset errors due to the capacitor

charge time delay during the signal correlation process. This

can be observed as a rotation of the image plane, i.e. a

perpendicular flat surface is viewed with a wrong orientation.

Such errors are related to the position of the pixel in the

sensor array. A common representation of this error is a Fixed

Pattern Noise (FPN) table (see Fig. 5) that is obtained by

comparing the computed depths with a reference distance [33].

However, with this procedure the contribution of amplitude-
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Fig. 6. Depth-colored amplitude-related errors. Depth image of a flat wall at
0.43 meters. Depth overestimation can be observed due to low illumination
(borders of the image).

related errors cannot be separated and FPN accounts for both

error sources.

Neighbouring pixel errors are small, and can be considered

negligible. In that case, only the error from the rotation of

the image plane has to be modeled. A compact representation

is a function depending on the row and column position of

the pixel [39]. Sometimes the parameters of this function

are specified inside the polynomials that define the Depth
distorsion error and they are solved jointly in the same

minimisation process [37], [38]. We note that the Swissranger

camera manufacturer provides such a FPN matrix in the

calibration file [3]. However, some authors prefer to recalibrate

for this error effects when using this camera [44].

Amplitude-related errors occur due to low or overexposed

reflected amplitudes. Depth accuracy is highly related to the

amount of incident light as it can be deduced from (1) and

(4). The higher the reflected amplitudes, the higher the depth

accuracy. Low amplitude appears more often in the border

of the image as the emitted light power is lower than in the

center, leading to overestimating depth (see Fig. 6). Contrarily,

when the object is too close to the camera or integration time

has been chosen too high, saturation can appear and depth

measurements will not be valid.

This type of error arises due to three main causes. First,

systematic non-uniform NIR LEDs illumination causes depth

misreadings at pixels distant from the image center. A second

cause is low illumination for scenes with objects at different

distances. And third, differences in object reflectivities cause

different depth measurements for pixels at the same constant

distance. Non-specular materials retain energy and modify

consequently the reflected light phase, depending on their

refraction indices.

Low amplitude errors can be avoided easily by filtering

pixels with lower amplitude than a threshold [30], [38], but this

solution may discard a large region of the image. Additionally,

the threshold may need to vary when moving. An earlier solu-

tion was to increase the overall depth accuracy in scenes with

nearby and distant objects by combining depth measurements

from two range images with different exposure settings [7].

Fig. 7. Temperature-related error. Figure extracted from Kahlmann et al. [33].

Nevertheless, the preferred solution to this problem is still

filtering.

The second error source, over-exposition, can be detected

if the raw time measures of the camera can be accessed [45].

This is not possible in Swissranger cameras. However, the new

SR4k camera provides a confidence value that can be used for

this purpose.

The third amplitude-related error cause, different object

reflectivities, is quite difficult to handle. A common solution is

to reproduce the Built-in pixel-related errors and Amplitude-
related errors calibration methods for different reflective sur-

faces [33] and store all the median values and use them as a

look-up table depending on intensity values. As the amplitude

plays an important role, the combination of the ToF camera

with a color camera has been also suggested [35] to better

measure intensity.

In fact, depth and amplitude measurements are highly

correlated. Guomundsson et al. [29] propose to improve depth

ones by simply subtracting the standardised amplitude inverse

(1/A), where standarised means taking away the mean and

dividing by the standard deviation. Taking into account the

same correlation principle, Oprisescu et al. [42] provide two

methods to correct inaccuracies of depth and amplitude by

using information based on the other. This approach is con-

tinued by Falie et al. [46], who provide a noise model for

phenomena analysis [47] that predicts distance error at a pixel

as a function of the amplitude at that pixel and the distance

itself.

Temperature-related errors happen because internal cam-

era temperature affects depth processing, explaining why some

cameras include an internal fan. Depth values suffer from a

drift in the whole image until the temperature of the camera

is stabilised.

Impact of internal and external temperature on distance

measurements is studied in [33], [45] as a result of the high

response of the semiconductor materials to changes in temper-

ature. A SwissRanger camera SR-2 showed an overestimation

in measured distances when the sensor started working, and

when operating at higher temperatures (see Fig. 7). The next

generation of the camera tried to palliate this problem by

incorporating a fan to stabilize the temperature. The general

strategy to palliate temperature depth errors is to switch
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on the camera and let it take a stable working temperature

before calibrating it and using it. While some past approaches

recommended to wait around 4 minutes for the SR-3000 [48],

new studies with new camera models (SR-4000) recommend to

wait up to 40 minutes [49]. New models did not get worse but

more accurate (±1cm), and higher waiting time is considered

necessary to ensure stabilization.

B. Quantitative Error Analysis

The preceding section has described how several authors

have applied different calibration methods in order to reduce

each systematic error. In order to better understand the amount

of improvement achieved in each work, Table II summarizes

the error reductions attained by the main compensation ap-

proaches found in literature. Although a comparison between

the different methods is a difficult task due to the variety of

cameras being used, some conclusions can be drawn. Special

attention has to be payed to the results obtained by Fuchs et
al. [39] and Kahlmann et al. [33], since they managed to

reduce the overall standard error to less than 3 mm. The reason

why these two approaches achieve such a good performance

is because they reduce the three main error sources: depth

distortion, built-in pixel and integration-time-related errors.

Rapp [45] quantified the proportion of reduction attributable to

each of these systematic errors. The temperature-related error

was not considered in his work and amplitude was just used

for pixel validation purposes. Three different ToF cameras

(Effector O3D, PMD 19k and SR-3000) were used in his

experiments, all of them leading to similar error reduction

results. Approximately 40 % of the overall error reduction

was found to be attributable to the compensation of depth

distortion, 33.3 % to the mitigation of the integration-time-

related error, and only 6.6 % to correction of the built-in

pixel-related error. Further evidence for these results can be

observed in Table II, where the worst overall error reduction is

obtained by a method that does not treat the integration-time

error, and deals only partially with the built-in pixel-related

error.

C. Non-systematic Errors

Four non-systematic errors can also be identified in depth

measurements with ToF cameras, the occurrence of the last

three being unpredictable.

Signal-to-noise ratio distortion appears in scenes not uni-

formly illuminated. Low illuminated areas are more suscepti-

ble to noise than high illuminated ones. This type of error is

highly dependent on the amplitude, the IT parametrisation and

the depth uniformity of the scene. Non-uniform depth over the

scene can lead to low-amplitude areas (far objects) that will

be highly affected by noise.

Signal-to-noise ratio can be improved by several means.

Low-amplitude filtering can be easily used and corrupted

readings can be simply removed [40] or a more sophisticated

procedure can actively decide the optimal IT depending on

the desired areas [38]. Other approaches try to minimise

noise effects by computing the average of those readings

(a) 2D Gray scale range image (b) Rotated 3D point cloud

Fig. 8. (a) 2D Gray scale range image of a mug. (b) Rotated 3D point
cloud view. False depth readings appear at the edges between foreground and
background objects due to the integration of the reflected light of both surfaces
in the corresponding pixels.

Fig. 9. Multiple light reception due to concavities in the scene.

and surpassing a certain accuracy threshold based on pixels

variance [29], [45], [47].

Multiple light reception errors appear due to the inter-

ference of multiple light reflections captured at each sensor’s

pixel. These multiple light reflections depend on the low lateral

sensor resolution and the geometric shape of the objects in the

scene.

Multiple light reception errors are mainly due to the pres-

ence of surface edges (jump edges) and object concavities (see

Fig. 8 and Fig. 9, respectively). On the one hand, jump

edge errors are generally removed by comparing the angle of

incidence of neighboring pixels [28], [38], [50]. On the other

hand, it is still an open question how to deal with multiple

reflections originated by concavities [29].

Light scattering effect arises due to multiple light reflex-

ions between the camera lens and its sensor (see Fig. 10). This

effect produces a depth underestimation over the affected pix-

els, because of the energy gain produced by its neighbouring

pixel reflections [50]. Errors due to light scattering are only

relevant when nearby objects are present in the scene. The

closer an object, the higher the interference [51].

Light scattering effects have been minimised following two

approaches. Firstly, [53] suggested selecting an optimal IT in

order to minimise saturation problems and remove scattering-

affected pixels using a filter based on the combination of

amplitude and intensity values. And secondly, a compensation

method based on blind deconvolution was proposed based on
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TABLE II
ERROR REDUCTIONS ATTAINED BY DIFFERENT COMPENSATION APPROACHES FROM LITERATURE

Article Camera
Compensation method used Overall remaining error

Depth Distortion Amplitude Built-in pixel Integration Time Mean Std. Dev.

Fuchs et al. [39] O3D100 B-Splines/multiple range amplitudes Pan and tilt coef. Unique IT/range ±1.2 mm. ±5.7 mm.

Kahlmann et al. [33] SR-2 Look-up table - Fixed pattern noise Look-up table ±1.0 mm. ±10.0 mm.

Lidner et al. [34] PMD (64x48) B-Spline - Fixed pattern noise Constant IT ±10.0 mm. ±3.0 mm.

Radmer et al. [43] PMD B-Spline Look-up table - Look-up table ±10.0 mm. ±25.0 mm.

Kim et al. [41] SR3000 6-degree polynomial Radial pattern - Unique IT/range ±13.6 mm. ±8.8 mm.

Schiller et al. [37] PMD (64x48) 3-degree polynomial - Pan and tilt coef. - ±50.0 mm. ±100.0 mm.

Fig. 10. Light scattering. Figure extracted from Mure-Dubois, J. and Hügli,
H. [52].

(a) Depth colored point cloud of a static

hand

(b) Depth colored point cloud of a hand

moving to the left

Fig. 11. Motion blurring appears due to a quick movement of the camera
or the objects in the scene during the integration time. Its effect can be seen
by comparing subfigures (a) and (b).

a mathematical model [52]. Because empiric parametrisation

was still needed, further research must be carried out to

optimally mitigate its effect. Instead of trying to detect and

decrease the scattering effect, some researchers point out that

new sensor materials with lower reflectivity will arise in the

future that will make scattering negligible [50].

Motion blurring, present when traditional cameras are used

in dynamic environments, appears also with ToF cameras. This

is due to the physical motion of the objects or the camera

during the integration time used for sampling (see Fig. 11).

Motion blurring errors can be classified in two different

types of artifacts depending on whether their appearance is

due to lateral or axial motion. In [54] a combination of a

conventional 2D image sensor and a PMD camera is used

in order to detect lateral motion artifacts by means of a

classical 2D image edge detector. Instead of discarding the

corrupted data, the authors present two possible correction

approaches. On the one hand, an average of positionally

weighted neighbouring pixels is recommended, and on the

other hand, after a phase sampling analysis of images, 2 phase

depth computation can be used instead of the common 4 phase

algorithm. Another approach, this time for solving both lateral

and axial motion blurring consecutively, is presented in [55].

Lateral motion artifacts are identified first, by estimating optic

flow from some pre-processed phase-sampled images, and

afterwards, axial motion artifacts are removed using both an

axial motion estimation approach and a theoretical model for

axial motion deviation errors.

V. INTRINSIC AND EXTRINSIC CALIBRATION

While the error compensation procedures described in the

preceding section are specific of ToF cameras (with the ex-

ception of those dealing with motion blurring), the calibration

techniques explained next are mostly similar to those used

for traditional cameras that provide depth through stereo or

structured light.

A. Intrinsic

3D data are not delivered in the same manner by all different

camera models, i.e. SR3 delivers cartesian 3D points, while

PMD delivers the absolute distance to the center of projection

of the optical system. The pinhole model and the intrinsic

calibration parameters [40], [45] are needed to compute carte-

sian 3D points from depth points. This is mandatory for PMD

cameras. For SwissRanger cameras, some authors recompute

depth maps with the obtained focal depth to improve depth

precision. As shown below, intrinsic parameters are also useful

when ToF camera images have to be combined with other

sensors.

Intrinsic camera parameters have often been obtained by

applying classical calibration procedures based on intensity

images and calibration patterns [34], [38], [56]. Alternatively,

using an array of infrared LEDs has been also proposed to

improve the localization of the calibration pattern [33]. How-

ever, the characteristic low resolution of these cameras leads
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to a poor localization of the calibration pattern characteristics

and obtained calibration parameters are usually erroneous.

In sum, intrinsic TOF camera calibration has to be improved

by using also the depth information provided by the camera

[40], and it is usually included in the extrinsic calibration

methods explained below.

B. Extrinsic

The extrinsic parameters encode the coordinate system

transformation from 3D world coordinates to 3D camera

coordinates. They are useful in two scenarios: first when a

ToF camera has to be referenced to an external device, i.e.

a robot arm; second, when ToF images have to be combined

with other sensor data.

For the first scenario, let us imagine a camera mounted on

the end-effector of a robotic arm. As will be presented in

Sec. VI, this is a common configuration e.g. for object mod-

elling [24]. The transformation between the robot coordinate

system and the camera coordinate system is the so-called hand-

eye calibration. To compute it, the image measures have to be

used. Recently, a calibration algorithm that integrates depth

calibration and hand-eye calibration has been proposed [38].

For the second scenario, lasers and one or various color

cameras are rigidly mounted with one or various ToF cameras.

Although extracting precise extrinsic parameters is highly

recommended, some simplifications can be performed when

sensors are mounted in particular configurations [57]–[59],

and, depending on the application, an inaccurate calibration

is sometimes sufficient [60]. Combination of a ToF camera

and a 2D laser scanner is common, and extrinsic parameters

can be obtained with a specialised pattern [61].

One of the most used sensor systems is to combine ToF

cameras with color cameras. Traditionally the extrinsic cali-

bration has been addressed by considering the intensity image

of the ToF camera and using classical stereo calibration algo-

rithms [56], [62]–[64]. Unfortunately, due to the low resolution

of the sensor, this approach suffers from the same problems

as the ones presented for intrinsic calibration.

Hence the idea is to take advantage of depth information

when calibrating, either coming from the ToF camera itself,

when used together with a single intensity camera, or also

derived from triangulation when used in combination with

a stereo rig or structured light. The aim in the monocular

setting is to backproject the points using the available depth

data to refine the calibration, while in the latter case, 3D-

3D correspondences can be used to estimate the calibration

between a ToF camera and a stereo rig. This has been applied

for a small depth range (only 400mm) [65].

However, stereo is not strictly required. Once a color camera

has been calibrated with a known pattern, reconstruction of

the calibration poses is possible, and this can be used to

find better extrinsic parameters [37]. A software to calibrate

one or multiple color cameras with a TOF camera using this

principle is available [66]. This algorithm also includes a

depth calibration model that represents the depth deviation as

a polynomial function, similar to [38].

Multiple ToF cameras can be used to observe the same

scene. Different modulation frequencies for each ToF cam-

era should be used to avoid interference problems between

them [41]. Obviously, the resulting images can be also regis-

tered with color cameras.

VI. EXPLOITATION OF TOF CAMERA ADVANTAGES

The distinctive characteristics of ToF cameras have proved

to provide important advantages in several fields. After re-

viewing their main applications to date, fully discussed in

Foix et al. [2], our conclusion is that the most exploited feature

of ToF cameras is their capability of delivering complete

scene depth maps at high frame rate without the need of

moving parts. Moreover, foreground/background segmentation

methods based on depth information are quite straightforward,

so ToF images are used in many applications requiring them.

A good characteristic is that geometric invariants as well

as metric constraints can be naturally used with ToF depth

images. ToF cameras are also used satisfactorily in human

environments because they are eye-safe and permit avoiding

physical contact and dedicated markers or hardware.

The depth-intensity image pair is also often used, exploiting

the fact that both images are delivered already registered. In

applications where the reduced resolution of a ToF camera

is critical, it is complemented with other sensors, usually

color cameras. Once the extrinsic parameters of the coordinate

transformation between a color camera and a ToF camera have

been obtained, data fusion is possible. The easy part is to

find the correspondences between them and put color to the

depth image, but more can be done. Due to the difference in

resolution, between each pair of neighbouring points in the

ToF image there are several points on the color image. As

a consequence, these points can be interpolated to obtain a

dense depth map [56].

Some of the reviewed works do not apply any calibration

method to rectify the depth images. We believe that this

explains several of the errors and inaccuracies reported in some

experiments, and that with proper calibration better results

can be obtained. We note that ToF technology is evolving

and depth correction methods for this type of sensor are still

subject to investigation.

Albeit ToF cameras are increasingly being used in more

applications everyday due to their distinctive features, previous

technologies such as stereo vision, structured light or lidar

systems are still leading the 3D depth acquisition field. Mainly

because of their higher precision and higher acquisition range.

VII. CONCLUSIONS

Over the last years, the performance of ToF cameras has

improved significantly; errors have been minimised and higher

resolution and frame rates are being obtained. Although ToF

cameras cannot yet attain the depth accuracy offered by other

types of sensors such as laser scanners, structured light or

stereo vision systems, plenty of research demonstrates that

their distinctive features make this type of sensors a suitable

solution or alternative in many applications.
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Advantages of this type of sensors are multiple, as demon-

strated in the previous sections: they are compact and portable,

easing movement; they make data extraction simpler and

quicker, reducing power consumption and computational time;

and they offer a combination of images that show great

potential in the development of data feature extraction, regis-

tration, reconstruction, planning and optimisation algorithms,

among other positive characteristics. Thus, ToF cameras prove

to be especially adequate for real-time applications and, in

particular, for automatic acquisition of 3D models requiring

sensor movement and on-line mathematical calculation.

Finally, some broad challenges need to be mentioned. First,

resolution is still generally low for ToF cameras, despite some

efforts have already led to better resolutions as explained

above. Second, short integration times contribute to obtain a

strong noise ratio, and high integration times can result in pixel

saturation [67]. Although some algorithms dealing with this

problem have already been proposed, more research is needed

in this direction. Third, an important issue for ToF cameras is

the wrapping effect, a consequence of the periodicity of the

modulated signal. Distances to objects that differ 360◦ in phase

are indistinguishable. Use of multiple modulated frequencies

can be a solution here, or lowering the modulation frequency

since it would increase the unambiguous metric range.

Other concerns include ambient light noise, motion artifacts

and high-reflectivity surfaces in the scene. Ambient light may

contain unwanted light of the same wavelength as that of

the ToF light source which may cause false measurements

in the sensor. Frequency-based filters can be used in order

to minimise this effect. Motion artifacts are errors caused by

receiving light from different depths at the same time due to

object motion in the scene. This type of errors are mostly

observed around the edges of the moving object and can be

attenuated by either increasing the frame rate, or by correction

using motion estimation. Finally, errors due to the coexistence

of low-reflective and high-reflective objects (mirroring effect)

can be addressed by combining multiple exposure settings.
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