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Abstract—Prefix hijacking is known as one of the security
threats on today’s Internet. A number of measurement based
solutions have been proposed to detect prefix hijacking events. In
this paper we take these solutions one step further by addressing
the problem of locating the attacker in each of the detected
hijacking event. Being able to locate an attacker is critical for
deciding at the earliest time the proper mitigation mechanisms to
invoke to limit the impact of the attack and successfully stopping
the attack.

In this paper, we propose a robust scheme named LOCK,
LOcating Countermeasure-capable hijacKers, for locating the
prefix hijacker ASes based on distributed data-plane Internet
measurements. LOCK locates each attacker AS by actively
monitoring paths to the victim prefix from a small number of
carefully selected monitors distributed on the Internet. More
importantly, LOCK is robust against various countermeasures
that the hijackers may employ. This is achieved by taking ad-
vantage of two observations: that the hijacker cannot manipulate
the data-plane path before a packet reaches the hijacker, and
that the data-plane paths to victim prefix “converge” around
the hijacker AS. We have deployed LOCK on a number of
PlanetLab nodes and conducted several large scale measurements
and experiments to evaluate the performance of LOCK against
three sets of hijacking attacks: synthetic attacks, reconstructed
previously known attacks, and controlled attacks on the Internet.
Our evaluation results show that LOCK is able to pinpoint the
prefix hijacker AS with an accuracy of over 90%.

I. I NTRODUCTION

Prefix hijacking refers to a scenario in which a mis-
configured or malicious BGP router originates a route to an
IP prefix it does not own, is becoming an increasingly serious
security problem in the Internet.

The Internet consists of tens of thousands of Autonomous
Systems (ASes), each of which is an independently admin-
istrated domain. The routing information within an AS is
maintained by Interior Gateway Protocols (IGPs) while the
Border Gateway Protocol (BGP) is employed to maintain and
exchange inter-domain routing information. However, BGP is
designed based on the assumption that there is implicit trust
among the participants in the system. The lack of adequate
authentication schemes implies that the inter-domain routing
infrastructure is incapable of preventing misbehaving routers
from arbitrarily advertising routes for prefixes and/or fabricate
AS paths associated with the prefixes. Such false announce-
ments can quickly spread to a large number of BGP routers
across multiple ASes and pollute their routing tables. As a
result, the victim prefix network will experience performance

degradation or even service outage, as well as serious security
breach. A canonical example happened in 1997 when AS7007
announced prefixes of a large portion of the Internet and
interrupted the reachability to these prefixes for hours [1].
Recently, the prefix of YouTube was hijacked by an AS in
Pakistan for more than 2 hours [2].

There are two main approaches to solving the prefix hi-
jacking problem. The first approach focuses on prefix hijack-
ing prevention. Many solutions fall into the category [3]–
[14]. These solutions, however, all require some changes to
current routing infrastructures such as router software, router
configurations, network operations, or even the introduction of
public key infrastructures. Therefore generally speakingthey
are difficult to deploy.

The second approach aims at prefix hijack detection and
service restoration. Solutions that fall into this group either
attempt to monitor the state of Internet and detect hijacking
events when they happen [15]–[20], or recover from prefix
hijacking and restore services for the victim prefixes [21].
An apparent advantage of these methods is that they are
compatible with existing routing infrastructures and therefore
can be deployed incrementally on today’s Internet.

Unfortunately, in practice, several of the known prefix
hijack events were detected and recovered, and service to the
victim prefixes was restored through human interaction and
manual intervention rather than any of the aforementioned
solutions. This is because a critical step in putting together
these solutions into an automated prefix hijack detection and
recovery system is still missing and that is how to locate
hijackers after hijacking events are detected. Without this
step recovery and restoration proposals can not help because
they typically assume that the identities of the hijackers are
known. However, as we will elaborate, locating hijackers is
far from a trivial problem, especially considering the various
countermeasures that hijackers may invoke.

In this paper, we present a scheme called LOCK, LOcating
Countermeasure-capable hijacKers. It is a light-weight and
deployable scheme for locating hijacker ASes automatically.
The LOCK monitors are deployed at diverse locations in the
Internet. For any specific target prefix, the LOCK selects
an optimum set of monitors from all available monitors at
LOCK’s disposal after balancing factors such as how many
monitors to choose and how well the hijacker may be located.
These monitors collect and reporttracerouteinformation for
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the monitor-to-target prefix paths either periodically or on-
demand.

Our contributions are four-fold. First, to the best of our
knowledge, it is the first work studying the attacker locating
problem for prefix hijacking. Second, our locating scheme
relies only on real-time measurements taken from the data
plane. Not requiring privileged access to live BGP advertise-
ment data makes our approach easy to deploy and appealing to
prospective prefix hijack monitoring service providers. Third,
we propose a monitor selection algorithm to make the monitors
work more efficiently. Finally, we have deployed LOCK on a
number of PlanetLab nodes and conducted several large scale
measurements and experiments to evaluate the performance of
LOCK against three groups of hijacking scenarios: synthetic
attacks simulated using real path and topology information
collected on the Internet, reconstructed previously known
attacks, and controlled attack experiments conducted on the
Internet. We show that the proposed approach can effectively
locate the attacker AS with more than 90% accuracy.

The rest of the paper is organized as follows. Section II
provides background information on prefix hijacking. Section
III provides an overview of the framework of our LOCK
scheme. Then we describe detailed monitoring and locating
methodologies in Section IV and Section V respectively.
Section VI evaluates the performance of the LOCK scheme.
Section VII briefly surveys related works before Section VIII
concludes the paper.

II. BACKGROUND

As mentioned before, IP prefix hijacking occurs when a
mis-configured or malicious BGP router either originates or
announces an AS path for an IP prefix not owned by the
router’s AS. In these BGP updates the misbehaving router’s
AS appears very attractive as a next hop for forwarding traffic
towards that IP prefix. ASes that receive such ill-formed BGP
updates may accept and further propagate the false route. As
a result the route entry for the IP prefix in these ASes may be
polluted and traffic from certain part of the Internet destined
to the victim prefix is redirected to the attacker AS.

Such weakness of the inter-domain routing infrastructure
has great danger of being exploited for malicious purposes.
For instance the aforementioned misbehaving AS may drop
all traffic addressed to the victim prefix that it receives
and effectively perform a denial-of-service attack against the
prefix owner [22]. It can also redirect traffic to an incorrect
destination and use this for a phishing attack [22]. More over,
it can also use this technique to spread spams [23]. Thus,
we refer to this kind of route manipulation as “IP prefix
hijack attacks” and the party conducting the attack “hijacker”
or “attacker”. Correspondingly the misbehaving router’s AS
becomes the “hijacker AS”, and the part of the Internet whose
traffic towards the victim prefix is redirected to the hijacker
AS is “hijacked”. So do we call the data forwarding paths that
are now altered to go through the hijacker AS “hijacked”. We
also refer to the victim prefix as the “target prefix”.

Based on how the attacker deals with the hijacked traffic,
we classify prefix hijacks1 into the following three categories:

• Blackholing: the attacker simply drops the hijacked
packets.

• Imposture: the attacker responds to senders of the hi-
jacked traffic, mimicking the true destination’s (the target
prefix’s) behavior.

• Interception: the attacker forwards the hijacked traffic
to the target prefix after eavesdropping/recording the
information in the packets.

While the conventional view of the damage of prefix hijacking
has been focused on blackholing, the other two types of
hijacking are equally important, if not more damaging [24].
In addition, the characteristics of different hijack typesare
different, which often affect how different types of attacks are
detected.

There have been a number of existing approaches proposed
for detecting prefix hijacks. They utilize either information
in BGP updates collected from control plane [15]–[17], [19],
path or end-to-end probing information collected from data
plane [20], or both [3], [18], [24]. We will not get into the
details of most of these approaches here because LOCK is a
hijacker-locating scheme, not a hijack detection scheme. The
difference between these two will be explained later in III-A.
To locate a hijacker, the LOCK scheme only needs to know
which prefix is hijacked. Therefore it does not depend on any
particular detection method as long as the method is able to
provide victim identity.

However, because LOCK follows a data-plane approach, it
is beneficial to briefly introduce the methods used in [20].
[20] proposed a light-weight distributed scheme for detecting
IP prefix hijacks in data-plane. The design of the detection
scheme is based on two key observations made on the Internet,
hop count stability and AS path similarity. This detection
system continuously tests these two assertions in a distributed
and light-weighted manner, and uses any departure from this
stability and similarity as the trigger for target prefix hijack
alarms. It can detect the hijacking events with low false
negative and false positive ratios. We should also point out
that because both LOCK and [20] require a distributed multi-
vantage point monitoring system, and because both LOCK and
the path disagreement test of [20] usetraceroute to gather
monitor-to-target prefix path information, a joint detection-
location system based on LOCK and [20] has the potential
of being very efficient.

III. F RAMEWORK

In this section, we present an overview of key ideas of the
hijacker locating algorithm in LOCK.

A. Challenges

Currently, the most commonly used hijacker-locating ap-
proach is to look at the origin ASes of the victim prefix, which

1We use the term “hijack” to refer to all three kinds of prefix hijack attacks
unless otherwise specified.
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can typically be identified by inspecting BGP announcements.
When a victim prefix is found to be hijacked, any newly
appearing origin AS would be considered as the hijacker
AS. However, this simple approach will fail if the hijacker
is capable of engaging countermeasures. For instance such
a hijacker can fabricate an AS-path and include this fake
AS-path in its announcements when it first announces the
victim prefix to conceal the identity of the true origin AS, –
itself. Thus, it is not trivial to locate a countermeasure-capable
hijacker.

To locate hijacker in control plane, a fair number of tapping
points must be installed at diversely distributed locations
to collect BGP announcements in real time.AS paths from
different vantage points to the same prefix are then computed
and the intersection points of these AS paths are inspected
to identify the hijacker. Currently ISPs many have limited
resources to deploy such tapping points diversely enough. This
entry barrier limits the opportunity to only very resourceful
parties. There are some public available control plane datalike
Route Views. But it cannot cover all targets, and the updates
are not real-time enough.

Our previous work [20] proposed a data-plane prefix hi-
jacking monitoring framework to overcome the limitations
of control-plane solutions. Following the same rationale,this
paper takes that solution one step further by trying to locate
the hijackers using only data-plane mechanisms as well.

It is actually more difficult to locate hijackers in the data
plane than in the control plane. The reason is that in the
control plane at least the hijacker AS will appear in the
hijacked paths regardless what kind of countermeasures the
hijacker may poll. However, in the data plane the hijacker
may be completely invisible from path probes. Almost all
data-plane path probing mechanisms are derived from the well
known tracerouteprogram. Intraceroute, triggering messages
with different initial TTL values are sent towards the same
destination. As these messages are forwarded along the path
to this destination, as soon as a message’s TTL reduces to
zero after reaching a router, the router needs to send back
an ICMP Timeout message to notify the probing source. If
the triggering messages go through the hijacker, this happens
when the triggering messages’ initial TTL values are greater
than the hop distance from the probing source to the hijacker,
the hijacker may do many things to interfere the path probing.
For instance, the hijacker may simply drop the triggering
messages without replying to interrupttracerouteprobing from
proceeding further. Or it may send back ICMP Timeout mes-
sages with arbitrary source IP addresses to trick the probing
source into thinking routers of those addresses are en route
to the destination. The hijacker may even respond with ICMP
Timeout messages before the triggering messages’ TTL values
reach zero. Blackholing and imposture hijacks are the typical
examples of such interferences. With this kind of false router
level path, how real any derived AS level knowledge can be
is also in question.

In summary, sophisticated hijackers that are capable of
engaging countermeasures can inject false path information
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Fig. 1. “Honest” hijackers

into measurements collected in both control plane and data
plane, easily evading simple hijacker-locating mechanisms. We
therefore need to design a more effective algorithm for locating
these hijackers.

B. Locating Countermeasure-capable Hijackers

The basic idea of LOCK is based on two key observations.
The first observation is that the data-plane paths from mul-
tiple vantage points to a hijacked victim prefix, if the paths
are hijacked, “converge” to the hijacker AS, independent of
hijacker scenarios and whether the hijacker is countermeasure-
capable. This is easy to understand because the goal of prefix
hijacking is to redirect traffics destined to the victim prefix
to the hijacker. The second observation is that the hijacker
can not manipulate data-plane measurements that do not go
through the hijacker’s AS. More specifically, thetraceroute
responses from the routers between a vantage point and the
router before the first router under hijacker’s control can be
trusted since they are not subject to hijacker’s manipulation.
Of course, LOCK does not know beforehand which routers
are controlled by the hijacker. Instead, based on above two
key observations, LOCK tries to combine the data-plane path
information collected from multiple monitors and narrow
down to a small number of candidate hijackers.

We use Figure 1 to illustrate the first observation. For
the ease of presentation, for now we suppose hijackerH is
“honest”, i.e., it does not modify thetracerouteinformation,
and worry about the hijacker’s countermeasures later. Suppose
the routes of monitorsM1 M2, ... Mk are polluted by the
hijackerH , which means that the traffic sent by these monitors
to the victim prefix will go through the hijackerH . In such
a case, the hijacker ASH appears on all of these polluted
paths. In other words,H should be among the “convergence
points” of all these paths. By convergence points, we mean
the ASes that show up in all the polluted paths. In Figure 1,
the convergence points of the polluted paths are within the
shaded area surrounded by the dashed eclipse. Moreover, it is
intuitive that if the set of monitors are topologically diverse
enough, the hijacker should be the first convergence point or
among the first few convergence points.

Unfortunately, this basic “convergence points” approach
does not directly work for blackholing or imposture attacks,
or other hijacker countermeasures. In these cases, the hijacker
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Fig. 2. Malicious hijackers, more general case

AS may not show up at all, leave alone being one of the
“convergence points”. More importantly, the hijacker may
even generates invalid “tails” to trick the monitors. Figure 2
illustrates the situation.

To handle the case where hijacker AS does not show up on
the AS-level traceroute path, LOCK seeks a solution from the
second key observations we mentioned earlier: thetraceroute
results should be reliable for the portion of a path before the
path enters the hijacker AS. In other words, the paths from
all the polluted monitors to the victim prefix must include the
upstream AS neighbors of the hijacker AS, with respect to the
monitors. So if we can identify these upstream neighbors of
the hijacker AS, the hijacker must be within the intersection of
neighbor sets of the hijacker’s neighbors. And chances are the
size of the intersection set is very small if the monitors have
diversified locations. For example, in Figure 2, ideally suppose
we know ASesX , Y , and Z (which are on the polluted
paths from monitorsM1, M2, andMk, respectively) are the
upstream neighbors of the hijacker. We can then infer that the
hijackerH must be within the intersection of the neighbor sets
of X , Y , andZ. Of course in reality LOCK does not know
beforehand which ASes are the neighbors of the hijackers,
thus each AS in a polluted path can potentially be such a
neighbor of the hijacker AS. And hence the hijacker could
be a neighbor of any of these nodes. We therefore put all the
neighbors ofeachAS on a polluted path together with the path
nodes themselves to form aneighborhood setof the polluted
path. The hijacker must be included in this neighborhood set.

For reasons that we will explain in the Section V, instead
of using the neighborhood set of an arbitrary path the LOCK
conservatively starts from the union of all the neighborhood
sets of all polluted paths,H. Then given that all polluted
paths go through a neighbor AS of the hijacker, an AS which
appears in more neighborhood sets is more likely to be the
hijacker. We thus “rank” the ASes withinH based on how
many neighborhood sets an AS is in to narrow down to the
handful of top ranked ASes. Also when there are multiple
convergence points, the earliest convergence point is more
likely to be the hijacker than the later ones. More detailed
ranking algorithm will be presented in Section V.

C. LOCK Scheme Overview

LOCK consists of three key steps: (i) For each target
prefix, we select a number of monitors from a set of can-
didate monitors. (ii) Each monitor runstraceroute to each
target prefix, either periodically or on-demand when a hijack
detection system detects a hijack to the target prefix. (iii)
The tracerouteresults from multiple monitors are analyzed to
locate the hijackers. Details of the monitor selection algorithm
and locating algorithm will be presented in Section IV and
Section V, respectively.

LOCK’s hijacker-locating scheme has a number of advan-
tages. First of all, LOCK only collects live network infor-
mation from data plane by runningtraceroutefrom a set of
carefully chosen monitors to each target prefix. No live BGP
feed is needed for the locating scheme, making it possible for
those who only have data-plane access to deploy LOCK.

Another advantage of LOCK is that it is independent of
hijacker detection system. It can work with any control-plane,
data-plane, or hybrid detection system. The data-plane probing
in LOCK can be run periodically for each target prefix, in
parallel with a detection system. After the detection system
detects a hijack of the victim prefix, LOCK is then consulted
for hijacker location. Alternatively, LOCK’straceroutecan be
triggered on-demand by a detection system once a hijack is
detected. In either case, as long as each monitor for the victim
prefix has finished atracerouteto it after the hijack polluted
the routes, the hijacker location result becomes available. This
highlights another advantage of LOCK: it locates hijacker in
a short period time, usually within a few minutes, which is
much more quickly than any locating system which includes
human factor.

Moreover, LOCK has one unified hijacker-locating algo-
rithm, which works for all different hijacking scenarios (black-
holing, imposture, or interception), with either “honest”or
“dishonest” hijacker. This simplicity is important to the users
of the system since they may not know what kind of hijacking
scenarios they are facing. Solutions that have different algo-
rithms for differen hijack types may have to test against all
possible hijack types, while with LOCK the same approach
works for all situations..

LOCK is light-weight in terms of monitoring overhead.
This advantage comes from three factors. First, the probing
packets on the data plane are quite small. Each monitor only
needs several dozen bytes to get the probing information
for a target prefix. Second, our locating scheme is naturally
distributed. The probing load to a number of monitors are
distributed diversely across the Internet. Third, the advanced
monitor selection scheme can help us to reduce the number of
monitors, so that the probing overhead can be further reduced.

Finally, LOCK is robust against errors for two reasons. First,
the diversified locations of multiple monitors can improve the
chance of catching hijacking events and locating the hijacker.
Second, the way we produce the ranked suspect list is a
majority rule type of approach, robust against individual errors.



5

D. Running LOCK with data-plane hijack detection system

While our LOCK system can work with any hijack detection
system, running it together with a data-plane approach does
offer some advantages. This is because the existing data-plane
monitors and measurement data can also be (re)used by LOCK
to locate the hijacker. For example, if we use the scheme
in [20] as the detection system and LOCK as the locating
system, LOCK can simply reuse thetracerouteresults from
the detection system, and no extra measurements are needed.
This results in less monitoring overhead and quicker hijacker-
locating.

IV. M ONITOR SELECTION

LOCK operates in a distributed fashion from a number of
monitors on the Internet. Both the number of monitors and
locations of these monitors affect the accuracy in locating
prefix hijackers. In general, the more monitors used by LOCK,
the higher accuracy LOCK can achieve in locating prefix
hijackers, and the more measurement overhead are incurred
by LOCK. More importantly, the measurement overhead in-
crease linearly as the number of monitors increases, while
the improved accuracy gained by each additional monitor
can gradually diminish as the number of monitors increases.
Therefore, it is hopeful to achieve very good accuracy with a
limited number of carefully selected monitors.

In this section, we present a novel algorithm for selecting
a number of monitors from a candidate set. In particular,
we model the monitor selection problem as follows. Initially,
we haveM candidate monitors around the world. For each
target prefix, we select a subsetm monitors among theM
candidates as monitors. In order to achieve the highest possible
hijacker-locating accuracy with a limited number of monitors,
the selection of monitors should be guided by two objectives:
(i) maximize the likelihood of observing hijacking events on
the target prefix; and (ii) maximize the diversity of paths from
monitors to the target prefix so that a hijacking event can be
observed from multiple distinct vantage points.

Our algorithm consists of three steps:
1) Clustering: TheM candidate monitors are grouped into

m clusters. Monitors in the same cluster have more
similar paths to the target prefix than those in different
clusters.

2) Ranking: Candidate monitors in each cluster are ranked
based on probability of their paths to the target prefix
being polluted when the prefix is hijacked. The mon-
itors with higher ranks are more likely to observe the
hijacking event.

3) Selecting: The monitor which ranks the highest in each
cluster is chosen to monitor the target prefix. Thus, a
total of m monitors are selected for each target prefix.

A. Clustering

For a given target prefix, the candidate monitors are clus-
tered based on similarity of their AS-level paths to the prefix.
We measure thesimilarity between a pair of paths as the
number of common ASes between these two paths over the

length of the shorter path. If there is no common AS, the
similarity score is 0. On the other hand, if the two paths are
identical or one path is a sub-path of the other, the similarity
score is 1. We also define thesimilarity between two clusters
of paths as the maximum similarity between any two paths,
one from each cluster.

We model the monitor selection problem as a hierarchical
clustering problem. Such problems have well-known algo-
rithms, such as [25], that are polynomial-time complex. In this
paper, we adopt the following simple clustering algorithm2.
First, we start fromM clusters, with one candidate site in
each cluster, and compute similarity score for each pair of
clusters. Second, we identify the pair of clusters with the
largest similarity score among all pairs of clusters, and merge
these two clusters into a single cluster. Third, we recompute
the similarity score between this newly-formed cluster with
each of the other clusters. We repeat steps two and three until
only m clusters remain.

B. Ranking

We rank candidate monitors in each cluster based on their
likelihood of observing hijacking events on the target prefix
t (i.e., the path from monitor to target prefix is polluted
by hijacking). For a given candidate sites, whether or not
the route froms to t is polluted by hijackerh depends on
the original best route (before the hijacking happens) from
s to t and the fake route announced byh. This has been
demonstrated by previous analysis in [24].

We assume that “prefer customer route” and “valley-free
routing” are commonly adopted interdomain routing policies
on today’s Internet. We denote the original best route froms to
t as a “customer-route”, a “peer-route”, or a “provider-route”
if the next-hop AS on the route froms to t is a customer, a
peer, or a provider of the AS to whichs belongs, respectively.
According to the interdomain routing policies, a customer-
route would be the most preferable and a provider-route would
be the least preferable by each router; similarly, when policy
preferences are equal, the route with shorter AS path is more
preferable. Therefore, when hijackerh announces a fake path,
the monitor whose original best route is provider-route is more
likely to be polluted than a original route of peer-route, which
in turn is more likely to be polluted than a original route
of customer-route; when the policy preferences are equal, the
monitor whose original best route has a longer AS path to
t is more likely to be polluted than the one whose original
best route has a shorter AS path (Please refer to Table 1
of [24] for detailed analysis). Our ranking algorithm is shown
in Algorithm 1.

V. H IJACKER-LOCATING ALGORITHM

A. Pre-Processing

When a prefix is hijacked, a portion of the Internet will
experience the hijack. Traffic originated from this portion

2The complexity is not a concern here because the number of clusters is
relatively small comparing to traditional clustering problem.
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Algorithm 1 : Ranking monitors in each cluster
foreach monitor i in the cluster1

if provider-routeR[i] = 300;2
elseif peer-routeR[i] = 200;3
elseR[i] = 100;4
R[i]+ = D(i, t); /* add the AS-level distance */5

of the Internet and destined for the hijacked prefix will be
altered to go through the hijacker. Monitors deployed in this
affected portion of the Internet can observe that their monitor-
to-prefix paths being altered. These monitor-to-prefix paths are
the foundation of our hijacker-locating algorithm. Only paths
changed by the hijack event should be supplied to the hijacker-
locating algorithm. Methods such as the one outlined in [20]
help separate real hijack induced path changes from changes
caused by other non-hijack reasons.

The most common tool for acquiring IP forwarding path
is the well knowntracerouteprogram. This program sends
out a series of triggering packets with different initial TTL
values to trigger the routers en route to the destination to
return ICMP Timeout messages as soon as they observe a
triggering message’s TTL value reaching 0, hence revealing
these routers’ identities. Thesetracerouteresults are router-
level paths and they need to be converted to AS-level paths.
During this conversion, NULL entries intracerouteresults are
simply discarded. This simplification rarely has any effecton
the resulted AS path because astracerouteproceeds within a
particular AS, only if all routers in this AS failed to show up
in tracerouteresults our results may be affected, which we
have found this to be very rare. These resulting AS paths are
known as the “reported paths” by the monitors in the rest of
the section.

We use publicly available IP to AS mapping data provided
by the iPlane services [26] to convert router IP addresses to
their corresponding AS numbers. It is known that accurately
mapping IP addresses to AS numbers is difficult due to
problems such as Internet Exchange Points (IXPs) and sibling
ASes [24], [27]. We argue that the impact of these mapping
errors on the results of our hijacker-locating algorithm is
minor. Firstly the distribution of the nodes, either routers or
ASes, that may cause any mapping error in their corresponding
Internet topologies, either router level or AS level, is sparse.
If our paths do not contain these problematic nodes, our
results are not affected by mapping errors. Secondly, it will
become apparent, as more of the details of the hijacker-
locating algorithm are described, that our algorithm is rather
robust against such mapping errors. As long as these errors
do not occur when mapping nodes near the hijacker, they will
not affect the result of our algorithm.

It is also helpful to perform sanity checks on the AS paths
before we begin the hijacker-locating algorithm. The hijacker
may forgetracerouteresults if atraceroutetriggering message
actually passes through the hijacker. Since the prefix has
been hijacked, triggering messages with large enough initial
TTL values, at least larger than the hop distance between

the probing monitor and the hijacker, will inevitably pass
through the hijacker. For a sophisticated hijacker, this isa good
opportunity to fabricate responses to these triggering messages
to conceal its own identity. As a result, the AS paths mapped
from such a faketraceroute results may contain erroneous
ASes as well. It is easy to see that these “noises” only appear
in the later portion of a path because the portion that is before
the hijacker cannot be altered by the hijacker, – the ICMP
triggering messages do not reach the hijacker. Hence if a node
in a path is determined to be a fake node, we really do not
need to consider any nodes beyond that point because this
point must be already beyond the hacker’s position in the path.

In the pre-processing part, we consider the duplicated ap-
pearances of AS nodes. If a node appears more than once in a
path, any appearance beyond the first is considered fake. This
is because realtracerouteresults should not contain loops.

B. Basic Algorithm

We denote the set of monitors that have detected the
hijacking and reported their altered monitor-to-prefix paths by
M. For each monitormi within M, there is an AS level
monitor-to-prefix pathPi, resulted fromtracerouteand pre-
processing. We define the neighborhood set of a specific path
Pi, denoted asN (Pi), as the union of all path nodes and their
one-hop neighbors. The target prefix’ AS should be removed
from all N (Pi). The reason is simple, – it is not the hijacker
AS.

In this paper we are interested in the neighborhood sets of
the AS paths instead of just the AS paths themselves because
the hijacker may actually not show up in any of the AS paths
if it manipulatestracerouteresults. However, even under this
condition the ASes which are immediately before the hijacker
along the paths are real. Thus, the union of all neighborhood
sets of all reported AS paths,H =

⋃
i
N (Pi), form our search

space for the hijacker. We denote each node in this search
space asak. The hijacker-locating algorithm is essentially a
ranking algorithm which assigns each node inH a rank based
on their suspicious level of being the hijacker.

The LOCK algorithm ranks each AS nodeak ∈ H based
on two values,covered countC(ak) and total distance to
monitorsD(ak). The covered countis simply computed by
countingak appearing in how many path neighborhood sets.
For each neighborhood setN (Pi) that ak is a member, we
compute the distance betweenak and the monitor of the path
mi, d(mi, ak). This distance equals to the AS-level hop count
from mi to ak along the pathPi if ak is on the pathPi.
Otherwise,d(mi, ak) equals to the distance frommi to ak ’s
neighbor, who is both onPi and the closest tomi, plus 1. If
ak is not a member of a path neighborhood setN (Pi), the
distanced(mi, ak) is set to0. The total distance to monitors
equals to the summation of alld(mi, ak).

After for eachak in H both covered countC(ak) and total
distance to monitorsD(ak) are computed, we rank all nodes in
H firstly based on theircovered count. The greater thecovered
counta nodeak has, the higher it is ranked. Then for nodes
having the samecovered count, ties are broken by ranking
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them based on theirtotal distance to monitors, –the lower the
total distance, the higher the rank. If there are still ties,node
ranks are determined randomly.

Hence, the final result of the locating algorithm is a list of
nodesak, ordered based on how suspicious each node is being
the hijacker. The most suspicious AS appears on the top of
the list. The pseudo-code of the locating algorithm is shown
in Algorithm 2.

Algorithm 2 : The pseudo-code of locating algorithm
Initializing1

setH, C, D empty;2
Updating3

foreach mi in the monitor setM4
foreach ak ∈ N (Pi)5

if ak ∈ H6
D(ak) += d(mi, ak);7
C(ak) += 1;8

else9
insertak in H ;10
C(ak) = 0;11
D(ak) = d(mi, ak);12

Ranking13
sort ak ∈ H by C(ak);14
for ak with the same value ofC(ak);15

sort ak by D(ak);16

The ranking algorithm described here may seem overly
complicated for finding where the reported paths converge.
However it is designed specifically to be robust against various
measurement errors and possible hijacker countermeasures.
One particular reason for this design is to reduce the effectof
individual false paths. If a monitor-to-prefix path is changed
due to reasons other than being hijacked and the monitor
falsely assesses the situation as hijack, the path reportedby
this monitor may cause confusion on where the paths converge.
Since it is difficult to distinguish this kind of paths beforehand,
our algorithm has adopted the approach as described above to
discredit the effect of these individual erroneous paths. For
similar reasons, our ranking algorithm is robust against the
IP-to-AS mapping errors if any.

Another reason for outputting an ordered list is that there are
cases that hijacked paths converge before these paths reachthe
hijacker (early converge). This is more likely to happen when
the hijacker is located far away from the Internet core where
the connectivity is rich. In this case the hijacked paths may
converge at an upstream provider of the hijacker in stead of the
hijacker itself. Although as we will show later these hijacking
scenarios typically have small impacts, in other words the
portion of the Internet that is affected by such hijacks is small;
still we wish to locate the hijacker. A list of suspects ranked
by level of suspicion is well suited for addressing this issue.

C. Improvements

After the suspect list is computed, we can apply additional
post-processing methods to further improve our results. The
basic algorithm is very conservative in the way thatH includes
all possible candidates. Now we look into ways thatH may

be reduced. The hope is that with a trimmed suspect set to
begin with, the locating algorithm can get more focused on the
hijacker by increasing the rate that the most suspicious node
on the list is the hijacker. Both improvements are designed to
alleviate the early converge problem we mentioned before.

1) Improvement One: AS Relationship:In the basic algo-
rithm, we have only taken AS topology into account. In other
words, all topological neighbors of nodes on a reported AS
path are added to the path’s neighborhood set. In reality, not
all physical connections between ASes are actively used for
carrying traffic. In particular, some connections may be used
only for traffic of one direction but not the other. This is largely
due to profit-driven routing policies between different ISPs.
Internet paths have been found to follow the “Valley-free”
property [28], i.e. after traversing a provider-to-customer edge
or a peer edge, a path will not traverse another customer-to-
provider path or another peer edge. If we constrain our suspect
set using this AS relationship based property by removing the
neighbors that do not follow the “Valley-free” property from
the neighborhood set of each reported path, we are able to
reduce the size of the neighborhood set and further on the
suspect setH.

One matter needs to be pointed out is that not all links on the
reported paths are necessarily real due to the hijacker’s coun-
termeasures. Since we do not know what links are fabricated
we should not trim the neighborhood sets too aggressively.
We only perform this improvement on path links that we are
reasonably certain that they are real. In particular, as we know
that an attacker cannot forge path links that are before itself,
thus we can reasonably consider that on each reported path the
links that are before the node immediately before the most
suspicious node are real, and the trimming is only done on
neighbors of these links.

This AS relationship based improvement is incorporated
into the basic algorithm in an iterative fashion. After each
execution of the basic algorithm produces a ranked suspect
list, we can assume that on each path from the path’s reporting
monitor to the node immediately before the most suspicious
node, all AS paths are valid. Based on these valid links, we
can further infer the valid link in each neighborhood set. When
there is any change of neighborhood set, we run the locating
algorithm again to update the suspicious list. The iteration will
stop if there is no change of suspicious list.

2) Improvement Two: Excluding Innocent ASes:The sec-
ond improvement focuses on removing nodes from the suspect
set H of whose innocence we are reasonably certain. One
group of these nodes are the ones that are on the reported
paths that actually pass through the most suspicious node and
before the most suspicious node. The reason for this exclusion
is again that the attacker cannot forge the identity of these
nodes.

The second group of the innocent nodes are selected based
on the path disagreement test described in [20]. In path
disagreement test, a reference point that is outside of the target
prefix but topologically very close to the prefix is selected and
the path from a monitor to this reference point and the path
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from same monitor to the target prefix are compared. If they
differ significantly it is highly likely that the prefix has been
hijacked. The high accuracy of this test leads us to believe
that nodes on monitor-to-reference point paths are not likely
to be the hijacker. They can be excluded from the suspect set.

The second improvement is again incorporated into the
basic algorithm in an iterative fashion. After each execution
of the basic algorithm, the suspect set is reduced by removing
nodes of the two aforementioned innocent groups. Then basic
algorithm is executed again using the reduced suspect set. The
iteration is repeated until the basic suspect set is stable.

VI. EVALUATION

We implemented and deployed LOCK on PlanetLab [29].It
is worth pointing out that LOCK can be deployed on any
network nodes, not limited to the planetlab nodes. Even the
end user can deploy such system using P2P fashion. We use
Planetlab because it is relatively easy to control. We then
evaluated the performance of LOCK based on measurements
of the deployed LOCK system. In this section, we first present
our measurement setup and evaluation methodology. Then we
evaluate the performance of the monitor selection algorithm
in LOCK, and the effectiveness of LOCK against against
synthetic hijacks, reconstructed previously-known hijacking
events, and controlled real attacks.

A. Measurement Setup

1) Candidate Monitors:In our experiments, we choose a
number of PlanetLab [29] nodes as candidate network location
monitors. These candidate monitors are selected to ensure
geographical diversity. We manually select 73 PlanetLab nodes
in 36 distinct ASes at different geographical regions. More
specifically, relying on the DNS name, we select half of US
nodes, which covers east, west coasts and the middle area;
and half from other different countries, which covers different
continents. For each target prefix, a set of monitors will be
selected among these candidate monitors using the algorithm
presented in Section IV.

2) Target Prefixes:We selected target prefixes from four
different sources: (i) Multiple Origin ASes (MOAS) prefixes,
(ii) Single Origin AS (SOAS) prefixes with large traffic
volume, (iii) prefixes of popular Web sites, and (vi) prefixesof
popular online social networks. To get prefixes from sources
(i) and (ii), we first use BGP tables obtained from Route-
Views [30] and RIPE [31] to identify the initial candidates of
MOAS and SOAS prefixes. Then for each candidate prefix, we
try to identify a small number (up to 4) of live (i.e. responsive
to ping) IP addresses. To avoid scanning the entire candidate
prefixes for live IP addresses, we mainly use the prefixes’
local DNS server IP addresses. If we fail to verify any live
IP address for a particular prefix, we discard this prefix from
our experiments. Using this method, we have selected 253
MOAS prefixes. We also ranked all SOAS prefixes based on
“popularity” (i.e. traffic volume observed at a Tier-1 ISP based
on Netflow) of the prefix and selected top 200 prefixes with
live local DNS server IP addresses.

We also selected prefixes that correspond to popular ap-
plications on the Internet: Web and online social networks.
In particular, we selected top 100 popular Web sites based
on the Alex [32] ranking and obtain their IP addresses and
corresponding prefixes. We also obtained IP addresses and
prefixes of YouTube and 50 popular online social networks3.
Each of the selected online social networks has at least
1 million registered users in multiple countries. Combining
prefixes from all above four sources, we have a total of 451
target prefixes.

3) Measurement Data Gathering:In our experiments, each
monitor measures its paths to all selected IP addresses in
all target prefixes viatraceroute. We also measured paths
from each monitor to reference points of target prefixes [20].
In addition, each monitor also measures its paths to other
monitors. We obtain AS-level paths of above measured paths
by mapping IP addresses to their ASes based on the IP-to-AS
mapping published at iPlane [26].

The results presented here are based on monitoring data
collected from March 20th, 2008 to April 20th, 2008. In
particular, we measured each path (from a monitor to a target
prefix) every 5 minutes.

In addition, we obtained the AS topology data during the
same time period from [33]. We also used the AS relationship
information captured customer-to-provider and peer linksover
6 month (from June 2007 to December 2007) using the
inferring technology described in [34].

B. Evaluation Methodology

We evaluated LOCK based on three sets of prefix hijacking
experiments: (i) synthetic prefix hijacking events based onIn-
ternet measurement data; (ii) reconstructed previously-known
prefix hijacking events based on Internet measurement data;
and (iii) controlled prefix hijacking events on the Internet.

1) Simulating Synthetic Prefix Hijacking Events:We con-
sider commonly used interdomain routing policies: “prefer
customer routes” and “valley-free routing”. In particular, an
AS will prefer routes announced from its customer ASes than
those announced from its peer ASes than those announced
from its provider ASes. These policies are driven by financial
profit of ASes. If two routes have the same profit-based
preference, then the shorter route (i.e., fewer AS hop count)
is preferred.

In our evaluation, we simulated three hijacking scenarios
based on the analysis in Section III-B: two honest scenarios
(imposture and interception) and a malicious scenario. In each
attack scenario, we selected one PlanetLab node as the monitor
s, another PlanetLab node as the hijackerh, which attempts
to hijack a target prefixt.

In the imposture scenario, the path froms to t will become
the path froms to h if s is polluted byh’s attack. Otherwise,
the path froms to t remains the same as before the attack.
This was repeated for all possible selections ofh, s, and t,
except for cases wheret’s AS is on the AS path froms to

3The candidate list of online social networks is from http://en.wikipedia.
org/wiki/List of social networking websites.
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h because the hijack will never succeed in these cases. In
addition, since some paths were not traceroute-able, we had
to discard combinations that require these paths.

The setup for simulating interceptions and malicious sce-
narios is similar to that of the imposture scenario. In the inter-
ception scenario, the path froms to t will be the concatenation
of paths froms to h and fromh to t if s is polluted byh’s
attack. However, we exclude the cases that there is one or
more common ASes between these two paths. This is because
the hijackerh cannot successfully redirect the traffic back to
the target prefixt, i.e., the interception hijack fails.

In the malicious scenario, the hijackerh has countermeasure
against LOCK. The path froms to t will be the path froms to
h (the AS ofh will not show up) with a few random AS hops
appended afterh. The generation of these random AS hops is
kind of tricky. If h generates different noisy tails for different
monitors, these tails may not converge at all. In this case,
it is easier for our locating algorithm to locate the hijacker.
In order to play an adversary of the locating algorithm, we
simply randomly generate one tail and use it for all monitors.
In this way, covered countsfor these random AS should be
high, making it harder to locate the real hijacker.

2) Reconstructing Previously-Known Prefix Hijacking
Events: We obtained the list of previously-known prefix
hijacking events from the Internet Alert Registry [35]. IAR
provides the network operator community with the up to date
BGP (Border Gateway Protocol) routing security information.
Its discussion forum4 posts suspicious hijacking events.
We choose 7 events that have been verified, including some
famous victims such as YouTube and eBay, during time
period from 2006 to 2008.

We reconstruct these 7 hijacking events using the following
method. First, we select the traceroutable IP in each victim
AS as the probing targett, and the traceroutable IP in each
hijack AS as the hijackerh . Then we collect the traceroute
information from each monitoring sites to these targetst
and hijackersh. The routing policy is based on the profit
driven model. Since we don’t know what kind of behavior
each hijacker took (imposture, interception or backholing),
We conservatively assume that the hijacker will try to evade
our measurement. So it follows the malicious scenario we
mentioned before.

3) Launching Controlled Prefix Hijacking Events:We con-
ducted controlled prefix hijacking events on the Internet using
hosts at four different sites, namely Cornell, Berkeley, Seattle,
and Pittsburgh. Each host runs the Quagga software router and
establishes eBGP sessions with different ISPs. Effectively, this
allowed us to advertise our dedicated prefix (204.9.168.0/22)
into the Internet through the BGP sessions. The idea behind
the experiments was to use our prefix as the target prefix
with one of the sites serving as the owner of the prefix and
the other three sites (separately) serving as the geographically
distributed attackers trying to hijack the prefix. More imple-

4http://iar.cs.unm.edu/phpBB2/viewforum.php?f=2&sid=
e2e2dfedbbd77a560d0710c14a0cf5ff
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mentation details can be found in [24]. In our experiment,
we focused on the imposture scenario. There are 12 hijacking
cases by switching role of each site. These attacks are launched
according to a pre-configured schedule during period from
May 2, 2008 to May 4, 2008.

4) Performance Metrics:LOCK identifies suspicious hi-
jackers and ranks them based on their likelihood of being
the true hijacker. The hijacker ranked at top one is most
suspicious. We thus define thetop-n accuracyof LOCK as
the percentage of hijacking events that the true hijacker ranks
as topn on the suspect list, wheren is a parameter. We use
this parameterized definition because different operatorsmight
have different preference. Some might prefer knowing just
the most suspicious hijacker, in which top-1 accuracy is most
important. Others might not mind learning a longer suspect
list to increase the likelihood that the hijacker is included in
the suspect list. We will later show that the top-2 accuracy is
already very high.

In addition, we defineimpactof a hijackerh as the fraction
of the ASes from which the traffic to the target prefixt is
hijacked toh, similar to what is done in [36]. We will then
study the correlation between LOCK’s locating accuracy of a
given hijacker and the impact of its attack.

C. Monitor Selection

Not only the number of monitors affects the locating quality,
the locations of the monitors and how they are distributed on
the Internet also matter. In this sub-section, we investigate the
effectiveness of various monitor selection algorithms.

1) Visibility of Candidate Monitors:Before evaluating the
monitor selection algorithm, we first investigate exactly how
many monitors can detect each hijack event. That is, for each
hijack, how many monitor-to-prefix paths would be altered to
go through the hijacker? This statistics offers important insight
into what kind of hijacker-locating quality can be expected
from LOCK because how well the locating algorithm performs
is related to how many monitors can observe the hijack.

From Figure 3 we can see that more than 90% of the hijack
events are observed by more than 10 monitors. This is very
encouraging because generally the more monitors can observe
a particular hijack event, the more likely the algorithm can
locate the hijacker.

2) Performance of Monitor Selection Algorithms:We com-
pare the performance of the monitor selection algorithm (re-
ferred asclustering and ranking) proposed in Section IV with
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Fig. 4. Performance of monitor selection algorithms

the following three monitor selection algorithms: (i)random:
randomly selectingm monitors from allM candidates; (ii)
clustering: dividing M monitors into clusters based on the
clustering algorithm proposed in Section IV-A, then randomly
selecting one monitor from each cluster; and (iii)ranking:
rankingM monitors based on the ranking algorithm proposed
in Section IV-B, then selecting the firstm candidates.

Figure 4 shows the top-1 accuracy of different monitor
selection algorithms when varying the subsets of monitors.We
focused on synthetic attacks since the dataset is much larger
than previously-known hijacks and controlled real hijacks. We
find that: (i) there is always a trade-off between the number
of monitors selected and hijacker-locating accuracy; and (ii)
theclustering and rankingalgorithm outperforms the rest. For
example, for imposture attacks, selecting 10 monitors based on
the ranking and clustering algorithm is enough for achieving
80% top-1 accuracy. This is only 1/3 of number of monitors
needed to reach the same top-1 accuracy with eitherranking
or the clustering algorithm, or 1/6 if monitors are selected
randomly. Hence in our experiments in the rest of the section,
whenever we need to select monitors, we use theclustering
and rankingalgorithm, unless otherwise specified.

Moreover, we want to make sure that the monitor selection
algorithm does not overload any monitors by assigning too
many target prefixes to it for monitoring. Figure 5 shows
the work load on different monitors after for each target
prefix we selectm = 30 monitors from the total pool of
M = 73 candidate monitors using the monitor selection
algorithm described in Section IV. Individual monitor’s work
load is computed as the number of target prefixes assigned
to it divided by the total number of target prefixes. The
average work load, which is the load each monitor gets if
the monitoring tasks are evenly across all monitors equally
instead of assigning prefixes to monitors that can monitor most
effectively, ism/M and plotted as the horizontal baseline in
Figure 5. As we can see, although some monitors may get
more workload than others, only four monitors out of 73 have
load above 0.5, which means that they monitor more than half
of prefix targets, and the load the busiest monitor get is still
below 0.55.

D. Synthetic Prefix hijacking events
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Fig. 5. Load distribution of monitors

1) Effectiveness of Basic Algorithm:The evaluations of two
different aspects of the effectiveness of the hijacker-locating
algorithm are presented in this section. We show how well the
ranked list captures the hijacker identity, as well as how well
the ranked list reflects the impact of the hijack events.

Figure 6 illustrates where the hijacker is ranked in the sus-
pect list produced by the basic algorithm, for different number
of monitors selected. Obviously, the higher the hijacker is
ranked, the better the basic algorithm is. From this figure, we
can see that:

• More than 80% of the time, our basic algorithm pinpoints
the hijacker by ranking it astop 1 on the suspect list,
regardless what kind of attack and with how many
monitors, as long as more than the minimum number of
10 monitors.

• Because of the early convergence problem described in
Section V-B, the hijacker may not be ranked the first.
Therefore as we look into not only the highest ranked
node but even more nodes, the chance that the hijacker
is included in this selective set increases. For example
with 10 monitors, the chance that an imposture hijacker
is found among the top three nodes is more than 94%,
a 14% increase from only looking at the highest ranked
suspect.

• The hijacker-locating algorithm performs best in impos-
ture scenarios. The reason is that imposture paths are
more likely to be straight without detouring.

• Obviously the more monitors we employ, the better the
algorithm works. What is interesting is that seemingly by
havingm = 30 we have reached the point of diminishing
return: having more than 30 monitors no longer improves
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the performance much.

Next, we study the relationship between the impact of a
hijack event and where the hijacker is ranked in the suspect
list. This shows another aspect of the quality of our hijacker-
locating algorithm. That is, not only we want to locate hijack-
ers, we especially want to locate the hijackers causing great
damages. Figure 7 shows the ranking (x-axis) vs the median
impact of all hijackers with the same ranking (Y-axis). All
three plots in Figure 7 show that there is a positive relationship
between the hijacker’s rank and the impact of its hijack attack.
In other words, the larger the impact caused by a hijacker, the
more likely our locating algorithm will rank the hijacker high
in the suspect list. This is mostly due to the fact that the early
converge problems occur mostly at where hijacks have small
impacts, near Internet edge.

2) Effectiveness of Improvements:Finally, we evaluate the
quality of two improvements (I1 and I2) proposed in Sec-
tion V-C. In particular, we are not only interested in the
increase in top-1 accuracy these improvements may bring, but
also the false negative rate (FNR), which is the ratio that the
improvements mistakenly exclude a hijacker from the suspect
list.

Table I shows both sets of numbers for different kinds of
attacks and different number of monitors. Different combina-
tions of the basic algorithm and the improvements are shown
in different rows of the table.

• I2 helps more. The reason is that for I1 we can only
trust the path before converges. But for I2, we have more
information provided by the reference point traceroute.

• When combining I1 and I2, the accuracy can be further
improved. This is because the nodes that I1 and I2 remove
from the suspect list are typically not the same.

• In general, LOCK (i.e., B+I1+I2) is able to pinpoint the
prefix hijacker AS with an accuracy of over 91%.

• The false negative ratio introduced by improvements is
relatively low. For example, when using all monitors we
can improve the accuracy by more than 5% by applying
both I1 and I2, while the false negative ratio resulted from
applying the improvements is only 0.09%

E. Effectiveness on different AS-levels

We study the locating accuracy when the hijacke located in
different level in the AS hierarchy. We classify AS nodes into
three tiers: Tier-1 nodes, transit nodes, and stub nodes like in
[36]. 5 Our hijackers in planetlab belongs to transit nodes, or
stub nodes. When using two improvements and 30 monitors,
we compare the accuracy and false negative ration for these
two classes, in Table II. The hijackers on the higher level could
be loacted more easily. The hijackers on the edge is relatively
hard to locate. We can still achieve more than 90% accuracy.

5To choose the set of Tier-1 nodes, we started with a well knownlist, and
added a few high degree nodes that form a clique with the existing set. Nodes
other than Tier-1s but provide transit service to other AS nodes, are classified
as transit nodes, and the remainder of nodes are classified asstub nodes.

TABLE II
THE EFFECTIVENESS ON DIFFERENTAS-LEVELS

Categority Imposture Interception Malicious
Accuracy FNR Accuracy FNR Accuracy FNR

All 92.4% 0.20% 91.4% 0.17% 91.8% 0.26%
Transit 97.6% 0.04% 96.3% 0.07% 94.8% 0.14%
Stub 90.2% 0.18% 90.1% 0.21% 90.4% 0.35%

TABLE III
THE EFFECTIVENESS ON PREVENTION AFTER LOCATING

Methods Initial Stop the origin Stop in Tier1
LOCK 23.43% 0.10% 2.31%
Manual 23.43% 13.13% 21.90%

TABLE IV
PREVIOUSLY-KNOWN PREFIX HIJACKING EVENTS

Victim AS Hijacker AS Date #monitors
3691 6461 March 15, 2008 16
36561 (YouTube) 17557 February 24, 2008 9
11643 (eBay) 10139 November 30, 2007 7
4678 17606 January 15, 2007 8
7018 31604 January 13, 2007 13
1299 9930 September 7, 2006 5
701, 1239 23520 June 7, 2006 12

F. Effectiveness of filtering after locating the hijacker

After locating the AS, the next step is to filter the fake
AS annoucement from it. We compare the average percentage
of impacted (polluted) AS, before and after the locating and
filtering either stop on the origin or on the Tire1 AS. As
a comparsion, we also select the last hop of AS of the
observed paths as a hijacker (current approach) then do the
same filtering. They are under malicious case. Table III shows
that Lock is more helpful than manual method to prevent
hijacks.

G. Evaluation on Previous-Known Attacks

We reconstructed 7 previously known prefix hijacking
events. Table IV shows the date of these attacks, and ASes
of the hijacker and the target prefix (i.e., the victim). By
using all 73 monitors deployed on PlanetLab, LOCK is able to
accurately locate hijacker AS as the top-1 suspects for all these
hijacking events, i.e., the true hijackers are ranked first on the
suspect list. Using the monitor selection algorithm presented
in Section IV, we also identified the minimum set of monitors
that are required by LOCK to accurately locate the hijacker
in each of these previously-known events. The last column
of Table IV shows that all hijackers can be correctly located
as top-1 suspects by using 16 or fewer monitors. A detailed
investigation shows that these hijacks pollute majority ofthe
monitors, resulting in LOCK’s high locating accuracy.

H. Evaluation on Controlled Real Attacks

In our experiments, we launched real imposture attacks
using four controlled sites one by one. The schedule is shown
in Table V. Each LOCK monitor probes the target prefix
204.9.168.0/22 once every 5 minutes. For the purpose of this
experiment, we use the detection scheme proposed in [20],
which was able to detect all the attacks launched from the
controlled sites. The hijackers in these experiments are honest,
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Fig. 6. The CDF of the rank of hijackers in synthetic attacks
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Fig. 7. Correlating the impact with the ranking value

TABLE I
THE EFFECTIVENESS OF IMPROVEMENT

All monitors m=30
Algorithms Imposture Interception Malicious Imposture Interception Malicious

Accuracy FNR Accuracy FNR Accuracy FNR Accuracy FNR Accuracy FNR Accuracy FNR
B 88.7% 0.00% 86.3% 0.00% 85.4% 0.00% 86.2% 0.00% 84.7% 0.00% 83.5% 0.00%

B+I1 89.8% 0.03% 90.3% 0.17% 88.6% 0.14% 86.4% 0.05% 85.3% 0.14% 84.6% 0.11%
B+I2 91.3% 0.09% 93.1% 0.16% 90.4% 0.10% 90.7% 0.14% 90.6% 0.18% 88.3% 0.20%

B+I1+I2 94.2% 0.09% 94.3% 0.24% 93.1% 0.18% 92.4% 0.20% 91.4% 0.17% 91.8% 0.26%

i.e., no countermeasure is done by the hijackers. Thus we
observe that LOCK locates the hijackers as top-1 suspects in
all the real imposture attacks.

In this real Internet experiment, we are able to evaluate
the response time of LOCK in addition to its accuracy. The
response time is defined as the latency from the time the the
attack is launched by the hijacker to the time that LOCK locate
the hijacker. The response time highly depends on two major
factors: the speed of propagation of invalid route advertisement
and the probing rate employed by LOCK monitors. It usually
takes up to a few minutes for a route advertisement to spread
the Internet. This is the latency that an attack takes before
making full impact on the Internet. After a LOCK monitor is
impacted by an attack, it may also take a few minutes for the
monitor to detect and locate the hijacker because the monitor
probes target prefixes periodically. There are also few minor
factors that may affect the response time. For example, there
can be a few seconds latency for LOCK monitors to get replies
for each probe. However, they are neglected in our evaluation
because they are orders of magnitude smaller than the above
two major factors.

We record the timestamp each attack is launched from a
control site and the timestamp LOCK locates the hijacker (i.e.,
that controlled site). The response time is computed by taking
the difference between the above two timestamps. If alternative
detection scheme is used, the observed response time serves
as a conservative upper bound of the latency that LOCK takes
to locate the hijacker.

Table V shows the response time and minimum number
of required monitors for locating these real prefix hijacking
events. We observe that LOCK is able to locate the hijacker
within 7 ∼ 13 minutes. Given that the probe frequency of
LOCK monitors is 5 minutes, the results implies that it takes
LOCK at most 2∼ 3 rounds of probes to detect and locate
the hijacker. Moreover, all hijackers are correctly located as
top-1 suspects by using 18 or fewer monitors.

VII. R ELATED WORK

A number of solutions have been proposed to proactively
defend against prefix hijacking. They can be categorized into
two broad categories: crypto based and non-crypto based.
Crypto based solutions, such as [3]–[9], require BGP routers
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TABLE V
LOCATING HIJACKERS IN REAL INTERNET ATTACKS

Victim Hijacker Launch Time Response Time Required
Site Site (EST) (minutes) monitors

Berkeley May 2 12:01:31 13 12
Cornell Seattle May 2 16:12:47 7 10

Pittsburgh May 2 17:34:39 9 9
Cornell May 2 19:32:09 13 14

Pittsburgh Berkeley May 2 22:50:25 11 15
Seattle May 3 02:26:26 12 15
Cornell May 3 11:20:42 9 8

Seattle Pittsburgh May 3 13:03:10 12 12
Berkeley May 3 19:16:16 8 18
Seattle May 3 22:35:07 13 14

Berkeley Pittsburgh May 4 00:01:01 12 16
Cornell May 4 11:19:20 11 10

to sign and verify the origin AS and/or the AS path to detect
and reject false routing messages. However, such solutions
often require signature generation and verification which have
significant impact on router performance. Non-crypto based
proposals such as [10]–[14] require changing router softwares
so that inter-AS queries are supported [10], [14], stable paths
are more preferred [11], [13], or additional attributes areadded
into BGP updates to facilitate detection [12]. All the above
proposals are not easily deployable because they all require
changes in router software, router configuration, or network
operations, and some also require public key infrastructures.

Recently, there has been increasing interest in solutions
for reactive detection of prefix hijacking [3], [15]–[20], [24]
because such solutions use passive monitoring and thus are
highly deployable. For example, [20] monitors the data plane,
[15]–[17], [19] monitor the control plane [15]–[17], [19],and
[3], [18], [24] monitor both control and data planes. The main
limitation of the methods relying on control plane monitoring
is that they either require the provision of live BGP feeds or
cannot achieve real-time detection using historical BGP data.
Similar to [20], LOCK utilizes information collected mostly
from the data plane though LOCK aims at locating hijackers
while [20] aims at detecting hijacking events.

Measurement-based solutions often require careful selection
of monitors. In particular, LOCK selects monitors based on
their likelihood of observing hijacking events, while [20]pro-
posed an initial monitor selection algorithm to detect hijacks
without further evaluation, and [36] tries to understand the
impact of hijackers in different locations. In addition, there
have been a number of studies [37]–[39] on the limitations
of existing BGP monitoring systems (e.g. RouteView) and the
impacts of monitor placement algorithms [40] for collecting
BGP data for a boarder range of applications such as topology
discovery, dynamic routing behavior discovery, etc [41].

Finally, existing works [21], [42], [43] proposed to miti-
gating prefix hijacking by using an alternative routing path
[42], [43], or by modifying AS SET [21]. Though LOCK does
not directly handle the mitigation of prefix hijacking events,
LOCK can provide the hijacker location information required
by these mitigation schemes.

VIII. C ONCLUSION

In this paper, we propose a robust scheme named LOCK,
Locating Countermeasure-capable hijacKers, for locatingthe
prefix hijacker ASes based on distributed data-plane measure-
ments.

The LOCK scheme is motivated by two cornerstone obser-
vations. Firstly regardless of what type of prefix hijacking,
hijacked data-plane paths “converge” around the hijacker AS.
Secondly even the hijacker may employ countermeasures to
interfere data-plane path probing processes; it can not affect
probing results until the probing messages reach the hijacker.
In other words, the hijackers cannot manipulate the portion
of any measurement derived data-plane path that is before the
hijacker.

LOCK has several advantages: 1) LOCK is an unified
scheme that locates hijackers in the same fashion across
different types of prefix hijacking attacks; 2) LOCK is a
distributed scheme with workload distributed among multiple
monitors and probing traffic distributed to different regions of
the Internet; 3) LOCK is a robust scheme because multiple
monitors help improving locating accuracy and discounting
individual errors; and 4) LOCK is a data-plane scheme that
does not require any modification to existing protocols and
network infrastructure.

The performance of the LOCK scheme has been evaluated
extensively through experiments in three kinds of settings: test
topology constructed based on real Internet measurements,
reconstructed known prefix hijack attacks, and controlled
prefix hijack attacks conducted on the Internet. We have shown
that the LOCK scheme is very accurate, highly effective, and
rapid reacting.

It is interesting to consider the combination of data plane
and control plane information when locating the hijacker.
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