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Abstract

It is known that the maximum classical mutual information that can be achieved between measure-
ments on a pair of quantum systems can drastically underestimate the quantum mutual information
between those systems. In this article, we quantify this distinction between classical and quantum
information by demonstrating that after removing a logarithmic-sized quantum system from one half
of a pair of perfectly correlated bitstrings, even the most sensitive pair of measurements might only
yield outcomes essentially independent of each other. This effect is a form of information locking
but the definition we use is strictly stronger than those used previously. Moreover, we find that this
property is generic, in the sense that it occurs when removing a random subsystem. As such, the effect
might be relevant to statistical mechanics or black hole physics. Previous work on information locking
had always assumed a uniform message. In this article, we assume only a min-entropy bound on the
message and also explore the effect of entanglement. We find that classical information is strongly
locked almost until it can be completely decoded. As a cryptographic application of these results, we
exhibit a quantum key distribution protocol that is “secure” if the eavesdropper’s information about
the secret key is measured using the accessible information but in which leakage of even a logarithmic
number of key bits compromises the secrecy of all the others.

Keywords: information locking, quantum information, encryption, discord, measure concentra-
tion, black holes

1 Introduction

One of the most basic and intuitive properties of most information measures is that the amount of infor-
mation carried by a physical system must be bounded by its size. For example, if one receives ten physical
bits, then one’s information, regardless of what that information is “about”, should not increase by more
than ten bits. While this is true for most information measures, in quantum mechanics there exist natural
ways of measuring information that violate this principle by a wide margin. In particular, this violation
occurs when one defines the information contained in a quantum system as the amount of classical infor-
mation that can be extracted by the best possible measurement. To construct examples of this effect, we
take a classical message and encode it into a two-part quantum message: a cyphertext, which is roughly as
large as the message, and a much smaller key. Given both the cyphertext and the key, the message can be
perfectly retrieved. We can then look at the amount of information that can be extracted about the message
by a measurement given only access to the cyphertext. Locking occurs if this amount of information is
less than the amount of information in the message minus the size of the key.

In previous work on locking [DHL+04, HLSW04], this amount of information was taken to be the acces-
sible information, the maximum (classical) mutual information between the message and the result of a
∗Institute for Theoretical Physics, ETH Zurich, Switzerland
†School of Computer Science, McGill University, Montreal, Canada
‡Perimeter Institute for Theoretical Physics, Waterloo, Canada
§Institute for Quantum Computing, University of Waterloo, Waterloo, Canada

1

ar
X

iv
:1

01
1.

16
12

v1
  [

qu
an

t-
ph

] 
 7

 N
ov

 2
01

0



measurement. In [DHL+04], the authors constructed the first example of locking as follows: the cypher-
text consists of the uniformly random message, encoded in one of two mutually unbiased bases, and the
(one-bit) key reveals the basis in which the encoding was done. In this example, given only the cypher-
text, the classical mutual information is only n

2 for an n-bit message. Hence, the one-bit key can increase
the classical mutual information by another n

2 bits. In [HLSW04], the authors considered a protocol in
which one encodes a classical message using a fixed basis, and then applies one of k fixed unitaries (where
k = O(polylog n+log 1

ε )); the classical key reveals which unitary was applied. If the unitaries are chosen
according to the Haar measure, then with high probability, the accessible information was shown to be at
most εn when one only has the cyphertext.

In this paper, we present stronger and more general locking results, and show that this effect is generic.
Our results will be stronger in the sense that instead of using the accessible information, we will define
locking in terms of the trace distance between measurement results on the real state and measurement
results on a state completely independent of the message (see Definition 2.4). Unlike the accessible
information, this has a very natural operational interpretation: it bounds the largest probability with which
we can guess, given a message m and the result x of a measurement done on a cyphertext, whether x
comes from a valid cyphertext for m or from a cyphertext generated independently of m. In other words,
one could almost perfectly reproduce any measurement results made on a valid cyphertext without having
access to the cyphertext at all. Moreover, we recover a strengthened version the earlier statements about
the accessible information. Whereas previously the accessible information was shown to be at most 3 bits,
our techniques show that the accessible information can be made arbitrarily small. (A follow-up paper
further strengthens the definition and explores connections to low-distortion embeddings [FHS10].)

Despite this stronger definition, we will be able to show that the locking phenomenon is generic. Instead
of having a classical key reveal the basis in which the information is encoded, as in [DHL+04, HLSW04],
we consider the case where there is a single unitary, and the key is simply a small part of the quantum
system after the unitary is applied. This means that we can make not only cryptographic statements, but
also statements about the dynamics of physical systems, where the unitary represents the evolution of
the system. In particular, we will be able to show that locking occurs with high probability in physical
systems whose internal dynamics are sufficiently generic to be adequately modelled by a Haar-distributed
unitary. This can therefore give interesting results in the context of thermodynamics, or of the black hole
information problem.

In that vein, we will also allow the measuring device to share entanglement with the cyphertext-key com-
pound system. While this may not correspond to a very meaningful cryptographic scenario, it allows us
to study the behavior of entanglement in physical systems, and to study the extent to which the presence
of entanglement interferes with this locking effect.

Finally, in contrast to previous studies, we will not limit the message (or the entanglement) to be uniform;
the size of the key will instead depend on the min-entropy of the message. This assumption is easier to
justify in cryptographic applications. Indeed, while the locking results we present here can be interpreted
as demonstrating the possibility of encrypting classical messages in quantum systems using only very
small keys, care must be taking when composing such encryption with other protocols. We use our results
to exhibit a quantum key distribution protocol, for example, that appears to be secure if the eavesdropper’s
information about the secret key is measured using the accessible information, but in which leakage of a
logarithmic amount of key causes the entire key to be compromised.

1.1 Transmitting information through a generic unitary

To end the introduction, we introduce the physical scenario that will occupy us throughout the article. The
situation is depicted in Figure 1.

Now, let {|ψm〉 : 1 6 m 6 |M |} be any orthonormal basis for N . The analysis will focus on the
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Figure 1: A quantum circuit depicting the physical scenario. The classical message M gets encoded in N ,
and the unitary then mixes it with the E part of the shared entanglement. If the information is locked, any
joint measurementM on C and E′ will yield a result X that is almost independent of the message. On
the other hand, if C is large enough, there will be a joint measurementM reliably decoding M .

properties of the states

σMN :=

|M |∑

m=1

pm|m〉〈m|M ⊗ |ψm〉〈ψm|N and (1.1)

ρMCDE′ :=
(
IME′ ⊗ UNE→CD

)(
σMN ⊗ ωEE′

)(
IME′ ⊗ UNE→CD

)†
. (1.2)

Our objective is to demonstrate that untilC is large enough that there exists a measurement onCE′ capable
of revealing all the information about the message M , no measurement will reveal any information about
the message. This can’t quite be true, of course, so what we will demonstrate is that the jump from no
information to complete information involves enlarging C by a number of qubits logarithmic in the size
of the message M and the amount of entanglement E.

Assume for simplicity both thatM is uniformly distributed and that the state ωEE
′
is maximally entangled.

As a first step, it is necessary to determine how largeC needs to be in order for there to exist a measurement
on CE′ that will reveal the message M . Begin by purifying the state σ to

|σ〉RMN =
1√
|M |

|M |∑

m=1

|m〉R ⊗ |m〉M ⊗ |ψm〉N . (1.3)

Even more demanding than performing a measurement to reveal m is the task of transmitting the quantum
information about RM through U , allowing the decoder, who has access only to CE′, to recover a high
fidelity copy of the state |σ〉RMN . If U is selected according to the Haar measure, then Theorem IV.1 of
[ADHW09] implies that there is a quantum operation DCE′→N acting only on CE′ such that

∥∥∥D
(

TrD

[
UNE→CD(σRMN ⊗ ωEE′)(UNE→CD)†

])
− σRMN

∥∥∥
1
≤ 2

√
M

C
. (1.4)

Because the trace distance is monotonic under quantum operations, it will not increase by taking the partial
trace over R and measuring in the basis {|ψm〉} [NC00]. If we let p(m′|m) be the probability of getting
an outcome |ψm′〉 when the message was in fact m, Equation (1.4) therefore implies that

1

M

∑

m

∑

m′ 6=m
p(m′|m) ≤

√
M

C
. (1.5)
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In words, the probability of the measurement yielding the incorrect outcome, averaged over all messages,
is at most

√
M/C, so as soon as C is significantly larger than M , a measurement on CE′ can be found

that will reveal the message. Our goal in this article will be to demonstrate that until this condition is met,
no measurement will reveal any significant information about the message.

1.2 Structure of the paper

The next subsection explains the notation used throughout the paper, and we then move on to the formal
definition of locking as well as other important concepts in Section 2. Section 3 will state the main results
and give a high-level overview of the proof, and Section 4 will begin the proof with some key lemmas.
Section 5 will deal with the proofs of our theorems in the easier case where the measurement device
is restricted to making only projective measurements, and Section 6 will deal with the case of general
measurements (POVMs). We then show in Section 7 that, in many regimes, as soon as the information is
not locked, it is completely decodable. Implications for the security definitions of quantum cryptographic
protocols will be presented in Section 8, and we conclude the paper with a discussion in Section 9.

1.3 Notation

General
log Logarithm base 2.
EU [f(U)] Expectation value of f(U) over the random variable U .
AB Composite quantum system whose associated Hilbert space is

A ⊗ B. We frequently identify quantum systems with their as-
sociated Hilbert spaces.

|A| Dimension of Hilbert space A. However, we will often drop the
| · |. For example, the dimension of the composite system MCK
is denoted by MCK (a scalar value).

A⊗2 Two identical copies of A the second of which is denoted by A.
|ψ〉A, |ϕ〉A, . . . Vectors in A.
ψA, ϕA, . . . The “unketted” versions denote their associated density matrices:

ψA = |ψ〉〈ψ|. Furthermore, if we have defined a state ψAB , then
ψA = TrB[ψAB].

πA The maximally mixed state IA
|A| .

U(A) The unitary group on A.
Pos(A) The subset of Hermitian operators from A to A consisting of pos-

itive semidefinite matrices.
L(s, η) The set of all (s, η)-quasi-measurements, see Definition 2.3.

4



Operators
IA Identity operator on A.
MA→B Indicates that the operator M is a transformation from states on

A to states on B.
MA→B Indicates that the superoperatorM is a transformation from op-

erators on A to operators on B. M andM will be freely identi-
fied with their extensions (via tensor product with the identity) to
larger systems.

M ·N MNM †

M 6 N If M,N ∈ Herm(A), this means that N −M ∈ Pos(A).√
M If M ∈ Pos(A) has spectral decomposition M =

∑
i λi|ψi〉〈ψi|,

then
√
M =

∑
i

√
λi|ψi〉〈ψi|.

ΠA
± Projector onto the symmetric (+) or antisymmetric (−) subspace

of A⊗2.
opA→B(|ψ〉AB) Turns a vector into an operator. See Definition 4.2.

Norms and Entropies∥∥MA→B∥∥
1

Tr
√
M †M

‖|ψ〉‖2
√
|〈ψ|ψ〉|∥∥MA→B∥∥

2

√
Tr[M †M ]∥∥MA→B∥∥

∞ Largest singular value of M , i.e. the operator norm of M .
H2(A)ρ Renyi 2-entropy of A, defined as − log Tr[ρ2].
Hmin(A)ρ Quantum min-entropy of A, defined as − log minλ∈R{λ : ρA 6

λIA}.
Hmax(A)ρ Quantum max-entropy of A, defined as 2 log Tr

√
ρA.

I(A;B)ρ Mutual information of A and B, defined as H(A)ρ + H(B)ρ −
H(AB)ρ.

Iacc(A;B)ρ Accessible information, see Definition 2.2.

2 Definitions

This section will present the basic definitions needed to state our results. First, it will be very convenient
for us to represent measurements via superoperators in the following manner:

Definition 2.1 (Measurement superoperator). We call a completely positive, trace-preserving (CPTP) map
M : B(A) → B(X) a measurement superoperator if it is of the formM(ρ) =

∑N
i=1 |i〉〈i|X Tr[MA

i ρ],
where {|i〉A : i ∈ {1, . . . , N}} is an orthonormal basis for X , each MA

i is positive semidefinite, and∑N
i=1M

A
i = IA.

These play a central role in the definition of accessible information.

Definition 2.2 (Accessible information [Fuc96]). Let ρAB be a quantum state. Then, the accessible infor-
mation Iacc(A;B) is defined as

Iacc(A;B)ρ := sup
A,B

I(X;Y )(A⊗B)(ρ),

where AA→X and BB→Y are measurement superoperators, and the supremum is taken over all possible
superoperators. In other words, the accessible information is the largest possible mutual information
between the results of measurements made on A and B.
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The accessible information was originally defined only for states in which the A subsystem was classical.
In that case, no measurement on A is necessary in the optimization. This quantity is also known as the
classical mutual information of a quantum state [OZ01, HV01].

We also need to introduce the concept of quasi-measurements for our analysis. They are, as their name
indicates, almost measurements, but differ in three ways: they only contain rank-one elements of equal
weight, they have exactly n outcomes, and the sum of all the elements does not necessarily equal the
identity, but is instead bounded by kI:

Definition 2.3 (Quasi-measurement). We call a superoperatorMA→B an (s, η)-quasi-measurement if it
is of the form M(ρ) = |A|

s

∑s
i=1 |i〉〈χi|ρ|χi〉〈i| where the |i〉 index an orthonormal basis for B, and

|A|
s

∑s
i=1 |χi〉〈χi| 6 ηIA. We call the set of all (s, η)-quasi-measurements on a given system, L(s, η).

The reason for introducing these, as will soon become apparent, is that they are almost equivalent to
POVMs for our purposes while being much easier to handle mathematically. It can easily be seen that
projective measurements are simply (A, 1)-quasi-measurements.

We now give the formal, strengthened definition of locking. The states in question were introduced in
Section 1.1. However, because the cyphertext will always be smaller than or equal to the message when
locking occurs, certain identifications become possible. In particular, we can assume without loss of
generality that N ∼= C ⊗K and D ∼= E ⊗K. Since the analysis will be performed using only C, K and
E, we reproduce the illustration of the physical scenario with the identifications made in Figure 2.

E

E’

CK

M M

X
EK

C
U

ω

σ

ρ

Figure 2: A quantum circuit depicting the physical scenario with the locking-specific identifications N ∼=
C ⊗K and D ∼= E ⊗K made.

Definition 2.4 (ε-locking scheme). Let M,C,K,E and E′ be quantum systems. Let ρMCKEE′ be a
quantum state of the form

ρMCKEE′ =
∑

m

pmU
CKE

(
|m〉〈m|M ⊗ |ψm〉〈ψm|CK ⊗ |ω〉〈ω|EE

′
)
UCKE

†
, (2.1)

where the |ψm〉 are orthogonal and UCKE is unitary. Then we call ρ an ε-locking scheme if for any
measurement superoperatorMCE′→X , we have that

∥∥∥M
(
ρMCE′

)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1
6 ε.

Note that this definition of locking is rather different from that used in previous work in the area ([DHL+04,
HLSW04]). Their definition involved the accessible information between the cyphertext and the message.
We can show that our definition implies the older one:
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Lemma 2.1. Let ξMB be a cq-state such that
∥∥M(ξMB)− ξM ⊗M(ξB)

∥∥
1
6 ε for all measurement

superoperatorsMB→X . Then,

Iacc(M ;B)ξ 6 4ε logM + 2η(1− ε) + 2η(ε),

where η(x) := −x log x and η(0) = 0.

Proof. This is a direct application of the Alicki-Fannes inequality [AF04].

Four quantities will be particularly useful for quantifying variations from uniform messages and maximal
entanglement,

∆M,∞ := 2logM−Hmin(M)σ , (2.2)

∆M,2 := 2logM−H2(M)σ , (2.3)

∆E,∞ := 2logE−Hmin(E)ω , (2.4)

∆E,2 := 2logE−H2(E)ω . (2.5)

For a point mass distribution pm, ∆M,∞ = ∆M,2 = |M | and for the uniform distribution ∆M,∞ =
∆M,2 = 1. To give an interpretation of the ∆E quantities, we can note that for a bipartite |ω〉EE′ with no
entanglement, ∆E,∞ = ∆E,2 = |E|. However, if |ω〉EE′ is the maximally entangled state, then ∆E,∞ =
∆E,2 = 1, which we call maximal entanglement. The case of a uniformly distributed message and
maximal entanglement will give the simplest expressions for minimum key size. The ∆ terms are used in
the calculations to provide more general statements relating the entropy of the message and entanglement
to the key size.

3 Main results and proof sketch

The locking scheme we study is a scheme where the unitary in Definition 2.4 is chosen according to the
Haar measure. Let c, e and n be the logarithms of |C|, |E|, and |M | = |N | respectively. In particular,
the message is n bits long. Define K = M/C and k = logK. Then k = n − c is the difference in size
between the message and cyphertext, that is, the size of the key. Our main theorem is the following:

Theorem 3.1. If U is chosen according to the Haar measure, then the scheme described in Definition 2.4
is an ε-locking scheme with probability at least 1− 2−9(|C||E|)

2
if

k >
1

2

(
n−Hmin(M)σ

)
+

1

2

(
e−Hmin(E)ω

)
+ log(c+ e) + 2 log(1/ε) + 11

as long as ε > 16∆E,∞/
√
|KE|.

For the cryptographically relevant case in which there is no entanglement shared with the measuring
device, we therefore get:

Corollary 3.2. If U is chosen according to the Haar measure, then the scheme described in Definition 2.4
without shared entanglement is an ε-locking scheme with probability at least 1− 2−9|C|

2
if

k >
1

2

(
n−Hmin(M)σ

)
+ log c+ 2 log(1/ε) + 11

as long as ε > 16/
√
|K|.
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Hence, the size of the key must be at least as large as half the “min-entropy deficit” (n−Hmin(M)σ) of the
message plus a term of the order of the logarithm of the size of the message. In particular, for a uniform
message, the min-entropy deficit is zero, and a key of size at least log c+ 2 log(1/ε) + 11 is sufficient for
locking.

Conversely, we can show that in certain regimes, if the information is not locked, then it is completely
decodable, with almost no middle ground. More precisely, we have the following:

Theorem 3.3. If U is chosen according to the Haar measure, then the information in the scheme described
in Figure 1 without shared entanglement is asymptotically almost surely decodable to within ε in trace
distance for a receiver with only C as long as

k 6 1

2

(
n−Hmax(M)σ

)
− 1

2

(
e−H2(E)ω

)
− 2 log(1/ε)− 4.

Note that decoding the message will often require that the cyphertext be longer than the message, in
which case k will be negative. Comparing Theorems 3.1 and 3.3 reveals that the difference between being
ε-locked and being able to decode quantum information to within ε is determined by at most

1

2
[Hmax(M)σ −Hmin(M)σ] + [e−Hmin(E)ω] + log(c+ e) + 4 log(1/ε) + 15

qubits, where the inequality H2 ≥ Hmin has been used to simplify the expression.

In other words, if we consider the case of maximal entanglement, then the gap between locking and
decodability can only be as wide as the difference between the min- and max-entropy of the message
modulo logarithmic terms. One should note that this gap is real, and not only an artifact of our proof
technique. To see this, consider an n-bit message distributed such that with probability 1

2 , the first bit is
uniform and the rest of the string is always zero, and with probability 1

2 the whole string is uniform. The
max-entropy of such a message is n, but the min-entropy is tiny. Now, to be able to decode, one must
be able to decode the entire string in the “worst-case” scenario where the whole string is uniform, so the
max-entropy is relevant in this case. But in the locking case, we must be able to lock in the worst-case
scenario of only one bit being random, so the min-entropy is the relevant quantity here.

The effect of non-maximal entanglement is not entirely clear, however. There is a fairly large gap between
our locking and decodability results here, but the locking side is almost certainly not tight in general. For
instance, we can easily set up the system in such a way that there is a part of E′ that is clearly useless,
but our proof technique forces us to take this part into account, which artificially hurts our bound. This
extreme case can be ruled out by restricting E′ to the support of ωE

′
, but it seems likely that more gains

could be found in the general case.

Finally, in addition to studying locking for its own sake, we use our results to exhibit a quantum key
distribution protocol that appears to be secure if the eavesdropper’s information about the secret key is
measured using the accessible information, but in which leakage of a logarithmic amount of key causes
the entire key to be compromised. This is done in Section 8.

3.1 Proof sketch

We will give here a very high-level overview of the proof. The basic idea is to start from the fact that,
given a fixed measurement superoperator, the probability over the choice of unitaries that this measurement
yields non-negligible correlations is extremely small. Then, we would like to discretize the space of all
measurement superoperators and use the union bound to show that the probability that any measurement
superoperator yields non-negligible correlations is still very small. For this to work, the “number” of
measurements has to be much smaller than the reciprocal of the probability of getting a bad U . However,
the set of measurement superoperators cannot be discretized directly, since (among other things) they
contain a potentially unbounded number of outputs. Hence, we will instead use the above argument on

8



(s, η)-quasi-measurements, which can be discretized easily (see Lemma 4.4), and then show that the best
measurement cannot beat the best (s, η)-quasi-measurement by too much. Along the way, we also prove
the special case where the measurement device is constrained to making projective measurements, which
can be viewed simply as (CE′, 1)-quasi-measurements.

The basic ingredient of the proof is the following concentration of measure theorem on Haar-distributed
unitaries:

Theorem 3.4 (Corollary 4.4.28 in [AGZ09]). Let f : U(d) → R be a function with Lipschitz constant
θ (see Definition A.1; the Lipschitz constant is taken with respect to the Hilbert-Schmidt distance on
unitaries). Then,

PrU {|f(U)− EUf | > ε} 6 exp

(
−dε

2

4θ2

)
.

We apply the theorem to the function

gM(U) =
∥∥∥M

(
ρMCE′

)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1

for any fixed (s, η)-quasi-measurementM, where ρ depends on U as in Equation (2.1). To do this, we
need to bound two quantities from above: the expected value EgM(U) and the Lipschitz constant θ. The
bounds appear in Lemmas 4.1 and 4.2 respectively, and the resulting concentration statement looks like
(see Equation (4.22)):

PrU {gM(U) > ε} 6 exp

(
−2Hmin(M)+Hmin(E)CKE

26η2

(
ε− 2∆E,∞√

KE

)2
)
.

Now we are in a position to use our ε-net over (s, η)-quasi-measurements (Lemma 4.4) and the union
bound to get a bound on the probability that there exists an (s, η)-quasi-measurement M for which
gM(U) > ε; this is done in Theorem 4.5.

At this point, the proof splits into an “easy” and a “hard” branch. The easy branch (Section 5) applies
Theorem 4.5 to projective measurements. The result is immediate, since a projective measurement is
simply a (CE′, 1)-quasi-measurement. The hard branch (Section 6) goes for the full prize: showing
that gM(U) is small for every POVM with high probability. For this, we essentially show that a POVM
corresponds (for the purposes of this proof) to a distribution over sequences of s states. The operator
Chernoff bound can then be used to show that this distribution is almost entirely supported on sequences
that are (s, η)-quasi-measurements, for s = O(CE log(CE)) and η = O(1). We then apply Theorem 4.5
on these sequences, conditioned on the sequence being an (s, η)-quasi-measurement. A trivial bound is
sufficient to cover the other case.

All that is then left to do to get the statements in the theorems stated above is to calculate conditions on
the various parameters to make the exponent a reasonably large negative number.

4 Concentration of the distinguishability from independence

To be able to use the general concentration of measure theorem (Theorem 3.4) on gM(U), we must first
be able to upper-bound the expectation of gM(U) with respect to U . The following lemma does this:

Lemma 4.1 (Distinguishability for a fixed measurement). If MCE′→X is an (s, η)-quasi-measurement,
then

E
U

∥∥∥M
(
ρMCE′

)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1
6 2∆E,∞√

KE
.
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Proof. We begin by expanding and simplifying the original expression

E
U

∥∥∥M
(
ρMCE′

)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1

= E
U

∥∥∥M
(
ρMCE′ − ρM ⊗ ρCE′

)∥∥∥
1

(4.1)

6 E
U

√
sTr

[(
(σM )−1/4M (ρMCE′ − ρM ⊗ ρCE′) (σM )−1/4

)2]

6
√
sE
U

Tr
[(

(σM )−1/4M (ρMCE′ − ρM ⊗ ρCE′) (σM )−1/4
)2]

. (4.2)

In the manipulations above we have used the linearity of the superoperator M in the first line. In the
second line we have used Lemma A.4 with γ = IX ⊗ σM , noting that |X| = s. The third line follows
from the concavity of the square root. We will now use a helpful identity for the trace of an operator
squared: TrZ2 = Tr(Z ⊗ Z)F , where F is defined as follows.

Definition 4.1. The swap operator on A⊗2, which is written as A ⊗ A, is the unique linear operator FA

satisfying
FA
(
|ψ〉A|φ〉A

)
= |φ〉A|ψ〉A ∀|ψ〉, |φ〉.

Expressing Equation (4.2) using the swap operator gives

E
U

∥∥∥M
(
ρMCE′

)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1

(4.3)

6
√
sTr

[
E
U

(
(σM )−1/4M (ρMCE′ − ρM ⊗ ρCE′) (σM )−1/4

)⊗2
FXM

]

=

√√√√(CE′)2

s

s∑

i=1

Tr

[(
FM ⊗

(
χCE

′
i

)⊗2)E
U

[
(σM )−1/4(ρMCE′ − ρM ⊗ ρCE′)(σM )−1/4

]⊗2
]
(4.4)

Equation (4.4) follows from the fact that results of the measurementM are stored in an orthonormal basis
of systemX . We will proceed by evaluating E

U
((σM )−1/4 (ρMCE′−ρM⊗ρCE′)(σM )−1/4)⊗2, but before

continuing we absorb the two σ−1/4 into the operator ρ. That is we define,

σ̃MCK :=

|M |∑

m=1

√
pm|m〉〈m|M ⊗ |ψm〉〈ψm|CK and (4.5)

ρ̃MCKEE′ := (σM )−1/4 ρMCKEE′ (σM )−1/4 =
(
IME ⊗ UCKE

)
·
(
σ̃MCK ⊗ ωEE′

)
. (4.6)

With these two definitions in hand we can expand E
U

(
ρ̃MCE′ − ρ̃M ⊗ ρCE′)⊗2

)
as

E
U

(
ρ̃MCE′ − ρ̃M ⊗ ρCE′

)⊗2
(4.7)

= E
U

(
TrKE

[
UCKE ·

((
σ̃MCK − σ̃M ⊗ σCK

)
⊗ ωEE′

)])⊗2

= TrKEKE

[
E
U

(
UCKE ·

((
σ̃MCK − σ̃M ⊗ σCK

)
⊗ ωEE′

))⊗2]

= TrKEKE

[∫ (
UCKE ⊗ UCKE ⊗ IME′ME′

)
·
((
σ̃MCK − σ̃M ⊗ σCK

)
⊗ ωEE′

)⊗2
dU

]
.(4.8)

To evaluate the integral with Lemma A.1, we will need to calculate the projections of our operator onto
the symmetric and antisymmetric subspaces of (CKE)⊗2. Since the projectors onto the symmetric and
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antisymmetric subspaces can be written as Π± = 1
2(I±F ), we can arrive at same results by working with

I and F . We begin with I:

TrCKECKE

[(
σ̃MCK − σ̃M ⊗ σCK

)⊗2 ⊗
(
ωEE

′
)⊗2

ICKECKE
]

(4.9)

=
∑

m

√
pm|m〉〈m|M ⊗

∑

m′

√
pm′ |m′〉〈m′|MTrCK

[
ψm −

∑

m′′
pm′′ψm′′

]2
⊗
(
ωE
′
)⊗2

= (1− 1)2 · (σ̃M ⊗ ωE′)⊗2 = 0.

The projection onto F requires a more subtle calculation,

TrCKECKE

[(
σ̃MCK − σ̃M ⊗ σCK

)⊗2 ⊗
(
ωEE

′
)⊗2

FCKE
]

(4.10)

=
∑

m

√
pm|m〉〈m|M ⊗

∑

m′

√
pm′ |m′〉〈m′|M

·TrCK

[(
ψm −

∑

m′′
pm′′ψm′′

)(
ψm′ −

∑

m′′′
pm′′′ψm′′′

)]
⊗ TrEE

[(
ωEE

′
)⊗2

FE
]
.

By taking a closer look at Equation (4.10) we can make the simplification

TrCK

[(
ψm −

∑

m′′
pm′′ψm′′

)(
ψm′ −

∑

m′′′
pm′′′ψm′′′

)]

= TrCK


ψmψm′ −

∑

m′′
pm′′ψm′′ψm′ −

∑

m′′′
pm′′′ψmψm′′′ +

∑

m′′,m′′′
pm′′pm′′′ψm′′ψm′′′




= δmm′ − pm′ − pm +
∑

m′′
p2m′′ . (4.11)

Now we define σ̃MM
◦ as the quantity evaluated in Equation (4.10). Substituting the result of Equation

(4.11) gives

σ̃MM
◦ := TrCKCK

[(
σ̃MCK − σ̃M ⊗ σCK

)⊗2
FCK

]

=

(∑

m

pm (|m〉〈m|)⊗2 − σ̃M ⊗ (σ̃M )3 − (σ̃M )3 ⊗ σ̃M +

(∑

m

p2m

)
σ̃M ⊗ σ̃M

)
.

We also define ΩE′E′ as the operator acting on systemE′E′ in Equation (4.10), or ΩE′E′ = TrEE [(ωEE
′
)⊗2FE ].

At this point, Lemma A.1 can be used to evaluate the integral in Equation (4.8). We can make significant
simplifications by first expanding the α± and then using our result from Equation (4.9) to show that

α± =
1

rank(ΠCKE
± )

TrCKECKE

[(
σ̃MCK − σ̃M ⊗ σCK

)⊗2 ⊗
(
ωEE

′
)⊗2 (

ΠCKE
± ⊗ IME′

)]

=
±
(
σ̃MM
◦ ⊗ ΩE′E′

)

CKE(CKE ± 1)
,

where the terms ΠCKE
± are the projectors onto the symmetric and antisymmetric subspaces of (CKE)⊗2,

that is 1
2(ICKECKE ± FCKE). In particular, because α+ is proportional to α−, the integral will have the

product form

σ̃MM
◦ ⊗ ΩE′E′ ⊗

(
ΠCKE

+

CKE(CKE + 1)
− ΠCKE

−
CKE(CKE − 1)

)
,

11



so the calculation of the trace in Equation (4.4) will factor into a product over the systems (M)⊗2 and
(CKEE′)⊗2. Thus,

Tr(MKE)⊗2

[(
Tr(CE′)⊗2

[(
χCE

′
i

)⊗2
E
U

(
ρ̃MCE′ − ρ̃M ⊗ ρCE′

)⊗2])
FM

]
(4.12)

= Tr
[
σ̃MM
◦ FM

]
· Tr

[(
χCE

′
i ⊗ IKE

)⊗2
(

ΠCKE
+ ⊗ ΩE′E′

CKE(CKE + 1)
− ΠCKE

− ⊗ ΩE′E′

CKE(CKE − 1)

)]
.

The first first factor in Equation (4.12) can easily be bounded:

TrMM

[
σ̃MM
◦ FM

]
=

∑

m

pm −
∑

m

p3/2m −
∑

m

p3/2m +
∑

m

p2m

6 2
∑

m

pm = 2.

To estimate the second factor in Equation (4.12) we will need to observe two facts. First, that

Tr
[
(χCE

′
i ⊗ IKE)⊗2 ICKECKE ⊗ ΩE′E′

]
6 (KE)2

∥∥∥ΩE′E′
∥∥∥
∞
, (4.13)

which follows from the fact that χCE
′

i is a rank 1 projector. Second, that

Tr
[
(χCE

′
i ⊗ IKE)⊗2 FCKE ⊗ ΩE′E′

]
= KE TrE′E′

[(
TrCC

[
(χCE

′
i )⊗2FC

])
ΩE′E′

]

6 KE
∥∥∥ΩE′E′

∥∥∥
∞
. (4.14)

If we use Equations (4.13) and (4.14) to estimate the second factor of Equation (4.12) we get the bound

Tr

[(
χCE

′
i ⊗ IKE

)⊗2
(

ΠCKE
+ ⊗ ΩE′E′

CKE(CKE + 1)
− ΠCKE

− ⊗ ΩE′E′

CKE(CKE − 1)

)]

6
(

(KE)2 +KE

2CKE(CKE + 1)
− (KE)2 −KE

2CKE(CKE − 1)

)
·
∥∥∥ΩE′E′

∥∥∥
∞

6 2

C2KE
·
∥∥∥ΩE′E′

∥∥∥
∞
. (4.15)

This can be rewritten in a more familiar form using
∥∥∥ΩE′E′

∥∥∥
∞

=

∥∥∥∥TrE′E′

[(
ωEE

′
)⊗2

FE
]∥∥∥∥
∞

=
∥∥∥
(
ωE
)⊗2

FE
∥∥∥
∞

=
∥∥ωE

∥∥2
∞ = 2−2Hmin(E)ω .

In the above, the third equality follows from the fact that the operator norm is right-invariant under unitary
transformations and F is a unitary matrix. Combining the results in Equations (4.13) and (4.15), as well
as the above identity, we obtain an upper bound for the trace distance through Equation (4.4),

E
U

∥∥∥M
(
ρMCE′

)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1

6

√√√√s

(
CE′

s

)2 s∑

i=1

2
2 · 2−2Hmin(E)ω

(C)2KE

6 2∆E,∞√
KE

.

Lemma 4.2. gM(U), the trace distance to independence for a fixed (s, η)-quasi-measurement, is Lipschitz
continuous on the space (U(CKE), ‖·‖2) with constant 4η

√
∆M,∞ ∆E,∞/ME.
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Proof. We wish to analyze the behaviour of the trace distance with respect to the unitary matrix defining
the channel. Recall the definition of function gM(U),

gM(U) =
∥∥∥M

(
ρMCE′

)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1
.

If we denote by ρU and ρV the states TrK [U · σ] and TrK [V · σ] respectively, we can bound the deviation
of gM using the triangle inequality by

|gM(U)− gM(V )| 6
∥∥∥M

(
ρMCE′
U

)
−M

(
ρMCE′
V

)∥∥∥
1

+
∥∥∥M

(
ρMU ⊗ ρCE

′
U

)
−M

(
ρMV ⊗ ρCE

′
V

)∥∥∥
1

(4.16)

=
∥∥∥M

(
ρMCE′
U − ρMCE′

V

)∥∥∥
1

+
∥∥∥M

(
σM ⊗

(
ρCE

′
U − ρCE′V

))∥∥∥
1
,

where the second line follows from the linearity of the superoperator. We note that for any hermitian
operator ζ,

‖M (ζ)‖1 =

∥∥∥∥∥
CE′

s

s∑

i=1

|i〉〈χi|ζ|χi〉〈i|
∥∥∥∥∥
1

=
CE′

s

s∑

i=1

|〈χi|ζ|χi〉| 6
CE′

s

s∑

i=1

〈χi||ζ||χi〉

=
CE′

s

s∑

i=1

Tr [χi|ζ|] 6 η ‖ζ‖1 ,

where the last inequality follows from the definition of (s, η)-quasi-measurements. Applying this new
fact, our bound in Equation (4.16) becomes,

|gM(U)− gM(V )| 6 η
∥∥∥ρMCE′

U − ρMCE′
V

∥∥∥
1

+ η
∥∥∥σM ⊗

(
ρCE

′
U − ρCE′V

)∥∥∥
1

(4.17)

6 2η
∥∥∥ρMCKEE′

U − ρMCKEE′
V

∥∥∥
1

= 2η ‖(U − V ) · σ ⊗ ω‖1 ,

where the second line follows from monotonicity. We introduce a purification of σMCK in a new but
temporary system N such that dim(N) = dim(M). We also recall that ω is pure. This permits us to use
Lemma A.3 and arrive at the following consequence of Equation (4.17),

|gM(U)− gM(V )| 6 4η
∥∥∥
(
UCKE − V CKE

)
⊗ IMNE′ |σ〉MNCK |ω〉EE′

∥∥∥
2
. (4.18)

We now introduce a helpful operation.

Definition 4.2 (Vector-operator correspondence). Endow systems A and B with fixed orthonormal bases
{|ai〉A}i and {|bi〉B}i respectively, and let opA→B : A⊗ B → L(A,B), the space of linear transforma-
tions from A to B, be defined as

opA→B (|ai〉|bj〉) = |bj〉〈ai| ∀i, j

This operation depends on the choice of basis; therefore, whenever it is used, a particular choice of basis
is implied. Since this choice will never matter in our calculations, we shall not explicitly define these
bases.

Useful properties of the correspondence can be found in [Dup09].

13



We can think of the operator (UCKE −V CKE)⊗ IMNE′ as bipartite over composite systems MNE′ and
CKE. Since the 2-norm depends only on the Schmidt coefficients of the states, it will be invariant under
the op operation defined in Definition 4.2. Our bound from Equation (4.18) then becomes,

|gM(U)− gM(V )| 6 4η
∥∥∥opMNE′→CKE

((
UCKE − V CKE

)
⊗ IMNE′ |σ〉MNCK |ω〉EE′

)∥∥∥
2

= 4η ‖(U − V ) opMNE′→CKE (|σ〉|ω〉)‖2 ,

where the second line follows from the fact that opMNE′→CKE is linear and commutes with unitary
transformations on CKE. We are left with a few easy steps to bound the Lipschitz constant.

|gM(U)− gM(V )| 6 4η ‖U − V ‖2 ‖opMNE′→CKE (|σ〉|ω〉)‖∞
= 4η ‖U − V ‖2

√
‖σCK ⊗ ωE‖∞

= 4η ‖U − V ‖2

√√√√
∥∥∥∥∥
∑

m

pm|ψm〉〈ψm|CK
∥∥∥∥∥
∞
‖ωE‖∞

= 4η ‖U − V ‖2
√

max pm · 2−Hmin(E)ω

= 4η ‖U − V ‖2 2−
1
2Hmin(M)σ2−

1
2Hmin(E)ω

=
4η
√

∆M,∞ ∆E,∞√
ME

‖U − V ‖2 .

A proof of the inequality can be found, for example, in [Dup09]. The second line follows from the fact the
Schmidt coefficients of |σ〉MNCK are the square roots of the eigenvalues of σCK . The last line follows
from the definition of ∆min.

In order to discretize the set of all (s, η)-quasi-measurements, we require a distance measure for the set.

Definition 4.3 (Metric on the set of (s, η)-quasi-measurements, L(s, η)). Consider M, N ∈ L(s, η)
defined as

M (σ) =
|CE′|
s

s∑

i=1

|i〉〈χi|σ|χi〉〈i|, N (σ) =
|CE′|
s

s∑

i=1

|i〉〈νi|σ|νi〉〈i|.

We define the distance between these two elements as

d(M,N ) :=

s∑

i=1

‖χi − νi‖2 .

Now lettingM vary instead of U , we define a new function hU (M) by

hU (M) =
∥∥∥M

(
ρMCE′

)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1
.

Lemma 4.3. hU (M) is Lipschitz continuous on the space (L(s, η), d) with constant 2
√
CE′
s

√
∆M,2∆E,2.

Proof. As for Lemma 4.2, we can use the triangle inequality to rewrite the variation of the trace distance
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as follows,

|hU (M)− hU (N )|
6

∥∥∥M
(
ρMCE′

)
−N

(
ρMCE′

)∥∥∥
1

+
∥∥∥M

(
ρM ⊗ ρCE′

)
−N

(
ρM ⊗ ρCE′

)∥∥∥
1

=
CE′

s

n∑

i=1

(∥∥∥TrCE′
[(
χCE

′
i − νCE′i

)
ρMCE′

]∥∥∥
1

+
∥∥∥TrCE′

[(
χCE

′
i − νCE′i

)
ρM ⊗ ρCE′

]∥∥∥
1

)

6 CE′

s

s∑

i=1

∥∥∥
(
χCE

′
i − νCE′i

)
ρMCE′

∥∥∥
1

+
CE′

s

s∑

i=1

∥∥∥
(
χCE

′
i − νCE′i

)
ρM ⊗ ρCE′

∥∥∥
1

6 CE′

s

s∑

i=1

∥∥∥χCE′i − νCE′i

∥∥∥
2

∥∥∥ρMCE′
∥∥∥
2

+
CE′

s

s∑

i=1

∥∥∥χCE′i − νCE′i

∥∥∥
2

∥∥∥ρM ⊗ ρCE′
∥∥∥
2
, (4.19)

where the last line follows from the operator version of the Cauchy-Schwarz inequality (see Equation
(IX.32) in [Bha96]). Consider momentarily the second factor in the first term in Equation (4.19),

∥∥∥ρMCE′
∥∥∥
2

=
∥∥∥TrKE

[
UCKE ·

(
σMCK ⊗ ωEE′

)]∥∥∥
2

=

√
Tr
[(
U⊗2CKE · (σMCK ⊗ ωEE′)⊗2

)
FMCE′

]

=

√√√√Tr

[(
U⊗2CKE F

C U †⊗2CKE

)(∑

m

p2m(|ψm〉〈ψm|CK)⊗2 ⊗ (ωEE′)⊗2
)
FE′

]

6

√√√√Tr

[∑

m

p2m(|ψm〉〈ψm|CK)⊗2 ⊗ (ωEE′)⊗2FE′
]

=

√
Tr [(ωEE′)⊗2FE′ ]

∑

m

p2m = 2−
1
2
H2(M)σ− 1

2
H2(E)ω . (4.20)

The third line is true by the cyclic property of the trace. The inequality, however, is true by the following
observation: since F 2 = I we know that F has eigenvalues ±1 and so F ≤ I. We can make a similar
evaluation for the last factor in Equation (4.19),

∥∥∥ρM ⊗ ρCE′
∥∥∥
2
6 2−

1
2
H2(M)σ− 1

2
H2(E)ω , (4.21)

since this inequality is a just a special case of the calculations leading to Equation (4.20). If we apply
Equations (4.20) and (4.21) to Equation (4.19), we can extract a very simple bound on the variation of the
trace distance

|hU (M)− hU (N )| 6 2CE′

s
2−

1
2
H2(M)σ− 1

2
H2(E)ω

s∑

i=1

∥∥χCi − νCi
∥∥
2

6 2
√
CE′

s

√
∆M,2∆E,2 d(M,N ),

where the last line follows from the definition of our metric on L(s, η). We have also ignored a factor of
1/
√
K above when expressing the bound in terms of ∆M,2. We do this to simplify future calculations and

it only gives a slightly less tight bound here.

Lemma 4.4. Given system A, there exists a ε-net J over the set L(s, η) of all (s, η)-quasi-measurements
on A, such that each element L ∈ L(s, η) is at most ε-distant from an element of J ∈ J with respect to
the metric d(·, ·). The size of this net can be taken to be

|J | 6
(

10s

ε

)2s|A|
.
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Proof. We begin by consider an ε-netK over S×s2|A| (s-tuples of 2|A|-dimensional Euclidean unit spheres).

First, there exists a ε-net over S2|A| of size no more than (5/ε)2|A|. (See, for example, Lemma II.4 in
[HLSW04].) K can then be constructed by assembling the direct product of all the nets on the individual
unit spheres. This produces a new net on the set of s-tuples of 2|A|-dimensional unit spheres. Recall
the distance measure d(·, ·) over L(s, η), the set of all (s, η)-quasi-measurements. This metric can be
extended to s-tuples. If it is then evaluated for any s-tuple x and its representative in the net y,

d(x, y) =
s∑

i=1

‖χi − νi‖2 ≤ sε.

Thus the spacing of the net K over s-tuples is at most sε with respect to the desired metric. Consider the
following set:

K′ := {y ∈ K : ∃ x ∈ L(s, η), ‖x− y‖2 6 sε} .
This is the set of all elements of the net K which are close to (s, η)-quasi-measurements. In other words,
all (s, η)-quasi-measurements use an element of K′ as their “representative” in the net. Now, divide
L(s, η) into subsets of elements which share the same representation in K′ and construct J by choosing
one L ∈ L from each subset. We then have by the triangle inequality that all L ∈ L are 2sε close to their
new representative in J . Clearly |J | 6 |K| since it was constructed from a subset and if we wish to make
an ε-net over L(s, η) we need only rescale the ε from above, giving the result.

The Lipschitz constants, expectation value and net size give us all the pieces we need to make the concen-
tration argument. We show that with very high probability, the distinguishability from independence of
the joint (potentially unnormalized) distribution of messages and quasi-measurement outcomes is small.

Theorem 4.5 (Concentration of probability for distinguishability from independence). Given the quantum
state ρMCKEE′ = UCKE · (σMCK ⊗ ωEE′) where U is a random unitary operator chosen according
to the Haar measure, σ is as defined in Equation (1.1), E′ ∼= E, and ωEE

′
is a bipartite pure state, the

following bound holds

Pr
U

{
sup

M∈L(s,η)

∥∥∥M
(
ρMCE′

)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1
> ε

}

6 exp

(
2sCE ln

(
40
√
CE

ε

√
∆M,2∆E,2

)
− (CKE)2

28η2∆M,∞∆E,∞

(
ε− 4∆E,∞√

KE

)2
)
.

In the above, ∆M,∞, ∆M,2, ∆E,2 and ∆E,∞ are as defined in Equations (2.2), (2.3), (2.5) and (2.4).

Proof. We apply Theorem 3.4 to gM and consider only one direction of the divergence from the expected
value. The exact statement can be written as

Pr
U
{gM(U) > ε} 6 exp

(
− MCKE2

64η2∆M,∞∆E,∞

(
ε− E

U
gM

)2
)
. (4.22)

It is convenient to define

f(M, U) =
∥∥∥M

(
ρMCE′

)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1
.

Clearly, gM and hU are sections of f and we are interested in bounding Pr
U
{sup
M

f(M, U) > ε}. Let

ε′ =
sε

2
√
CE∆M,2∆E,2

,
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and consider J an ε′-net over all (s, η)-quasi-measurements M. We found in Lemma 4.3 that if two
(s, η)-quasi-measurements were ε′ apart with respect to the distance measure d(·, ·), then for a fixed
unitary U , the values of f for each measurement would not differ by more than ε. Thus we can state that
the supremum deviation of f is not more than twice the maximum deviation found on measurements in
the net,

Pr
U

{
sup
M
f(M, U) > 2ε

}
6 Pr

U

{
max
M∈J

f(M, U) > ε

}
.

A union bound argument now bounds the probability of deviation for the maximum measurement by the
probability of deviation for a generic measurement,

Pr
U

{
max
M∈J

f(M, U) > ε

}
6
∑

M∈J
Pr
U
{gM(U) > ε} .

Thankfully, we have an explicit bound for the probability of deviation for an arbitrary measurement and
we can make a simplification,

Pr
U

{
sup
M
f(U,M) > 2ε

}
6
∑

M∈J
exp

(
− MCKE2

64η2∆M,∞∆E,∞

(
ε− E

U
f

)2
)

6
(

20
√
CE∆M,2∆E,2

ε

)2sCE

exp

(
− MCKE2

64η2∆M,∞∆E,∞

(
ε− E

U
f

)2
)

6 exp

(
2sCE ln

(
20
√
CE∆M,2∆E,2

ε

)
− MCKE2

64η2∆M,∞∆E,∞

(
ε− E

U
f

)2
)
.

Substituting in the fact that CK = M yields the desired inequality.

5 Locking against projective measurements

In this section we will only consider projective measurements, in other words (s, η) = (CE′, 1). We will
also state all of the subsequent theorems in terms of qubits. For this reason we will identify C = 2c,
K = 2k and E = E′ = 2e. This last assumption, namely that E and E′ have the same dimension, is
crucial for this section because it restricts the size of the set of measurements sufficiently to allow for a
straightforward discretization. The restriction will be lifted when we move on to generalized measure-
ments in the next section, however.

Our calculations, we will make repeated use of the fact that

log(x+ y) 6 x+ log(y) ∀x, y > 1. (5.1)

Corollary 5.1 (Locking for uniform messages with maximal entanglement). Consider the locking scheme
described in Definition 2.4 for a uniform message with maximal entanglement available at the measure-
ment. Choose p and ε such that ε > 8

√
1/KE and p > 2−2(CE)2 . Then the scheme will be an ε-locking

locking scheme except with probability p so long as the measurement superoperators are restricted to
projective measurements and

k > 9 + 2 log
1

ε
+

1

2
log(c+ e).

Proof. Using Theorem 4.5, we ensure that, except with probability p, our state is an ε-locking scheme
provided that

2(CE)2 ln

(
40
√
CE

ε

)
− (CE)2

28
K2(ε′)2 < ln p,
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where we’ve defined for the time being ε′ as ε − 4/
√
KE. A quick rearrangement of the terms reveals

that the inequality will be satisfied if

29

(ε′)2
ln

(
40
√
CE

ε

(
1

p

)1/2(CE)2
)
< K2. (5.2)

From our choice of pwe can easily see (1/p)1/2(CE)2 < 2 and from our choice of εwe see that 29/(ε′)2 <
213/ε2. Thus inequality (5.2) is satisfied when

log

(
213

ε2

)
+ log

(
ln 2 log

(
80
√
CE

ε

))
< 2k.

Finally, two applications of Equation (5.1) reveal that the above is satisfied provided,

17 + 2 log
1

ε
+ log log

1

ε
+ log(c+ e) < 2k.

Rearranging the terms we see that the above condition is satisfied provided inequality (5.1) is satisfied,
and we have completed the proof.

Corollary 5.1, and its extension to arbitrary POVM measurements in Corollary 6.4 is a mathematical
expression that “generically, information is locked until it can be completely decoded.” To arrive at this
interpretation, recall from Equation (1.4) that to achieve a decoding error of ε, the measurement must be
supplied with the entanglement through system E′ as well as a system C satisfying c − n > 2 log(1/ε).
Of course, this condition could never be met if the constraint n = c+ k is assumed, but the constraint was
only made for convenience to prove the locking results. Using it to re-express Corollary 5.1, though, we
find that the information about the message is ε-locked provided c = n− k < n− 9− 2 log(1/ε)− 1/2 ·
log(c + e). Therefore, regardless of the size of the message or the amount of entanglement, the message
goes from being ε-locked to being decodable with average probability of error at most ε with the transfer
of 9 + 4 log(1/ε) + 1/2 · log(c+ e) qubits.

At this point, we wish to study the dependence of the minimum key size k on the various entropies of the
message M and the entanglement E.

Corollary 5.2 (Locking for messages of bounded entropy with imperfect entanglement). Consider the
locking scheme described in Definition 2.4 for a message of bounded entropy with entanglement of a
bounded fidelity available at the measurement. Choose ε and p satisfying

ε >
8∆E,∞√
KE

, p > 2−2(CE)2 .

Then the scheme will be an ε-locking locking scheme except with probability p so long as the measurement
superoperators are restricted to projective measurements and

k′ +
1

2

(
n−Hmin(M)σ

)
+

1

2

(
e−Hmin(E)ω

)
< k, (5.3)

where we’ve defined k′ as the lower bound given in Corollary 5.1, i.e.: k′ = 9+2 log(1/ε)+1/2·log(c+e).

Proof. From Theorem 4.5, we can ensure ε-locking except with probability p by satisfying

2(CE)2 ln

(
40
√
CE

ε

√
∆M,2∆E,2

)
− (CE)2

28∆M,∞∆E,∞
K2(ε′)2 < ln p,
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where we’ve defined for the time being ε′ as ε − 4∆E,∞/
√
KE. A quick rearrangement of the terms

reveals that the inequality can be satisfied if

29∆M,∞∆E,∞
(ε′)2

ln

(
40
√
CE

ε

√
∆E,2∆M,2

(
1

p

)1/2(CE)2
)
< K2, (5.4)

From our choice of pwe can easily see (1/p)1/2(CE)2 < 2 and from our choice of εwe see that 29/(ε′)2 <
213/ε2. Thus the inequality in Equation (5.4) is satisfied when

13 + 2 log
1

ε
+ log(∆M,∞∆E,∞) + log

(
7 + log

1

ε
+

1

2
(c+ e) +

1

2
log(∆M,2∆E,2)

)
< 2k.

However, we know that the maximum values of ∆M,2 and ∆E,2 are M and E respectively. Combined
with our assumption that k < c, we can quickly reduce the above to,

18 + 3 log
1

ε
+ log(c+ e) +

(
n−Hmin(M)σ

)
+
(
e−Hmin(E)ω

)
< 2k.

Finally, we can identify k′ and give the result as desired.

6 Locking against generalized measurements

We will now show that the results of the previous section hold not only for projective measurements, but
also for general POVMs, up to very minor changes in the various constants. The main difficulty at this
point is that we cannot use Theorem 4.5 directly, since it only gives bounds for (s, η)-quasi-measurements.
We must therefore show that a general POVM behaves essentially like an (s, η)-quasi-measurement for
the purposes of the theorem. Our strategy will be probabilistic in nature: we will show that doing a general
POVMM is mathematically equivalent to randomly selecting a measurement constructed from possible
sequences of s measurement results obtained from M. With overwhelming probability, the sequence
chosen will be an (s, η)-quasi-measurement, and Theorem 4.5 will then apply in this case.

We start by proving this last fact, namely that with very high probability, a sequence of s measurement
results will be an (s, η)-quasi-measurement, for an appropriately chosen η.

Lemma 6.1. LetMCE′→X be any complete measurement superoperator, withM(π) =
∑

i αi|i〉〈χi|π|χi〉〈i|,
and consider the operator-valued random variable Y which takes the value |χi〉〈χi| with probability
αi〈χi|π|χi〉 = αi/CE

′. Then, s i.i.d. copies of Y will fail to be an (s, η)-quasi-measurement with proba-
bility at most 2CE′e−s(η−1)

2/CE′2 ln 2.

Proof. Y fulfills all the conditions for the operator Chernoff bound (Lemma A.2) to apply, with EY =
πCE

′
. This yields

Pr





1

s

s∑

j=1

Yj 
 ηπ



 6 2CE′e−s(η−1)

2/CE′2 ln 2,

and the probability on the left is an upper bound on the probability that the s-tuple Y1, . . . , Ys is not an
(s, η)-quasi-measurement.

We now use this to show that best general POVM cannot do much better than the best (s, η)-quasi-
measurement:

Lemma 6.2. It is true that

sup
M

∥∥∥M
(
ρMCE′ − ρM ⊗ ρCE′

)∥∥∥
1

6 max
M′∈L(s,η)

∥∥∥M′
(
ρMCE′ − ρM ⊗ ρCE′

)∥∥∥
1

+ 4(CE′)2e−s(η−1)
2/(CE′(2 ln 2)), (6.1)

where the supremum on the left-hand side is taken over all measurement superoperators.
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Proof. LetMCE′→X be any complete measurement superoperator of the formM(σ) =
∑

i αi|i〉〈χi|σ|χi〉〈i|,
and define Y to be the operator-valued random variable which takes value χi with probability αi/CE′.
Let Q be the event that Y1, . . . , Yn is an (s, η)-quasi-measurement, where the Yi are i.i.d. with the same
distribution as Y .

∥∥∥M
(
ρMCE′ − ρM ⊗ ρCE′

)∥∥∥
1

=
∑

i

αi

∥∥∥TrCE′
[
χi

(
ρMCE′ − ρM ⊗ ρCE′

)]∥∥∥
1

= CE′EY
∥∥∥TrCE′

[
Y
(
ρMCE′ − ρM ⊗ ρCE′

)]∥∥∥
1

=
CE′

s
EY1,...,Ys

s∑

i

∥∥∥TrCE′
[
Yi

(
ρMCE′ − ρM ⊗ ρCE′

)]∥∥∥
1
.

At this point we separate the expression into two terms, one for the eventQ and another for its complement.
∥∥∥M

(
ρMCE′ − ρM ⊗ ρCE′

)∥∥∥
1

=
CE′

s
Pr{Q}E

[
s∑

i=1

∥∥∥TrCE′
[
Yi

(
ρMCE′ − ρM ⊗ ρCE′

)]∥∥∥
1

∣∣∣∣∣Q
]

+
CE′

s
Pr{Q̄}E

[
s∑

i=1

∥∥∥TrCE′
[
Yi

(
ρMCE′ − ρM ⊗ ρCE′

)]∥∥∥
1

∣∣∣∣∣ Q̄
]

6 max
M′∈L(s,η)

∥∥∥M′
(
ρMCE′ − ρM ⊗ ρCE′

)∥∥∥
1

Pr{Q}+ 2CE′Pr{Q̄}

6 max
M′∈L(s,η)

∥∥∥M′
(
ρMCE′ − ρM ⊗ ρCE′

)∥∥∥
1

+ 4(CE′)2e−s(η−1)
2/CE′2 ln 2.

In the above, the sum of trace distances givenQ was interpreted as executing an (s, η)-quasi-measurement
described by Y1, . . . , Ys, and the same sum given Q̄ was simply bounded by 2η (there are s terms in the
sum, each of which cannot exceed 2). In the last step, we have bounded Pr{Q̄} using Lemma 6.1 and
made use of the fact that we can assume without loss of generality that |E| = |E′|.
Finally, a non-complete measurement superoperator can always be decomposed into a complete one by
splitting the POVM elements of rank greater than 1; this process always increases the trace distance.

What we have achieved with the above statement is to show that the decoupling distance for a general
measurement superoperator is very close to the decoupling distance of an (s, η)-quasi-measurement. All
that is now left to do is to use Theorem 4.5 to bound the supremum over (s, η)-quasi-measurements, and
we get the main theorem of this section:

Theorem 6.3 (Locking theorem for general measurements). Given the quantum state ρMCKEE′ = UCKE ·
(σMCK ⊗ ωEE′) where U is a random unitary operator chosen according to the Haar measure, σ is as
defined in Equation (1.1) and ωEE

′
a bipartite pure state, then

Pr
U

{
sup
M

∥∥∥M
(
ρMCE′

)
−M

(
ρM ⊗ ρCE′

)∥∥∥
1
> ε

}

6 exp

(
9(CE)2 ln(CE) ln

(
40
√
CE

ε

√
∆M,2∆E,2

)
− (CKE)2

210∆M,∞∆E,∞

(
ε− 8∆E,∞√

KE

)2
)
.

In the above, ∆M,∞, ∆M,2, ∆E,2 and ∆E,∞ are as defined in Equations (2.2), (2.3), (2.5) and (2.4).

Proof. We may assume without loss of generality that |E′| ≤ |E|. If not, letE′′ be the range of ρE
′

= ωE
′
.

Because ω is pure, |E′′| = rankωE
′ ≤ |E|. Let V be the isometric embedding E′′ ↪→ E′ and ρMCE′′ the
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projection of ρ to MCE′′. Then for any POVM measurement superoperatorMCE′→X ,

M(ρMCE′) =M(V ρMCE′′V †)

so measuringM or M ◦ (V · V †) will yield exactly the same measurement statistics. But the latter is a
POVM on CE′′ and E′′ satisfies the desired dimension bound.

Substituting the results of Lemma 6.2 into those of Theorem 4.5, we get the following:

Pr
U

{
sup
M

∥∥∥M
(
ρMCE′ − ρM ⊗ ρCE′

)∥∥∥
1
> ε

}
6 exp

(
2sCE ln

(
40
√
CE

ε

√
∆M,2∆E,2

)

− (CKE)2

28η2∆M,∞∆E,∞

(
ε− 4(CE)2e−s(η−1)

2/(CE(2 ln 2)) − 4∆E,∞√
KE

)2
)
. (6.2)

We now choose η = 2 and s = (6 ln 2)CE lnCE and note that this immediately implies

2(CE)2e−s(η−1)
2/CE2 ln 2 =

2

CE
.

We absorb this factor into our “offset” for the ε factor,
(
ε− 4(CE)2e−s(η−1)

2/CE2 ln 2 − 4∆E,∞√
KE

)2

>
(
ε− 8∆E,∞√

KE

)2

.

Substituting the choices for s and η into Equation 6.2 reveals the desired result.

We now wish to express, in qubits, a lower bound for the key size for a given probability p and a given ε.
The relevant variables are M = 2n, C = 2c, K = 2k, and E = 2e. Unlike in the previous section, it is
unnecessary to make any assumptions about the dimension of E′.

Corollary 6.4 (Locking against POVMs for a uniform message with maximal entanglement). Consider
the locking scheme described in Definition 2.4 for a uniform message and maximal entanglement available
at the measurement. Choose p and ε such that ε > 16

√
1/KE and p > 2−9(CE)2 . Then the scheme will

be an ε-locking locking scheme except with probability p so long as

11 + 2 log
1

ε
+ log(c+ e) < k.

Proof. From Theorem 6.3 we can ensure ε-locking except with probability p given

9 ln(CE) ln

(
40
√
CE

ε

)
+

1

9(CE′)2
ln

1

p
<
K2(ε′)2

210
,

where we’ve defined for the time being ε′ as ε− 8/
√
KE. We now make use of our lower bound for p as

well as the assumption that ln(CE) > 1 to show that the above can satisfied provided

9 ln(CE) ln

(
80
√
CE

ε

)
<
K2(ε′)2

210
.

Solving the above equation for k and applying the condition on ε reveals that the bound can be satisfied
by the statement in the lemma.
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Corollary 6.5 (Locking against POVMs for messages of bounded entropy with imperfect entanglement).
Consider the locking scheme described in Definition 2.4 for a uniform message and maximal entanglement
available at the measurement. Choose p and ε such that

ε >
16∆E,∞√
KE

, p > 2−9(CE)2 .

Then the scheme will be an ε-locking locking scheme except with probability p so long as

k′ +
1

2

(
n−Hmin(M)σ

)
+

1

2

(
e−Hmin(E)ω

)
< k, (6.3)

where we’ve defined k′ as the lower bound given in Corollary 6.4, i.e.: k′ = 11 + 2 log(1/ε) + log(c+ e).

Proof. From Theorem 4.5, we can ensure ε-locking with probability p by satisfying, From Theorem 6.3
we can ensure ε-locking with probability p given

9 ln(CE) ln

(
40
√
CE
√

∆M,2∆E,2

ε

)
+

1

9(CE′)2
ln

1

p
<

K2(ε′)2

210∆M,∞∆E,∞
,

where we’ve defined for the time being ε′ as ε− 8/
√
KE. We now make use of our lower bound for p as

well as the assumption that ln(CE) > 1 to show that the above can satisfied provided

9 ln(CE) ln

(
80
√
CE
√

∆M,2∆E,2

ε

)
<

K2(ε′)2

210∆M,∞∆E,∞
.

Next, we use our definition for ε′ and our bound for ε and we solve for k to find that the bound is satisfied
provided

21 + 3 log
1

ε
+ 2 log(c+ e) + log(∆M,∞∆E,∞) < 2k.

Finally, we can identify k′ and give the result as desired.

The lower bound requirement on ε in Corollary 6.5 limits the corollary’s range of applicability to situations
in which Hmin(E)ω is not too small. Specifically, the requirement can be rewritten in light of (6.3) as

2 log(c+ e) + (n−Hmin(M)σ) + 3Hmin(E)ω > e+ const.

So, at least when the message is uniform, the requirement is roughly that Hmin(E)σ > e/3. We suspect
that this requirement can be eliminated but leave it as an open problem to find a way to do so.

7 Locking versus decodability

The previous sections have shown that, under certain conditions, no classical information is recoverable
by the receiver. Here we aim to show that, in many regimes, these results are essentially optimal. We do
this by showing that if we make the key only very slightly smaller, then with overwhelming probability,
the classical message will be decodable with a negligible error probability. In fact we prove even more: in
this regime where the information is decodable, the decoder can even decode a purification of the classical
message. In other words, in this generic scenario where U is chosen with no preferred basis, either all
classical information is locked away, or we can decode quantum information. This is formalized in the
next theorem.

In order to study decodability, we must discard the identifications made in Figure 2 to study locking and
return to the original scenario described by Figure 1. Whereas k was previously the number of qubits in
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system K, there is no system K in Figure 2. Instead, we define k = n − c, which is consistent with its
earlier definition. Now, however, it might be the case that k is negative since decoding could require the
cyphertext to be longer than the message.

The following theorem generalizes the discussion of Section 1.1 to nonuniform messages and imperfect
entanglement.

Theorem 7.1. If U is chosen according to the Haar measure, then the information in the scheme described
in Figure 1 is such that there exists a decoding CPTP map DCE′→N such that

∥∥∥D
(

TrD

[
UNE→CD

(
σRMN ⊗ ωE′E

)
(UNE→CD)†

])
− σRMN

∥∥∥
1
6 ε

asymptotically almost surely, where σRMN is a purification of σMN , as long as

k 6 1

2

(
n−Hmax(M)σ

)
− 1

2

(
e−H2(E)ω

)
− 2 log(1/ε)− 4

Proof. Using Theorem 3.7 from [Dup09], we get that

EU
∥∥∥TrC

[
UNE→CD

(
σRMN ⊗ ωE

)
(UNE→CD)†

]
− σRM ⊗ ρD

∥∥∥
1
6 2

1
2
Hmax(M)σ− 1

2
H2(E)ω

√
D

C
.

It can also be shown that the value of this trace distance will asymptotically almost surely not exceed twice
this bound. Under this condition, we have that:

∥∥∥TrC

[
UNE→CD

(
σRMN ⊗ ωE

)
(UNE→CD)†

]
− σRM ⊗ ρD

∥∥∥
1
6 2× 2

1
2
Hmax(M)σ− 1

2
H2(E)ω

√
D

C
.

Uhlmann’s Theorem then implies the existence of a partial isometry V CE′→NG and of a purification of
ρD on system G that we call θDG such that

∥∥∥V U
(
σRMN ⊗ ωE′E

)
U †V † − σRMN ⊗ θDG

∥∥∥
1
6 4

(
2Hmax(M)σ−H2(E)ωD

C

)1/4

.

Defining DCE′→N as D(ξ) = TrG
[
V ξV †

]
and tracing out system D, we get that

∥∥∥D
(

TrD

[
UNE→CD

(
σRMN ⊗ ωE′E

)
(UNE→CD)†

])
− σRMN

∥∥∥
1
6 4

(
2Hmax(M)σ−H2(E)ωD

C

)1/4

.

Now, to satisfy the theorem statement, we need to ensure that

4

(
2Hmax(M)σ−H2(E)ωD

C

)1/4

6 ε.

Taking logarithms on both sides and using the fact that logD = k + e, we get that

2 +
1

4
[Hmax(M)σ −H2(E)ω + e+ k − c] 6 log ε.

Substituting in the fact that c = n− k, we arrive at the statement of the theorem.
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8 Implications for the security of quantum protocols against quantum ad-
versaries

When designing quantum cryptographic protocols, it is often necessary to show that a quantum adversary
(“Eve”) is left with only a negligible amount of information on some secret string. An initial attempt at
formalizing this idea is to say that, at the end of the protocol, regardless of what measurement Eve makes
on her quantum system, the mutual information between her measurement result and the secret string is at
most ε (in other words, her accessible information about the message is at most ε). This was often taken
as the security definition for quantum key distribution, usually implicitly by simply not considering that
the adversary might keep quantum data at the end of the protocol [LC99, SP00, NC00, GL03, LCA05]
(see also discussion in [BOHL+05, RK05, KRBM07]). In [KRBM07], it is shown that this definition of
security is inadequate, precisely because of possible locking effects. Indeed, this security definition does
not exclude the possibility that Eve, upon gaining partial knowledge of S after the end of the protocol,
could then gain more by making a measurement on her quantum register that depends on the partial
information that she has learned. In [KRBM07], the authors exhibit an admittedly contrived quantum key
distribution protocol which generates a secret n-bit key such that, if Eve learns the first n− 1 bits, she can
then learn the remaining bit by measuring her own quantum register.

The locking scheme presented above allows us to demonstrate a much more spectacular failure of this
security definition. We will show that there exists a quantum key distribution protocol that ensures that
an adversary has negligible accessible information about the final key, but with which an adversary can
recover the entire key upon learning only a very small fraction of it.

8.1 Description of the protocol

We will derive this faulty protocol by starting with a protocol that is truly secure, and then making Alice
send a locked version of the secret string directly to Eve. We will be able to prove that regardless of what
measurement Eve makes on her state, she will learn essentially no information on the string, but of course,
she only needs to learn a tiny amount of information to unlock what Alice sent her. More precisely, let P
be a quantum key distribution protocol such that, at the end of its execution, Alice and Bob share an n-bit
string, and Eve has a quantum state representing everything that she has managed to learn about the string.
We will also assume that P is a truly secure protocol: the string together with Eve’s quantum state can
be represented as a quantum state σSE such that ‖σSE − πS ⊗ σE‖1 6 ε, where S is a quantum register
holding the secret string, and E is Eve’s quantum register. Now, we will define the protocol P ′ to be the
following quantum key distribution protocol: Alice and Bob first run P to generate a string s of length n,
and then Alice splits s into two parts: the first part sk is of size O(log n), and the second part sc contains
the rest of the key. Alice then uses the classical key sk to create a quantum state in register C that contains
a locked version of sc and sends the system C to Eve.

How secure is P ′? It is clearly very insecure, since, if Eve ever ends up learning sk (via a known plaintext
attack, for instance), she can then completely recover sc. However, the next theorem shows that, right
after the execution of P ′, Eve cannot make any measurement that will reveal information about the key.
In particular, P ′ satisfies the requirement that Eve’s accessible information on the key be very low.

Theorem 8.1. Let P and P ′ be quantum key distribution protocols as defined as above, and let ρCES

be the state at the end of the execution of P ′: S contains the n-bit string s, E is Eve’s quantum register
after the execution of P , and C contains the locked version of sc that Alice sent to Eve. Then, for any
measurement superoperatorMCE→X , there exists a state ξX such that

∥∥M(ρCES)− ξX ⊗ πS
∥∥
1
6 2ε.

This also entails that
Iacc(S;CE) 6 8εn+ 2η(1− 2ε) + 2η(2ε)
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via the Alicki-Fannes inequality (see Lemma 2.1).

Proof. From the definition of P , we have that
∥∥ρES − πS ⊗ ρE

∥∥
1
6 ε. (8.1)

Now, let CS→CS be a superoperator that takes a classical string in S, splits it into sk and sc, creates a
locked version of sc with sk as the key into the quantum system C, and leaves the classical string in
S unchanged; this is simply the operation that Alice performs when preparing C for Eve. The above
inequality, combined with the monotonicity of the trace distance under CPTP maps yields

∥∥ρCES − C(πS)⊗ ρE
∥∥
1
6 ε (8.2)

and hence, for any measurement superoperatorMCE→X ,
∥∥M(ρCES)−M(C(πS)⊗ ρE)

∥∥
1
6 ε (8.3)

Consider now the expression MCE→X(C(πS) ⊗ ρE): it can be viewed as a measurement on the C
system of CS→CS(πS) alone that is implemented by creating the state ρE and then measuringMCE→X .
Furthermore, note that, by the definition of an ε-locking scheme, we have that, for every measurement
superoperator NC→X , ∥∥N (C(πS))−N (TrS [C(πS)])⊗ πS

∥∥
1
6 ε. (8.4)

Applying this toMCE→X(C(πS)⊗ ρE), we get that
∥∥M(C(πS)⊗ ρE)−M(TrS [C(πS)]⊗ ρE)⊗ πS

∥∥
1
6 ε. (8.5)

We now use the triangle inequality on Equations (8.3) and (8.5) to obtain
∥∥M(ρCES)−M(TrS [C(πS)]⊗ ρE)⊗ πS

∥∥
1
6 2ε (8.6)

which yields the theorem with ξX :=M(TrS [C(πS)]⊗ ρE).

Hence, we have shown that requiring that Eve’s accessible information on the generated key be low is not
an adequate definition of security for quantum key distribution. We have exhibited a protocol P ′ which
guarantees low accessible information and yet is clearly insecure due to locking effects.

9 Discussion

It is natural in physics to measure the “correlation” between two quantum physical systems using the
correlation between the outcomes of measurements on those two systems. Two-point correlation func-
tions are but the most ubiquitous examples. The results in this article demonstrate that this practice can
sometimes be very misleading. The ε-locking quantum states exhibited in this article would reveal no
correlations using any type of measurement, but enlarging one of the two systems by a small number of
qubits would expose near-perfect correlation between the two systems. This is an important and counter-
intuitive property of information in quantum mechanical systems: measurements can be distressingly bad
ways to detect correlation.

The extensive literature on quantum discord is essentially devoted to exploring the relationship between
accessible, or classical, and quantum mutual information [OZ01, HV01, BKZ06]. Since the discord is
defined as the gap between the quantum and classical mutual informations, locking can be viewed as the
extreme case where classical mutual information doesn’t detect any of the very abundant quantum mutual
information. Previous work had demonstrated that transmitting a constant number of physical qubits can
cause the classical mutual information to increase from a fixed small constant to an arbitrarily large value.
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In this article, we have strengthened the definition of locking, replacing the mutual information by the
trace distance to a product distribution. Moreover, we have shown that the locking effect still exists even
when the trace distance (or the classical mutual information) is made arbitrarily small. In light of these
results, claims that the discord is a robust measure of quantum correlation [WSFB09] should treated with
skepticism. While discord is certainly a signature of quantumness, its susceptibility to locking means that
it is in this important respect not robust.

Previous studies of information locking had also always focused on the example of sending classical
information in one of a small number of different bases unknown to the receiver. The intuition was that
a receiver ignorant of the basis could not do much better than guessing the basis and then measuring.
Most of the time, he would guess incorrectly and his measurement would then destroy the information.
Moving away from that paradigm, in this article we consider classical information encoded using a single
generic unitary transformation mixing the input information with half of an entangled state shared with
the receiver. The “key” then becomes a quantum system. While the original paradigm can be recovered
by eliminating the entanglement and encrypting the key quantum system with a private quantum channel,
the setting considered here is strictly more general.

Indeed, we find that, for an n-bit uniform message and maximal entanglement, the information is generi-
cally ε-locked until the receiver is within O(log n/ε) qubits of being able to completely decode the mes-
sage. Our definition of locking is stronger than those previously studied and our results imply, for the
first time, that the classical mutual information can be made arbitrarily small. Our method of proof in the
case of projective measurements was a fairly standard discretization argument but the extension to POVM
measurements required a new strategy exploiting the operator Chernoff bound. In contrast to previous
studies of locking, we do not require the message to be uniformly distributed, working instead with a
min-entropy bound on the distribution of messages. In that case, we found that the key size was at most
the gap between the max- and min-entropies of the message, modulo the logarithmic terms that dominate
in the uniform situation.

For information theorists, this may appear reminiscent of a strong converse to a channel capacity problem.
Roughly, a strong converse theorem states that any attempt to transmit above the channel capacity will
result in the decoding error probability approaching one. In our setting, the analog of the strong converse
would be a matching lower bound to Equation (1.5) of the form

1− ε < 1

M

∑

m

∑

m′ 6=m
p(m′|m) (9.1)

whenever C < M , indicating the the probability of incorrectly decoding the message is at least 1 − ε.
What we prove here is much stronger. Equation (9.1) doesn’t rule out the possibility of being able to
pin the message down to some relatively small set. More generally, it doesn’t imply a small mutual
information between the message and the measurement outcome. Information locking does imply these
stronger statements.

As such, information locking has a natural cryptographic interpretation even if we haven’t emphasized it
in this article. The special case of our scenario mentioned above, with no entanglement and a quantum key
encrypted using a private quantum channel, leads to a method for encrypting classical messages using a
secret key of size independent of the length of the message. Similarly, information locking schemes can be
used to construct string commitment protocols with surprisingly good parameters [BCH+06, BCH+08].
These cryptographic applications are emphasized in the companion article [FHS10].

To the extent that random unitary transformations provide good models of black hole evaporation, our
results might also have implications for that process. Oppenheim and Smolin had previously suggested
that information locking could rescue the long-lived remnant hypothesis [SO06]. In essence, their idea
was that a remnant with a small number of states could lock all the information of a large black hole,
thereby evading the inconsistencies with low energy physics that arise from having large numbers of
remnant species [ACN87, CW87]. Their proposal, however, relied on previously studied locking states
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that treated the encoded message and the key very differently. Consequently, the proposal required that
the black hole keep hold of the key until the very last moments of its evaporation, implying some ad hoc
dynamical distinction between encoded message and key in the evaporation process. Our results imply
that if the dynamics are well-modeled by a Haar random unitary transformation, then any small portion
of the output system can be used as the key. No ad hoc distinction is necessary.

Ironically, the information locking effect is also perfectly compatible with the rapid release of information
from a black hole predicted in [HP07], assuming a unitary evaporation process. That article observed that
if a black hole is already highly entangled with Hawking radiation from an earlier time, then messages
would be released from the black hole in the Hawking radiation once the black hole dynamics had suffi-
ciently “scrambled” the message with internal black hole degrees of freedom. By virtue of the fact that
we treat generic unitary transformations acting on a message and half of an entangled state, our results
apply to the setting of that paper and the followup [SS08]. Specifically, our results imply that in the case
of a larger message, no information about the message could be obtained from the Hawking radiation
until moments before it could all be obtained. The conclusion depends, of course, on whether the random
unitary transformation is a good model of the evaporation process. While the generic unitary transforma-
tions considered here would take exponential time to implement on a quantum computer, the follow-up
article [FHS10] shows, at least, that locking can be achieved with a quantum circuit of depth only slightly
superlinear in the number of qubits in the system. Other attempts to apply random unitary transformations
to the black hole information problem, such as [Llo06, BSZ09], will be affected similarly by information
locking.

To summarize, this article defined information locking more stringently than previously and nonetheless
found that this stronger form of locking is generic: if information is encoded using a random unitary trans-
formation, then it will either be decodable or locked. Almost no middle ground occurs. This observation
has implications for cryptography and, potentially, for black hole physics.
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A Miscellany

Definition A.1 (Lipschitz constant). Let f : X → Y be a function from the metric space (X, dX) to the
metric space (Y, dY). Then, the Lipschitz constant of f is defined as

sup
x1,x2∈X

dY(f(x1), f(x2))

dX(x1, x2)
.

If the above quantity is not bounded, the constant is not defined.

Lemma A.1 (Lemma IV.3 in [ADHW09]). For any matrix XAAR and for dU the Haar measure over
unitaries, we have the following property:

∫

U

(
UA ⊗ UA ⊗ IR

)
XAAR

(
U †A ⊗ U

†
A
⊗ IR

)
dU = α+ (X)⊗ΠA

+ + α− (X)⊗ΠA
−

where

α± (X) =
TrAA

[
X(ΠA

± ⊗ IR)
]

rank
(
ΠA
±
) ΠA

± =
1

2

(
IAA ± FA

A

)
rank

(
ΠA
±
)

=
|A|(|A| ± 1)

2
.

Lemma A.2 (Operator Chernoff bound [AW02]). Let X1, . . . , XM be i.i.d. random variables taking
values in the operators Pos(A), with 0 6 Xj 6 I, with A = EXj > αI, and let 0 < η 6 1/2. Then

Pr





1

M

M∑

j=1

Xj 
 (1 + η)A



 6 2|A| exp

(
−M αη2

2 ln 2

)
. (A.1)

Lemma A.3 (Trace distance versus Euclidean norm for pure states (See, e.g. [NC00].)). Consider any
two quantum states |ϕ〉, |ϕ̃〉 with density associated operators ϕ, ϕ̃ respectively. We can relate the 1-norm
distance between the operators to the 2-norm distance of the states as follows,

‖ϕ− ϕ̃‖1 ≤ 2 ‖|ϕ〉 − |ϕ̃〉‖2 .

Lemma A.4 (A bound for the 1-norm in terms of conditional entropy [Ren05, Dup09]). Let ρ ∈ L(A) be
any Hermitian operator and let γ ∈ Pos(A) be a positive definite operator. Then,

‖ρ‖1 6
√

Tr [γ] Tr
[(
γ−1/4ργ−1/4

)2]
.

Proof.

‖ρ‖1 = max
U∈U(A)

|Tr [Uρ]|

= max
U∈U(A)

∣∣∣Tr
[(
γ1/4Uγ1/4

)(
γ−1/4 ρ γ−1/4

)]∣∣∣

6 max
U∈U(A)

√
Tr
[(
γ1/4Uγ1/4

) (
γ1/4U †γ1/4

)]
Tr
[
γ−1/4 ρ γ−1/2 ρ† γ−1/4

]

=
√

max
U∈U(A)

Tr
[
γ1/2Uγ1/2U †

]
Tr
[
γ−1/4 ρ γ−1/2 ρ† γ−1/4

]

=
√

Tr [γ] Tr
[
γ−1/4 ρ γ−1/2 ρ† γ−1/4

]
,
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where the first equality is an application of Lemma I.6 in [Dup09] and the inequality results from an
application of Cauchy-Schwarz, and the maximizations are over all unitaries on A. The last equality
follows from

max
U∈U(A)

Tr
[
γ1/2Uγ1/2U †

]
6 max

U∈U(A)

√
Tr [γ] Tr

[
Uγ1/2U †Uγ1/2U †

]

= Tr [γ]

6 max
U∈U(A)

Tr
[
γ1/2Uγ1/2U †

]
.
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